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We link complex many-body correlations, which play a decisive role in the structural properties of atomic
nuclei, to the electron capture occurring during star evolution. The recently developed finite-temperature
response theory, taking into account the coupling between single-nucleon and collective degrees of freedom,
is applied to spin-isospin transitions, which dominate the electron capture rates. Calculations are performed for
78Ni and for the surrounding even-even nuclei associated with a high-sensitivity region of the nuclear chart in
the context of core-collapse supernova simulations. The obtained electron capture rates are compared to those
of a simpler thermal quasiparticle random phase approximation (TQRPA), which is standardly used in such
computations. The comparison indicates that correlations beyond TQRPA lead to significantly higher electron
capture rates under the typical thermodynamical conditions.
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I. INTRODUCTION

The core collapse of massive stars with the subsequent
supernova explosion are among the most spectacular cata-
clysmic events in nature. It was established that the core
evolution is governed essentially by weak interaction pro-
cesses in nuclei, such as electron capture and beta decay [1],
and their accurate knowledge is needed for reliable astro-
physical modeling. The rates of the corresponding nuclear
reactions can be extracted from the nuclear transitions with
spin and isospin transfer, among which the transitions of the
Gamow-Teller (GT) type are known to play the dominant role.
The spin-isospin excitations with additional angular momen-
tum transfer may, however, contribute significantly at certain
thermodynamical conditions; see, for instance, Refs. [2–5]
and references therein for more details.

As a massive corpus of the weak reaction rates is re-
quired for successful simulations of various stages of the star
evolution, neither existing nor prospective experimental data
is capable of providing a complete input. Moreover, even
for the nuclear systems, which are accessible at the existing
experimental nuclear physics facilities, the thermodynamical
conditions of the stellar environment cannot be reproduced
in laboratory. Therefore, accurate theoretical predictions of
weak interaction processes in a wide range of nuclear masses,
isospins, and temperatures become extremely important.

However, as the nuclear many-body problem is outstand-
ingly complicated and still far from being solved, only very
approximate calculations are available, whose degree of suc-
cess is difficult to judge because of shortage of experimental
data. After the first tabulation of Refs. [6–8] obtained by
making use of a simple independent particle model, the

nuclear shell-model tabulations became available for p f -
shell nuclei [9–12]. In principle, the shell model is capable
of providing most accurate calculations for low-energy nu-
clear excited states, however, a nonuniversal character of its
Hamiltonians as well as its limitations on the excitation en-
ergies and nuclear mass calls for alternative methods. The
approaches based on the quantum-mechanical equations of
motion (EOM) and modern universal density functionals rep-
resent another class of models. However, the majority of
presently available calculations of this type are limited by
the simplest random phase approximation (RPA) or its super-
fluid version, quasiparticle RPA (QRPA) [2–4,13,14]. These
approximations are free of the limitations inherent in the shell
model, however, they are confined by the too simple ansatz of
the nuclear wave functions and, therefore, fail in describing
spectral characteristics with the quality necessary for the ex-
traction of beta decay and electron capture rates even at zero
temperature, as far as this can be tested experimentally.

The way out of this problem becomes evident if one
considers extensions of RPA with dynamical kernels in the
equation of motion for the particle-hole correlation function.
Indeed, RPA is known to keep only the static part of the
kernel and to neglect completely its dynamical part. This
fact is responsible for poor performance of RPA in nuclear
physics. The dynamical kernel contains complex correlations
and cannot be treated exactly without referring to the equa-
tions of motion for higher-rank correlation functions. Instead,
the dynamical kernel itself admits various approximations,
among which the most common are known as second RPA
(SRPA), particle-vibration coupling (PVC), multiphonon ap-
proach, etc. [15]. While SRPA treats the dynamical kernel
in the lowest order in the nucleon-nucleon interaction and,
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thus, includes the minimal degree of correlations, the PVC
and the multiphonon approaches contain nonperturbative re-
summations capturing the emergent collective phenomena
and, thus, are more adequate for nuclear applications. Indeed,
various versions of the PVC approach based on nonrela-
tivistic [16–20] and relativistic [21–24] effective interactions
showed a considerable improvement over (Q)RPA in the de-
scription of nuclear spin-isospin excitations.

The latter approaches combine the advantage of being
not limited by nuclear mass and excitation energy with the
strength of the shell model generating somewhat complex
wave functions of the excited states. However, their lead-
ing approximation to PVC is confined by configurations
where only one phonon mode is exchanged between nucleons
at a time—these configurations are not sufficient to repro-
duce the observed fine features of nuclear spectra and their
level densities. Another simplification is the treatment of the
ground-state wave function, which is typically assumed to be
of the Hartree or Hartree-Fock type. Recent developments of
Refs. [15,25] are designed to overcome these limitations.

