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Geiger-Nuttall law is the simplest relation in radioactive decay relating the half-life and the decay energy.
Initially restricted to α decay of individual isotopes, generalizations unifying different isotopes and decay modes
under a single set of constant coefficients were subsequently achieved. This motivates investigating to what
extent such generalizations are possible. We also examine whether there exists a universal Geiger-Nuttall law that
can simultaneously describe all decay modes and nuclei including heavy clusters. We show that the validity of
Geiger-Nuttall law and its generalizations hinges on the assumption that half-life can be approximated linearly as
a function of the square root of the ratio of the decay energy to the Coulomb barrier height. Systematic calculation
of the ratio across the nuclear chart for 12 decay modes reveals that it varies over its whole range between 0 and 1.
Consequently, no linear approximation can unify all the nuclei and decay modes under a single set of coefficients,
and thus no universal Geiger-Nuttall law is possible in contrast to previous claims. In cluster decay, the ratio
varies within 0.6–1 where nonlinearity becomes significant such that no generalized Geiger-Nuttall description
of heavy clusters is possible. In the ongoing attempts of unification, it might be necessary to go beyond the
Geiger-Nuttall law and incorporate additional terms proportional to the decay energy and/or its square root.
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I. INTRODUCTION

Ever since the inception of nuclear physics, the study of
charged-particle radioactivity was always in the field’s fore-
front. Historically, this started with the discovery of α decay
[1], followed by proton emission [2,3], and nuclei heavier than
helium which is known as cluster decay. So far, the clusters
14C, 20O, 23F, 22,24−26Ne, 28,30Mg, and 32,34Si have been ob-
served to decay from parent nuclei between 221Fr and 242Cm
[4–11]. The great interest in charged-particle radioactivity is
justified since it provides myriads of invaluable information
about the nuclear structure that is otherwise difficult to obtain
through a detailed microscopic analysis of every nucleus.
The half-life of the nucleus and the decay energy are the
experimentally measurable quantities in radioactive decay.
Remarkably enough, just with the aid of these two quantities,
it is possible to learn about nuclear stability, proton and neu-
tron shell closures, nuclei deformation, nuclear charge radii,
and nucleons clusterization inside the nuclei [12–17]. This
is the primary motivation historically and currently behind
the development of theoretical models that can reproduce and
predict decay half-lives accurately and systematically across
the nuclear chart.

In particular, Geiger-Nuttall law proves to be one of the
most versatile tools among the wealth of models available for
half-life systematics. The law relates the α-decay half-life T1/2
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to the α-decay energy Qα by a simple relation:

log10 T1/2 = aQ−1/2
α + b (1)

where a and b are constants. Both the physical mechanism
of α decay and the Q−1/2

α dependence were explained as a
consequence of quantum tunneling of the α particle trapped
inside the parent nuclei through the Coulomb barrier in land-
mark papers by Gamow [18] and Gurney and Condon [19,20].
While it was discovered more than 100 years ago [21], it
remains of general validity for all known nuclei reproducing
experimental half-life within one order of magnitude or less
with few exceptions (e.g., 186Po) [22]. It turns out, however,
that the coefficients a and b change for every isotopic chain
and change for a given isotopic chain when magic numbers
are crossed (e.g., N = 126) [23]. Fifty years later, Viola and
Seaborg successfully extended the law for all isotopic chains
by incorporating a dependence on the parent proton number Z
[24]. Plenty of analogous formulas were proposed all sharing
the characteristic Q−1/2

α dependence [25–31]. Geiger-Nuttall
law was subsequently found to hold for proton [13,32–34] and
cluster radioactivity as well [35–38] which is expected since
they share the same tunneling mechanism with α decay.

The last two decades have witnessed great progress on
the development of generalizations of Geiger-Nuttall law for
various decay modes accompanied by an increased theoretical
understanding of these laws. Arguably, the biggest break-
through was the unification of α and all experimentally known
cluster decay modes (i.e., from 14C up to 34Si) with a sin-
gle generalized Geiger-Nuttall law. The universal decay law
(UDL) [39,40], and the unified formula (UF) [41] are two such
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examples describing α and cluster decay of all isotopes with a
single set of fitted coefficients. Moreover, they can success-
fully reproduce proton emission half-lives when additional
angular momentum and deformation terms are taken into ac-
count [13,42]. The significance of these formulas is that they
were derived from general theoretical frameworks (i.e., the
R-matrix theory and the square-well model) that are valid for
all decay modes and nuclei. This led the authors of the UDL to
claim that it should be valid for all decay modes and isotopic
chains [39,40,43,44] with a similar claim of unification made
by the authors of the UF [41,42]. The series of historically
successful unifications encompassing an ever-larger number
of decay modes and isotopic chains prompts the question: Is
there a universal Geiger-Nuttall law encompassing all nuclei
and decay modes including clusters much heavier than 34Si?

Recent calculations from various models (e.g., fission, mi-
croscopic, and liquid drop models) suggest that radioactive
decay of clusters much heavier than 34Si may become a dom-
inant mode in superheavy nuclei with Z > 110 alongside α

decay [45–48]. On the other hand, systematic studies of α and
cluster decay using different generalized Geiger-Nuttall laws
(e.g., UDL, UF, and Horoi formula) reveal extremely large
discrepancies in their predictions and contradictory conclu-
sions about the behavior of half-life and branching ratios in
heavy cluster decay [49–51]. Thus it is also of practical in-
terest to investigate the validity of generalized Geiger-Nuttall
laws in describing and predicting heavy cluster decay and ex-
plain these anomalies. More generally, this paper constitutes a
study of the assumptions required to ensure the validity of the
three classes of Geiger-Nuttall laws:

(1) Simple Geiger-Nuttall law [Eq. (1)] which describes a
single isotopic chain and a decay mode.

