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Proton-induced deuteron knockout reaction as a probe of an isoscalar proton-neutron pair in nuclei
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Background: The isoscalar pn pair is expected to emerge in nuclei having the similar proton and neutron
numbers but there is no clear experimental evidence for it.
Purpose: We aim to clarify the correspondence between the pn pairing strength in many-body calculation and
the triple differential cross section (TDX) of proton-induced deuteron knockout (p, pd) reaction on 16O.
Methods: The radial wave function of the isoscalar pn pair with respect to the center of 16O is calculated with
the energy density functional (EDF) approach and is implemented in the distorted wave impulse approximation
framework. The pn pairing strength V0 in the EDF calculation is varied and the corresponding change in the
TDX is investigated.
Results: A clear V0 dependence of the TDX is found for the 16O(p, pd ) 14N(1+

2 ) at 101.3 MeV. The nuclear
distortion is found to make the V0 dependence stronger.
Conclusions: Because of the clear V0-TDX correspondence, the (p, pd) reaction will be a promising probe for
the isoscalar pn pair in nuclei. For quantitative discussion, further modification of the description of the reaction
process will be necessary.
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I. INTRODUCTION

The nucleon-nucleon (NN) correlation is one of the most
important properties to understand atomic nuclei. The pairing
correlation of pp and nn, for which the total isospin T = 1 and
total spin S = 0, has been extensively studied for many years
[1,2]. Another type of NN correlation is a spatially correlated
two neutrons, i.e., dineutron, expected to emerge in a dilute
system [3]. After the invention of radioactive beams, prop-
erties of dineutron and how to probe it have been discussed
theoretically and experimentally [4–8]. Development of the
physics of unstable nuclei also provided a new opportunity to
investigate N ≈ Z nuclei in medium- and heavy-mass regions;
N (Z) is the neutron (proton) number. In such nuclei, because
the shell structure around the Fermi levels of p and n are sim-
ilar to each other, the pn correlation of either or both T = 0
and T = 1 types is expected to play an important role [9].
Recently, it was suggested with an energy density functional
(EDF) approach that a T = 0 pn pairing vibrational mode pos-
sibly emerges in N = Z nuclei [10,11]. Among conceivable
probes for the T = 0 pairing inside N ≈ Z nuclei, we consider
the deuteron knockout reaction for the transition.

In this study, we discuss the proton-induced deuteron
knockout reaction for 16O, 16O(p, pd ) 14N∗; 14N is in the
1+

2 state in the final channel. This reaction with 101.3 MeV
proton was carried out at Maryland [12] and a triple differ-
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ential cross section (TDX) of the same order of magnitude
as that of 16O(p, 2p) 15Ng.s. at 101.3 MeV was obtained. This
indicates that quite a large amount of pn pair that is detected
as deuteron may exist in 16O. In Ref. [12], a distorted wave
impulse approximation (DWIA) calculation was performed
with assuming a single-particle model for the bound deuteron
and a deuteron spectroscopic factor was deduced. However,
a more microscopic treatment of the pn pair inside 16O will
be important to clarify its correspondence to the TDX of the
16O(p, pd ) 14N∗ reaction.

To achieve this, we adopt the EDF for describing the
structure of 16O, i.e., the radial wave function of the pn pair
regarding the center of 16O. The DWIA calculation is then
performed to evaluate the TDX. Our main purpose is to clarify
how the TDX behaves when the pn pairing strength V0 is
changed in the EDF calculation. The distortion effect on the
TDX-V0 correspondence is discussed as well as the spatial
region of 16O that is relevant to the (p, pd) process.

The construction of this paper is as follows. In Sec. II we
present the formalism of DWIA and EDF for the calculation
of the TDX of 16O(p, pd ) 14N∗. We show numerical results of
the structural calculation and the TDX in Sec. III. A summary
and perspective are given in Sec. IV.

II. FORMALISM

A. DWIA framework

We consider the 16O(p, pd ) 14N∗ reaction in normal kine-
matics; in the final channel 14N is assumed to be in the second
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FIG. 1. Coordinates of the A(p, pd )B reaction system.

1+ excited state. The incoming proton is labeled as particle 0,
and the outgoing proton and deuteron are labeled as particles
1 and 2, respectively. We denote the target (residual) nucleus
16O (14N∗) by A (B) and its mass number by A (B). In what
follows, h̄K i, Ei, and Ti represent the momentum, the total
energy, and the kinetic energy of particle i (= 0, 1, 2, A, or B),
respectively. The solid angle of the outgoing particle j
(= 1 or 2) is denoted by � j . The quantities with and without
the superscript L represent that we evaluate these in the labo-
ratory (L) and p-A center-of-mass (c.m.) frames, respectively.

