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Probing negative-parity states of 24Mg probed with proton and α inelastic scattering
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Background: The band structure of the negative-parity states of 24Mg has not yet been clarified. The Kπ =
0−, Kπ = 1−, and Kπ = 3− bands have been suggested, but the assignments have been inconsistent between
experiments and theories.
Purpose: Negative-parity states of 24Mg are investigated by microscopic structure and reaction calculations via
proton and α inelastic scattering to clarify the band assignment for the observed negative-parity spectra.
Method: The structure of 24Mg was calculated using the antisymmetrized molecular dynamics (AMD). Proton
and α inelastic reactions were calculated using microscopic coupled-channel (MCC) calculations by folding the
Melbourne g-matrix NN interaction with the AMD densities of 24Mg.
Results: The member states of the Kπ = 0+, Kπ = 2+, Kπ = 0−, Kπ = 1−, and Kπ = 3− bands of 24Mg were
obtained through the AMD result. In the MCC+AMD results for proton and α elastic and inelastic cross sections,
reasonable agreements were obtained with existing data, except in the case of the 4+

1 state.
Conclusions: The 3− state of the Kπ = 3− band and the 1− and 3− states of the Kπ = 0− bands were assigned
to the 3−

1 (7.62 MeV), 1−
1 (7.56 MeV), and 3−

2 (8.36 MeV) states, respectively. The present AMD calculation is the
first microscopic structure calculation to reproduce the energy ordering of the Kπ = 0−, Kπ = 1−, and Kπ = 3−

bands of 24Mg.
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I. INTRODUCTION

The band structure of 24Mg has been studied via elec-
tromagnetic transitions [1–3], and intensively investigated
through inelastic scattering of various probes, including elec-
trons [4–10], pions [11], nucleons [12–23], 3He [24,25], and α

[25–29]. For inelastic hadron scattering off 24Mg, detailed re-
action analyses have been performed using the distorted-wave
Born approximation (DWBA) and coupled-channel (CC) cal-
culations. Reaction calculations using the phenomenological
potentials of collective models have succeeded in describing
the cross sections of low-lying positive-parity states in the
Kπ = 0+ ground- and Kπ = 2+ sidebands (other than the
4+

1 state), and have also suggested deformations, including
triaxial and hexadecapole shapes for 24Mg.

For low-lying negative-parity states of 24Mg, member
states in the Kπ = 3− and Kπ = 0− bands and candidates
for the Kπ = 1− band have been reported by measure-
ments of the γ decays [2], but the description of inelastic
cross sections via reaction calculations has proven un-
satisfactory, and the band assignments of negative-parity
spectra have not yet been confirmed. In experiments with
electron inelastic scattering, various behaviors of the form
factors have been observed for two 3− states: the 3−

1 (7.62

MeV) state of the Kπ = 3− band and the 3−
2 (8.36 MeV)

state of the Kπ = 0− band [10]. A structure calculation us-
ing the open-shell random-phase approximation (RPA) has
predicted two types of particle-hole excitations for the two
3− states and qualitatively described only the first peak
of the observed form factors, but not the second peak of
the 3−

2 (8.36 MeV) state. For the bandhead 1−
1 (7.56 MeV)

state of the Kπ = 0− band and the 1−
2 (8.44 MeV) state of

the Kπ = 1− bands, no calculation has yet succeeded in de-
scribing either form factors or inelastic hadron scattering.
Moreover, high-quality electron and hadron inelastic scat-
tering data for the 1− states have been limited in quantity
because it is generally difficult to resolve the 1−

1 (7.56 MeV)
and 1−

2 (8.44 MeV) states from the highly populated 3−
1 (7.62

MeV) and 3−
2 (8.36 MeV) spectra existing closely to the weak

1− spectra in inelastic scattering.
Recently, the structure of the negative-parity states of

24Mg has been investigated by microscopic calculations us-
ing quasiparticle RPA [30,31] and antisymmetrized molecular
dynamics (AMD) [32,33]. These structural studies have pre-
dicted low-lying isoscalar dipole excitations in the Kπ =
0− and Kπ = 1− bands and discussed the importance of
the triaxial deformation and cluster structures of 24Mg for
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negative-parity excitations. However, the predicted energy
spectra of the negative-parity bands have been inconsistent
with the experimental band assignment presented in Ref. [2],
and the negative-parity band structure of 24Mg remains an
open problem.

In the present paper, we aim to investigate the structure
of low-lying states of 24Mg via analyses of inelastic elec-
tron, proton, and α scattering. Our main interest is in the
low-lying 1− and 3− states of the negative-parity bands. In
general, inelastic electron and high-energy proton scattering
directly detects the transition densities of excitations from the
ground state, whereas the α scattering can sensitively probe
the transitions at the outer surface region of target nuclei
rather than the interior region, because of the strong absorb-
ing α-nucleus potentials. Moreover, low-energy proton and α

scattering may contain information about in-band transitions
via CC effects and can, in principle, be used as probes for
the band assignment. As for the structural inputs of 24Mg,
the existing (e, e′) data have shown a strong state depen-
dence of the form factors indicating that simple collective
models do not work in describing the transition densities of
inelastic transitions. Furthermore, exotic deformations beyond
axial symmetric-quadrupole deformation, cluster structures,
and configuration mixing are expected to be important in
the low-lying states, including the ground state of the 24Mg
system.

To achieve this aim, we apply the AMD method [34–37]
for the structure calculation of 24Mg and perform micro-
scopic coupled-channel (MCC) calculations of proton and
α scattering. In the MCC calculations, the diagonal and
transition densities of the target nuclei obtained with mi-
croscopic structure models are utilized as inputs of the CC
reaction calculations in microscopic folding models, wherein
the nucleon-nucleus and α-nucleus potentials are constructed
by folding the effective NN interactions. In our previous stud-
ies [38–43], we have applied the MCC calculations to proton
and α scattering off various target nuclei in the p- and sd-shell
regions using the AMD densities and the Melbourne g-matrix
NN interaction [44]. We have presented successful results of
the MCC+AMD approach for the (p, p′) and (α, α′) cross
sections of various excited states.

In this paper, we first calculate the structure of 24Mg with
variation after parity and total-angular-momentum projections
(VAP) in the AMD framework. The electromagnetic data (in-
cluding transition strengths and electron scattering) are used
to test the AMD result for the structural inputs. In particu-
lar, we compare the calculated transition strengths and form
factors with the experimental data to check the assignment
of predicted states to the experimental energy levels. To use
the reaction calculations, we renormalize the AMD transition
density to fit the electric-transition strengths, so as to reduce
the model ambiguity of the structural inputs. We then ap-
ply the MCC approach to proton and α scattering off 24Mg
with the Melbourne g-matrix NN interaction using the AMD
densities of 24Mg. By analyzing these structure and reaction
calculations, we can investigate the structure and transition
properties of the ground (Kπ = 0+), Kπ = 2+, Kπ = 3−,
Kπ = 0−, and Kπ = 1− bands.