(2) Generalized Geiger-Nuttall laws which describe more
than a single isotopic chain and/or decay mode (e.g., Viola-
Seaborg law, UDL, and UF).

(3) Universal Geiger-Nuttall law which describes all decay
modes and nuclei simultaneously with a single set of coeffi-
cients.

This paper is organized as follows. In Sec. II, we use the
R-matrix theory to show the assumptions required to arrive at
Geiger-Nuttall laws. The most crucial assumption—dubbed
the linearity assumption—is identified, namely, that x varies
within an interval such that half-life can be approximated
linearly in x which is the square root of the ratio of the decay
energy Q to the Coulomb barrier height. In Sec. III, the varia-
tion of x with nuclei and decay modes and its implication for
the validity of the three classes of Geiger-Nuttall laws is dis-
cussed. x of 5130 heavy and superheavy nuclei with 12 cluster
decay modes from the proton up to 54Ti are computed using
the experimental Q and ones calculated by the WS4 mass
model with the radial basis function correction. It is found that
x varies over its whole possible range between 0 and 1 across
nuclei and decay modes and thus a universal Geiger-Nuttall
law is not possible. The success of the simple Geiger-Nuttall
law in α decay and its generalizations (e.g., Viola-Seaborg
law) are explained owing to x being always smaller than 0.6
where the linearity assumption is true. Next, the discrepancies
arising between different generalized Geiger-Nuttall laws in
heavy cluster decay is explained using the insights gained

about the x variation. Finally, it is found that any generalized
Geiger-Nuttall description of heavy clusters is not valid since
the role of nonlinearity becomes significant. Section IV con-
cludes the paper.

II. THEORETICAL FRAMEWORK

Here we build on the derivations from Refs. [39,40]
to scrutinize and test the various assumptions underlying
Geiger-Nuttall laws. The R-matrix theory provides a general
microscopic framework valid for all cluster radioactivity and
nuclei where decay is understood as a two-step mechanism
beginning with the formation of the cluster inside the parent
nuclei followed by tunneling through the Coulomb barrier.
Thomas derived an expression for the decay width � valid
for the proton, α, cluster radioactivity, and all nuclei given by
[52]

� = 2Plδ
2
l (2)

where Pl is the penetrability (i.e., tunneling probability) given
by

Pl = kR

|H+
l (η, kR)|2 . (3)

H+
l (η, kR) is the Coulomb-Hankel function at distance R be-

tween the cluster and the daughter nuclei parametrized by the
angular momentum l and the Coulomb parameter η:

η = 2e2ZcZd

h̄v
(4)

where Zc and Zd are the proton numbers of the cluster and the
daughter, respectively. k = μv/h̄ where v is the velocity of the
emitted cluster related to the decay energy Q and the reduced
mass μ of the cluster-daughter system by Q = μv2/2. η can
be alternatively described in terms of μ and Q as

η = e2ZcZd

h̄

√
2μ

Q
. (5)

δ2
l is the reduced width describing the formation of the clusters

inside the parent nuclei given by

δl =
√

h̄2R

2μ
gl (R) (6)

where gl (R) is the cluster formation amplitude at a distance R.
Combining Eqs. (2), (3), and (6), T1/2 will be given by

T1/2 = h̄ ln 2

�
= ln 2

v

∣∣∣∣H+
l (η, kR)

Rgl (R)

∣∣∣∣
2

. (7)

While both H+
l (η, kR) and Rgl (R) depend on R, their ratio

and, therefore, T1/2 (and �) are independent of R for large dis-
tances where nuclear interaction is negligible [39,40,43,53].
Following previous authors, we take R = r0(A1/3

c + A1/3
d ) as

the touching radius where Ac and Ad are the mass numbers of
the cluster and the daughter nuclei, respectively [32,39,40,54–
56]. We take r0 ≈ 1.2 fm since it can best reproduce the
experimental nuclear charge radii as well as the half-life data
of all decay modes [54,55,57,58]. R should not be taken

024610-2



LIMITATIONS OF THE GEIGER-NUTTALL LAW IN … PHYSICAL REVIEW C 103, 024610 (2021)

smaller than the touching radius since the nuclear interaction
starts to become significant when there is an overlap between
the cluster and the daughter nuclei. To arrive at the simple
Geiger-Nuttall law [Eq. (1)] or generalizations thereof from
the general Eq. (7) above, it is required to obtain an analyti-
cal expression for H+

l and Rgl (R). |H+
l (η, kR)|2 is given by

[32,59]

|H+
l (η, kR)|2 = ζl (x) exp[2γl (x)] (8)

where γl (x) is given by

γl (x) = η[arccos(x) − x
√

1 − x2] + l (l + 1)

η

√
1 − x2

x
(9)

and ζl (x) is given by

ζl (x) =
(

1 − x2

x2
+ l (l + 1)

(kR)2

)−1/2

(10)

where 0 < x < 1 is the dimensionless ratio given by

x =
√

kR

η
=

√
Q

VC (R)
=

√
QR

e2ZcZd
=

√
R

RC
(11)

where VC (R) = e2ZcZd/R and RC = e2ZcZd/Q is the classi-
cal turning point known as the Coulomb radius. An intuitive
physical picture of x is the square root of the ratio of the first
classical turning point R to the second RC in the square-well
model the width of which is R. Equivalently, it is the square
root of the ratio of Q to the Coulomb barrier height VC (R). x is
not defined for Q < 0 (i.e., nuclei stable against decay) since
the second classical turning point RC satisfying VC (RC ) =
Q < 0 does not exist. Taking the logarithm of T1/2 [Eq. (7)]
and substituting the expression for |H+

l (η, kR)|2 [Eq. (8)] we
get

log10 T1/2 = 2

ln 10
γl (x) + d − log10 |Rgl (R)|2 (12)

where the second term d = log10 ζl (x) ln 2/v varies smoothly
for all decay modes and nuclei such that it can be considered
a constant (see the Appendix for discussion).

