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System size dependence of baryon-strangeness correlation in relativistic heavy
ion collisions from a multiphase transport model

Dong-Fang Wang (���), Song Zhang (��),* and Yu-Gang Ma (���) †

Key Laboratory of Nuclear Physics and Ion-beam Application (MOE), Institute of Modern Physics,
Fudan University, Shanghai 200433, China

(Received 15 October 2020; accepted 11 January 2021; published 1 February 2021)

The system size dependence of baryon-strangeness (BS) correlation (CBS) is investigated with a multiphase
transport (AMPT) model for various collision systems from 10B + 10B, 12C + 12C, 16O + 16O, 20Ne + 20Ne,
40Ca + 40Ca, 96Zr + 96Zr, and 197Au + 197Au at Relativistic Heavy Ion Collider energies

√
sNN of 200, 39, 27,

20, and 7.7 GeV. Both effects of hadron rescattering and a combination of different hadrons play a leading
role in baryon-strangeness correlation. When the kinetic window is limited to absolute rapidity |y| > 3, these
correlations tend to be constant after the final-state interaction, whatever kind of hadron subset we choose based
on the AMPT framework. The correlation is found to smoothly increase with baryon chemical potential μB,
corresponding to the collision system or energy from the quark-gluon-plasma-like phase to the hadron-gas-like
phase. In addition, the influence of initial nuclear geometric structures of α-clustered nuclear collision systems
of 12C + 12C as well as 16O + 16O collisions is discussed but the effect is found negligible. The current model
studies provide baselines for searching for the signals of the quantum chromodynamics phase transition and
critical point in heavy-ion collisions through the BS correlation.

DOI: 10.1103/PhysRevC.103.024901

I. INTRODUCTION

Relativistic heavy-ion collisions create nuclear matter with
sufficient energy density that one expects a quark-gluon
plasma (QGP) to form [1–4]. The fundamental challenge
remains of how to identify this hot and dense quark mat-
ter and fully understand the phase diagram of QGP matter.
Lattice QCD calculations have indicated that the transition
from hadronic phase to QGP phase is a crossover at zero
baryon chemical potential (μB = 0) with a transition tem-
perature Tc ≈ 166 MeV [5,6]. For the finite size system, the
transition temperature Tc could shift to a value higher than that
in an unconstrained space [7]. In an attempt to address these
considerations, researchers performed, from 2010 to 2017, a
beam-energy scan [8–10] at the BNL Relativistic Heavy Ion
Collider (RHIC). One of the promising approaches to probe
the QGP phase transition involves fluctuations [11,12].

Theoretical calculations predicted that fluctuations and cor-
relations of conserved charges were distinctly different in the
hadronic or QGP phase [13], and they were experimentally
accessible to distinguish between these two phases [14]. From
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experimental analysis of event-by-event fluctuations of net
conserved charges like baryon number (B), electric charge
(Q), and strangeness (S), in particular, their higher-order cu-
mulants were reported at RHIC [15,16] and the Large Hadron
Collider (LHC) [17,18]. One of the event-by-event fluctua-
tions observable was proposed by Koch [19], namely, the
baryon-strangeness correlation coefficient,

CBS = −3
〈BS〉 − 〈B〉〈S〉
〈S2〉 − 〈S〉2 , (1)

where B and S are the net baryon number and net strangeness
in one event, respectively. The average value of B and S
over a suitable ensemble of events is denoted by 〈·〉. The BS
correlation was considered as a useful tool to characterize if
the highly compressed and heated matter created in heavy-ion
collisions underwent an ideal QGP phase, strongly coupled
QGP phase, or hadronic phase. In previous analyses, several
specific models were applied, such as the (2 + 1) Polyakov
quark meson model [20], the hadron resonance gas model
[21,22], the URQMD [23–25] model, as well as a multiphase
transport (AMPT) model [26], to study the fluctuations and
compare them with lattice QCD results [27,28].