The rest of this study is organized as follows. In Sec. II,
the frameworks for the AMD calculation for 24Mg and for
the MCC approach to proton and α scattering off 24Mg are
explained. The AMD results for the structural properties are
described in Sec. III, while Sec. IV presents the proton- and
α-scattering results. Finally, a summary is given in Sec. V.

II. METHOD

For the structure calculation of 24Mg, we apply a VAP ver-
sion of AMD, which is sometimes called AMD+VAP (though
we use the name AMD in the present paper). This method has
been applied for structural studies of various nuclei including
12C and neutron-rich Be isotopes [36,45,46], and has also been
used in the MCC+AMD calculation for reaction studies of
proton and α scattering in Refs. [38–42]. The calculational
procedures of the present structure and reaction calculations
are almost the same as the MCC+AMD calculation for 20Ne
in Ref. [42]. For details, the reader is referred to those papers
and the references contained therein.

A. AMD calculations for 24Mg

In the AMD framework, an A-nucleon wave function is ex-
pressed by the Slater determinant of single-nucleon Gaussian
wave functions as

�AMD(Z) = 1√
A!

A{ϕ1, ϕ2, ..., ϕA}, (1)

ϕi = φX iχiτi, (2)

φX i (r j ) =
(

2ν

π

)3/4

exp[−ν(r j − X i )
2], (3)

χi =
(

1

2
+ ξi

)
χ↑ +

(
1

2
− ξi

)
χ↓. (4)

Here, A is the antisymmetrizer, and ϕi is the ith single-
particle wave function, written as a product of the spatial
(φX i ), spin (χi), and isospin (τi) wave functions, where τi is
fixed to be a proton or a neutron. The ν value of the width
parameter is common for all single-nucleon Gaussians and is
chosen to be ν = 0.16 fm−2, which reproduces the root-mean-
square radius of 16O in the harmonic oscillator p-shell closed
configuration. Parameters Z ≡ {X 1, . . . , X A, ξ1, . . . , ξA} (rep-
resenting the Gaussian centroid positions and nucleon-spin
orientations of the single-particle wave functions) are treated
as variational parameters and determined by the energy op-
timization for each Jπ state of 24Mg. Energy variation is
performed after the parity and total-angular-momentum pro-
jections so as to minimize the energy expectation value E =
〈�|Ĥ |�〉/〈�|�〉 for � = PJπ

MM ′�AMD(Z) as projected from
the AMD wave function with the parity and total-angular-
momentum projection operator PJπ

MM ′ .
The VAP is performed for (Jπ , M ′) =

(0+, 0), (2+, 0), (3+, 2), and (4+, 0) to obtain the
member states of the Kπ = 0+ and Kπ = 2+ bands.
For negative-parity states, VAPs are performed using
(Jπ , M ′) = (1−, 0), (2−, 1), (3−, 0), (3−, 3), (4−, 3), and
(5−, 0), and the member states of the Kπ = 3−, Kπ = 0−,
and Kπ = 1− bands are obtained. Here M ′ is the quanta of
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the Z component JZ of the total-angular-momentum in the
body-fixed frame but does not necessarily indicate the K
quanta defined for the principal axis of the intrinsic state,
because there is no constraint upon the orientation of the
intrinsic deformation in the energy variation. This means
that the principal axis of the intrinsic deformation can, in
principle, be tilted from the Z axis. Indeed, VAP calculations
with (Jπ , M ′) = (3−, 0), (3−, 3), (4−, 3), and (5−, 0) yield
the dominant configurations for the Kπ = 3− band, whereas,
in VAP calculations with (Jπ , M ′) = (1−, 0), two kinds of
configurations corresponding to the Kπ = 0− and Kπ = 1−
bands are obtained as local minima.

After the VAP calculations, we obtain the optimized sets,
Z(m), for the intrinsic configurations �AMD(Z(m) ), which are
labeled by m for each parity as m = 1, . . . , 4 for the positive-
parity states and m = 1, . . . , 7 for the negative-parity states.
To obtain the final wave functions for the Jπ states of 24Mg,
the obtained configurations are superposed by diagonalizing
the Hamiltonian and norm matrices using the basis wave
functions PJπ

MM ′�AMD(Z(m) ), as projected from the obtained
configurations. Such diagonalization is performed for M ′ and
m, which correspond to K-mixing and configuration (m) mix-
ing, respectively.

The effective nuclear interactions used in the present AMD
calculation are the same as those in Refs. [36,38–41]; they
are the MV1 (case 1) central force [47] with the param-
eters (b, h, m) = (0, 0, 0.62) and the spin-orbit term of the
G3RS force [48,49] with strength parameters uI = −uII =
3000 MeV. The Coulomb force is also included.

B. MCC calculation of proton and α scattering off 24Mg

The elastic and inelastic cross sections of proton and α

scattering off 24Mg are calculated via MCC+AMD. The
nucleon-nucleus potentials are constructed in a microscopic
folding model, in which the diagonal and coupling potentials
are calculated by folding the Melbourne g-matrix NN interac-
tion [44] with the AMD diagonal and transition densities of
24Mg. We adopt a simplified single-folding model described
in Ref. [50]. We employ the Brieva and Rook (BR) prescrip-
tion [51–53] to localize the exchange terms. The validity of
the BR localization has been confirmed in Refs. [50,54,55],
and this simplified single-folding model has been successfully
applied to nucleon-nucleus elastic scattering for various cases
[50,56–58]. The α-nucleus potentials are obtained by folding
the calculated nucleon-nucleus potentials with an α density in
an extended nucleon-nucleus folding (NAF) model [59].

The Melbourne g matrix is an effective NN interaction
derived from a bare NN interaction of the Bonn B po-
tential [60]. It contains energy and density dependencies
with no adjustable parameter, and can be well applied to a
systematic description of elastic and inelastic proton scat-
tering off various nuclei at energies of Ep = 40–300 MeV
[40–42,44,50,56,58] and also of elastic and inelastic α scat-
tering at energies of Eα = 100–400 MeV [38,39,41,42,59,61].
In the present reaction calculation, the spin-orbit term of the
proton-nucleus potential is not account for to avoid complex-
ity, as in Refs. [40,41].