In the DWIA framework, the transition amplitude of the
A(p, pd )B reaction is given by

T = 〈
χ

(−)
1,K1

(R1)φd (r)χ (−)
2,K2

(R2)
∣∣

× tpd (s)
∣∣χ (+)

0,K0
(R0)φd (r)ϕpn(R2)

〉
, (1)

where χi,K i with i = 0, 1, and 2 are the distorted waves of
the p-A, p-B, and d-B systems, respectively. The coordinate
between the incoming (outgoing) proton and A (B) is denoted
by R0 (R1) and that between the outgoing deuteron and B
by R2. As seen from Fig. 1, R2 also means the coordinate
of the c.m. of the isoscalar (T = 0) spin-triplet (S = 1) pn
pair relative to B inside A. The scattering waves with the
superscripts (+) and (−) satisfy the outgoing and incoming
boundary conditions, respectively. φd is the pn relative wave
function in the ground state of deuteron and tpd is the effective
interaction between p and d . The coordinates relevant to φd

and tpd are denoted by r and s, respectively. ϕpn defined by

ϕpn(R2) = 〈�B|�A〉ξB
(2)

is the wave function between the c.m. of the pn pair and B
inside A; �C (C = A or B) is the many-body wave function of
C. In Eq. (2), it is understood that the integration is taken over
all the intrinsic coordinates ξB of B. A detailed description of
ϕpn is given in Sec. II B.

We apply the asymptotic momentum approximation [13] to
the distorted waves in Eq. (1) and obtain

T ≈ t̃pd (κ′, κ)
∫

dR F (R)ϕpn(R). (3)

Here, κ (κ′) indicates the relative momentum between p and d
in the initial (final) state, and we define t̃pd and F as follows:

t̃pd (κ′, κ) ≡ 〈
φd (r)eiκ′ ·s∣∣tpd (s)

∣∣φd (r)eiκ·s〉, (4)

F (R) ≡ χ
∗(−)
1,K1

(R)χ∗(−)
2,K2

(R)χ (+)
0,K0

(R)e−2iK0·R/A. (5)

Using the final-state on-the-energy-shell prescription, i.e.,

κ ≈ κ ′κ̂, (6)

in the evaluation of t̃pd , we find

μ2
pd

(2π h̄2)2

1

6
|t̃pd (κ′, κ)|2 ≈ dσpd

d�pd
(θpd , Epd ), (7)

where dσpd/d�pd is the p-d elastic differential cross section
in free space with θpd and Epd being the c.m. scattering angle
and the scattering energy, respectively. μpd is the reduced
mass of the p-d system.

The triple differential cross section (TDX) for the
A(p, pd )B reaction is then given by

d3σ

dEL
1 d�L

1 d�L
2

= FkinC0
dσpd

d�pd
(θpd , Epd )|T̄ |2, (8)

where

Fkin ≡ JL
K1K2E1E2

(h̄c)2

[
1 + E2

EB
+ E2

EB

K1 · K2

K2

]−1

, (9)

C0 ≡ E0

(h̄c)2K0

h̄4

(2π )3μ2
pd

, (10)

and

T̄ ≡
∫

dR F (R)ϕpn(R). (11)

In Eq. (9), JL is the Jacobian from the p-A c.m. frame to the L
frame.

Once all the distorting potentials are switched off, i.e.,
the plane wave impulse approximation (PWIA) is adopted, T̄
turns out to be the Fourier transform of ϕpn(R):

T̄ ≈
∫

dR e−iK pn·Rϕpn(R), (12)

where K pn is given by

K pn = K1 + K2 −
(

1 − 2

A

)
K0. (13)

By assuming the residual nucleus B is a spectator, one can
interpret K pn as the momentum of the c.m. of the pn pair.

In the recoilless (RL) condition, which is characterized by
Kpn = 0, one finds

T̄ ≈
∫

dR ϕpn(R) ≡ Apn. (14)

This clearly shows that the TDX in the RL condition reflects
the total amplitude Apn of the pn pair.