The most crucial assumption that leads to any form of
Geiger-Nuttall law, simple or generalized, relates to γl (x),

namely, that it can be approximated as a linear function of
x. This assumption is necessary in order that log10 T1/2 gives
rise to the characteristic ZcZd Q−1/2 dependence without any
other Q dependencies due to higher-order terms in x. Thus for
the sake of the argument, assume that x varies around a certain
point x = x0 in a sufficiently small interval such that without
loss of accuracy, we can expand the arccos(x) − x

√
1 − x2

term in γl (x) [Eq. (9)] in a Taylor series at x = x0 retaining
only terms up to first order in x:

γl (x) = η
[

arccos(x) − x
√

1 − x2
] + l (l + 1)

η

√
1 − x2

x

≈ η(a0 + b0x) + h̄l (l + 1)√
2e2μRZcZd

√
1 − x2

0 (13)

where a0 and b0 are the constant coefficients of the Taylor
expansion at x = x0 given by

a0 = arccos(x0) + x0

√
1 − x2

0, (14)

b0 = −2
√

1 − x2
0 . (15)

In the denominator of the l (l + 1) term, we have used
the fact that the product of η [Eq. (5)] and x [Eq. (11)] is
independent of Q and given by

ηx =
√

2e2μRZcZd

h̄
. (16)

Meanwhile, in the numerator of the l (l + 1) term, we only
retained terms up to zeroth order in x for

√
1 − x2 since

higher-order terms will give higher-order Q dependencies dif-
ferent from Q−1/2 of Geiger-Nuttall law. The first term in
η(a0 + b0x) [Eq. (13)] will give the Q−1/2 dependence while
the second term is independent of Q since it involves the prod-
uct of η and x. Thus using Eqs. (5) and (16) in η(a0 + b0x) we
get

η(a0 + b0x) = e2a0

h̄
ZcZd

√
2μ

Q
+ eb0

h̄

√
2μRZcZd . (17)

By substituting Eqs. (17) and (13) in Eq. (12) we finally
obtain

log10 T1/2 = aZcZd

√
A
Q

+ b
√
A(

A1/3
c + A1/3

d

)
ZcZd + c

l (l + 1)√
A(

A1/3
c + A1/3

d

)
ZcZd

+ d − log10 |Rgl (R)|2. (18)

The substitutions μ = mA where m is the nucleon mass,
A = AcAd/(Ac + Ad ), and R = r0(A1/3

c + A1/3
d ) were made

above and all the constants have been lumped into the
constant coefficients a, b, and c. Another implication of
the linearity assumption of γl (x) is that the forma-
tion probability log10 |Rgl (R)|2 should be proportional to√
A(A1/3

c + A1/3
d )ZcZd as argued by the authors of the uni-

versal decay law [39,40]. The argument relied on two
assumptions, namely, (1) the ratio H+

l (η, kR)/Rgl (R) is in-
dependent of R and (2) higher-order terms in the expansion of

γl (x) (e.g., the x3 term) vary smoothly across different nuclei
and decay modes such that they can be considered constant
(i.e., linearity assumption). Therefore, the above equation be-
comes (we will examine this implication later)

log10 T1/2 = aZcZd

√
A
Q

+ b
√
A(

A1/3
c + A1/3

d

)
ZcZd

+ c
l (l + 1)√

A(
A1/3

c + A1/3
d

)
ZcZd

+ d (19)
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where the constant coefficients b and d are different since now
they also include additional contributions due to the formation
probability. This is the most general formulation of Geiger-
Nuttall law called the universal decay law of which the simple
Geiger-Nuttall law [Eq. (1)] and its generalizations (e.g., UF
and Viola-Seaborg law) are special cases. It was claimed
by their authors to be valid for all nuclei and decay modes
[39,40,43,44]. The validity of this law or the simple or any
generalized Geiger-Nuttall laws hinges on the validity of the
assumption that γl (x) can be linearized. It must be emphasized
that this assumption is not unique to the R-matrix theory and
is required in any derivation of Geiger-Nuttall law (simple
or generalized) since the term exp[−2γl (x)] proportional to
the Coulomb penetration is present in all models (e.g., see
Refs. [41] and [60]). In all derivations of Geiger-Nuttall laws
in the literature, the linearity assumption is justified based
on the claim that x should always be small, i.e., x0 = 0,
and consequently we have a0 = π/2 [Eq. (14)] and b0 = −2
[Eq. (15)]. This was first claimed by Gamow [61] and all
subsequent authors echoed the same claim in their deriva-
tions [15,30,39–41,62–65]. In particular, the authors of the
UDL argued that x should become progressively smaller for
heavier cluster-daughter systems (i.e., large ZcZd ) since the
denominator increases [see Eq. (11)]. Consequently, the lin-
earity assumption and the UDL should become more exact
[39,40]. However, the numerator of x [Eq. (11)] has R and
Q which also increase with heavier cluster-daughter systems
and, therefore, it would be premature to conclude that x be-
comes smaller. In the next section, we systematically study the
variation of x across nuclei and decay modes and its implica-
tions for the validity of the three classes of the Geiger-Nuttall
laws.