TABLE I. The calculated excitation energies (Ex) and the root-
mean-square matter radii (R) of 24Mg and the experimental energies
for the Kπ = 0+, Kπ = 2+, Kπ = 3−, Kπ = 0−, and Kπ = 1−

bands. The calculated and experimental values of the electric
quadrupole moment (Q) of the 2+

1 state are also shown. The
experimental energies are from Ref. [62]. For the experimental
negative-parity bands, the band assignment is a tentative one from
Ref. [2]. The experimental value of the point-proton rms radius for
the ground state is R = 2.941(2) fm from the charge radius data [64].

exp AMD

Jπ (band) Ex (MeV) Ex (MeV) Rm (fm)

0+
1 (Kπ = 0+) 0.00 0.0 3.02

2+
1 (Kπ = 0+) 1.37 0.9 3.02

4+
1 (Kπ = 0+) 4.12 3.3 3.01

2+
2 (Kπ = 2+) 4.24 8.1 3.06

3+
1 (Kπ = 2+) 5.24 8.8 3.06

4+
2 (Kπ = 2+) 6.01 9.6 3.05

3−
1 (Kπ = 3−) 7.62 11.7 3.02

4−(Kπ = 3−) 9.30 13.5 3.02

5−(Kπ = 3−) 11.59 15.4 3.02

1−
1 (Kπ = 0−) 7.56 13.2 3.12

3−
2 (Kπ = 0−) 8.36 14.2 3.11

5−(Kπ = 0−) 10.03 15.6 3.08

1−
2 (Kπ = 1−) 8.44 14.2 3.10

2−
1 (Kπ = 1−) 8.86 14.5 3.10

3−(Kπ = 1−) 10.33 15.2 3.10

4−(Kπ = 1−) 15.5 3.09

5−(Kπ = 1−) 13.06 17.9 3.09

Q (efm2) Q (efm2)

2+Kπ = 0+ −16.6(6) −15.1

As structure inputs for the target nucleus, the diagonal
[ρ(r)] and transition [ρ tr(r)] densities of 24Mg, as obtained
by the AMD calculation, are used. To reduce the model ambi-
guity from the structure calculation, the theoretical-transition
densities obtained by the AMD calculation are renormalized
by the factor f tr as ρ tr(r) → f trρ tr(r) to fit the electromag-
netic transition strengths or (e, e′) data. If there are no data
concerning the transition strength, the original AMD transi-
tion densities are used without renormalization.

The Jπ = 0+
1 , 1−

1,2, 2+
1,2, 3−

1,2,3, and 4+
1,2 states of 24Mg, and

all λ � 4 transitions between them are included in the CC
calculation. For the excitation energies of 24Mg, experimental
values are adopted.

III. STRUCTURE OF 24Mg

A. Band structure of 24Mg

The AMD results of excitation energies (Ex) for the Kπ =
0+, Kπ = 2+, Kπ = 3−, Kπ = 0−, and Kπ = 1− bands of
24Mg are listed in Table I, together with the experimen-
tal data. The theoretical states, {0+

1 , 2+
1 , 4+

1 }, {2+
2 , 3+

1 , 4+
2 },

{3−
1 , 4−

1 , 5−
1 }, {1−

1 , 3−
2 , 5−

2 }, and {1−
2 , 2−

1 , 3−
3 , 4−

2 , 5−
3 }, are as-

signed to the Kπ = 0+, Kπ = 2+, Kπ = 3−, Kπ = 0−, and
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FIG. 1. The energy spectra of 24Mg. (a) The calculated energy
levels. (b) The experimental levels for the Kπ = 2+ ground and the
Kπ = 2+ sidebands from Ref. [62], and those for the Kπ = 3−, Kπ =
0−, and Kπ = 1− bands assigned in Ref. [2].

Kπ = 1− bands based upon analysis of the E2-transition
strengths. However, state mixing between three negative-
parity bands is rather strong, as shown later; hence, the
negative-parity band structure cannot be strictly defined. For
the experimental states of the negative-parity bands, we adopt
the tentative band assignment used in Ref. [2].

The calculated and experimental energy spectra are plotted
in Fig. 1. It should be commented that the experimental 4−
and 5− states are uncertain except for the 4−(9.30 MeV)
and 5−(11.59 MeV) states. The present calculation well re-
produces the level spacing in each band and qualitatively
describes the energy ordering of the positive- and negative-
parity bands, but it generally overestimates the bandhead
energies of the excited bands. Higher-order effects beyond the
present structure model may be a reason for such overestima-
tion. In the next paper [63], we will present an improved result
of the AMD calculation for the Kπ = 2+ band.

The calculated root-mean-square radii (R) of the ground
and excited states and the electric-quadrupole moment (Q)
of the 2+

1 state are listed in Table I. The calculated val-
ues R = 3.02 fm (of the ground state) and Q = −15.1 efm2

(of the 2+
1 state) are consistent with the observed values of

R = 2.941(2) fm and Q = −16.6(6) efm2. The calculation
predicts slightly larger radii for the Kπ = 0− and Kπ = 1−

TABLE II. E2-transition strengths of 24Mg. The experimen-
tal values Bexp(E2) for positive- and negative-parity states are
from Refs. [3,62] and Ref. [2], respectively. The theoretical values
Bth(E2) obtained by the VAP calculation are listed together with the
renormalization factors f tr used for the reaction calculations. The
E2-transition strengths are in units of e2fm4.

exp AMD
Ji (band) Jf (band) Bexp(E2) Bth(E2) f tr

2+
1 (K = 0) 0+

1 (K = 0) 88.4(4.1) 55.4 1.26

4+
1 (K = 0) 2+

1 (K = 0) 160(16) 72.8 1.48

3+
1 (K = 2) 2+

2 (K = 2) 240(30) 103.1

4+
2 (K = 2) 2+

2 (K = 2) 77(10) 36.2 1.46

4+
2 (K = 2) 3+

1 (K = 2) 73.3

2+
2 (K = 2) 0+

1 (K = 0) 8.0(0.8) 2.1 1.95

2+
2 (K = 2) 2+

1 (K = 0) 12.2(0.9) 0.6 1a

3+
1 (K = 2) 2+

1 (K = 0) 10.3(1.2) 3.1

4+
2 (K = 2) 2+

1 (K = 0) 4.1(0.4) 2.9 1.19

4− (K = 3) 3−
1 (K = 3) 119(25) 76.9

5− (K = 3) 3−
1 (K = 3) 19(6) 14.9

5− (K = 3) 4− (K = 3) 152(45) 48.7

3−
2 (K = 0) 1−

1 (K = 0) 67.9

5− (K = 0) 3−
2 (K = 0) 82(27) 81.4

2−
1 (K = 1) 1−

2 (K = 1) 132

3− (K = 1) 1−
2 (K = 1) 45.8

3− (K = 1) 2−
1 (K = 1) 32.9

4− (K = 1) 2−
1 (K = 1) 101.5

4− (K = 1) 3− (K = 1) 27.6

5− (K = 1) 4− (K = 1) 5.6

5− (K = 1) 3− (K = 1) 90(16) 91.5

3−
2 (K = 0) 1−

2 (K = 1) 17.7

3−
2 (K = 0) 2−

1 (K = 1) 34.1

5− (K = 0) 4− (K = 1) 19.9

3− (K = 1) 1−
1 (K = 0) 36.4

4− (K = 1) 3−
2 (K = 0) 30.3

5− (K = 1) 3−
2 (K = 0) 2.7(0.7) 20.1

5− (K = 0) 4− (K = 3) 10.3

5− (K = 3) 3−
2 (K = 0) 14.4

ano renormalization.

bands, because they have deformations, than those of the
Kπ = 0+ and Kπ = 3− bands, but the difference is small.