Research on small systems has been performed for sev-
eral years, both experimentally and theoretically [29,30], and
several proposals for a system scan (e.g., O + O) [31] have
been made to study the possible signals of QGP matter in
small systems as well as to investigate the initial state ef-
fects on the final state observables [31–33]. We noticed that
the ALICE Collaboration reported the enhanced production
of multistrange hadrons in high-multiplicity proton-proton
collisions [34]. In the same context, we consider that the
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TABLE I. AMPT input parameters and 〈Npart〉 values of different collision systems.

√
sNN = 200 GeV

√
sNN = 20 GeV

√
sNN = 7.7 GeV

System bmax (fm) 〈Npart〉 Event counts 〈Npart〉 Event counts 〈Npart〉 Event counts

10B + 10B 1.15619 14.8 7×104 13.2 12×104 13.1 16×104

12C + 12C 1.22864 18.7 10×104 16.8 6×104 16.7 10×104

16O + 16O 1.35229 25.5 10×104 23.1 4×104 23.0 10×104

20Ne + 20Ne 1.45671 32.8 2×104 30.0 4×104 29.8 2×104

40Ca + 40Ca 1.83534 69.3 2×104 65.0 1×104 64.9 1×104

96Zr + 96Zr 2.45727 174.2 2×104 167.3 2×104 166.9 3×104

197Au + 197Au 3.1226 364.1 1×104 354 3×104 353.8 3×104

baryon-strangeness correlation which is related to the QGP
phase transition may also be sensitive to the fluctuations from
small systems to large systems through heavy-ion collisions.

In this work, we adopt a multiphase transport model
to study the influence of collision system size on baryon-
strangeness correlation CBS . By tuning the collision energies
of two nuclei, we investigate the energy dependence of
the correlation CBS . The maximum rapidity acceptance ymax

dependence and the influence of initial nuclear geometry
structure are also discussed.

The paper is organized as follows. First, in Sec. II, a short
introduction to a multiphase transport model and some input
parameters are presented and the physical picture of baryon-
strangeness correlation is briefly manifested. Next, based on
the AMPT model, the dependence of baryon-strangeness cor-
relation as a function of system size, center-of-mass energy,
and ymax is discussed in Sec. III. Finally, a brief summary is
presented in Sec. IV.

II. MODEL AND METHODOLOGY

A. Brief introduction to AMPT model

AMPT, which is a hybrid dynamic model, is employed
to calculate different collision systems. The AMPT model
can describe the pT distribution of charged particles [35–38]
and their elliptic flow in Pb+Pb collisions at

√
sNN = 2.76

TeV, as measured through the LHC-ALICE Collaboration.
The model includes four main components to describe the
relativistic heavy-ion collision process: the initial condition
which is simulated using the Heavy Ion Jet Interaction Gen-
erator (HIJING) model [39,40], the partonic interaction which
is described by Zhang’s parton cascade (ZPC) model [41],
the hadronization process which proceeds by a Lund string
fragmentation or coalescence model, and the hadron rescatter-
ing process which is treated by a relativistic transport (ART)
model [42]. There are two versions of AMPT: (1) the AMPT
version with a string melting mechanism, in which a par-
tonic phase is generated from excited strings in the HIJING

model, where a simple quark coalescence model is used to
combine the partons into hadrons, and (2) the default AMPT
version which only undergoes a pure hadron gas phase. The
AMPT model succeeds to describe extensive physics top-
ics for relativistic heavy-ion collisions at the RHIC [43] as
well as the LHC [44] energies, e.g., for hadron Hanbury-
Brown and Twiss correlation [45], dihadron azimuthal

correlation [46,47], collective flows [48,49], strangeness
production [38,50], as well as chiral magnetic effects and so
on [51–54]. The details of AMPT can be found in Ref. [43]. In
the AMPT model, the impact parameter b, demonstrating the
transverse distance between the centers of the two collided
nuclei, can determine the collision centrality. The number of
participants, Npart, is also related to the centrality or impact
parameter. We adopt the AMPT parameters as suggested in
Ref. [37]. The calculated collision systems and energies, their
corresponding maximum impact parameters, Npart, and the
number of events are listed in Table I.