Because atomic nuclei in stars are embedded in hot envi-
ronments, thermal population of nuclear excited states should
be taken into account in calculations of the reaction and de-
cay rates. This implies that not only transitions from ground
to excited states, but also transitions between excited states
contribute to the electron capture and beta decay rates. While
the shell model approach can explicitly access those tran-
sitions through the global diagonalization procedures, the
EOM-based models should be completely redesigned to be
able to generate such transitions. However, under the con-
dition of sufficiently high-level density, such approach as
(Q)RPA can be straightforwardly generalized for initial states
of the thermal mean-field character [26,27]. This fact is em-
ployed, for instance, in calculations of electron capture of
Refs. [2–4,14,28,29]. Finite-temperature extensions of the ap-
proaches with EOM dynamical kernels are essentially more
complicated although some implementations for non-charge-
exchange nuclear transitions became available earlier in the
framework of the nuclear field theory (NFT) [30]. Recently,
a relativistic version of thermal NFT was formulated and
implemented for calculations of beta decay rates in hot en-
vironments [31]. This first finite-temperature relativistic QFT
approach to nuclear spin-isospin excitations is based on an
accurate solution of the EOM for the proton-neutron response
function with both static and dynamic kernels, where the latter
includes the leading PVC contributions, and the former is
represented by the pion and rho-meson exchanges. In this
approach named finite-temperature proton-neutron relativis-
tic time blocking approximation (FT-pnRTBA), the effects
of finite temperature on the relativistic mean field, single-
particle states, phonon modes, and PVC are taken into account
fully self-consistently. Calculations were performed for both
allowed and forbidden β− Gamow-Teller transitions in the
typical r-process waiting-point nuclei, and the relative roles
of these transitions in beta decay as functions of temperature
were analyzed.

In this work, we investigate the potential of the FT-
pnRTBA to describe β+ Gamow-Teller transitions and the
associated electron capture rates in neutron-rich nuclei around

78Ni, which are abundantly produced in core-collapse su-
pernovae at certain thermodynamical conditions. Moreover,
Refs. [32–35] concluded that nuclei around N = 50 represent
the high-sensitivity region in the context of simulating and
understanding the evolution of core-collapse supernovae. A
good reproduction of GT strength and beta decay rates for
many nuclear systems, including the Ni isotopic chain [23,31],
serves as a benchmark for the finite-temperature extension of
our approach, which uses only the parameters of the covariant
energy density functional adjusted globally to nuclear masses
and radii [36].

Section II of this article is focused on the main building
blocks of our formalism, Sec. III provides details of cal-
culations and presents results and discussion, and Sec. IV
concludes on the advancements made in this work.

II. MODEL ASSUMPTIONS AND FORMALISM

The initial assumption for the following method is that
the atomic nucleus embedded in a hot environment can be
described statistically as a compound nucleus and assigned
with thermodynamical characteristics, such as temperature T
and entropy S [26]. One has to perform minimization of the
grand potential �(μ, T ),

�(μ, T ) = E − T S − μN, (1)

with the Lagrange multipliers μ and T , average energy E ,
and particle number N . The minimization defines the density
operator ρ̂ which enters the thermal averages:

S = −kTr(ρ̂lnρ̂ ), N = Tr(ρ̂N̂ ), (2)

with N̂ being the particle number operator, and k the Boltz-
mann constant equal to one in the natural units. To describe the
energy we employ the covariant functional of the nucleonic
density and classical meson and photon fields φm [36]:

E [ρ̂, φm] = Tr[(�α · �p + βM )ρ̂] +
∑

m

{
Tr[(β�mφm)ρ̂]

±
∫

d3r

[
1

2
( �∇φm)2 + U (φm)

]}
. (3)

In Eq. (3) M is the nucleon mass, and U (φm) denote the
nonlinear sigma-meson potentials [37]. The upper “+” sign
corresponds to the scalar σ meson, and the lower “−” sign
stands for the vector ω meson, ρ meson, and photon, while
the index “m” runs over the bosonic and Lorentz indices [36].

The eigenvalues of the nucleonic density are given by the
Fermi-Dirac distribution:

n1(T ) = n(ε1, T ) = 1

1 + exp{ε1/T } , (4)

where the number index runs over the complete set of the
single-particle quantum numbers in the Dirac-Hartree basis.
The single-particle energies ε1 = ε̃1 − μτ1 are measured from
the chemical potential μτ1 of the subsystem with the given
isospin τ1.

For transitions without particle transfer, the spectral
properties, such as excitation energies and transition ampli-
tudes, are determined by the particle-hole response function
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R(14, 23) which, in general, satisfies the Bethe-Salpeter
equation (BSE) [38]:

R(14, 23) = G(1, 3)G(4, 2)

+
∑
5678

G(1, 5)G(6, 2)V (58, 67)R(74, 83), (5)

transformed according to Matsubara’s prescription [39].
Namely, G(1, 3) are the Matsubara temperature Green’s func-
tions of single particles defined for the imaginary time
differences: t13 = t1 − t3 (0 < t1,3 < 1/T ) [39,40] and the
number indices run over the single-particle variables and time:
1 = {k1, t1}.

The interaction kernel V (58, 67) of Eq. (5) contains all
the in-medium physics and can be treated in various ap-
proximations. Most generally, in the case of the presence
of only two-body forces and with the local character of the
external fields, it is split into an instantaneous (static) term
given by a contraction of the vacuum fermion-fermion in-
teraction with the two-fermion density and a time-dependent
(dynamic) term, where the fully correlated two-particle-two-
hole (2p2h) fermionic propagator is twice contracted with
the fermion-fermion interaction matrix elements; see, for in-
stance, Ref. [15] for details. In the approaches based on
effective interactions, the static term can be approximated by
the in-medium effective interaction and the dynamic term can
be either neglected, like in (Q)RPA, or treated approximately
with varied degree of accuracy. In this work, we use the PVC
model in the leading approximation, where the correlated
2p2h propagator is factorized into an uncorrelated 1p1h and
a correlated 1p1h one. The correlated 1p1h propagator is
often called phonon (vibration), so the approximation to the
dynamic kernel is encoded in 1p1h ⊗ phonon configurations.