In Table II, the calculated E2-transition strengths are com-
pared with the experimental data. For the negative-parity
states, the assignment of the Kπ = 3−, Kπ = 0−, and Kπ =
1− bands is done tentatively for calculated states having
remarkably strong E2 transitions. However, strong E2 transi-
tions are also obtained for interband transitions, in particular,
between the Kπ = 0− and Kπ = 1− bands, and indicate
strong band mixing, The present AMD calculation qualita-
tively describes the experimental E2-transition strengths, but
the quantitative agreement with the data is unsatisfactory. The
theoretical strengths Bth(E2) tend to underestimate the ex-
perimental data Bexp(E2), possibly because the present AMD
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TABLE III. Eλ(Cλ) and isoscalar ISλ transition strengths to the 0+
1 state for the Jπ (J = λ) states of 24Mg. For the experimental values,

B(Eλ; λπ → 0+
1 ) from the γ -decay data [62,65], B(Cλ; λπ → 0+

1 ) from the (e, e′) data [7,9,10], B(ISλ; λπ → 0+
1 )/4 from the (α, α′) data

[28], and B(Cλ; λπ → 0+
1 ) from the (π, π ′) data [11] are listed. For theoretical values, the original values Bth(ISλ)/4 before renormalization

and the renormalized values ( f tr )2Bth(ISλ)/4 used for the reaction calculations are shown together with the adopted renormalization factors
f tr. Transition strengths are in units of e2fm2λ for the λ = 2, λ = 3, and λ = 4 transitions, and e2fm6 for the isoscalar dipole (IS1) transitions.

γ decays (e, e′) (e, e′) (α, α′) (π, π ′) AMD

B(Eλ) B(Cλ) B(Cλ) B(ISλ)/4 B(Cλ) B(ISλ)/4

Jπ (band) [62,65] [9,10] [7] [28] [11] original normalized f tr

2+
1 (K = 0) 88.4(4.1) 90.6(7.0) 105(5) 84 108 54 86 1.26a

2+
2 (K = 0) 8.0(0.8) 5.48(0.60) 5.26(1.2) 14 6.7 2.0 7.7 1.95a

4+
1 (K = 0) 200(30) 1200 1.1 1.1 1.0b

4+
2 (K = 0) 4800(600) 4700(1100) 4700 2900 1740 4800 1.66c

3−
1 (K = 3) 221(44) 80 190(30) 190 136 28 80 1.68c

3−
2 (K = 0) 226 290(30) 280 226 89 226 1.59c

3− (K = 1) 0.1 0.1 1.0b

1−
1 (K = 0) 3.1 19.3 2.5d

1−
2 (K = 1) 4.3 17.2 2.0d

a f tr determined to fit B(Eλ) from γ decays.
bNo renormalization.
c f tr determined to fit B(Cλ) from (e, e′) data [9,10].
d f tr determined to fit the charge-form factors from (e, e′) data [9,10].

calculation is a simple version based on the single-Slater
description of spherical Gaussians and may be insufficient
to describe the large collectivity of deformations in 24Mg.
To use the transition densities in the MCC calculations, we
introduce the renormalization factors f tr = (Bexp/Bth)1/2 to
fit the observed values Bexp(E2), as mentioned previously.
The f tr values adopted in the present MCC calculation are
given in Table II. The factors f tr = 1.19–1.95 are needed to
fit the Bexp(E2) values. It should be noted that bare charges
of nucleons are adopted in the AMD framework, unlike the
shell models in which the effective charges of protons and
neutrons are usually required. If we introduce the effective
charges, the values of f tr = 1.19–1.95 obtained in the present
AMD result correspond to the enhancement δ = 0.1–0.5 for
the effective charges eeff

p = 1 + δ and eeff
n = δ of the protons

and neutrons, which are comparable to or even smaller than
standard shell-model values δ = 0.3–0.5 for sd-shell nuclei
[66–69].

In Table III, the results for the inelastic transition strengths
from the ground state are listed in comparison with the ex-
perimental values measured by γ decays and evaluated by
electron, α, and pion scattering. For the E2, E3, and E4
transitions, the calculated values B(ISλ)/4 of the isoscalar
component are compared with the experimental data for
B(Eλ), B(Cλ), and B(ISλ)/4. For the dipole transitions,
the calculated values of the isoscalar dipole (IS1) transition
strengths are shown in the table. For use in the MCC cal-
culations, the renormalization factors f tr for the 0+

1 → 3−
1 ,

0+
1 → 3−

2 , and 0+
1 → 4−

2 transitions are determined to fit the
B(Cλ) values that were evaluated from the (e, e′) data. For
the IS1 transitions, f tr are determined to fit the charge-form
factors measured by the (e, e′) experiments. As a result of
this fitting, the renormalization factors for the 4+

2 (Kπ = 2+),

3−
1 (Kπ = 3−), 3−

2 (Kπ = 0−), 1−
1 (Kπ = 0−), and 1−

2 (Kπ =
1−) states are obtained in the range of f tr = 1.59–2.5, which
again means that the collectivity of these excited states is
somewhat underestimated by the present AMD calculation.

For the 4+
1 (Kπ = 0+) state, a remarkably weak λ = 4

transition was observed in the (e, e′) experiment [9]. The
0+

1 → 4+
1 transition strength is more than one order smaller

than that for the 0+
1 → 4+

2 transition meaning that the λ = 4
strength from the ground state is dominantly concentrated
not in the 4+

1 (Kπ = 0+) state but rather in the 4+
2 (Kπ = 2+)

state. The calculation describes this trend of weak λ = 4
transition in the Kπ = 0+ ground band, but quantitatively
it is too weak compared with the observed data and hence
f tr = 1 (no renormalization) is adopted for this transition in
the MCC calculation. The leading feature of the 4+

1 (Kπ = 0+)
state is the strong in-band E2 transition to the 2+

1 (Kπ = 0+)
state, whereas the E4 transition is a higher-order effect. We
can say that the present calculation qualitatively reproduces
the leading feature of the 4+

1 state but fails to describe the
higher-order effect.

B. Intrinsic structure of 24Mg: AMD results

To discuss the intrinsic structure of the ground and excited
bands, we analyze the single-Slater AMD wave functions for
the dominant configurations of the bandhead states, which
are obtained by VAP. Such a simple analysis is useful for
obtaining an intuitive understanding of the leading features
though the final wave functions are affected by state mixing
and in-band structure change.

Figure 2 shows the density distribution of the intrinsic
wave functions before the parity and total-angular-momentum
projections for the 0+

1 (Kπ = 0+), 3+
1 (Kπ = 2+), 3−

1 (Kπ =
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FIG. 2. Density distribution of intrinsic wave functions prior to
the parity and total-angular-momentum projections for the 0+

1 (Kπ =
0+), 3+

1 (Kπ = 2+), 3−
1 (Kπ = 3−), 1−

1 (Kπ = 0−), and 1−
1 (Kπ = 1−)

states, as obtained by AMD. The integrated density projected onto
the X -Z , Y -Z , and Y -X planes is plotted in the left, middle, and
right panels, respectively, by contours with the interval of 0.1 fm−2

interval. For each state, the axes are chosen to be the principal axes of
intrinsic deformation as 〈ZZ〉 � 〈YY 〉 � 〈XX 〉 and 〈XY 〉 = 〈Y Z〉 =
〈ZX 〉 = 0. The deformation parameters (β, γ ) calculated from the
expectation values, 〈ZZ〉, 〈YY 〉, and 〈XX 〉, are shown in the left
panels.