B. Baryon-strangeness correlation

Finding a suitable probe to distinguish QGP matter is the
key to understanding the QGP phase transition in relativistic
heavy-ion collisions. The correlation coefficient CBS , calcu-
lated via conserved quantities which are less affected due to
uncertainty from hadronization, has an advantage over other
probes. Under an ideal QGP assumption, where the basic de-
grees of freedom are weakly interacting quarks and gluons at
high temperature, 〈S〉 remains zero and CBS can be written as
CBS = −3 〈BS〉

〈S2〉 = 1, noting that the strangeness is only carried
by an s quark [19]. However, this feature is different from
a hadron gas phase where this coefficient strongly depends
on the hadronic environment. Based on an assumption of
uncorrelated multiplicities, CBS can be written as [19]

CBS ≈ 3
〈�〉 + 〈�̄〉 + · · · + 3〈�−〉 + 3〈�̄+〉

〈K0〉 + 〈K̄0〉 + · · · + 9〈�−〉 + 9〈�̄+〉 . (2)

In actual calculation [19], CBS is expressed as

CBS = −3

∑
n B(n)S(n) − 1

N

(∑
n B(n)

)( ∑
n S(n)

)
∑

n (S(n) )2 − 1
N

(∑
n S(n)

)2 , (3)

where B and S denote the net baryon number and net
strangeness observed for a given event, respectively, and N
is the total number of events. Furthermore, some attention
should also be paid to the statistical errors as suggested in
Refs. [25,55] (see the Appendix).

III. RESULTS AND DISCUSSION

The combination of hadrons would play an important role
in the measurement of the baryon-strangeness correlation CBS .
To investigate this effect, the distribution of net baryons B
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FIG. 1. The correlation between net baryons B and net
strangeness S for two different subsets of hadrons in the most central
(0–5 %) 197Au + 197Au collisions at

√
sNN = 200 GeV with the string

melting AMPT framework. Case II (a) with and (b) without hadron
rescattering, and case I (c) with and (d) without hadron rescattering.

versus net strangeness S is presented in Fig. 1. We chose two
combinations of hadrons for baryon-strangeness correlation
calculation in this figure: case I, p+n+�+�± + �± + �− +
K , and case II, p + n + K , where both the particles and an-
tiparticles were included with kinetic windows 0.1 < pT <

3.0 GeV/c and |y| < 0.2. In this figure, we observed that the
baryon-strangeness distribution was more concentrated in the

center if the effect of hadron rescattering is off, which con-
tributes to stronger correlations. After counting more strange
baryons (and antibaryons), the distribution stretches into an
elliptical distribution and leads to finite negative correlation.
This correlation can be represented as the following:

ρB,S = cov(B, S)

σBσS
= 〈(B − 〈B〉)(S − 〈S〉)〉√

〈B2〉 − 〈B〉2
√

〈S2〉 − 〈S〉2
. (4)

The more strange baryons were used, the more negative cor-
relation was present between B and S.

We focus on the hadron combination case (case II) for
calculating correlations, and also present case I results for
comparing effects from different hadron combinations.

Figure 2 shows the system size dependence for all particles
(case II) under the effect with or without hadron rescatter-
ing in 0–5 % 10B + 10B, 12C + 12C, 16O + 16O, 20Ne + 20Ne,
40Ca + 40Ca, 96Zr + 96Zr, and 197Au + 197Au collisions at√

sNN= 200 GeV [Fig. 2(a)], 20 GeV [Fig. 2(b)], and 7.7 GeV
[Fig. 2(c)] from the AMPT model.

In the case without hadron rescattering where the
hadronized system just experienced a partonic phase, the
baryon-strangeness correlation CBS keeps constant at 200
and 20 GeV as collision system size increases. At

√
sNN =

7.7 GeV, CBS almost keeps constant but displays a slightly de-
creasing trend with system size. As collision energy increases,
CBS approaches the value conformed to an ideal QGP assump-
tion (CBS = 1). If hadron rescattering is taken into account the
baryon-strangeness correlation CBS exhibits similar behavior
at 200 and 20 GeV, while it is not completely flat at 7.7 GeV.
The rescattering process would erase the signal of partonic
matter which is consistent with the earlier AMPT study [26].