Under this assumption, Eq. (5) can be transformed to
an equation replacing the complete Matsubara temperature
Green’s functions G(1, 3) by the mean-field ones G̃(1, 3),
which are connected via the Dyson equation:

G(1, 2) = G̃(1, 2) +
∑
1′2′

G̃(1, 1′)�e(1′2′)G(2′, 2), (6)

with the dynamic self-energy �e containing the PVC ef-
fects in the leading approximation; see Ref. [41] for details.
Then, introducing the uncorrelated particle-hole propagator
R̃(14, 23) = G̃(1, 3)G̃(4, 2) and the redefined interaction ker-
nel W (14, 23), Eq. (5) can be transformed to the following
form:

R(14, 23)

= R̃(14, 23) +
∑
5678

R̃(16, 25)W (58, 67)R(74, 83).

(7)

Here the uncorrelated particle-hole propagator R̃(14, 23) in
the time domain is a product of two fermionic temperature
mean-field Green’s functions G̃ which, in the imaginary-time
representation, read [40]

G̃(2, 1) =
∑

σ

G̃σ (2, 1), (8)

G̃σ (2, 1) = −σδ12n(−σε1, T )e−ε1t21θ (σ t21), (9)

where t21 = t2 − t1 (−1/T < t21 < 1/T ), θ (t ) is the Heavi-
side step function and the index σ = +1(−1) denotes the
forward (backward) component of G̃. The new interaction
kernel W decomposes as follows:

W (14, 23) = Ṽ (14, 23) + V e(14, 23)

+ G̃−1(1, 3)�e(4, 2)

+�e(1, 3)G̃−1(4, 2), (10)

into the static interaction Ṽ specified below, the phonon-
exchange term V e, and the corresponding self-energy terms
G̃−1�e and �eG̃−1, such that V e = δ�e/δG̃, in analogy to
the BSE in the particle-hole channel at T = 0 [42–44]. In
the kernel of Eq. (10) we used an additional assumption of a
smallness present in the dynamic self-energy, so that the latter
is kept only in linear order.

In the majority of applications with sufficiently weak ex-
ternal fields, to calculate the observed excitation spectra, the
response function has to be eventually contracted with exter-
nal field operators of local and instantaneous character. This
implies that in the final expressions only two time variables
in the response function survive. The time blocking approx-
imation, which is employed at zero temperature [42,43,45],
reduces the number of the time variables accordingly to a
single time difference, so that the Fourier transform of Eq. (7)
leads to a single frequency variable equation. The approxi-
mation is based on the time projection technique within the
Green function formalism, which allows for decoupling of
configurations of the lowest complexity beyond 1p1h (one-
particle-one-hole), such as 1p1h ⊗ phonon (particle-hole pair
coupled to a phonon), from the higher-order ones. Alter-
natively, one can start directly with the two-time response
function and arrive at the same result [15].

Following the time blocking formalism, one notices that
the time projection operator introduced at T = 0 [42] is not
applicable to the finite-temperature case. A generalization
found in Refs. [41,46] shows that at T > 0 the projection
operator,

�(14, 23; T ) = δσ1,−σ2θ12(T )θ (σ1t14)θ (σ1t23),

θ12(T ) = n(σ1ε2, T )θ (σ1t12)+n(−σ1ε1, T )θ (−σ1t12),

σk = ±1, (11)

being introduced into the integral part of Eq. (7), performs an
analogous reduction to the one-frequency Matsubara variable.
Compared to the T = 0 case, it contains an extra θ12(T )
factor with smooth temperature-dependent Fermi-Dirac dis-
tributions, which become the sharp Heaviside functions when
recovering the T → 0 limit, so that θ12(T ) → 1. Thereby, the
Fourier image of Eq. (7),

Rnp′,pn′ (ω, T )

= R̃np(ω, T )δpp′δnn′

+ R̃np(ω, T )
∑
p′′n′′

W̃np′′,pn′′ (ω, T )Rn′′ p′,p′′n′ (ω, T ),

(12)

has the form of the Dyson equation with one energy, or fre-
quency, ω transferred to the system. In Eq. (12) we imply that
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the transitions occur between the states of different isospin,
i.e., between neutrons (n, n′, n′′) and protons (p, p′, p′′) and
replace the number indices by the corresponding letters. The
uncorrelated proton-neutron propagator R̃(ω, T ) reads

R̃np(ω, T ) = npn(T )

ω − εn + εp
, (13)

where npn(T ) = np(T ) − nn(T ) and W̃ (ω, T ) is the interac-
tion amplitude:

W̃np′,pn′ (ω, T ) = Ṽnp′,pn′ (T ) + �np′,pn′ (ω, T ). (14)

In the isospin-flip, or charge-exchange, channels the static part
of the interaction Ṽ is represented by the exchange of π and
ρ mesons carrying isospin and the Landau-Migdal term Ṽδπ ,
which ensures the correct short-range behavior:

Ṽ = Ṽρ + Ṽπ + Ṽδπ . (15)

The ρ meson is parametrized according to Ref. [37], the
pion-exchange is treated as in a free space, and the strength of
the last term is adjusted to the GT response of 208Pb [47], in
the absence of the explicit Fock term [48–50]. The amplitude
�(ω, T ) comprises all the dynamical effects of PVC:

�
(ph)
np′,pn′ (ω, T )

= 1

np′n′ (T )

∑
p′′n′′μ

∑
ημ=±1

ημξ
μημ;n′′ p′′

np,n′ p′

× (N (ημ�μ, T ) + np′′ (T ))(n(εp′′ − ημ�μ, T )− nn′′ (T ))

ω− εn′′ + εp′′ − ημ�μ

.