3−), 1−
1 (Kπ = 0−), and 1−

1 (Kπ = 1−) states. The quadrupole-
deformation parameters β, γ , which are calculated from the
expectation values of 〈ZZ〉, 〈YY 〉, and 〈XX 〉 for the intrinsic
wave functions, are also shown. The Kπ = 0+ band has an
approximately prolate deformation with a 12C + 12C cluster-
ing feature. The deformation is β = 0.35 in the 0+

1 state, and
gradually decreases to β = 0.33 and 0.29 in the 2+

1 (Kπ = 0+)
and 4+

1 (Kπ = 0+) states, respectively.
The excited bands have triaxial deformations with

12C +3α-like cluster structures. In particular, the Kπ = 2+

band has the largest triaxiality as γ = 12◦, because of the 2α

clustering around the 12C +α core part as shown in Fig. 2(b).
The β deformation of the Kπ = 2+ band is approximately the
same as that of the ground state, meaning that this band can be
understood as the Kπ = 2+ sideband of the Kπ = 0+ ground
band. For the negative-parity bands, the Kπ = 3− band has
almost the same β deformation as the ground state, whereas
the Kπ = 0− and Kπ = 1− bands have larger deformations
as β = 0.40. In the intrinsic densities for the Kπ = 0− and
Kπ = 1− bands shown in Figs. 2(d) and 2(e), one can see
that the reflection symmetry for Z ↔ −Z in the Z direction is
broken in the Kπ = 0− band owing to the asymmetric struc-
ture of 12C + 12C clustering, whereas the reflection symmetry
for Y ↔ −Y in the Y direction is broken in the Kπ = 1−
band. These symmetry-broken shapes produce two types of
negative-parity excitations with quanta of K = 0 and K = 1.
This result for the Kπ = 0− and Kπ = 1− bands is similar
to that for the deformed AMD result for low-lying 1− states,
as found in Ref. [33], although that calculation yielded the
reverse ordering of the Kπ = 0− and Kπ = 1− energies.

The negative-parity bands are built on different kinds of
excitation modes; these excitations contain large-amplitude
dynamics and cluster correlations beyond the single-particle
excitations on the ground state in the mean-field picture. How-
ever, with the help of single-particle analyses of the present
AMD configurations, we can associate the leading aspects
of the Kπ = 3− and Kπ = 1− bands of 24Mg with 1p-1h
excitations in the deformed state. In Fig. 3, we show the
density difference between the positive- and negative-parity
components in each bandhead state of the 3−

1 (Kπ = 3−),
1−

1 (Kπ = 0−), and 1−
1 (Kπ = 1−) states. For each intrinsic

wave function, the positive- and negative-parity components
are normalized as |Pπ�AMD〉/√〈Pπ�AMD|Pπ�AMD〉, and the
positive-parity density is subtracted from the negative-parity
density. This density difference may reflect the 1p-1h feature,
by which positive- and negative-sign contributions correspond
to particle and hole densities, respectively. In the density
difference for the Kπ = 3− band [Fig. 3(a)], the hole contribu-
tion is remarkable in the inner region and indicates significant
contributions by single-particle excitations from the p shell to
the sd shell; this is associated with the Kπ = 3− excitation
of the 16O core due to 12C +α clustering. The 1−

2 (Kπ = 1−)
state clearly shows the (sd )−1( f p) feature shown in Fig. 3(c),
which is predominantly interpreted as the (0, 1, 1)−1(0, 0, 3)
configuration in terms of the single-particle description
(nx, ny, nz ) of the three-dimensional oscillator quanta. This
configuration of the Kπ = 1− band corresponds to the toroidal
dipole excitation of the deformed state, which was obtained in
Refs. [30,31,33] not as the second 1− state but as the lowest 1−
state. For the 1−

1 (Kπ = 0−) state, the single-particle aspects
are unclear, but one can see a signal from the mixture of the
(0, 1, 1)−1(0, 1, 2) and (0, 0, 2)−1(0, 0, 3) configurations, as
caused by the Kπ = 0− excitation of the cluster mode [see the
left panel of Fig. 3(b)].

C. Diagonal and transition densities and charge-form factors

In Fig. 4, we show the matter densities of the ground and
excited states. The Kπ = 0− and Kπ = 1− bands have slightly
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FIG. 3. Density difference between the positive-parity and
negative-parity components in the intrinsic states of the bandhead
states; (a) 3−

1 (Kπ = 3−), (b) 1−
1 (Kπ = 0−), and (c) 1−

2 (Kπ = 1−).
For each state, The intrinsic density of the positive-parity component
is subtracted from that of the negative-parity component, and the
difference of the integrated densities is projected onto the Z-X , Y -Z ,
and Y -X planes, as shown in the left, middle, and right of the figure,
respectively. The intrinsic axes are chosen to for consistency with
Fig. 2. The contour interval is 0.003 fm−2, and the red (blue) color
map indicate positive (negative) values.

broader density tails than do the Kπ = 0+ and Kπ = 3− bands
due to larger deformations; however, the difference in the
diagonal density is small.

Let us discuss the properties of the form factors and
transition densities. For the calculated results, we show the
renormalized form factors and transition densities, which are
multiplied by the factors f tr given in Table III. The renor-
malized inelastic charge-form factors for the positive- and
negative-parity states are compared with the experimental data
measured by (e, e′) in Figs. 5 and 6, respectively. The cal-
culated and experimental elastic charge-form factors are also
shown in Fig. 5.

The calculated form factors reproduce the state-dependent
shapes of the observed form factors (except for the 4+

1 state)
and after the renormalization, they agree well with the ex-
perimental data. In particular, the calculation successfully
reproduces the two-peak structure of the 1−

1 and 3−
2 form

factors for transitions to the Kπ = 0− band. Hence, the strong-
state dependence of the charge-form factors observed in the
1−

1 , 1−
2 , 3−

1 , and 3−
2 states is well described. From these

good agreements with the data, the present assignment for
the calculated states to the observed states can be said to be
reasonable. The form factors predicted for the 3−

3 state are
remarkably small and their shape is inconsistent with neither
the 3−

1 nor 3−
2 states meaning that this state has a quite differ-
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FIG. 4. The matter densities of 24Mg. The Fermi density
ρFermi(r) = ρ0[1 + exp( r−c

t/4.4 )]−1 with c = 2.876 fm and
t = 2.333 fm is also shown in (a).

ent character from the lowest two 3− states. The form factors
observed for the 4+

1 state are much smaller than those for
the 4+

2 state [9]. The present AMD calculation yields small
form factors for the 4+

1 state, which are comparable to the
experimental data; however, the shape of the form factors is
inconsistent with that is observed.