III. RESULTS AND DISCUSSION

A. Variation of x in the heavy and superheavy region

To be able to reach a general and rigorous conclusion about
the linearity assumption for all nuclei and decay modes, we
systematically investigated 5130 nuclei in the region 162 �
A � 350 and 78 � Z � 132. For each cluster-daughter sys-
tem considered, we calculated its x using Eq. (11). We chose
12 cluster decay modes ranging from 1p up to 54Ti. Q in x
[Eq. (11)] is given by

Q = Mp − (Mc + Md ) (20)

where Mp, Mc, and Md are the excess masses of the parent,
cluster, and daughter nuclei, respectively. Experimental mass
was used and, when not available, we used the theoretical
values computed by the WS4 model with the radial basis func-
tion (RBF) correction or WS4RBF [66,67]. This model was
chosen since it is the most accurate mass model in reproducing
experimental masses and decay energies for heavy and super-
heavy nuclei with root-mean-square (rms) deviation of 170
KeV from experimental mass excess [31,66,68]. Moreover,
systematic studies and recent new mass measurements (e.g.,
249,250,252Md, 253,254Lr, 257,258Db, 261,262Bh, and 266Mt) show
that it has the best predictive power compared to other models
[68–70].

The result of our calculations is shown in Fig. 1 as a density
plot of x vs parent proton and neutron numbers Z (horizontal
axis) and N (vertical axis). Each subfigure shows the variation
of x for a given decay mode across the nuclear chart. Darker
colors denote smaller x and vice versa (see the bottom of Fig. 1
for the color scheme) while the gray color denotes regions in
which x is not defined because Q is negative (i.e., nuclei stable
against decay). Regions with negative proton and neutron
separation energies were excluded in the density plots of 4He
to 54Ti since they are unbound nuclei. Contrary to the expec-
tation of previous researchers that x is always close to zero, x
varies over the whole range of its possible values between 0
and 1 with a minimum of 0.004 and a maximum of 0.904. The
average value of x progressively increases with larger decay
modes from 0.26 for proton decay, 0.43 in α decay, up to
0.78 for 54Ti decay. The standard deviation from the average is
about 0.11 in a given decay mode. This increase in the average
x is owing to the average Q progressively increasing from
1.6 MeV for proton decay, 6.4 MeV for α decay, up to 130
MeV for 54Ti decay. Thus in large cluster-daughter systems,
although the denominator of x [Eq. (11)] (i.e., ZcZd ) increases,
the numerator (i.e., QR) increases at a faster rate such that x
increases overall. In a given decay mode, the figure shows that
x is the largest in proton-rich nuclei with large Z and small N
and smallest in neutron-rich nuclei with a small Z and large
N . For a fixed Z , x progressively decreases as N increases
(i.e., move vertically upwards in the subfigure). For a fixed
N on the other hand, x progressively increases as Z increases
(i.e., move horizontally to the right in the subfigure). These
patterns which hold consistently in any given decay mode are
due to Q increasing for proton-rich nuclei while decreasing
for neutron-rich ones.

B. Implications for the universal Geiger-Nuttall law

We can sum up all the above points in the following three
observations.

(1) x varies over its whole range between 0 and 1 when all
nuclei and decay modes are considered.

(2) There is a very large difference in the x values between
the lighter and heavier decay modes where x is the largest in
the latter.

(3) In a given decay mode, there is a less large but still
significant difference in the x values between the neutron-rich
and proton-rich nuclei where x is the largest in the latter.

These three observations (especially the first) lead us to the
first major conclusion in the paper: a universal Geiger-Nuttall
law encompassing all nuclei and decay modes with a fixed
set of coefficients is not possible. This is the case since the
linearity assumption which requires that x varies within an
interval is manifestly false when x varies over the whole range.
To gain a deeper understanding of the validity of the simple,
generalized, and universal Geiger-Nuttall laws in relation to
the linearity assumption, define σ (x) which is proportional to
log10 T1/2 [Eq. (12)] as

σ (x) = γ0(x)

η
= arccos(x) − x

√
1 − x2. (21)
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FIG. 1. Density plot of x vs parent proton and neutron numbers Z and N for clusters from 1p up to 54Ti.

The simple Geiger-Nuttall law and its generalizations do
not hold unless x varies in an interval where σ (x) can be
approximated as a linear function of x. σ (x) is plotted in
Fig. 2 where it is approximately linear over more than half
its range and starts to become noticeably nonlinear from about
x � 0.8. In Fig. 3, we show two best linear fits a + bx for σ (x)
(blue square) where one is fitted for the interval 0 < x < 0.6
(orange circle) and the other for 0.6 < x < 0.8 (green trian-
gle). Evidently, a universal Geiger-Nuttall law is not possible
since there is no single straight line that can approximate σ (x)

over the whole interval. There is also a fundamental tradeoff
where accurately approximating x over an interval comes at
the expense of large errors for regions outside the fit, e.g., both
linear fits in Fig. 3 strongly deviate from σ (x) outside their
interval of fitting. This implies that an accurate description
of light decay modes and neutron-rich nuclei (i.e., small x)
comes at the expense of large errors in heavy clusters and
proton-rich nuclei (i.e., large x) and vice versa. As will be
discussed shortly, for x � 0.8 in particular, σ (x) starts to be-
come nonlinear such that no reasonable linear approximation
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FIG. 2. σ (x) [Eq. (2)] vs x.

can accurately capture its behavior in this interval. Next, we
show how the variation of x explains the success of the simple
Geiger-Nuttall law in α decay.

C. The validity of the simple and generalized Geiger-Nuttall
laws in light cluster decay

In the case of α decay with 78 � Z � 110, all the x values
of the 520 experimentally observed nuclei lie in 0 < x < 0.6
(with most points lying around x = 0.5) where σ (x) can be
reasonably represented as a straight line. This explains the
reason for the past success of the simple Geiger-Nuttall law in
α decay. Moreover, the reason for the success of generaliza-
tions like the Viola-Seaborg law in unifying different isotopic
chains is that σ (x) can be described with a single straight line
a + bx for 0 < x < 0.6. The error 
 in log10 T1/2 [Eq. (12)]
from the linearization a + bx is given by


 = 2η

ln 10
[σ (x) − (a + bx)]. (22)

In Fig. 4, 
 resulting from using a single best-fitted straight
line, a + bx in 0 < x < 0.6 for 520 nuclei decaying by α

emission is shown. 
 is less than one order of magnitude
for all nuclei (except for four nuclei with x < 0.1 not shown

FIG. 3. Two best linear fits in 0 < x < 0.6 (orange circle) and
0.6 < x < 0.8 (green triangle) for σ (x) (blue square).