This dependence is also related to rapidity distribution;
thus, the baryon and strangeness yield dN/dy (rapidity den-
sity) was also present for 197Au + 197Au collisions at RHIC

0 100 200 300

<Npart>

0.5

1

1.5

B
S

C

=200GeVNNS(a)

0 100 200 300
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0.5

1

1.5
=20GeVNNS(b)

0 100 200 300

<Npart>

1.5

2

2.5

With hadron rescattering

Without hadron rescattering

|y|<0.2
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FIG. 2. The baryon-strangeness correlation CBS versus 〈Npart〉 at
√

sNN = 200, 20, and 7.7 GeV in the most central collisions (0–5 %) of
10B + 10B, 12C + 12C, 16O + 16O, 20Ne + 20Ne, 40Ca + 40Ca, 96Zr + 96Zr, and 197Au + 197Au systems at RHIC energies

√
sNN = (a) 200, (b) 20,

and (c) 7.7 GeV in the string melting AMPT framework.
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FIG. 3. The AMPT results of positive baryon (strangeness) B+ (S+), negative baryon (strangeness) B− (S−), and net baryon (net
strangeness) B (S) dN/dy for identified particles, namely, p, n, �, �±, �±, �−, and K in 197Au + 197Au collisions at RHIC energies

√
sNN =

(a, d) 200, (b, e) 20, and (c, f) 7.7 GeV based on the string melting AMPT framework. The meaning of different symbols is illustrated in the
insets of (b) and (e). Here the kinematics window is |y| < 0.2.

energies
√

sNN = 200, 20, and 7.7 GeV based on the string
melting AMPT model, as shown in Fig. 3. We observed
that the rapidity distribution of net baryons B becomes more
concentrated in the middle rapidity when collision energy
decreases as presented in Figs. 3(a)–3(c). At

√
sNN = 20 and

7.7 GeV, the lower collision energy makes positive baryon B+
much larger than negative baryon B− (almost contributed by
antiprotons). After the hadron rescattering process, as a result
of the contribution of decay particles, the net baryon B value
is a little higher than the values without hadron rescattering.
The non-Gaussian distribution of the B rapidity at 200 GeV
was also found in Ref. [56].

Figures 3(e) and 3(f) display the rapidity distribution of net
strangeness S at

√
sNN = 20 and 7.7 GeV, respectively, where

S is always negative. However, S turns positive at 200 GeV in
mid-rapidity as shown in Fig. 3(d). As energy increases, the
rapidity density of B decreases in the chosen region, and the
baryon-strangeness correlation CBS is closer to 1, manifesting
that the system is close to the QGP state. The more net baryons
B the collision system has, the closer the state would be to the
hadron gas phase with a larger value of CBS .

As energy decreases, the rapidity densities of net baryons
B and net strangeness S grow a more sharp peak as plotted in
Fig. 3. Therefore, the final result of CBS will be affected greatly

by a slight change of the dynamic window size. Consequently,
we could draw the conclusion that CBS is also affected by
kinetic windows due to this nonflat rapidity distribution.

We also presented CBS as a function of the rapidity
acceptance range ymax in Au+Au collisions at

√
sNN =

200 GeV by the AMPT model. As manifested in Fig. 4, we
observed two different ymax dependencies based on the two
different combinations of hadrons. The correlation coefficient
tends to increase with ymax in the case II hadron combination.
However, when the case I hadron combination is chosen, the
coefficient tends to decrease. Although the hadron combina-
tions were different, CBS goes asymptotically to a constant as
ymax > 3. Additionally, the choice of hadron combination has
no effect on the result at large ymax at the hadron rescattering
stage as a consequence of conserved quantities of baryon
number and strangeness. In a previous study [19], the corre-
lation coefficient CBS first increased with ymax and reached a
maximum value at a certain ymax before it dropped to zero.