(16)

The phonon vertex matrices ζμημ ,

ξ
μημ;56
12,34 = ζ

μημ

12,56ζ
μημ∗
34,56 , ζ

μημ

12,56 = δ15γ
ημ

μ;62 − γ
ημ

μ;15δ62,

γ
ημ

μ;13 = δημ,+1γμ;13 + δημ,−1γ
∗
μ;31, (17)

and the phonon frequencies �μ are pre-calculated within the
FT-RRPA approach; see Refs. [41,46] for more details. The
index “μ” in Eqs. (16) and (17) includes the full set of phonon
quantum numbers, such as angular momentum, parity, and
frequency, at the given temperature. The new entities in the
numerators of Eq. (16) N (�, T ) = 1/(e�/T − 1) in Eq. (16)
are bosonic occupation factors associated with the phonons
emitted and absorbed in the intermediate states of the proton-
neutron pair propagation in the PVC picture.

The response to a specific external field is associated with
the spectral function S(ω) and transition probabilities Bν as

S(ω) = − 1

π
lim
�→0

Im�(ω + i�) =
∑

ν

Bνδ(ω − ων ), (18)

expressed via the polarizability �(ω),

�(ω + i�) = 〈V (0)RV (0)†〉 =
∑

ν

Bν

ω − ων + i�
. (19)

In this work we focus on the raising Gamow-Teller (GT+)
operator as an external field:

V (0)
GT+ =

A∑
i=1

�(i)τ+(i), (20)

where � is the relativistic spin operator. To be compared with
the observed spectra of excitations, the spectral function S(ω)
should be corrected by an additional factor because of the
detailed balance [41,51]:

S̃(ω) = S(ω)

1 − e−(ω−δnp)/T
, (21)

where δnp = λnp + Mnp, λnp = λn − λp is the difference be-
tween neutron and proton chemical potentials in the parent
nucleus and Mnp = 1.293 MeV is the neutron-proton mass
splitting. In our implementation, the response to the conju-
gate operators τ± is computed in one procedure, so that the
resulting spectral functions are located at positive and negative
frequencies. Therefore, the reference energy δnp is determined
as a boundary between them. Obviously, at T = 0 the spectral
function and the strength function coincide.

As the functions S(ω) and S̃(ω) are formally singular, for
representation purposes a finite value of the imaginary part of
the energy variable (smearing parameter) � is used. It pro-
vides a smooth strength distribution, because the Dirac delta
function is difficult to visualize, but preserves the integrals
under the spectral peaks as well as the physical values of
the transition probabilities, which do not depend on the value
of �. The denominator in Eq. (21) is important only for the
excitation energies |ω − δnp| � T , otherwise it is mostly close
to unity. It is nearly negligible for the general features of the
strength distribution, however, it is taken into account in the
calculations of the electron capture rates.

III. DETAILS OF CALCULATIONS, RESULTS, AND
DISCUSSION

The FT-pnRTBA model described in Sec. II was applied to
calculations of the GT+ strength in the neutron-rich doubly
magic nucleus 78Ni and the neighboring even-even nuclei
76,80Ni, 76Fe, and 80Zn. As in the previous application of the
formalism to beta decay [31], on the first step we solve the set
of the relativistic mean-field (RMF) equations with the NL3
parametrization, which implies a self-interaction in the scalar
sigma-meson sector [37].

The use of the NL3 interaction is justified by its excellent
performance in the relativistic beyond-mean-field calcula-
tions [15,23–25,31]. The large-scale studies of, for instance,
Refs. [52,53] conclude that, although the NL3 (or the newer,
but almost equivalent NL3*) covariant energy density func-
tional (EDF) tends to overestimate the neutron skin thickness
(that has, however, not yet been conclusively confirmed by
experiment), its global performance is comparable with that
of much more sophisticated functionals in the description
of nuclear binding energies, charge radii, and single-particle
states. Regarding the sensitivity of the results to the choice
of a particular EDF, we would like to stress that, although
a simplified approach like (Q)RPA based on different EDFs
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may give quite distinct excitation spectra, after proper adding
correlations, for instance, of the PVC type, the obtained spec-
tra are getting closer to the observed ones and thus, obviously,
closer to each other. A quantitative illustration of this fact
for the isospin-flip excitations is comparing the results of our
approach [22–24,31] to the ones obtained with the Skyrme
functionals [16–20]. A deeper argumentation is presented in
the recent Ref. [15], where the ab initio model-independent
framework for many-body correlation functions is developed.
It is shown how various approaches, such as the density func-
tional theory (DFT), RPA, second RPA, PVC, and higher-rank
extensions can be derived from the general many-body frame-
work generated by the equation of motion method starting
from the bare interaction between the nucleons. In this con-
text, it is clear that the DFT based only on the single-fermion
density dependence cannot provide an accurate description of
strongly correlated systems. The dynamical time-dependent
kernels of the exact fermionic EOM’s are replaced in the
DFT by instantaneous effective interactions, and this proce-
dure itself loses control over the infrared physics. Therefore,
future developments should be heading toward the ab initio
description of nuclei, which would be capable of including
collective effects.

