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Impact of three-body forces on elastic nucleon-nucleus scattering observables
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Background: In a previous series of papers we investigated the domain of applicability of chiral potentials to the
construction of a microscopic optical potential (OP) for elastic nucleon-nucleus scattering. The OP was derived
at the first order of the spectator expansion of the Watson multiple scattering theory and its final expression
was a folding integral between the nucleon-nucleon (NN) t matrix and the nuclear density of the target. In the
calculations NN and three-nucleon (3N) chiral interactions were used for the target density and only the NN
interaction for the NN t matrix.
Purpose: The purpose of this work is to achieve another step towards the calculation of a more consistent OP
introducing the 3N force also in the dynamic part of the OP.
Methods: The full treatment of the 3N interaction is beyond our present capabilities. Thus, in the present work
it is approximated with a density dependent NN interaction obtained after the averaging over the Fermi sphere.
In practice, in our model the 3N force acts as a medium correction of the bare NN interaction used to calculate
the t matrix. Even if the 3N force is treated in an approximate way, this method naturally extends our previous
model of the OP and allows a direct comparison of our present and previous results.
Results: We consider as case studies the elastic scattering of nucleons off 12C and 16O. We present results for
the differential cross section and the spin observables for different values of the projectile energy. From the
comparison with the experimental data and with the results of our previous model we assess the importance of
the 3N interaction in the dynamic part of the OP.
Conclusions: Our analysis indicates that the contribution of the 3N force in the t matrix is small for the differen-
tial cross section and it is sizable for the spin observables, in particular, for the analyzing power. We find that the
two-pion exchange term is the major contributor to the 3N force. A chiral expansion order-by-order analysis of
the scattering observables confirms the convergence of our results at the next-to-next-to-next-to-leading-order,
as already established in our previous work.

DOI: 10.1103/PhysRevC.103.024604

I. INTRODUCTION

The optical potential (OP) is a widely used tool developed
in the first instance to describe the elastic nucleon-nucleus
scattering and successively employed in other nuclear reac-
tions. Decades of research work have led to the development
of different phenomenological and microscopic approaches to
derive OPs to be employed in different kinematical regions
and for different reactants. A phenomenological approach is
generally preferred to achieve a more accurate description of
the available experimental data. Despite this accuracy, the pre-
dictive power of phenomenological OPs remains poor when
they are applied to situations for which data are not yet avail-
able, due to their dependence on several free parameters fitted
to reproduce the existing data. A microscopic approach to the
OP still remains the preferred way to make reliable predictions
and to assess the impact of the approximations introduced in

the model, and, recently, several new works have been devoted
to this topic [1–24].

At intermediate energies, the construction of a microscopic
OP based on the Watson multiple scattering theory is particu-
larly appealing, and in the 90’s it produced several theoretical
works [25–32] where realistic nucleon-nucleon (NN) interac-
tions together with nuclear target densities were used as the
input for the calculation of such microscopic OPs.

The development of new NN and three-nucleon (3N)
interactions derived within the framework of the chiral per-
turbation theory (ChPT), together with the modern accurate
many-body techniques, resulted in a renewed interest in the
subject, because of the possibility to achieve a more con-
sistent calculation of the OP using the NN and 3N forces
as the only input for the computation of its dynamic and
structure parts. We note that this choice is not unique and,
recently, a similar OP has been successfully derived [21,22]
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using only the NN interaction, in particular the one from
Ref. [33].

In a series of papers we explored the possibility of con-
structing a microscopic OP from chiral interactions: We
derived a microscopic OP from NN chiral potentials [34], we
studied the convergence of the scattering observables com-
puted with NN potentials at different chiral orders [35], we
investigated the predictive power of our OP against the exper-
imental data for several isotopic chains [36] and compared our
results with those obtained with one of the most popular phe-
nomenological OP [37,38]. Our original model was improved
in Ref. [23], where we computed our OP with a microscopic
nonlocal density obtained with the ab initio no-core shell
model (NCSM) [39] utilizing NN and 3N chiral interactions.
The same NN interaction was used in Ref. [23] to calculate the
NN t matrix and the nuclear density, that convoluted together
give the OP. Recently, this approach has been also extended to
describe the elastic scattering of antiprotons off several target
nuclei [24].