FIG. 4. 
 [Eq. (22)] vs x for the best linear fit of σ (x) in 0 < x <

0.6.

in this figure) with the vast majority of nuclei restricted to
0.4 < x < 0.5 and |
| < 0.5. The resulting rms deviation in
log10 T1/2 is 0.33 which is within the typical values for the
simple and generalized Geiger-Nuttall laws in α decay. Look-
ing at the extrapolations of x across the nuclear chart in the
density plot of 4He in Fig. 1, we see that the vast majority
of nuclei have x < 0.6 and thus the linearity assumption is
true. Consequently, we expect the simple Geiger-Nuttall law
and its generalizations to provide an accurate description of α

decay of all isotopic chains that are to be observed in future
experiments. Similar conclusions hold for the lighter cluster
decay mode of proton.

Similarly, the insights about the linearity assumption can
shed light on the limitations of generalized Geiger-Nuttall
laws encompassing different nuclei and more than a decay
mode. In Table I, we show the x values of 11 trans-lead
nuclei decaying by cluster emission in increasing order of x.
log10 T exp

1/2 denotes the experimental half-life. Their x values
are between 0.63 and 0.8, larger than the maximum x in α

decay of the 520 nuclei just investigated. There is a direct
correlation between the cluster-daughter size and Q on the one
hand and x on the other where they increase with each other.

TABLE I. The half-life calculated by the UDL fitted for α and
cluster decay data log10 T II

1/2 vs the one fitted for cluster decay alone
log10 T I

1/2. Experimental half-life log10 T exp
1/2 is taken from Ref. [72].

Corresponding x of every decay is also shown.

Parent Cluster Q (MeV) log10 T exp
1/2 log10 T II

1/2 log10 T I
1/2 x

226Ra 14C 28.20 21.29 22.93 20.32 0.63
224Ra 14C 30.54 15.90 17.83 15.58 0.66
222Ra 14C 33.05 11.05 12.99 11.07 0.68
228Th 20O 44.72 20.73 22.95 21.56 0.70
230Th 24Ne 57.76 24.61 25.38 24.74 0.73
230U 22Ne 61.39 19.56 21.23 20.73 0.74
232U 24Ne 62.31 20.39 20.93 20.68 0.75
234U 28Mg 74.11 25.74 24.99 25.36 0.76
236Pu 28Mg 79.67 21.65 20.23 21.02 0.78
238Pu 32Si 91.19 25.30 23.99 25.39 0.78
242Cm 34Si 96.51 23.11 20.92 22.87 0.8
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FIG. 5. Best linear fit of σ (x) (blue square) for α and cluster
decay with 0.45 < x < 0.8 (orange circle) and best fit for cluster
decay with 0.63 < x < 0.8 (green triangle).

In the table, we consider UDL as an example of a general-
ized Geiger-Nuttall law—being the most general. log10 T I

1/2
denotes the half-life calculated by the UDL fitted for cluster
decay data alone. log10 T II

1/2 denotes the half-life calculated by
the UDL formula fitted for α and cluster decay experimental
data. The fitted coefficients a, b, and d in Eq. (19) (c = 0 for
even-even nuclei with l = 0) are taken from Refs. [39,40].
While log10 T I

1/2 reproduces log10 T exp
1/2 well, there are two

interesting anomalies related to log10 T II
1/2 in need of explana-

tion. First, log10 T II
1/2 is very poor in reproducing experimental

half-life. The average error is one order of magnitude and
can be as large as 2.2. Second, log10 T II

1/2 is significantly and
systematically larger than log10 T I

1/2 (and log10 T exp
1/2 ) for the

small clusters while it is significantly smaller than log10 T I
1/2

for the large clusters. Both of these facts can be explained
through our ongoing discussion about the variation of x with
the decay modes and the linearization of σ (x). In Fig. 5,
σ (x) (blue square) is shown alongside with its best linear fit
in the interval 0.45 < x < 0.8 (orange circle, line II) corre-
sponding to α and cluster decay and the best linear fit in the
interval 0.63 < x < 0.8 (green triangle, line I) corresponding
to cluster decay alone. The choice of the particular interval
0.45 < x < 0.8 here is only for the illustrative purpose of
showing the effect of describing α decay together with heavier
clusters. From the figure, we see that line II (proportional
to log10 T II

1/2) is worse than line I (proportional to log10 T I
1/2)

in approximating σ (x) (proportional to log10 T exp
1/2 ) in 0.63 <

x < 0.8. This explains the first fact related to the large devia-
tion of log10 T II

1/2 from experimental half-life. Second, line II
is larger than line I [and σ (x)] for smaller x with the largest
gap for the smallest x = 0.63 (i.e., smallest cluster size 14C).
The two lines begin to converge as x increases until they
intersect at x ≈ 0.72. Then they diverge again where line I
becomes progressively larger than line II for all larger x. The
gap between them becomes the largest at the largest x = 0.8
(i.e., largest cluster size 34Si). We see this exact pattern mir-
rored in the table as we move down the rows corresponding
to larger x and cluster size. We see log10 T II