The renormalized transition densities are shown in Fig. 7.
The 1−

1 and 3−
2 states in the Kπ = 0− band show charac-

teristics quite different from those of normal IS1 and E3
transitions. As discussed previously, the calculated form fac-
tors for these states have narrow two-peak structures, which
correspond to the transition density broadly distributed in
the outer region with an extra node in the inner region [see
Figs. 7(c) and 7(d)]. This unusual behavior is caused by the
Kπ = 0− excitation of the asymmetric cluster structure, which
involves radial excitations of higher-nodal orbits, including
the (1s)−1(1p) configuration in the higher shells. Such nodal
behavior cannot be described by collective models and in-
dicates the importance of a microscopic description of the
inelastic transitions in the Kπ = 0− band. To clarify this,
we also show the collective-model-transition density with
the Fermi-type Tassie form given by the derivative form
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FIG. 5. Square of the charge-form factors of the elastic and
inelastic processes for the positive-parity states of 24Mg. For the
calculated result, the square of the renormalized form factors F (q)
multiplied by the f tr values in Table III are plotted. The experimental
data were measured by electron scattering [4,6–9]. In Refs. [4,6,8]
for the 2+

2 (4.24 MeV) state, the 4−
1 (4.12 MeV) contributions were

not separated.

ρ tr
Tassie(r) ∝ rλ−1∂ρFermi(r)/∂r of the Fermi density

ρFermi(r) = ρ0

1 + exp
(

r−c
t/4.4

) , (5)

where the parameters c and t are set to be c = 2.876 fm
and t = 2.333 fm, respectively, which have been adjusted in
Ref. [7] to fit the elastic form factors measured by electron
scattering. Note that the value of 2.876 = √

2.9852 − 0.82

fm for the point-nucleon transition density is derived from
the original value of c = 2.985 fm from Ref. [7] for the
charge-form factor considering the proton charge-form factor.
In Fig. 7, we compare the collective-model-transition density
for the 2+, 4+, and 3− states, which is normalized to fit the
Eλ-transition strengths from the 0+

1 state to the 2+
1 , 4+

2 , and 3−
1

states so that B(Eλ) = | ∫ rl+2ρ tr
Tassie(r)dr|2/(2Ji + 1) (Ji = 0

is the total angular momentum of the initial state.)
This collective-model-transition density yields a single-

peak structure at the nuclear surface, which seems reasonable
for the 0+ → 2+

1 , 0+ → 4+
2 , and 0+ → 3−

1 transitions but fails
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FIG. 6. Same as Fig. 5 but for the negative-parity states. The ex-
perimental data are taken from Refs. [7,10]. In the data from Ref. [7]
for the 3−

1 (7.62 MeV) and 3−
2 (8.36 MeV) states, the 1−

1 (7.56 MeV)
and 1−

2 (8.44 MeV) contributions were not separated.

to describe the peak position of the 0+ → 3−
2 transition in the

outer region.

IV. PROTON AND α SCATTERING: MCC+AMD RESULTS

The MCC+AMD calculations are performed for proton
and α scattering using the calculated diagonal and renormal-
ized transition densities. Our major interest is in extracting
structural information, particularly to confirm the band as-
signment of the negative-parity states via reaction analysis
of the inelastic cross sections. We intend to determine how
the state dependence of the transition densities affects the
cross sections, and whether inelastic scattering can probe the
properties of three kinds of negative-parity excitations.

We calculate the elastic and inelastic cross sections of
proton scattering at incident energies of Ep = 40 MeV, 49
MeV, 65 MeV, and 100 MeV, as well as α scattering at
Eα = 104 MeV, 120 MeV, 130 MeV, and 386 MeV, and
compare the results with the existing data. To see the CC
effects, the one-step calculation of the distorted wave Born
approximation (DWBA) is also performed using the same
inputs.

A. Proton scattering off 24Mg

The calculated cross sections of proton scattering are
shown in Fig. 8 and compared with the experimental data. The
MCC+AMD calculation reasonably reproduces amplitudes
of the proton elastic and inelastic cross sections in this energy
region except for the 4+

1 cross sections. It also qualitatively
describes the diffraction patterns of the cross sections, though
it is not precise enough to reproduce the dip structures of low-
energy-backward and high-energy scattering, mainly because
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FIG. 7. The isoscalar components (average of the proton and
neutron components) of the transition densities of 24Mg. The renor-
malized transition densities multiplied by the f tr values in Table III
are plotted. For transitions to the 2+, 4+, and 3− states, the collective-
model-transition density of the Fermi-type Tassie form ρ tr

Tassie(r) ∝
rλ−1∂ρFermi(r)/∂r is also shown for comparison. ρ tr

Tassie(r) is normal-
ized to fit the Eλ-transition strengths from the 0+

1 state to the 2+
1 , 4+

2 ,
and 3−

1 states.

the spin-orbit potentials are ignored in the reaction calcula-
tion. Quantitatively, the calculation somewhat underestimates
the amplitudes of the 3−

1 and 4+
2 cross sections.

Let us discuss the state dependence of the proton-scattering
cross sections for the 3−

1 (Kπ = 3−) and 3−
2 (Kπ = 0−) states.

Both 3− states have strong λ = 3 transitions from the ground
state, and are therefore strongly populated through inelastic
scattering. However, as observed in the (e, e′) experiment,
the two 3− states represent the shape difference of the form
factors because they have different origins of the excitation
modes. Comparing the calculated cross sections of the 3−

1 and
3−

2 states, one can see a difference in the ratio of the first-
and second-peak amplitudes; the second peak of the 3−

2 cross
sections is suppressed at Ep = 100 MeV. This suppression at
the second peak for the 3−

2 state can be understood by the
exotic character of the 0+

1 → 3−
2 transition density having a

nodal structure with the enhanced outer amplitudes shown in
Fig. 7(d). In the (p, p′) data at Ep = 100 MeV, the 3−

2 cross
sections fall rapidly compared with the 3−

1 state and support
the second-peak suppression of the calculated cross sections
for the 3−

2 (Kπ = 0−) state. A similar trend is also seen in the
(p, p′) data at Ep = 65 MeV, but the difference between the
3−

1 and 3−
2 cross sections is not clearly seen at Ep = 40 MeV,

for which the correspondence between transition densities and
cross sections is not as direct as high energies because of
distortion effects.