Despite all these advances, a lot of work has still to be
done before reaching full consistency. In particular, the ap-
proach adopted in Ref. [23] uses NN and 3N interactions to
calculate the nuclear density, while the NN t matrix, which
represents the dynamic part of the OP, is computed with the
NN interaction only. Naively, we can argue that the impact of
the 3N force is more important in the nuclear density, since
reproducing the nuclear radii is essential for a proper descrip-
tion of the diffraction minima in the differential cross section.
However, for a more consistent derivation, the NN and 3N
potentials should be used both in the dynamic and in the
structure parts of the OP. Unfortunately, the exact treatment
of the 3N interaction is a very hard task that is beyond our
present capabilities.

The goal of the present work is to develop a framework that
allows us to introduce and consequently assess the impact of
the 3N force in the dynamic part of the OP. Our framework
makes use of a density-dependent NN interaction, which in-
troduces some medium corrections to the bare NN potential
in the calculation of the t matrix and naturally extends the
previous scheme adopted in Ref. [23].

The paper is organized as follows: In Sec. II we derive the
expression for the OP operator and we show explicitly how
the 3N force is included in our scheme. Some details about the
chiral potentials can be found in Sec. II A, while the technical
details about the calculation of the OP are given in Sec. II B.
In Sec. III we show the results for the scattering observables
obtained with our OP and compare them to the experimental
data. Finally, in Sec. IV we draw our conclusions.

II. OPTICAL MODEL

In the most general framework 3N effects could arise both
at the level of the bare nuclear potential or as a result of
the complicated many-body dynamics. Recalling the distinc-
tion introduced by Sauer in Ref. [40], many-nucleon forces
can be generally divided into two categories: genuine con-
tributions arising from the nuclear Hamiltonian and induced
terms coming from the process of solving the nuclear many-
body problem. Induced many-nucleon forces do not have a

fundamental basis. In some sense they can be interpreted as
theoretical artifacts due to the inevitable approximations in-
volved in the solution of the many-body problem. On the other
hand, genuine contributions enter directly into the definition
of the nuclear Hamiltonian in terms of the active degrees of
freedom chosen to describe the nuclear systems.

Our aim is to present a consistent framework in which the
role of 3N forces in elastic nucleon-nucleus scattering can be
investigated. In this perspective, we will restrict our analysis
to the role of genuine 3N forces and neglect, as a first step, the
complications due to induced many-body forces. Since at the
moment an exact treatment of the full problem is not available,
we will focus our attention on the impact of 3N forces in the
approximation of NN dynamics dominance.

We will mainly follow the derivation presented in
Refs. [32,34,35,41–44] in order to assess the strengths and
limitations of our analysis.

To deal with the general problem of the elastic scattering of
a nucleon from a target nucleus of A nucleons, we start from
the full (A + 1)-body Lippmann-Schwinger equation for the
many-body transition amplitude T as follows:

T = V + V G0(E )T , (1)

where V is the chiral nuclear potential at a given order in the
relevant expansion parameter (more details in Sec. II A) and
G0(E ) is the (A + 1)-body propagator connected to the free
Hamiltonian H0 (that includes the target Hamiltonian HA and
the kinetic energy of the projectile h0) defined as

G0(E ) = (E − h0 − HA + iε)−1 . (2)

In the standard approach to elastic scattering, Eq. (1) is sepa-
rated into two equations. The first one is an integral equation
for T ,

T = U + UG0(E )PT, (3)

where U is the optical potential operator, and the second one
is an integral equation for U

U = V + V G0(E )QU . (4)

In the previous expressions we introduced the projection op-
erators P and Q that satisfy the relation

P + Q = 1, (5)

and where P fulfills the condition

[G0, P] = 0. (6)