1/2 − log10 T I
1/2 =

2.61 is the largest for the smallest x = 0.63 (i.e., first row

226Ra → 14C) and the difference approaches zero for larger x
until log10 T II

1/2 − log10 T I
1/2 = 0.25 at x = 0.75 (i.e., 232U →

24Ne). Afterwards, the difference becomes negative reaching a
minimum at x = 0.8 of log10 T II

1/2 − log10 T I
1/2 = −1.95 (i.e.,

last row 242Cm → 34Si).
Therefore, we learn from the analysis in this subsection

that while it is possible to describe α (0 < x < 0.6) and
heavier cluster decays (x > 0.6) separately using two distinct
straight lines with reasonable accuracy (see Figs. 3 and 5),
attempting to unify them with a single straight line (e.g.,
log10 T II

1/2) results in unacceptable errors owing to the fact that
x varies over a wide range from 0 to 0.8 such that no single
straight line can accurately describe σ (x) (see Fig. 3). This
establishes fundamental theoretical limitations for unifying α

with heavier cluster decay modes for all generalized Geiger-
Nuttall laws. We conclude this subsection by stressing that
the linearity assumption is a necessary but not a sufficient
condition to ensure the validity of Geiger-Nuttall law. The for-
mation probability log10 |Rgl (R)|2 also has to vary smoothly
in Eq. (12). While this is generally the case in the experimental
region investigated [39,40,43,44], there are exceptions (e.g.,
abrupt decline at shell closures like N = 126) which result
in log10 T1/2 deviating from the predictions of the generalized
Geiger-Nuttall laws by more than one order of magnitude [71]
(for discussion about the validity of the simple Geiger-Nuttall
law in connection to the formation probability log10 |Rgl (R)|2,
see Ref. [22]).

D. Discrepancies and extrapolative limitations of generalized
Geiger-Nuttall laws in heavy cluster decay

It is instructive to explain the discrepancies in half-life
predictions of heavy cluster decay arising from using different
generalized Geiger-Nuttall laws, namely, the UDL, UF, and
Horoi formula. For even-even nuclei (i.e., l = 0), they are
given by [38–41]

log10 T UDL
1/2 = a1ZcZd

√
A
Q

+ a2

√
A(

A1/3
c + A1/3

d

)
ZcZd + a3,

(23)

log10 T UF
1/2 = a1ZcZd

√
A
Q

+ a2

√
AZcZd + a3, (24)

log10 T Horoi
1/2 = (a1

√
A+a2)

[
(ZcZd )0.6

√
Q

−7

]
+(a3

√
A + a4).

(25)

In the UDL, the first two terms are proportional to η and ηx,
respectively, as have been shown in Sec. II. UF is identical to
UDL with the only difference that R = r0(A1/3

c + A1/3
d ) in the

second term is approximated as a constant for all decay modes
and nuclei, i.e., x is approximated as

√
R0Q/(e2ZcZd ) where

R0 is a constant implicitly determined by fitting a2 in Eq. (24).
The Horoi formula differs in its functional form from the other
two in that it exhibits a (ZcZd )0.6Q−1/2 dependence instead of
ZcZd Q−1/2 and lacks the ηx term (second term in the UDL and
UF). While the UDL and UF can be derived from the R-matrix
theory, the Horoi formula lacks a rigorous theoretical basis
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TABLE II. Q (computed by WS4RBF) and x of various cluster
decays from the parent nuclei 294118.

Cluster Q (MeV) x Cluster Q (MeV) x

4He 12.198 0.600 32Si 119.316 0.809
8Be 23.191 0.603 38S 136.880 0.824
12C 40.527 0.667 46Ar 155.717 0.843
16O 57.459 0.702 48Ca 177.976 0.866
28Mg 100.134 0.788 54Ti 191.737 0.870

and is justified by fitting to the experimental data [also the
(ZcZd )0.6 dependence is not universal for all decay modes and
becomes (ZcZd )0.8 for proton emission] [30,38,73]. System-
atic studies of heavy cluster radioactivity show discrepancies
in half-life predictions between these three formulas larger
than 60 orders of magnitude [49–51]. Moreover, there is a
consistent pattern in which the Horoi formula systematically
predicts the largest half-life for a given decay followed by
the UF then UDL [49–51]. The present findings of variation
of x with decay modes coupled with how x is incorporated
differently in the above equations can provide a plausible ex-
planation of the discrepancies just mentioned. Consider as an
illustrative example, ten clusters from 4He up to 54Ti emitted
from the parent nuclei 294118. Q and the corresponding x
value of each decay are shown in Table II. The corresponding
half-life predictions of the three formulas vs cluster mass
number Ac are shown in Fig. 6. For each of the three for-
mulas, we predicted half-life using the coefficients fitted for
experimental α and cluster decay data (dubbed II in Fig. 6)
and the coefficients fitted for experimental cluster decay data
alone (dubbed I) which are taken from Refs. [38–41]. For a
given parent nuclei, log10 T1/2 depends on the product of two
opposing influences ησ (x) where on average η increases with
cluster size while σ (x) decreases (since x increases). While
UDL and UF incorporate such dependence approximately
as η(a + bx) [first two terms in Eqs. (23) and (24)], it is
lacking in the Horoi formula which only incorporates the η

dependence [more precisely, (ZcZd )−0.4η]. This explains why

FIG. 6. Half-life predictions log10 T1/2 by three generalized
Geiger-Nuttall laws of various cluster decays vs Ac for the parent
nuclei 294118.

log10 T Horoi
1/2 is systematically larger than the predictions of

the other two formulas in heavy clusters since it does not
incorporate σ (x) which decreases with cluster size. Indeed,
Fig. 6 shows that log10 T Horoi

1/2 is significantly less sensitive
to the change in x between Ac = 46 and 54 (see Table II)
compared to the other two formulas.