To understand this phenomenon, Figs. 5(a) and 5(b) display
the maximum rapidity acceptance (|y| < ymax) dependence
of the numerator (CBS

11 = 〈BS〉 − 〈B〉〈S〉) and the denomina-
tor (CS

2 = 〈S2〉 − 〈S〉2) of CBS in 197Au + 197Au collisions at√
sNN = 200 GeV with the string melting AMPT model, re-

spectively. In the case II hadron combination, both the −3CBS
11
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All Without hadron rescattering
All With hadron rescattering
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FIG. 4. The maximum rapidity acceptance (|y| < ymax) depen-
dence of the correlation coefficient CBS in 197Au + 197Au collisions
at

√
sNN = 200 GeV in the string melting AMPT framework. Two

different subsets of hadrons are adopted to show different dependen-
cies. The two dashed lines indicate the theoretical estimate of simple
QGP (CBS = 1) and hadron gas (CBS = 0.66) at chemical freeze-out
conditions of T = 170 MeV and μb = 0, respectively.

and the CS
2 gradually tend to a constant value as ymax increases,

as shown in Figs. 5(a) and 5(b), respectively. However, in the
case I hadron combination, the −3CBS

11 increases with ymax and
then drops to a constant value with the hadron rescattering
process. Thus, the value of CBS

11 is the dominant factor affect-
ing the correlation coefficient CBS .

The CBS calculated in this model is plotted in Fig. 6(a)
at

√
sNN = 11.5, 20, 27, 39, and 200 GeV in 197Au + 197Au

central collisions and presented strong energy dependence.
As energy increases, CBS goes down to 0.8 at the top RHIC
energy. This result was also below the expected value for
an ideal QGP phase which was mentioned in Ref. [24].
Figure 6(b) shows CBS as a function of baryon chemical poten-
tial μB at chemical freeze-out for

√
sNN = 200 GeV collision

systems, where μB was extracted based on the thermal model
as given in our previous paper [57]. At a given collision
energy, μb increases with system size, and a similar trend
also appears in Fig. 2(a). The correlation coefficient CBS with
the hadron rescattering process slightly increases with μb,
which is consistent with the previous conclusion [19]. Mean-
while, the collision energy dependence of CBS is displayed in
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FIG. 5. The maximum rapidity acceptance (|y| < ymax) depen-
dence of (a) the numerator (CBS

11 ) and (b) the denominator (CS
2 ) (b) of

CBS in 197Au + 197Au collisions at
√

sNN = 200 GeV with the string
melting AMPT framework. Two different subsets of hadrons are
adopted to show different dependencies.
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FIG. 6. (a) The correlation coefficient CBS in the most central
(0–5 %) 197Au + 197Au collisions is shown as a function of

√
sNN .

(b) The correlation coefficient CBS for a hadron gas at freeze-out is
shown as a function of the baryon chemical potential μB in the most
central (0–5 %) collision at different collision systems and energy.
For the CBS system scan, we chose 10B + 10B, 12C + 12C, 16O + 16O,
20Ne + 20Ne, 40Ca + 40Ca, 96Zr + 96Zr, and 197Au + 197Au collisions
at

√
sNN = 200 GeV. For the CBS energy scan, the choice of energy is√

sNN = 11.5, 20, 27, 39, and 200 GeV.

Fig. 6(b). For a given system, there were more net baryons in
the collision system as energy decreased, leading to the CBS

enhancement. The correlation coefficient presents a smooth
baryon chemical potential dependence if collision systems
and collision energies are characterized by the potential.