Of course, in the case of elastic scattering, P projects onto the
elastic channel. It can be defined as follows:

P = |�A〉 〈�A|
〈�A|�A〉 , (7)

where |�A〉 is the ground state of the target. With these
definitions, the elastic transition operator may be defined as
Tel = PT P, and, in this case, Eq. (3) becomes

Tel = PUP + PUPG0(E )Tel. (8)

Thus the transition operator for elastic scattering is given by a
one-body integral equation. In order to solve Eq. (8) we need
to know the operator PUP.
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The nuclear potential derived in the framework of ChPT
consists of two-body and, starting at next-to-next-to-leading
order (N 2LO) in the perturbative expansion, also three-body
contributions, see Refs. [45–54]. As well known, the NN
potentials at leading order (LO) and next-to-leading order
(NLO) are not a viable choice since, as we have shown in our
previous papers [34,35], the scattering observables are poorly
reproduced. Starting from this consideration, it is useful to
study the effects of the 3N force in the solutions of Eq. (1)
because, in addition to the aforementioned nuclear potential
V , the inclusion of the 3N force is an essential piece in the ab
initio description of nuclear targets (with the exception of the
potential NNLOsat, see Ref. [55], that, however, is not suited
to be employed in proton elastic scattering at energies larger
than 100 MeV [56]).

Let us start by writing the chiral potential as follows:

V = VNN + V3N , (9)

where VNN consists of all two-body contributions v0i between
the nucleon projectile (labelled by 0) and the ith nucleon in
the target,

VNN =
A∑

i=1

v0i ; (10)

and V3N is determined by all three-body contributions w0i j

between the projectile and two spectator nucleons in the target
(i and j),

V3N = 1

2

A∑
i=1

A∑
j=1 j �=i

w0i j . (11)

Now we insert Eq. (9) into Eq. (4) and we obtain the many-
body equation for the optical potential operator,

U = (VNN + V3N ) + (VNN + V3N )G0(E )QU . (12)

The exact treatment and solution of the previous equation is
beyond our current capabilities already with the NN interac-
tion only, so, in order to include some effects due to a 3N
force, we need to introduce an approximation which allows us
to simplify the previous equation to a form that can be treated
with the standard techniques. If we make the assumption that
the two-nucleon dynamics dominates the scattering processes,
we can introduce the following approximation:

A∑
j = 1
j �= i

w0i j ≈ 〈w0i〉 , (13)

where the notation 〈. . .〉 indicates an average over the Fermi
sphere. The operator 〈w0i〉 is a two-body operator. How to
perform such a simplification will be described in Sec. II A.
If we insert Eq. (13) into Eq. (12) and we define the following
potentials:

v
(1)
0i ≡ v0i + 1

2 〈w0i〉 , (14)

v
(2)
0i ≡ v0i + 〈w0i〉 , (15)

we obtain

U =
A∑

i=1

U0i, (16)

where

U0i = v
(1)
0i + v

(2)
0i G0(E )QU . (17)

If we insert Eq. (16) into Eq. (17) and we define the following
operators:

τ0i ≡ v
(1)
0i + v

(2)
0i G0(E )Qτ0i, (18)

χ0i ≡ v
(2)
0i + v

(2)
0i G0(E )Qχ0i, (19)

then we obtain

U0i = τ0i + χ0iG0(E )Q
A∑

j = 1
j �= i

U0 j . (20)

We see that the operator τ0i satisfies a Lippmann-Schwinger
equation and is density dependent because of the presence of
the operator 〈w0i〉. In the limit of the density going to zero
the operator τ0i becomes equal to the first-order term of the
spectator expansion. Our approach explicitly neglects contri-
butions from higher-order terms in the spectator expansion
that would naturally produce induced three-body forces. So
far, only one attempt [26] has been made to treat the second
term of the spectator expansion; the conclusions of this work
suggest extreme care when we treat the folding of the finite
range of the NN transition amplitude with the target wave
function. The evaluation of this second term using ab initio
nonlocal densities will be the subject of future investigations.