B. Microscopic calculation of the pn pair wave function

We apply the nuclear energy-density functional (EDF)
method to describing microscopically the wave function of
the pn pair. In a framework of the nuclear EDF, the pn-
pair-removed excited states in 14N are described in the
proton-neutron hole-hole random-phase approximation (pn-
hhRPA) [10] considering the ground state of 16O as an
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RPA vacuum; |�B〉 = �†|�A〉, where �̂† represents the RPA
phonon operator,

�̂† =
∑

ii′
Xii′ b̂

†
p,ib̂

†
n,i′ −

∑
mm′

Ymm′ b̂†
n,m′ b̂†

p,m. (15)

Here, b̂†
p,i (b̂†

n,i′ ) create a proton (neutron) hole in the single-

particle level i (i′) below the Fermi level, and b̂†
p,m (b̂†

n,m′ )
create a proton (neutron) hole above the Fermi level. Note that
the backward-going amplitudes Y vanish if the ground-state
correlation in 16O is neglected. The single-particle basis is
obtained as a self-consistent solution of the Skyrme-Hartree-
Fock (SHF) equation.

The S = 1 pn-pair-removal transition density that we need
for the transition amplitude is given as

δρ̄μ(rn, rp)= 1

2

∑
σσ ′

(−2σ ′)〈σ ′|σμ|σ 〉〈�B|ψ̂n(rn −σ ′)ψ̂p(rpσ )

− ψ̂p(rp −σ ′)ψ̂n(rnσ )|�A〉, (16)

where σ = (σ−1, σ0, σ+1) denotes the spherical components
of the Pauli spin matrices, and ψ̂q(rσ ) the nucleon annihi-
lation operator at the position r with the spin direction σ =
±1/2 expanded in the single-particle basis with q = n or p.
Since the transition density is spherical in spin space, we have
only to consider one of the components for μ. Here, we take
the μ = 0 component of the wave function.

From Eqs. (1), (2), and (16), we can regard the transition
density δρ̄0 as

δρ̄0(R̄, r) ≈ ϕpn(R)φd (r), (17)

where R̄ = (rn + rp)/2 and r = rp − rn and

ϕpn(R) ≡ δρ̄0(R, 0)

φd (0)
= ϕ̂pn(R)Y00(�R). (18)

Thus, in evaluating ϕpn, we consider the pn pair is S wave and
a point particle, namely r = 0. The use of Eqs. (17) and (18)
means that the component of the 16O wave function that con-
tains a deuteron is selected out. This treatment is consistent
with the DWIA framework described in Sec. II A.

With this, the pn-pair-removal transition strength is given
by

3

∣∣∣∣4π

∫ ∞

0
dR R2ϕ̂pn(R)φd (0)

∣∣∣∣
2

, (19)

where the factor three comes from the sum of μ = −1, 0, and
1 components.

III. RESULTS AND DISCUSSION

A. Numerical inputs

To obtain the single-particle basis used in the pn-hhRPA
calculation, the SHF equation is solved in cylindrical coordi-
nates r = (r, z, φ) with a mesh size of �r = �z = 0.6 fm and
with a box boundary condition at (rmax, zmax) = (14.7, 14.4)
fm. The axial and reflection symmetries are assumed in the
ground state, and the ground-state of 16O is calculated to
be spherical. More details of the calculation scheme are
given in Ref. [14]. The SGII interaction [15] is used for the

FIG. 2. S = 1 pn-pair removal transition strengths as functions
of the excitation energy, where the excitation energy for the unper-
turbed (p1/2)−2 configuration is set as zero. The solid, dashed, and
dot-dashed lines correspond to the cases of V0 = −100, −490, and
−600 MeV fm3, respectively.

particle-hole (ph) channel, and the density-dependent contact
interaction defined by

vpp(rστ, r′σ ′τ ′)

= V0
1 + Pσ

2

1 − Pτ

2

[
1 − ρ(r)

ρ0

]
δ(r − r′) (20)

is employed for the particle-particle (pp) channel. Here, ρ0 is
0.16 fm−3 and ρ(r) = ρp(r) + ρn(r). We adopt three values
−100, −490, and −600 MeV fm3 for the pairing strength V0.

For the distorting potentials of proton, the EDAD1 param-
eter set of the Dirac phenomenology [16,17] is used, whereas
we employ the global optical potential by An and Cai [18]
for the deuteron. We construct the Coulomb potential in each
distorting potential by assuming a uniformly charged sphere
with the radii of r0C1/3 (C = A or B) with r0 being 1.41 fm.
Nonlocality corrections to the distorted waves of deuteron and
proton are made by multiplying the wave functions by the
Perey factor [19] with the 0.54 fm of the range of nonlocality
and the Darwin factor [16,20], respectively. For the p-d elastic
cross section in Eq. (8), we take the experimental data from
Refs. [21–32] with the Lagrange interpolation with respect
to the scattering angle and energy. The kinematics of all the
particles are treated relativistically. The Møller factor [33,34]
is taken into account to describe the transformation of the p-d
transition matrix from the p-d c.m. frame to the p-A c.m.
frame.