That log10 T UF
1/2 is systematically greater than log10 T UDL

1/2

is a consequence of UF approximating R = r0(A1/3
c + A1/3

d )
(which increases with cluster mass) as constant for all decay
modes and thus systematically underestimating x [i.e., over-
estimating σ (x)] compared to UDL. Another fact concerning
UDL and UF is that predictions of the formulas fitted for α

and cluster data are systematically smaller than those fitted
for cluster decay data alone for large Ac. This is the case
because both a and |b| (b is always negative) in the lin-
earization a + bx decrease when the average x involved in the
fitting increases (i.e., heavier decay modes) since a0 [Eq. (14)]
and b0 [Eq. (15)] parametrizing the tangent line to σ (x) at
x = x0 monotonically decrease with x0. Indeed a1 decreases
with heavier cluster decay modes (i.e., larger average x) in
UDL, where a1 in Eq. (23) is 0.4065 for data fitted for α

decay data alone, 0.3949 for α and cluster decay data, and
0.3671 for cluster decay data alone [39,40]. Similarly, a2 is
−0.4311, −0.3693, and −0.3296, respectively [39,40]. The
same pattern holds true for the coefficients of UF [41]. Now a
linearization of σ (x) with larger intercept a and slope b would
be systematically smaller than a linearization with smaller a
and b for large x (e.g., see Figs. 3 and 5). Consequently, UDL
(and UF) fitted for α and cluster decay data (i.e., larger a
and b) is systematically smaller than the one fitted for cluster
data alone for large Ac or x. This is especially pronounced in
UDL and makes it numerically unstable and unreliable where
a difference of 10−2 between a1 fitted for α and cluster data
vs cluster data alone (same for a2) translates into 13 orders
of magnitude of discrepancy in their half-life predictions for
heavy clusters, i.e., log10 T UDL

1/2 is very sensitive to the fitting
parameters a1 and a2 (see Fig. 6). Interestingly, the Horoi
formula fitted for cluster decay data alone is systematically
smaller than the one fitted for α and cluster decay data unlike
UF and UDL. However, the same line of reasoning cannot
be applied on the Horoi formula to explain this systematic
deviation since it does not exhibit the a + bx dependence we
are discussing.

The important conclusion is that all of these generalized
Geiger-Nuttall laws lack any extrapolative power for heavy
cluster decay predictions (i.e., x > 0.8 or clusters heavier than
34Si) since they were originally fitted for x < 0.8 and such
linearizations strongly deviate from σ (x) beyond x = 0.8 (see
Fig. 3). Next, we will show that there is an even more fun-
damental problem, namely, that a Geiger-Nuttall description
of clusters that includes heavy ones (i.e., x > 0.8) must break
down due to nonlinearity.

E. Nonlinearity and breakdown of Geiger-Nuttall description
in heavy cluster decay

We have already seen how σ (x) is nonlinear in the sense
that its slope of the tangent continuously changes with x thus
preventing an accurate linear approximation of σ (x) over big
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FIG. 7. 
 [Eq. (22)] from the best linear fit in 0.6 < x < 1 for
all nuclei and decay modes.

intervals (see Figs. 2 and 5). There are two other facts which
exacerbate the problem even further particularly for heavier
cluster decay modes. First, a linear approximation of σ (x)
for an interval of a fixed length becomes progressively worse
for larger x; e.g., the rms error of a linear fit of σ (x) in
the interval 0 < x < 0.2 is 0.0003, 0.003 in 0.6 < x < 0.8,
and 0.0068 in 0.8 < x < 1. Second, the error in half-life
from linearization 
 [Eq. (22)] depends on the product of
two factors, namely, (1) the error in approximating σ (x) by
a + bx (i.e., their difference) and (2) 2η/ ln 10 = 0.868η. The
Coulomb parameter η is in the same order of magnitude for
a given decay mode and becomes progressively larger with
larger clusters, e.g., the average η is 67.6 in α decay, 160.4
in 14C decay, and 260 in 32Si decay [calculated using Eq. (5)
and the experimental Q or WS4RBF]. Thus even small errors
resulting from the linearization of σ (x) get multiplied by
the large factor 0.868η translating into significant deviations
from log10 T1/2. For instance, for the decay 226Ra → 14C with
η = 105.75 (see Table I), an error of 0.01 due to lineariza-
tion translates to about one order of magnitude of error in
log10 T1/2 (0.868η × 0.01 = 0.92). The same error of 0.01
due to linearization in the decay 242Cm → 34Si with η =
198.97 translates to about two orders of magnitude of error in
log10 T1/2 (0.868η × 0.01 = 1.72). All of these effects we just
described are especially pronounced in heavier cluster decay
modes (i.e., large x) where η is even larger and σ (x) is poorly
approximated as a linear function. In Fig. 7, we show the error

 resulting from the best linear fit of σ (x) for all nuclei across
the nuclear chart and all decay modes with 0.6 < x < 1. The
figure marks the breakdown of Geiger-Nuttall law description
of heavy cluster decay modes. It shows that σ (x) cannot be
reasonably approximated linearly in the interval 0.6 < x < 1.
It also establishes the effect of the multiplicative factor 0.868η

in translating the errors (due to linearization) into errors in
log10 T1/2 larger than 15 orders of magnitude. We conclude
that a generalized Geiger-Nuttall law encompassing all cluster
decay modes is not possible contrary to the claims of previous
authors (e.g., authors of the UDL and UF) [39–41].

Moreover, as discussed before, a direct implication of the
fact that the ratio H+

l (η, kR)/Rgl (R) is independent of R is

that log10 |Rgl (R)|2 is proportional to
√
A(A1/3

c + A1/3
d )ZcZd ,

i.e., ηx [39,40]. This implication also depends on the linearity
assumption and that higher x order terms vary smoothly such
that they can be treated as a constant [39,40]. However, as
we have seen, the linearity assumption is violated and the
higher-order terms cannot be treated as a constant for heavy
cluster decay modes in 0.6 < x < 1 and thus such conclusion
is unwarranted.