We can now approximate Eq. (20) with its leading term
and, since this is still a many-body equation, we introduce the
impulse approximation, which neglects the medium effects
due to the interaction of the target nucleon with the residual
nucleus and, thus, the scattering process between the projec-
tile and the target nucleon is treated as free. This is a well
known approximation suited for the energies under consid-
eration and it has the advantage of reducing the many-body
integral equation to a two-body one. Thus, after some manip-
ulations [34,35], the final expression for the optical potential
is given by

U =
A∑

i=1

t0i, (21)

where

t0i = v
(1)
0i + v

(2)
0i git0i (22)

and

gi = 1

(E − Ei ) − h0 − hi + iε
. (23)

Here we see that gi is the two-body free propagator while, in
the limit of a zero density, the operator t0i becomes the free
two-body scattering operator.
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Essentially, what we did is to approximate the pure 3N
force with a density-dependent NN force obtained by averag-
ing the third nucleon momenta over the Fermi sphere. Within
this procedure, we produce a term in Eq. (22) that introduces
de facto a medium correction to the standard expression of the
OP obtained in the impulse approximation. Our treatment of
medium corrections is not exhaustive and other contributions
can also be included, as suggested in Refs. [16,30,44,57,58].
A more complete investigation of medium corrections is
mandatory for the future of our model and we plan to investi-
gate a complete treatment in a forthcoming article.

A. More about the chiral nuclear potentials

The most recent generation of NN potentials is derived
within the formalism of ChPT. In this framework, the NN
interaction is governed by the (approximate) chiral symmetry
of low-energy QCD that constrains the building blocks of
the NN Lagrangian. ChPT provides a description of nuclear
systems in terms of single and multiple pion exchanges (long-
and medium-range components) and contact interactions be-
tween the nucleons in order to parametrize the short-range
behavior [49,50]. A power counting scheme, based on an
expansion parameter determined by the ratio of a soft scale
(usually the momentum p or the pion mass mπ ) over a hard
scale (i.e., QCD energy gap �χ ), is at the basis of the pertur-
bative expansion [45,59,60]. The free parameters of the theory
are determined by reproducing data in the two-nucleon sector.

In our previous works [23,24,34–36] we applied chiral NN
potentials at next-to-next-to-next-to-leading order (N 3LO)
and next-to-next-to-next-to-next-to-leading order (N 4LO)
to the description of proton-nucleus (but also antiproton-
nucleus) elastic scattering observables. Despite an overall
agreement with experimental data, the description of the
scattering observables can still be improved, in particular con-
cerning the polarization quantities, like the analyzing power.

One key feature of the application of ChPT in the nuclear
sector is the natural emergence, as well as the fully consistent
derivation, of multinucleon forces. The first introduction of
3N forces in terms of π -exchange dynamics dates back to the
seminal paper of Fujita and Miyazawa [61], where a single
π is exchanged between two of the three nucleons involved.
In ChPT, such contribution naturally arises from the structure
of the Lagrangian dictated by chiral symmetry. In fact, 3N
forces start to appear at N 2LO, whereas at LO and NLO
only NN contributions are allowed. As shown in Ref. [62],

the 2π exchange diagram between three nucleons must be
completed by two more contributions: a one-π -exchange plus
a NN contact term and a 3N contact term. For more details
and an explicit derivation of the relevant formulas, we refer
the reader to Refs. [40,63,64].

The NN tuning of the parameters partially constrains the
3N forces. The 2π -exchange part depends on the low-energy
constants (LEC) c1, c3, c4 (which already appear in the NN
sector in the subleading 2π -exchange contribution at N 2LO),
while the other contributions depend on new LECs cD, cE that
must be fixed by three-body properties. The calibration of
cD, cE can be obtained by different methods [65]: reproducing
the binding energies of 3H and 4He [66], or the neutron-
doublet scattering length [63], fitting some properties of light
nuclei [67], or determining the Gamow-Teller matrix element
of tritium β decay [68]. For an exhaustive analysis about the
determination of cD and cE we refer the reader to Ref. [69].