B. Structure of the low-lying 1+ states in 14N

We briefly mention the structure of the calculated
low-lying 1+ states in 14N in the present framework before
discussing the TDX. Figure 2 shows the S = 1 pn-pair-
removal transition-strength distributions. The excitation
energy is defined with respect to the excitation energy of the
simplest configuration of (p1/2)−2 coupled to T = 0, S = 1 in
16O. The lowest state and the second lowest state for each pair-
ing strength correspond to the ground 1+ state and the 1+

2 state
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FIG. 3. Radial component of ϕpn(R). The solid, dashed, and dot-
dashed lines correspond to the cases of V0 = −100, −490, and −600
MeV fm3, respectively. Note that each line is multiplied by R2.

that we are interested in, respectively. They are constructed
by mainly the (νp1/2)−1(π p1/2)−1 configuration, and the
superposition of the (νp1/2)−1(π p3/2)−1 and
(νp3/2)−1(π p1/2)−1 configurations, respectively. With an
increase of the pairing strength, the energies become lower
and the strengths get enhanced for both states. For the case
of V0 = −600 MeV fm3, the (p3/2)−2 configuration is not
negligible for enhancing the transition strength to the 1+

2 state.
Therefore, the collectivity of the 1+

2 state becomes stronger
with an increased pairing strength.

The question arisen here is how much of the pairing
strength we should employ. We are going to look at the energy
difference of the 1+ states; �E = E1+

2
− E1+

1
. For the case

of V0 = −100, −490, and −600 MeV fm3, the calculated
�E is 5.41, 4.12, and 3.48 MeV, respectively, while �E =
3.95 MeV experimentally. We can thus say that the pairing
strengths V0 = −490 and −600 MeV fm3 are a reasonable
choice in the present study.

Next, we check the behavior of ϕpn(R). The radial com-
ponents of ϕpn(R) with V0 = −100 MeV fm3 (solid line),
−490 MeV fm3 (dashed line), and −600 MeV fm3 (dot-
dashed line), respectively, are shown in Fig. 3. It should be
noted that each line is multiplied by R2. One can clearly find
that the stronger the pair interaction is, the larger the ampli-
tude of R2ϕ̂pn(R) is, i.e., the stronger collectivity the pn pair
has. Note that in the V0 → 0 limit, the independent-particle
picture of 16O is realized. Then, the peak of the R2ϕ̂pn(R) will
almost disappear.

C. Triple differential cross section for 16O(p,pd)14N∗ reaction
at 101.3 MeV

In Fig. 4 we show the TDX for the 16O(p, pd ) 14N∗ reac-
tion at 101.3 MeV as a function of T L

1 . The emission angle
of particle 1 is fixed at (θL

1 , φL
1 ) = (40.1◦, 0◦) and that for

particle 2 at (θL
2 , φL

2 ) = (40.0◦, 180◦); we follow the Madison
convention. At T L

1 ≈ 52 MeV, the RL condition is almost
satisfied. This kinematical condition corresponds to Epd ≈
56 MeV and θpd ≈ 68◦ for the p-d scattering. The results

FIG. 4. Triple differential cross section (TDX) for the
16O(p, pd ) 14N∗ reaction at 101.3 MeV. The solid, dashed, and
dot-dashed lines corresponds the results with ϕ̂pn of V0 = −100,
−490, and −600 MeV fm3, respectively.

using ϕ̂pn calculated with V0 = −100, −490, and −600 MeV
fm3 are shown by the solid, dashed, and dot-dashed lines,
respectively. One sees a clear correspondence between V0 and
the TDX. In other words, the height of the TDX reflects
the collectivity of the pn pair that forms deuteron in 16O.
Unfortunately, however, it is difficult to make a quantitative
comparison of the current results with experimental data. This
is mainly because of the approximate treatment of ϕpn in
Eq. (18); the TDX of knockout reactions is known to be quite
sensitive to the radial distribution of the wave function of the
particle to be knocked out, which may be affected by the
approximation of Eq. (18) in the present case. A sensitivity
test of the TDX on ϕpn is given in the Appendix. Besides, there
may exist other reaction mechanisms that are not considered
in this study; we come to this point in Sec. IV. Nevertheless,
the V0 dependence of the TDX can safely be investigated,
which is our primary objective of this study.