The thermal occupancies of Eq. (4) are introduced into
the fermionic densities which participate in the self-consistent
RMF cycle. The set of the obtained temperature-dependent
single-particle Dirac spinors and the corresponding single-
nucleon energies form the basis for further calculations. The
second step consists of solving the finite-temperature rela-
tivistic random phase approximation (FT-RRPA) equations
and obtaining the phonon vertices gm and their frequencies
ωm. The set of the resulting phonons, together with the
thermal RMF single-nucleon basis, forms the ph ⊗ phonon
configurations for the PVC amplitude of Eq. (16). As the
third step, Eq. (7) contracted with the GT+ operator, is
solved, the solution is contracted with the second GT+ op-
erator and the spectral function is extracted according to
Eq. (18). The particle-hole (ph) configurations with the ener-
gies εph � 100 MeV and the antiparticle-hole (αh) ones with
εαh � −1800 MeV were included in the FT-RRPA calcula-
tions for the vibrational spectrum, that provides an acceptable
convergence of the results. The phonons with the quantum
numbers of spin and parity Jπ = 2+, 3−, 4+, 5−, 6+ below
the energy cutoff of 20 MeV and with the reduced transition
probabilities B(EL) equal to or more than 5% of the max-
imal one (for each Jπ ) comprised the phonon model space,
for all temperatures. Another truncation was made on the
single-particle intermediate states n′′, p′′ in the summation of
Eq. (16): Only the phonon matrix elements with the energy
differences |εp(n) − εp′′(n′′ )| � 50 MeV were included in the
summation. All these truncations are justified by our preced-
ing calculations. The value � = 0.02 MeV is adopted for the
smearing parameter. This value is sufficiently small to resolve
the fine features of the spectral functions and to provide a
reliable extraction of the electron capture rates.

In the present work we employ a standard Bardeen-
Cooper-Schrieffer (BCS) technique to describe nuclear super-
fluidity. The BCS equation is solved in the present application
within the monopole pairing model, and the pairing strength

was adjusted to reproduce the even-odd mass differences
by the three-point formula. The details can be found in
Refs. [23,54]. We would like to stress that the response func-
tions calculated in the proton-neutron relativistic quasiparticle
time blocking approximation (pnRQTBA) [23] are sensitive
mainly to the value of the pairing gap, but not to the method
which is used to obtain it, that is easy to see from the formal-
ism presented in detail in Ref. [23], where the dynamical part
of the approach contains only one quantity depending on the
pairing gap, namely the Bogoliubov’s energy of quasiparti-
cles. A more general approach of Ref. [15] suggests that in the
ab initio framework superfluidity is mediated by the exchange
of pairing phonons, i.e., fully dynamical pairing, which should
eventually replace BCS and Bogoliubov’s models. In the
present application the inaccuracies induced by the simplified
BCS approach should be equally or less important than those
caused by the other adopted approximations.

While 78Ni is a closed-shell nucleus and, in this frame-
work, does not exhibit superfluid properties, its even-even
neighbors do. The BCS approximation to nuclear superfluid-
ity also implies that in open-shell nuclear systems superfluid
pairing correlations vanish at the critical temperature Tc ≈
0.6�(0), where �(0) is the pairing gap at T = 0. The co-
efficient between Tc and �(0) may vary from system to
system in the relatively narrow limits; in particular, it was
found in Ref. [55] that in 68Ni it takes the value 0.7. We
assume that in all isotopes under consideration superfluidity
vanishes within a 0.5 � T � 1 MeV interval. Moreover, the
corresponding phase transition is quite sharp; in particular, at
temperatures 0 � T � 0.5 MeV there is almost no change in
the single-particle properties, as we have verified in Ref. [55].
Based on these observations, we assume that in open-shell
nuclei under consideration the GT+ spectral functions do
not change considerably in the temperature range 0 � T �
0.5 MeV. Therefore, at these temperatures we can safely use
the zero-temperature spectral functions, which we calculate
within pnRQTBA [23] fully accounting for superfluid pairing.
Starting from the temperature T = 1 MeV, the FT-pnRTBA
without pairing is then fully legitimate and, if needed, the
results in the temperature range 0.5 � T � 1 MeV can be
interpolated. In this way, we can avoid complications like
adopting pnRQTBA for finite temperatures, which is only
needed in a very narrow temperature interval.

The spectral functions computed in this framework are
displayed in Figs. 1–5. Figure 1 shows the GT+ transi-
tions in 78Ni calculated up to high excitation energies within
FT-pnRTBA in comparison with the FT-pnRRPA. In our for-
malism the latter is obtained as a solution of Eq. (12), if the
dynamical PVC term �(ω, T ) in the interaction amplitude
is fully neglected. In this way, the difference between the
two distributions isolates the effects of the dynamical corre-
lations, which makes their assessment obvious. One can see
that at T = 0 FT-pnRTBA the spectral function is consider-
ably more fragmented than the FT-pnRRPA one, that is the
common feature of the approaches with PVC kernels. Indeed,
the dynamical kernel of Eq. (16) contains the poles of the
ph ⊗ phonon character, which provide a richer structure of
the FT-pnRTBA spectral functions for all types of response.
As we have investigated previously [23,24], typically the po-
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FIG. 1. Evolution of the Gamow-Teller GT+ spectrum in 78Ni
with temperature within FT-pnRRPA and FT-pnRTBA.

sitions of the first peaks shift to lower energies when the PVC
effects are taken into account in the leading approximation.