In the description of scattering observables, since 3N
forces will be approximated by Eq. (13), we need a theoretical
prescription to average 3N forces over the Fermi sphere to
produce 〈w0i〉. In Ref. [70] the authors proposed a method
to construct a density-dependent NN force generated by 3N
forces. In the present work we strictly follow this procedure
and refer the reader to the relevant bibliography for more
details. Such approaches, where the complexity of the 3N
force is reduced to a density-dependent NN force, have been
successfully tested by many authors, see Refs. [71–73] and
references therein and, in particular, Ref. [74], where an op-
tical potential for infinite systems has been derived. Since in
finite nuclei the baryon density ρ is a function of the radial
coordinate, it would be necessary to find a prescription to fix
ρ. We choose a different approach because the goal of our
work is to investigate 3N forces in a broad sense. We allow
ρ to vary between reasonable values going from surfacelike
densities to bulklike densities. As a consequence, our theo-
retical predictions will be drawn as “bands” and not single
lines. These bands should not be confused with similar bands
(of uncertainty) that we presented in our previous work [35]
related to the errors associated with the chiral perturbative
expansion.

B. Practical details

From a practical point of view, the OP is computed in
momentum space as follows [31,32,75,76]:

U (q, K; E ) =
∑

N=p,n

∫
dP η(q, K, P) tNN

[
q,

1

2

(
A + 1

A
K +

√
A − 1

A
P

)
; E

]
ρN

(
P +

√
A − 1

A

q
2
, P −

√
A − 1

A

q
2

)
, (24)

where q and K represent the momentum transfer and the
average momentum, respectively. Here P is an integration
variable, tNN is the NN t matrix [Eq. (22)] and ρN is the one-
body nuclear density matrix. The parameter η is the Möller
factor, which imposes the Lorentz invariance of the flux when
we pass from the NA to the NN frame in which the t matrices
are evaluated. Finally, E is the energy at which the t matrices

are evaluated and it is fixed at one half the kinetic energy of
the incident nucleon in the laboratory frame.

The calculation of the density matrix is performed using
the same approach followed in Ref. [23], where one-body
translationally invariant densities were computed within the
ab initio NCSM [39] approach. The NCSM method is based
on the expansion of the nuclear wave functions in a harmonic
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oscillator basis and it is thus characterized by the harmonic os-
cillator frequency h̄� and the parameter Nmax, which specifies
the number of nucleon excitations above the lowest energy
configuration allowed by the Pauli principle. In this work,
the densities have been computed using h̄� = 16 MeV and
Nmax = 8 for 12C and 16O (within the importance truncated
method [77,78]). The center-of-mass contributions have been
consistently removed [23].

For the present work we used the NN chiral interactions
developed by Entem et al. [53,54] up to the fifth order (N4LO)
with a cutoff � = 500 MeV for both the target description and
the interaction potential V [cf. Eq. (9)] between the projectile
and the target nucleon. In addition to the NN interaction, we
also employed genuine 3N forces to compute the one-body
densities of the target nuclei. We adopted the 3N chiral in-
teraction derived up to third order (N2LO), which employs a
simultaneous local and nonlocal regularization with the cutoff
values of 650 MeV and 500 MeV, respectively [64,79]. For the
present work we use the values cD = −1.8 and cE = −0.31
with the NN interaction at N 4LO [24,79], while with the NN
interaction at N3LO and N2LO we used the values provided
in Table I of Ref. [80]. For the NCSM, the interaction is
also renormalized using the similarity renormalization group
(SRG) technique, which evolves the bare interaction at the

FIG. 1. Differential cross section dσ/d�, analyzing power Ay,
and spin rotation Q as functions of the center-of-mass scattering
angle θc.m. for elastic proton scattering off 16O at a laboratory
energy of 200 MeV. The results were obtained using Eq. (24),
where the tpN matrix is computed with the pN chiral interaction of
Ref. [54] supplemented by a density-dependent NN interaction (with
0.0 fm−3 � ρ � 0.16 fm−3) and the one-body nonlocal density ma-
trices computed with the NCSM method using NN [54] and 3N
[64,79] chiral interactions. Experimental data from Refs. [81,82].