In the comparison of the CC results with the one-step
(DWBA) cross sections of proton scattering, the CC effects
for the first and second peaks are found to be minor, except at
the 1−

1 and 4+
1 cross sections. The 1−

1 (Kπ = 0−) cross sections
are strongly affected by the CC effect mainly because of the
strong in-band λ = 2 transition of the 1−

1 -3−
2 coupling in the

Kπ = 0− band. This CC effect suppresses the forward cross
sections in the θ � 20◦ region. Hence, the calculation de-
scribes the enhanced cross sections in the θ = 20–40◦ region
observed in Ep = 40 MeV and 65 MeV proton scattering. On
the other hand, for the 1−

2 (Kπ = 1−) cross sections, such CC
effects are not significant, even though the in-band λ = 2 tran-
sition in the Kπ = 1− band is as large as that in the Kπ = 0−
band. The weak CC effect for the 1−

2 (Kπ = 1−) state results
from the fact that the inelastic transition 0+

1 → 3−
3 (Kπ = 1−)

is weak compared with the 0+
1 → 3−

2 (Kπ = 0−) transition.
It should be noted that the CC effect changes the angular
distribution of the 1−

1 and 4+
1 cross sections, which indicates

that this CC effect is not just a matter of a constraint on the
unitarity.

Thus, we can argue that the present assignments of the
3−

1 (7.62 MeV) to the Kπ = 3− band and the 1−
1 (7.56 MeV)

and 3−
2 (8.36 MeV) states to the Kπ = 0− band are supported

by the observed proton-scattering cross sections.

B. α scattering off 24Mg

The results for α scattering are shown in Fig. 9. The
MCC+AMD calculation successfully reproduces the ob-
served elastic and inelastic cross sections of α scattering in
the energy range of Eα = 100–400 MeV except in the 4+

1
state. In the comparison with the one-step cross sections, the
CC effects in the α-scattering cross sections are generally
significant, except for the forward cross sections of the 0+

1 ,
2+

1 , 2+
2 , and 1−

2 states. The 4+
2 cross sections are hindered

by the CC effect of the λ = 2 coupling with the 2+
1 and 2+

2
states. Moreover, the 1−

1 cross sections are mainly suppressed
because of the λ = 2 coupling with the 3−

2 state. For the 3−
2
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FIG. 8. Cross sections of proton scattering off 24Mg at incident energies of Ep = 40, 49, 65, and 100 MeV, as calculated with MCC+AMD
(solid lines with label “CC”) and DWBA (dotted lines with label “DWBA”). For the 4+

1 state, the DWBA cross sections are two orders smaller
than the CC cross sections. Experimental data are cross sections at Ep = 40 MeV [15,16], 49 MeV [13], 65 MeV [17,70], and 100 MeV
[18,70].

state, the CC effect somewhat suppresses the cross sections
but the effect is not as large as in the 1−

1 and 4+
2 cases.

When the CC effect does not change the angular distribution
of the cross section and decreases its magnitude, it can be
understood as a result of the constraint on the unitarity. As
is well known, in the one-step calculation, the unitarity of the
S matrix is not respected at all and, in general, the total flux
of the outgoing waves exceeds the physical result. This issue

can be resolved by including the higher-order transitions. One
can interpret the CC effect on the cross sections to the 4+

2 , 1−
1 ,

and 3−
2 states in this way. A striking finding is the CC effect

on the 3−
1 cross section; it enhances the 3−

1 cross sections
mainly due to the λ = 3 coupling with the 2+

1 state and the
λ = 2 self-coupling. As the incident energy increases, the
CC effects become small but are still non-negligible, even at
Eα = 386 MeV. The state and energy dependencies of the CC

024603-10



PROBING NEGATIVE-PARITY STATES OF 24Mg … PHYSICAL REVIEW C 103, 024603 (2021)

10-6

10-4

10-2

100

102

 0  5  10  15  20  25  30  35

α+24Mg: 1−2

104 MeV

120 MeV(×10-2)

130 MeV(×10-4)

386 MeV(×10-6)

cr
os

s s
ec

tio
n 

(m
b/

sr
)

θc.m. (degree)

CC
DWBA

10-6

10-4

10-2

100

102

 0  5  10  15  20  25  30  35

α+24Mg: 3−2

104 MeV

120 MeV(×10-2)

130 MeV(×10-4)

386 MeV(×10-6)

cr
os

s s
ec

tio
n 

(m
b/

sr
)

θc.m. (degree)

CC
DWBA

exp

10-4

10-2

100

102

104

 0  5  10  15  20  25  30  35

α+24Mg: 2+
1

104 MeV

120 MeV(×10-2)

130 MeV(×10-4)

386 MeV(×10-6)

cr
os

s s
ec

tio
n 

(m
b/

sr
)

θc.m. (degree)

CC
DWBA

exp

10-6

10-4

10-2

100

102

104

 0  5  10  15  20  25  30  35

α+24Mg: 2+
2

104 MeV

120 MeV(×10-2)

130 MeV(×10-4)

386 MeV(×10-6)

cr
os

s s
ec

tio
n 

(m
b/

sr
)

θc.m. (degree)

CC
DWBA

exp

10-6

10-4

10-2

100

102

 0  5  10  15  20  25  30  35

α+24Mg: 3−1

104 MeV

120 MeV(×10-2)

130 MeV(×10-4)

386 MeV(×10-6)

cr
os

s s
ec

tio
n 

(m
b/

sr
)

θc.m. (degree)

CC
DWBA

exp

10-6

10-4

10-2

100

102

 0  5  10  15  20  25  30  35

α+24Mg: 4+
2

104 MeV

120 MeV(×10-2)

130 MeV(×10-4)

386 MeV(×10-6)

cr
os

s s
ec

tio
n 

(m
b/

sr
)

θc.m. (degree)

CC
DWBA

exp

10-6

10-4

10-2

100

102

 0  5  10  15  20  25  30  35

α+24Mg: 1−1

104 MeV

120 MeV(×10-2)

130 MeV(×10-4)

386 MeV(×10-6)

cr
os

s s
ec

tio
n 

(m
b/

sr
)

θc.m. (degree)

CC
DWBA

10-8

10-6

10-4

10-2

100

102

 0  5  10  15  20  25  30  35

α+24Mg: 3−3

104 MeV

120 MeV(×10-2)

130 MeV(×10-4)

386 MeV(×10-6)

cr
os

s s
ec

tio
n 

(m
b/

sr
)

θc.m. (degree)

CC
DWBA

10-8

10-6

10-4

10-2

100

102

 0  5  10  15  20  25  30  35

α+24Mg: 4+
1

104 MeV

120 MeV(×10-2)

130 MeV(×10-4)

386 MeV(×10-6)

cr
os

s s
ec

tio
n 

(m
b/

sr
)

θc.m. (degree)

CC
DWBA

exp

10-8

10-6

10-4

10-2

100

102

 0  5  10  15  20  25  30  35

α+24Mg: 0+
1

104 MeV

120 MeV(×10-2)

130 MeV(×10-4)

386 MeV(×10-6)

R
ut

he
rf

or
d 

ra
tio

θc.m. (degree)

CC
DWBA

exp

FIG. 9. Cross sections of α scattering off 24Mg at incident energies of Eα = 104, 120 MeV, 130 MeV, and 386 MeV, as calculated with
MCC+AMD (solid lines labeled “CC”) and DWBA (dotted lines labeled “DWBA”). For the 4+