While the strength at high energies shows strong fragmen-
tation and nearly uniform redistribution because of the PVC,
the low-lying peaks somewhat demonstrate a downward shift
without noticeable fragmentation. This effect results from
the analytical structure of the PVC amplitude of Eq. (16)
or its superfluid analog given in Ref. [23]. In particular,
the denominators of this amplitude contain the proton-
neutron single-(quasi)particle energy differences shifted by
the phonon energy. The pnR(Q)RPA states embedded into
the spectrum have many possibilities to mix with the corre-
sponding ph ⊗ phonon or 2q ⊗ phonon configurations with
the proper total spins and parities, but the lowest pnR(Q)RPA
states are more isolated (for instance, they have no other states
below) and, therefore, do not mix as well with the complex
configurations. Such an imbalance, together with the attractive
character of the PVC amplitude, is responsible for the down-
ward shifts of the lowest modes.

Note that in the present application of the theory the
PVC effects are included in the simplest, the so-called res-
onant, approximation. Further inclusion of the ground-state
correlations caused by the 2q ⊗ phonon PVC configurations
induces a counter trend, which may shift the lowest peaks
upward, although not necessarily to their original placements
within the pnR(Q)RPA [25]. Moreover, configurations of
higher complexity, such as correlated multiparticle-multihole
ones, may induce further redistribution of the strength,
including the one of the low-energy tails, although the ef-
fects of such higher-rank correlations weaken with their
complexity growth. Until now, however, numerical studies are

only available for non-isospin-flip excitations up to the cor-
related three-particle-three-hole (3p3h) configurations [15].
Coupling to charge-exchange phonons represent another type
of the PVC correlations which, if included on the 2q ⊗
phonon level, may also compete with the ground-state cor-
relations caused by the PVC; see Ref. [24] for more details.
Complex correlations beyond the conventional 2q ⊗ phonon
coupling to the neutral phonons are not included in the present
calculations, because they are not yet advanced to finite tem-
perature. The latter can be a topic for future developments.
It is important to notice that the complex correlations under
discussion are fully under control, because of the absence of
adjustable parameters in the framework treating them. What
configuration complexity should be included does, however,
depend on the nature of the calculated spectra, on the desired
accuracy, and on computational capabilities.

As we will see in the following, for the electron capture
rates, which are extracted from the spectral functions, the
presence of transitions at lowest energies caused solely by
the dynamical PVC effects plays a crucial role, especially
at low electron densities. With the temperature growth the
spectral functions evolve because of the thermal unblocking:
As the Fermi-Dirac distribution of Eq. (4) becomes more
diffuse, more transitions appear with the sizable strength. As
a result, similarly to the case of the neutral transitions dis-
cussed in Refs. [41,46], the entire spectral function undergoes
stronger fragmentation in both FT-pnRRPA and FT-pnRTBA,
while the PVC effects further enhance fragmentation in the
latter approach. In particular, the spreading of the states to-
ward lower transition frequencies is the most impactful effect,
which has direct implications for the electron capture rates. In
this study we calculate the temperature evolution of the GT+
strength and the subsequently extracted electron capture rates
up to T = 2 MeV on the temperature grid with the 0.5-MeV
step. This choice is determined by the fact that these nuclear
temperatures are of the primary importance for supernovae
evolution and the temperature dependencies of the quanti-
ties under study are somewhat smooth, so that they can be
interpolated, if needed, between the given mesh points. The
GT+ strength in 78Ni computed for T = 0.5 MeV comes out
almost identical to the one obtained at T = 0. This result
indicates that the temperature of T = 0.5 MeV is still too low
to induce sizable changes in both thermal mean field and the
transition amplitudes of both FT-pnRRPA annd FT-pnRTBA.
We will use this result in the following to justify the use
of T = 0 GT+ strength for calculations at T = 0.5 MeV for
open-shell nuclei.

At T = 1 MeV the picture begins to change. On the third
panel of Fig. 1 it can be seen that, while the spectral function
is still not very different from that at T = 0 at high energies,
it develops new low-energy transitions which are absent at
T = 0. They are well seen on the logarithmic scale as the
signatures of the thermal unblocking. Its nature becomes clear
if one notices that in the lowest approximation, when no
interaction between fermions is active in addition to the mean
field [this limit corresponds to W̃ (ω, T ) = 0], the solution of
Eq. (12) is the uncorrelated mean-field propagator R̃(ω, T )
of Eq. (13). Its numerator is the difference between proton
and neutron occupancies which can only take the values of 0
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FIG. 2. Evolution of the Gamow-Teller GT+ spectrum in
76Ni with temperature. The legends “FT-pnR(Q)RPA” and “FT-
pnR(Q)TBA” denote calculations with the superfluid pairing at T =
0 and without it at T � 1 MeV, when the BCS superfluidity vanishes.
The upper panel shows a comparison of the approaches with (FT-
pnRQRPA, FT-pnRQTBA, solid curves) and without (FT-pnRRPA,
FT-pnRTBA, dashed curves) superfluid pairing at T = 0.

and 1 at T = 0. At T > 0 the fractional occupancies become
possible and, therefore, the transitions take place not only
across the Fermi surfaces, but also when both single-nucleon
states lie above or below them. With the temperature growth
the intensity of such transitions also increases and, thus, more
and more of them become visible in the spectra. Switching on
the interaction amplitudes causes redistribution and fragmen-
tation of the excited states while keeping the effects of the
thermal unblocking. Indeed, the lowest two panels of Fig. 1
demonstrate the increasing amount and intensity of the low-
energy states while temperature raises to T = 1.5 MeV and
eventually to T = 2 MeV.