desired resolution scale λSRG = 2.0 fm−1 to ensure a faster
convergence of our calculations. To be consistent, for the
evaluation of Eq. (13), we employed the same values for cD

and cE . Finally, in the evaluation of the pure 3N force and of
Eq. (13) we used the c1, c3, and c4 values recommended in
Ref. [54].

III. THEORETICAL PREDICTIONS

In this section we present and analyze our theoretical pre-
dictions for the elastic NA scattering observables calculated
with the model proposed in Sec. II. The main goal is to
evaluate the impact of genuine 3N forces in the description
of empirical data. We refer the reader to Refs. [34–36] for
extensive analyses about the dependence on the details of NN
chiral potentials, convergence patterns, and error estimates at
a given order of the chiral expansion.

All the theoretical results were obtained using Eq. (24),
where the tpN matrix is computed with the pN chiral

FIG. 2. Differential cross sections dσ/d� as a function of the
center-of-mass scattering angle for elastic proton scattering off 16O at
different energies (100, 135, and 318 MeV). The bands show the re-
sults obtained using Eq. (24), where the tpN matrix is computed with
the pN chiral interaction of Ref. [54] supplemented by a density-
dependent NN interaction (with 0.08 fm−3 � ρ � 0.13 fm−3) and
the one-body nonlocal density matrices computed with the NCSM
method using NN [54] and 3N [64,79] chiral interactions. The solid
(blue) lines are obtained with ρ = 0 fm−3. Experimental data from
Refs. [81,82,89,90].
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interaction of Ref. [54] supplemented by a density-dependent
NN interaction and the one-body nonlocal density matrices
computed with the NCSM method using NN [54] and 3N
[64,79] chiral interactions.

In Fig. 1 we display the calculated differential cross section
dσ/d�, analyzing power Ay, and spin rotation Q as functions
of the center-of-mass scattering angle θc.m. for elastic proton
scattering off 16O at a laboratory energy of 200 MeV in
comparison with the empirical data [81,82]. The set of curves
show the impact of genuine 3N forces with increasing val-
ues of the matter density ρ (with 0.0 fm−3 � ρ � 1.6 fm−3)
starting from the case with only NN contributions (ρ = 0).
The effects of genuine 3N forces turn out to be negligible for
the differential cross section, where all curves are basically on
top of each other, and are larger for polarization observables,
where the 3N contributions 〈w0i〉 improves the agreement
with the experimental data, in particular, there is a strong
improvement in the description of the first minimum of Ay.

In Fig. 2 we show the differential cross sections as
functions of the center-of-mass scattering angle for elastic
proton scattering off 16O at different energies (100, 135, and
318 MeV). Our theoretical predictions are depicted as bands,
as explained in Sec. II A, in order to show how 3N contribu-
tions affect the observable varying the matter density ρ within
reasonable estimates (0.08 fm−3 � ρ � 0.13 fm−3). For each
energy, the addition of 〈w0i〉 does not appreciably change

FIG. 3. The same as in Fig. 2 but for the analyzing power Ay.
Experimental data from Refs. [81,82,89,90].

the behavior and the magnitude of dσ/d� as a function of
the scattering angle. The agreement with empirical data is
good, in particular for θ � 50o, where our calculations nicely
reproduce the minima of the cross sections.