Finally, we investigated the possible effect of α-clustering
structure of light nuclei on the correlation coefficient CBS .
Some previous works proposed that the signatures of α-
clustering structure in light nuclei could be observed via
heavy-ion collisions at ultrarelativistic energies [32,58–66].
In this context, we examined the influence of the fluctua-
tion of initial nuclear geometric structure on the correlation
coefficient CBS . To this end, the nucleon distribution might
be considered as a three-α clustering triangle structure for
12C and four-α clustering tetrahedron structure for 16O in the
present study. Figure 7 demonstrates α-clustering effects on

15 20 25 30 35
>part<N

0.5

1

1.5

2

2.5

B
S

C

String melting AMPT

,K-Ω,±Ξ,±Σ,Λp,n,

|y|<0.2

FIG. 7. The correlation coefficient CBS as a function of the
number of participants, 〈Npart〉, which are obtained from different
center-of-mass energies at

√
sNN = 10, 200, and 6370 GeV in the

most central collisions (impact parameter b = 0) of 12C + 12C and
16O + 16O systems.
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CBS for 12C + 12C as well as 16O + 16O collisions at
√

sNN

= 10, 200, and 6370 GeV, respectively. These collision sys-
tems with different α-clustering structure and energies were
labeled by 〈Npart〉. The results show nearly no difference
visibly between the Woods-Saxon nucleon distribution and
the α-clustering structures via CBS coefficient. It implies that
the baryon-strangeness correlation was insensitive to initial
nucleon distribution, which could in turn help to isolate other
ingredients for affecting CBS , such as the hadron rescattering
effect as discussed in this work.

IV. SUMMARY

In summary, we studied the system and energy depen-
dence of the baryon-strangeness correlation coefficient in the
framework of the AMPT model. The hadron rescattering
process partly weakens the baryon-strangeness correlation as
expected, and weak decay contributions for strangeness or the
count of baryons might have an effect on the final results,
which need to be further investigated. The combination of
different hadrons additionally affects the results significantly.
In addition, it was found that when the maximum rapidity
acceptance ymax > 3, the baryon-strangeness coefficient is in-
dependent of the combination of different hadrons in the final
state based on the AMPT model. The correlation coefficient
could be grouped if the collision systems and collision ener-
gies were characterized by the baryon chemical potential. In
addition, we investigated the effect of initial nucleon distribu-
tion for light nuclei, specifically with either the Woods-Saxon
nucleon distribution or the α-clustering structure for 12C and
16O nuclei, on the final baryon-strangeness correlation results
but found negligible effect. These AMPT model studies pro-
vide baselines for searching for the signals of the QCD phase
transition and critical point in heavy-ion collisions through the
BS correlation.
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APPENDIX A: OBSERVABLE

The joint cumulant of several random variables X1, . . . , Xn

is defined by a similar cumulant generating function,

K (t1, t2, . . . , tn) = log E
(
e
∑n

j=1 t j Xj
)
. (A1)

A consequence is that

κ (X1, . . . , Xn) =
∑
π

(|π | − 1)!(−1)|π |−1
∏
B∈π

E

(∏
i∈B

Xi

)
,

(A2)
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where π runs through the list of all partitions of {1, . . . , n},
B runs through the list of all blocks of the partition π , and
|π | is the number of parts in the partition. In this analysis, we
use B and S to represent the net baryon number and the net
strangeness in one event, respectively. The deviation of B and
S from their mean values are expressed by δB = B − 〈B〉 and
δS = S − 〈S〉, respectively. As mentioned above, we use 〈·〉 to
represent expected value. According to Eq. (2),

C(δB, δS) = 〈δBδS〉 = 〈BS〉 − 〈B〉〈S〉,
C(δS, δS) = 〈δSδS〉 = 〈

S2
〉 − 〈S〉2.

(A3)

Thus, the baryon-strangeness correlation coefficient is

CBS = −3
C(δB, δS)

C(δS, δS)
= −3

〈BS〉 − 〈B〉〈S〉
〈S2〉 − 〈S〉2 . (A4)

APPENDIX B: THE STATISTICAL ERROR OF CBS

In the Appendix of Ref. [25], the authors showed in detail
how to calculate the statistical uncertainty by way of the
covariance of the multivariate moments. According to the
definition of the covariance,

cov ( fi, j, fk,h) = 1

N
( fi+k, j+h − fi, j fk,h), (B1)

higher-order terms must be introduced for calculating the co-
variance. So we give all the items necessary for calculating
the error throughout Table II. From the equation we know
the error is proportional to 1/

√
N ; however, the corresponding

event statistics we use are relatively small, and the statistical
errors of results would be large.
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