Figure 2 illustrates the evolution of the GT+ strength with
temperature for the nucleus 76Ni. In contrast to 78Ni, this
nucleus is open shell in the neutron subsystem, so that neutron
pairing correlations are included into the description at T = 0.
The upper panel of Fig. 2 with the zero-temperature strength
distributions displays the results obtained with and without
superfluid pairing, both with and without PVC. One can see
that, while the high-energy parts of the strength are not much
influenced by pairing, the low-energy parts are drastically dif-
ferent, for the calculations both with (pnRQTBA vs pnRTBA)
and without (pnRQRPA vs pnRRPA) the dynamical PVC
effects. Namely, the superfluid pairing introduces additional
possibilities for the low-energy transitions, that is reflected
in the resulting spectra as relatively strong low-energy peaks
at 21.4 MeV and 16.8 MeV within the pnRQRPA and pn-
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FIG. 3. Same as in Fig. 2, but for 80Ni.

RQTBA, respectively (they are dominated by the p f7/2 →
n f5/2 transition). As it is mentioned above, we assume that
at T = 0.5 MeV the GT+ strength is not very different from
the one at T = 0, which is consistent with the result obtained
directly for 78Ni. At T = 1 MeV there are two major effects:
(i) disappearance of the superfluid pairing that is clear from
the disappearance of the strong peaks at low energy and (ii)
the formation of the thermally unblocked states in full anal-
ogy with the case of 78Ni. Moreover, for the temperatures
T � 1 MeV, when superfluidity has no influence, the overall
spectral pattern of GT+ in 76Ni is very close to the one of 78Ni.
This result is consistent with the fact that the compositions of
these nuclei differ by only two neutrons on predominantly the
1g9/2 orbital, so that, after the transition to the nonsuperfluid
phase, with the temperature increase their Fermi surfaces and
the arrangements of the single-particle states around them
become very similar. As a result, the excitation spectra look
similar, too.

Figures 3–5 display the temperature evolution of the GT+
strength for 80Ni, 76Fe, and 80Zn, respectively, in the same
manner as Fig. 2. While the low-energy spectra at T = 0 differ
remarkably as a consequence of the particular rearrangements
of the shell structure near the Fermi surfaces of these systems,
after the transition to the nonsuperfluid phase the general pat-
tern and the evolution of the spectra with temperature exhibit
the same features. One may notice that the pair of nuclei 76Ni
and 80Zn as well as the pair 76Fe and 80Ni show similarities in
the structure their low-energy spectra, that may be related to
the fact that each pair shares the same value of isospin.

Based on the calculated GT+ strength, we extracted the
electron capture (EC) rates at some typical thermodynami-
cal conditions that occur during the star evolution. In this
first application of our approach to the EC rates we do not
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FIG. 4. Same as in Fig. 2, but for 76Fe.

focus on the accuracy of their determination, but rather use
the simplest prescription to understand, how the effects of
complex many-body correlations propagate to the EC process
in stellar environments. Thus, the EC rates were calculated
in the zero momentum transfer limit, when only the GT+
transitions contribute. The impact of forbidden transitions on
EC rates for nuclei with A ≈ 80–90, such as 78Ni, 82Ge, 86Kr,
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FIG. 5. Same as in Fig. 2, but for 80Zn.

and 88Sr within QRPA approaches was analyzed in Ref. [14].
It was shown, in particular, that at temperatures around 10
GK the forbidden transitions start to play a noticeable role
at high densities lg(ρYe) ≡ log10(ρYe) ≈ 11. Within our ap-
proach, the contribution of the first-forbidden transitions to
the beta decay rates was investigated quantitatively and dis-
cussed for the r-process waiting-point nuclei 78Ni and 132Sn
in Ref. [31]. It was found that in the FT-pnRTBA approach,
which reproduces successfully the observed beta decay rates,
their contributions are relatively minor at zero temperature (in
particular, we found 6% for 78Ni and 20% for 132Sn), but can
increase with the temperature growth (up to 40% and 55%
at T = 2 MeV, respectively). These numbers, however, are
very sensitive to fine details of the calculated spectra and
to the procedure of extracting the rates. For instance, the
importance of the forbidden transitions is often emphasized
in the literature, where the calculations are performed within
the (thermal) (Q)RPA, however, it is not clear how reliable
those estimates are as this approach cannot reproduce the
observed fine structure of the spin-isospin response without
introducing artificial terms in the residual interaction with
adjustable parameters.

Based on the results of Ref. [31] for the beta decay, we ex-
pect a similar amount of contribution from the first-forbidden
transitions to the EC rates. In the zero momentum transfer
limit the common prescriptions give [10,28]

λA,Z (μe, T ) = g2
A ln2

K

∫ ∞

1
dεeεe peSe(εe, μe, T )F (A, Z, εe)

×
∫ εe

−∞
dE (εe − E )2SGT+ (E , T ), (22)

where energies are in the units of electron mass me, p2
e =

ε2
e − 1, and F (A, Z, εe) is the Fermi function [10]. The values

K = 6163.4 s and gA = 1.27 are adopted for the pre-integral
constants. The use of the bare value of gA is justified by
our previous calculations of beta decay rates, for instance, in
Refs. [24,31]. The function Se is specified below.