1 state, the DWBA cross sections are two-order
smaller than the CC cross sections. The experimental data are cross sections at Eα = 104 MeV [27,70], 120 MeV[28], 130 MeV [29], and
386 MeV [29].

effects found in the calculation are essential for reproducing
the amplitude of the observed α-scattering cross sections of
the 4+

2 , 3−
1 , and 3−

2 states.
Let us discuss the state dependence of the cross sec-

tions of the two 3− states. In the calculated cross sections
for these states, a difference is observed in the first-
peak shape. The 3−

1 cross sections show a broad peak,
whereas the 3−

2 cross sections present a narrow peak slightly
shifted to backward angles. This difference is observed

in the experimental data over a wide energy range from
Eα = 120–386 MeV. This result for the α scattering supports
again the assignment of the bandhead states of the Kπ = 3−
and Kπ = 0− bands to the 3−

1 (7.62 MeV) and 3−
2 (8.36 MeV)

states.
For Eα = 120 and 130 MeV α scattering, the reproduction

of the 3−
1 cross sections around the second dip (θ ≈ 15◦) is

not satisfactory. This may be explained by higher-order effects
that are not considered in the present structure and reaction
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calculations; these should be investigated going forward. For
example, the in-band λ = 2 transition of the 3−-5− coupling
is omitted in the present calculation. Possible mixing between
the Kπ = 3−

1 and Kπ = 0− bands is also expected from the
small energy difference in the observed spectra.

For the 1−
1 (Kπ = 0−) and 1−

2 (Kπ = 1−) states, no experi-
mental data are available concerning the angular distributions
of α-scattering cross sections in this energy range. In the
calculated cross sections, a significant state dependence in
the CC effects is found between the 1−

1 (Kπ = 0−) and
1−

2 (Kπ = 1−) states. The strong CC effects are obtained for
the 1−

1 (Kπ = 0−) cross sections, but not for the 1−
2 (Kπ =

1−) cross sections; this trend for α scattering is similar to
that for p scattering. For the former state 1−

1 (Kπ = 0−), the
strong CC effect arises from the two-step processes via the
3−

2 state, which include the strong 0+
1 → 3−

2 (λ = 3) transi-
tion and 3−

2 → 1−
1 (λ = 2) transitions. On the other hand, for

the latter state 1−
2 (Kπ = 1−), even though the in-band λ = 2

transition between the 1−
2 and 3−

3 states is rather strong, the
0+

1 → 3−
3 (λ = 3) transition is weak. This difference between

the 0+
1 → 3−

2 and 0+
1 → 3−

3 transitions results in different CC
effects in the 1−

1 and 1−
2 cross sections, which can be used as

an experimental probe for identifying the two dipole modes,
provided that the 1− cross sections are measured. In particular,
possible evidence for the 1−

1 state of the Kπ = 0− band is
the hindered peak amplitude and the dip positions at forward
angles of the cross sections, as compared with the 1−

2 cross
sections.

V. SUMMARY

The structure and transition properties of the low-lying
negative-parity bands of 24Mg were investigated through mi-
croscopic structure and reaction calculations via proton and
α scattering off 24Mg. In the structure calculation for 24Mg
with AMD, the Kπ = 0+ ground and Kπ = 2+ sidebands
were obtained by triaxial deformation with 12C +3α-like
(or 12C + 12C-like) structures. The calculated negative-parity,
states were classified into the Kπ = 3−, Kπ = 0−, and Kπ =
1− bands, which are understood as negative-parity excita-
tions in the deformed system generated by three types of
cluster modes. The AMD calculation qualitatively reproduced
the observed Eλ-transition strengths and elastic and inelastic
charge-form factors.

In the MCC+AMD calculation, the AMD transition den-
sities of 24Mg were renormalized to fit the experimental
transition strengths and charge-form factors. Using the renor-
malized AMD densities, the MCC calculations with the
Melbourne g matrix NN interaction were performed for pro-
ton and α elastic and inelastic scattering of energies of Ep =
40–100 MeV and Eα = 104–386 MeV. The MCC+AMD
calculations reasonably reproduced the experimental data
for proton and α elastic and inelastic cross sections in
these energy ranges, except in the case of the 4+

1 cross
sections.

In the reaction analysis of the proton and α inelastic
scattering processes using the MCC+AMD calculation, the
transition properties of the negative-parity bands were dis-

cussed. Comparison of the calculated (p, p′) and (α, α′) cross
sections as well as the charge form factors with the experi-
mental data showed that the bandhead states of the Kπ = 3−,
Kπ = 0−, and Kπ = 1− bands were assigned to the exper-
imental 3−

1 (7.62 MeV), 1−
1 (7.56 MeV), and 1−

2 (8.44 MeV)
states, respectively. Moreover, the 3− member of the Kπ = 0−
band was assigned to the 3−

2 (8.36 MeV) state.
The 3−

1 and 3−
2 states were strongly excited by p and α

scattering, and one-step processes dominantly contribute to
the angular distributions of these cross sections; however, CC
effects remain essential for reproducing the absolute ampli-
tudes of the (α, α′) cross sections. The shape difference in the
0−

1 → 3− transition densities between the 3−
1 and 3−

2 states
can be observed in the first-peak shape of the (p, p′) and
(α, α′) cross sections. For 1− states, the present calculation
predicted strong CC effects on the 1−

1 cross sections and weak
CC effects on the 1−

2 cross sections. For the 1−
1 cross sections,

the strong in-band λ = 2 transition of the 1−
1 -3−

2 coupling
significantly changes the first-peak shape of the (p, p′) cross
sections via the two-step process 0+

1 → 3−
2 → 1−

1 , which is
supported by proton scattering data. It also strongly affects
the 1−

1 cross sections of α scattering.
The present results prove that proton and α inelastic scat-

tering are good probes for investigating the properties of
transitions and the band structure of excited states. The MCC
approach combining the microscopic structure and reaction
calculations was found to be a powerful tool for reaction
analysis.

The present AMD calculation is the first microscopic struc-
ture calculation to reproduce the energy ordering of the Kπ =
0−, Kπ = 1−, and Kπ = 3− bands of 24Mg. However, it has
problems in precisely reproducing the structural properties.
For example, the calculations generally underestimated their
transition strengths and overestimated their excitation ener-
gies, although it reproduced the energy ordering of the excited
bands. These issues remain to be solved by improvement of
the structure calculation. The present calculation also failed
to reproduce the shape of the 0+

1 → 4+
1 form factors, which

was a crucial problem for describing the observed (p, p′)
and (α, α′) cross sections for the 4+

1 state. We can solve
this problem with another version of the AMD calculation
that yields superior results for the excitation energies and
transition properties of the Kπ = 0+ and Kπ = 2+ bands. In
the next paper [63], we will present a detailed investigation
of proton and α inelastic scattering to the 4+

1 state using
the MCC+AMD approach with improved AMD densities for
24Mg.
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