In Fig. 3 we plot the analyzing power Ay as a function of
the center-of-mass scattering angle for the same nucleus at the
same energies (100, 135, and 318 MeV). As in the previous
figure, our theoretical predictions are shown as bands. The
comparison with the calculations with only NN interactions
(solid curves) show that the effects of genuine 3N forces are
larger for polarization observables. We do not show results for
the spin rotation Q because there are no empirical data at these
energies. For data at low energy, the contribution of genuine
3N forces generally improves the description of empirical
data, in particular of the shape of Ay, while minima positions
are less affected. This is evident from the results at 135 MeV.
The results at 318 MeV are less sensitive to the contribution of
genuine 3N forces. The results at 100 MeV deserve a special
comment, since at this energy Ay computed with ρ = 0 fm−3

seems to provide a better description of the data for θc.m. �
30◦. This different behavior, compared to the other cases in the
figure, can be ascribed to the impulse approximation used to
derive Eq. (24). At 100 MeV medium effects can be important
and the validity of the impulse approximation can be put
into question. The experimental differential cross section at

FIG. 4. Differential cross section dσ/d�, analyzing power Ay,
and spin rotation Q as functions of the center-of-mass scattering
angle for elastic proton scattering off 16O at a laboratory energy of
200 MeV for different combinations of the low-energy constants cD

and cE . The red curve is the theoretical prediction with only the pN
chiral interaction of Ref. [54], while the other curves are generated
switching on and off the effective 3N contributions. Experimental
data from Refs. [81,82].
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FIG. 5. The same as in Fig. 2 but for 12C and for different
energies (122, 160, 200, and 300 MeV). Experimental data from
Refs. [83–87].

100 MeV in Fig. 2 is anyhow reasonably described by the
model. We note that even in the case of the cross section at
100 MeV the impact of the 3N contribution, although small,
does not improve but rather worsens the agreement with the
experimental data.

We conclude the analysis of the results for 16O by showing
in Fig. 4 a comparison of the differential cross section, analyz-
ing power, and spin rotation as functions of the center-of-mass
scattering angle for different combinations of the low-energy
constants cD and cE . The theoretical prediction with only the
pN chiral interaction of Ref. [54] (red lines) are compared
in the figure with the results generated switching on and off
the effective 3N contributions. Since the dependence on cD

and cE is very weak, it is reasonable to state that the main
contribution of the 3N force comes from the 3N-2π exchange
diagrams, that depend only on c1, c3, and c4.

We continue our analysis with the results for 12C: We plot
the differential cross section (Fig. 5) and analyzing power
(Fig. 6) as functions of the center-of-mass scattering angle at
different energies (122, 166, 200, and 300 MeV) in compari-
son with the experimental data [83–87]. No results are shown
for the spin rotation because no experimental data at these
energies are available. In the carbon case we observe the same
pattern as for oxygen and we can draw the same conclusions.
Genuine 3N forces appear to have a very small impact on the
cross sections, for all the considered energies of the projectile

FIG. 6. The same as in Fig. 3 but for 12C and for differ-
ent energies (122, 160, and 200 MeV). Experimental data from
Refs. [83–85].

and clearly improve the description of the experimental data
for polarization observables. The first minimum of Ay is satis-
factorily reproduced both in respect to the angular dependence
and the magnitude.

For the carbon case we also performed an order-by-order
analysis in terms of the chiral order expansion. In Fig. 7 we
show the differential cross sections dσ/d� as functions of the
center-of-mass scattering angle for elastic proton scattering
off 12C at 200 MeV at different orders of the chiral expansion.
Since 3N forces start to appear at N 2LO, at lower orders they
are not included and the predictions are plotted as lines and
not bands. Starting from N 2LO, the bands are obtained when
the matter density at which the 3N contributions are calculated
is allowed to vary in the interval 0.08 fm−3 � ρ � 0.13 fm−3.
At each order, we refitted cD and cE to ensure consistency
[80], following the same prescriptions explained in the pre-
vious section. To ensure complete consistency, we used the
same potentials both in the NCSM calculations and in the
projectile-target interaction. The uncertainties from the chiral
expansion at a certain order can be estimated as the difference
between the result at that order and the result at the next order.
The uncertainty at N4LO is estimated as the N3LO−N4LO
difference times Q/�, where Q is some average momentum
(or the pion mass) and � = 500 MeV. From the figure we can
see that the difference between N3LO and N4LO is small and,
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FIG. 7. Differential cross sections dσ/d� as a function of the
center-of-mass scattering angle for elastic proton scattering off 12C
at 200 MeV at different orders of the chiral expansion: LO (brown
curve), NLO (cyan curve), N 2LO (green band), N 3LO (blue band),
and N 4LO (red band). Since 3N forces start to appear at N 2LO, at
lower orders they are not included. The bands are obtained when the
matter density at which the 3N contributions are calculated is allowed
to vary in the interval 0.08 fm−3 � ρ � 0.13 fm−3. Experimental
data from Refs. [83–87].