FIG. 5. Ratio of the TDX height to that calculated with V0 =
−100 MeV fm3. The circles (asterisks) represent the results of the
DWIA (PWIA) calculations.
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FIG. 6. Transition matrix density (TMD) corresponding the TDX
with V0 = −490 MeV fm3 at T L

1 = 52 MeV. The solid (dashed) line
denotes the real (imaginary) part of the TMD.

To see the V0-TDX correspondence more clearly, in Fig. 5
we show the values of the TDX at T L

1 = 52 MeV, the TDX
height, in ratio to the value calculated with V0 = −100 MeV
fm3. The result of the DWIA (PWIA) is represented by the
circles (asterisks). As mentioned above, T L

1 = 52 MeV corre-
sponds to the RL condition. In the PWIA limit, one expects
from Eqs. (8) and (14) a clear relation between the TDX
height and |Apn|2, as shown by the asterisks. When the dis-
tortion is included, the ratio is found to increase further. This
indicates that the TDX height observed in the 16O(p, pd ) 14N∗
reaction at 101.3 MeV is more sensitive to the pn pair ampli-
tude ϕ̂pn than naively expected in the PWIA limit. Quantitative
extraction of the collectivity through a comparison with exper-
imental data, however, requires a more accurate description of
the (p, pd) process as mentioned in Sec. I.

Figure 6 shows the transition matrix density (TMD) δ(R),
which was originally introduced as a weighting function for
the mean density of the (p, 2p) reaction in Ref. [35]. The
definition of the TMD is given by

δ(R) = T ∗I (R), (21)

where I (R) is the complex radial amplitude of T of Eq. (1),
i.e.,

T =
∫ ∞

0
dR I (R). (22)

The solid lines denotes the real part of the TMD, which can
be interpreted as a radial distribution of the TDX as dis-
cussed in Refs. [35–37]. To make this interpretation plausible,
however, the real part of the TMD should not have a large
negative value. Another condition is that the imaginary part
of the TMD is nearly equal to 0 for all R. As one sees from
Fig. 6, neither of the two conditions is satisfied well. This
indicates that the interference between amplitudes at different
R is strong. Furthermore, the TMD is finite even at small R,
which means the nuclear absorption is not enough to mask the
interior region in the evaluation of the transition matrix. These
features are completely different from for (p, pα) reactions

FIG. 7. (a) The solid line is the same as the dashed line in Fig. 3
divided by R2. The dashed line is the wave function obtained by
widening the solid line outward by 25% artificially. (b) The corre-
sponding TDXs for the 16O(p, pd ) 14N∗ reaction at 101.3 MeV.

discussed in Refs. [38,39]. In other words, the distortion effect
in the (p, pd) reaction investigated in this study is found to be
rather complicated and the mechanism for the increase in the
relative TDX height due to the distortion is still unclear.

IV. SUMMARY AND PERSPECTIVE

We have investigated the 16O(p, pd ) 14N∗ reaction at 101.3
MeV to the 1+

2 state of 14N with the DWIA framework
combined with a bound state wave function by EDF. As a
remarkable feature of the current approach, both the shape and
height of the radial wave function of the pn pair in 16O are
evaluated microscopically. A clear correspondence between
the pairing strength V0 and the TDX was clarified, indicating
that the (p, pd) reaction is a promising probe for the T = 0 pn
pair in N ≈ Z nuclei.

It is found that the distortion effect enhances the V0 de-
pendence of the TDX. Because the selection of the probed
region is not clear in the (p, pd) process, however, the mech-
anism of the enhancement is not clear at this stage. This is a
feature of (p, pd) that is quite different from α knockout pro-
cess, (p, pα), in which only the nuclear surface is selectively
probed.