IV. CONCLUSIONS

The possibility of a universal Geiger-Nuttall law was born
from the belief that x is always small—as first claimed by
Gamow and endorsed subsequently by other authors. On such
account, all nuclei (light, heavy, proton rich, or neutron rich)
and decay modes (light or heavy) would be unified with a sin-
gle straight line approximating σ (x) near x = 0. The present
findings of the variation of x challenge this belief and leave
us with a completely different understanding of the validity
of the three classes of Geiger-Nuttall laws. With x varying
between 0 and 1 across nuclei and decay modes, no sin-
gle straight line can achieve the universal Geiger-Nuttall law
hoped for. Instead, Geiger-Nuttall laws turn out to be different
straight lines with different slopes and intercepts locally ap-
proximating σ (x) within different x intervals which depend on
the decay modes and the nuclei investigated. In light of such
a view, there is a fundamental theoretical limitation on the
extrapolative power of Geiger-Nuttall laws for nuclei and/or
decay modes the x of which lies outside the range of original
fit since the approximated straight line would strongly deviate
from σ (x). This point should be taken into account by future
studies that aim to use Geiger-Nuttall laws to systematically
study half-life across the nuclear chart and different decay
modes. The simple Geiger-Nuttall law and its generalizations
(e.g., Viola-Seaborg law) are valid not because x ≈ 0 but
rather because x varies within the interval x � 0.6 where σ (x)
can be linearly approximated with reasonable accuracy. The
extrapolations across the nuclear chart using WS4RBF show
that x < 0.6 for almost all nuclei and thus we expect the
linearity assumption to hold and the simple Geiger-Nuttall
law or its generalizations (i.e., encompassing more than one
isotopic chain) to provide an accurate description of α decay
of nuclei yet to be observed in the future. The validity of the
generalized Geiger-Nuttall laws (e.g., UDL and UF) encom-
passing various decay modes can be understood on similar
grounds although the present paper shows they are not as
universal or general as previously thought. Most significantly,
in the regime of the cluster decay 0.6 < x < 1, σ (x) starts to
become noticeably nonlinear (especially at x > 0.8) such that
no generalized Geiger-Nuttall law can describe heavy cluster
decay. In the ongoing attempts in the unification of decay
modes and/or nuclei and description of heavy cluster decay,
the present findings indicate that it might be necessary to go
beyond the Geiger-Nuttall Q−1/2 dependence and incorporate
additional higher-order terms proportional to Q1/2 (i.e., the
ηx2 term) and/or Q (i.e., the ηx3 term) to capture the non-
linearity of σ (x).
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APPENDIX: ASSUMPTIONS ABOUT v AND ζl

Here, we show that the quantity d = log10 ζl (x) ln 2/v
in Eq. (12) is constant. By substituting the expression for
|H+

l (η, kR)|2 [Eq. (8)] in T1/2 [Eq. (7)] we get

T1/2 = ζl (x) exp[2γl (x)] ln 2

v|Rgl (R)|2 . (A1)

It is well known that the most important quantity that deter-
mines T1/2 is exp[2γl (x)] compared to others. This is because
(1) exp[2γl (x)] is very large in the range of tens of orders of
magnitude for the experimental region [74] and (2) it varies
greatly by tens of orders of magnitude within a single decay
mode for a small set of neighboring nuclei (e.g., for α decay of
isotopes between Pb and U, it ranges between 1039 and 1014)
[16].

v, on the other hand, varies smoothly and retains roughly
the same order of magnitude of about 1022 fm/s for all decay
modes and nuclei so as to be considered a constant. This can
be seen from the definition of v:

v =
√

2Q

μ
= 1.38 × 1022

√
Q

A fm/s (A2)

where we have used μ = mA where m = 938.9/c2 MeV is
the nucleon mass and c = 2.9979 × 1023 fm/s is the speed of
light and A = AcAd/(Ac + Ad ) is the dimensionless reduced
mass. The ratio

√
Q/A varies smoothly for all decay modes

where both Q and A increase for larger decay modes such
that their ratio and hence v remain essentially constant. For
instance, in α decay for nuclei with 78 � Z � 132, A ≈ 4 for
all nuclei and Q is between 1 and 15 MeV such that

√
Q/A

varies between 0.5 and 2. Our calculations for the 12 clusters

FIG. 8. log10 ζ0 vs x for cluster-daughter systems with 12 clusters
from the proton up to 54Ti and nuclei between 78 � Z � 132 and
162 � A � 350.

from the proton up to 54Ti confirm this. Q is calculated as
described in Sec. III. We found that for all clusters and nuclei,
v is in the order of 1022 fm/s. Therefore, we conclude that v
is constant as assumed in Sec. II. This is consistent with other
studies which show that the assault frequency νa = v/2R is
roughly a constant equal to 1021 s−1 for the whole range of
nuclei and decay modes [16,75–78].

ζl (x) [Eq. (8)] is small compared to exp[2γl (x)] and varies
smoothly for all decay modes across the nuclear chart. In
Fig. 8 we plotted log10 ζ0(x) (where we set l = 0 since it
is unavailable for most nuclei considered) vs x for the all
cluster-daughter systems. log10 ζ0(x) varies very weakly vs
x with virtually all cluster-daughter systems lying between
0.5 and −1. The second term containing the l dependence in
ζl (x) [Eq. (8)] is small compared to the first term and hence
ζ0(x) ≈ ζl (x). Therefore, log10 ζl (x) is roughly a constant or,
more precisely, an approximately linear function (for 0.1 �
x � 0.95) that depends weakly on x.
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