as also shown in our previous papers [34–36], already at order
N 3LO a good degree of convergence is achieved.

Finally, we also checked our approach for neutron elastic
scattering off 12C. In Fig. 8 we show the differential cross
sections dσ/d� as a function of the center-of-mass scattering
angle at different energies (108, 128, 155, 185, and 225 MeV)
in comparison with the experimental data [88]. The agree-
ment with the empirical data is overall good, for all the
energies considered. The inclusion of 3N forces does not
appreciably change the results obtained with only the NN
chiral potential, reinforcing our previous conclusions, drawn
from the results for elastic proton scattering, that genuine
3N forces give only a small contribution to the differential
cross section. They seem to provide sizable contributions only
for observables related to polarized particles. No empirical
polarization data are available for neutron elastic scattering
off 12C and we do not show results for polarization observ-
ables.

IV. CONCLUSIONS

In a previous paper we obtained an intermediate energy
microscopic OP for elastic nucleon-nucleus scattering from
chiral potentials. The OP was derived at the first order term
of the Watson multiple scattering theory and adopting the
impulse approximation. The final expression of the OP [23]
was a folding integral between the NN t matrix and the
one-body density of the target. We used the 3N force only
in the calculation of the target density while the t matrix, that
represents the dynamic part of the OP, was computed with

FIG. 8. Differential cross sections dσ/d� as a function of the
center-of-mass scattering angle for elastic neutron scattering off 12C
at different energies (108, 128, 155, 185, and 225 MeV). The results
were obtained using Eq. (24), where the tnN matrix is computed with
the nN chiral interaction of Ref. [54] supplemented by a density-
dependent NN interaction (with 0.08 fm−3 � ρ � 0.13 fm−3) and
the one-body nonlocal density matrices computed with the NCSM
method using NN [54] and 3N [64,79] chiral interactions. Experi-
mental data from Refs. [88].

only the NN interaction. Of course, for a more consistent
calculation, the 3N force should be included in the dynamic
part of the OP as well. Unfortunately, the exact treatment of
the 3N force involves multiple scattering terms of the projec-
tile with the target nucleons that would make the calculation
too difficult for our current capabilities and that have been
neglected.

The goal of the present work is to introduce a suitable
approximation that allows us to include the 3N interaction
also in the dynamic part of the OP already at the level of
single-scattering approximation between the projectile and
the target nucleon. Our technique is based on averaging the
3N force over the Fermi sphere and thus defining a density-
dependent NN interaction which acts as a medium correction
for the bare NN potential. This treatment naturally extends the
previous expression of the OP and allows a direct comparison
of our new and old results.

We considered 12C and 16O as case studies and we
computed the differential cross section and the polarization
observables for different energies of the incoming protons
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and neutrons. Our finding is that the contribution of the 3N
interaction in the dynamic part of the OP is very small and
almost negligible on the differential cross section, while it is
sizable on the polarization observables where it improves the
agreement with the experimental data.

Moreover, switching on and off the values of the cD and
cE constants in the 3N interaction allowed us to identify the
diagram that mostly contributes to the final 3N force, i.e., the
2π exchange term.

Finally, we checked the order by order convergence of the
chiral expansion comparing results at different orders, refit-
ting, at each order, the values of the cD and cE constants and
found that, especially at LO and NLO, the results are pretty
erratic and they start to reach convergence only at N3LO, in
agreement with our previous calculations.
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