For a quantitative discussion regarding the experimental
data, it will be necessary to take into account the deuteron

024609-5



CHAZONO, YOSHIDA, YOSHIDA, AND OGATA PHYSICAL REVIEW C 103, 024609 (2021)

breakup effect in the final channel. Another important future
work will be the modification of the elementary process of
the (p, pd) reaction. In the current DWIA framework, as in
all the preceding DWIA studies, an elastic p-d scattering is
considered as an elementary process. This compels one to
assume that a deuteron exists in the target nucleus before the
knockout process. This may be insufficient to describe the
actual (p, pd) process, in which a pn pair that is different
from deuteron can be knocked out by the incoming proton.
The pair may form deuteron in the scattering process in the
final channel by a coupled-channel effect and then is detected.
In such a manner, the p(pn, d )p process can be another el-
ementary process for the (p, pd) reaction. Implementation
of both p(d, d )p and p(pn, d )p processes to the coupled-
channel DWIA framework will reveal the nature of the pn
pair in a nucleus more clearly, and also will be important
for applying DWIA to the study of high-momentum pn pair
using the backward (p, pd) scattering [40]. To achieve this
aim, following the (e, e′d) analysis [41], we are constructing
a new framework that describes the p-pn scattering based
on the nucleon degrees of freedom with the nucleon-nucleon
effective interaction. Studies along these lines are ongoing
and will be reported elsewhere. For more detailed research,
we desire experiments of the (p, pd) reaction at higher energy
where the DWIA will be able to describe knockout processes
with less uncertainty.
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APPENDIX: SURFACE SENSITIVITY OF TDX

Comparing the TDXs shown in Fig. 4 with the experimen-
tal data in Ref. [12], there is an undershooting by about two
orders of magnitude. Among the possible sources of this issue,
in this Appendix, we show the sensitivity of the TDX to ϕpn

by modifying ϕ̂pn(R) in Eq. (18).
In Fig. 7(a), the solid line shows the original ϕ̂pn(R) ob-

tained with V0 = −490 MeV fm3, whereas the dashed line is
the result obtained by widening the solid line outward by 25%
artificially. The TDXs represented by solid and dashed lines
in Fig. 7(b) are calculated with the wave functions in the same
line type in Fig. 7(a). One can find that the dashed line is about
20 times larger than solid one. It means that the 25% extension
in the radial distribution of the wave function makes the TDX
larger by about a factor of 20 in this case.

We emphasize that in the actual calculation, the pairing
strength V0 is the only variable parameter in the structure
model adopted and Fig. 7(a) does not directly show the un-
certainty of the structure model. It should be also noted that,
as mentioned in Sec. IV, the improvement in the elementary
process of the (p, pd) reaction is needed for quantitative com-
parison with the experimental data. It is important, however,
to keep in mind how the TDX is sensitive to the radial distribu-
tion of the wave function, as demonstrated in this Appendix.
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H. J. Wörtche, Phys. Rev. C 71, 064004 (2005).

[33] C. Møller, Kgl. Danske Videnskab. Selskab, Mat-fys. Medd. 23,
1 (1945).

[34] A. K. Kerman, H. McManus, and R. M. Thaler, Ann. Phys.
(NY) 8, 551 (1959).

[35] K. Hatanaka et al., Phys. Rev. Lett. 78, 1014 (1997).
[36] T. Noro et al., Proceedings of the RCNP International Sympo-

sium on Nuclear Responses and Medium Effects, Osaka, 1998
(Universal Academy Press, Tokyo, 1999), p. 167.

[37] T. Wakasa, K. Ogata, and T. Noro, Prog. Part. Nucl. Phys. 96,
32 (2017).

[38] M. Lyu, K. Yoshida, Y. Kanada-En’yo, and K. Ogata, Phys. Rev.
C 97, 044612 (2018).

[39] K. Yoshida, K. Ogata, and Y. Kanada-En’yo, Phys. Rev. C 98,
024614 (2018).

[40] S. Terashima et al., Phys. Rev. Lett. 121, 242501
(2018).

[41] R. Ent, B. L. Berman, H. P. Blok, J. F. J. van den Brand, W. J.
Briscoe, M. N. Harakeh, E. Jans, P. D. Kunz, and L. Lapikás,
Nucl. Phys. A 578, 93 (1994).

024609-7

https://doi.org/10.1103/PhysRevC.50.576
https://doi.org/10.1103/PhysRevC.65.034003
https://doi.org/10.1103/PhysRevC.66.044002
https://doi.org/10.1103/PhysRevC.71.064004
https://doi.org/10.1016/0003-4916(59)90076-4
https://doi.org/10.1103/PhysRevLett.78.1014
https://doi.org/10.1016/j.ppnp.2017.06.002
https://doi.org/10.1103/PhysRevC.97.044612
https://doi.org/10.1103/PhysRevC.98.024614
https://doi.org/10.1103/PhysRevLett.121.242501
https://doi.org/10.1016/0375-9474(94)90971-7