The reference approximation to the EC rates in neutron-
rich nuclei of the p f -sdg shells, which is widely used in
astrophysical simulations, is the parametrization of Ref. [56]
based on the analytical approach of Ref. [8]. It has the form

λ = B ln2

K

(
T

mec2

)5

[F4(η) − 2χF3(η) + χ2F2(η)], (23)

containing the Fermi integrals Fk (η), such as

Fk (η) =
∫ ∞

0

dε εk

1 + exp(ε − η)
, (24)

with χ = −(Q + �E )/T , η = χ + μe/T and the transition
strength B and the transition energy �E as fitted parameters.
The value of the electron density, which is typically used in
combination with the electron-to-barion ratio ρYe, determines
the electron chemical potential, which is found by solving the
equation [10]:

ρYe(T ) = 1

π2NA

(
mec

h̄

)3 ∫ ∞

0
�Sep(εe, μe, T )p2

ed pe, (25)
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FIG. 6. Electron capture rate as a function of temperature for
neutron-rich even-even nuclei around 78Ni at lg(ρYe) = 9.

with �Sep = Se − Sp, the Fermi-Dirac distribution for elec-
trons Se,

Se(εe, μe, T ) = 1

1 + exp
(

εe−μe

T

) , (26)

and Sp(ε, μ, T ) = Se(ε,−μ, T ) for positrons. As the param-
eters B and �E have been determined in Ref. [56] from fitting
the EC rates computed microscopically within the combined
shell-model Monte Carlo and RPA approach [57] at high elec-
tron densities, a comparison to the parametrization of Eq. (23)
can serve as a comparison to the latter approach in these
density regimes. Note that under this condition the EC rates of
Eq. (23) are fully determined by the Q values Q = M f − Mi

being the mass difference between the final and initial nuclei.
In our calculations the Q values were taken from Ref. [58].

The EC rates extracted from the FT-pnR(Q)RPA and FT-
pnR(Q)TBA GT+ spectra for the electron density lg(ρYe) = 9
according to Eq. (22) are displayed in Fig. 6 as functions of
temperature, in comparison to those of Eq. (23). From the
structure of Eq. (22) and the general kinematical condition of
the EC process [4,10,33] it can be established that the electron
chemical potential or, more precisely, the value of μe − Mnp

plays the role of a diffuse threshold for the nuclear transitions:
Only the transitions with the energies around and below this
value contribute to the rates considerably, while those above it
are exponentially suppressed. Furthermore, μe is uniquely de-
fined by Eq. (25), i.e., by the given ρYe value and depends only
weakly on the temperature within the 0 � T � 2 MeV range.
For instance, the density lg(ρYe) = 9 corresponds to 5.17 �
μe � 2.88 MeV, below which the nuclei under consideration
do not exhibit GT+ transitions. Therefore, for lg(ρYe) = 9 we
have obtained very low EC rates: from almost zero at T = 0
to ≈ 10−3–10−2 s−1 at T = 2 MeV. However, even in this
situation one can see from Fig. 6 that the EC rates extracted
from the FT-pnR(Q)RPA strength distributions are substan-
tially smaller than those obtained from FT-pnR(Q)TBA ones.
The difference between them is larger at lower temperatures
and can reach few orders of magnitude. Figure 6 also shows a
good agreement of our FT-pnR(Q)RPA EC rates with those of
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FIG. 7. Same as in Fig. 6, but at lg(ρYe) = 11.

the parametrization of Eq. (23). We conclude that at such rela-
tively low electron densities the complex nuclear correlations
beyond those included in the RPA type of approaches are of
great importance. The PVC correlations taken into account in
FT-pnR(Q)RPA of this work and the shell-model occupancies
adopted in RPA of Refs. [56,57] and fitted by Eq. (23) result
in comparable EC rates in nuclei around 78Ni at lg(ρYe) = 9.

At higher electron density, such as lg(ρYe) = 11, the en-
ergy window of allowed nuclear Q values extends to 23.89 �
μe � 23.34 MeV (with the additional correction for Mnp) for
our range of temperatures 0 � T � 2 MeV. At this density we
have two kinds of situations at T = 0: (i) both FT-pnR(Q)RPA
and FT-pnR(Q)TBA generate transitions below or around the
threshold energy and (ii) such transitions are only possible
in FT-pnR(Q)TBA while the lowest FT-pnR(Q)RPA states
are noticeably higher. The situation (i) realizes in 76Ni and
80Zn, while the situation (ii) is observed in the rest of the
considered nuclei. Respectively, as it is shown in Fig. 7, at
low temperatures the influence of the PVC correlations on
the EC rates in the second group of nuclei is very strong,
while for the first group it is more moderate, although also
significant as the EC rates still differ by a couple of orders
of magnitude in calculations with and without PVC. With the
temperature increase the rates appear less sensitive to the PVC
correlations as the results obtained within FT-pnR(Q)RPA and
FT-pnR(Q)TBA get closer to each other. As we mentioned
above, in our description the open-shell nuclei 76Ni, 80Ni,
76Fe, and 80Zn experience a phase transition to the nonsuper-
fluid phase within the 0.5 � T � 1 MeV temperature range,
that leads to the decrease of the strength amount at the lowest
energies. At the same time, thermally unblocked transitions
show up in this energy region, that increases the amount of
strength. These two counter trends interplay differently in
different nuclei, depending on the particular arrangements of
the single-particle states around the Fermi energy. As a result,
one can see a nonsmooth behavior of the EC rates around T =
1 MeV in the nuclei of the first group, while no such effect is
visible in the nuclei of the second group. Another observation
from Fig. 7 is that at higher densities the FT-pnR(Q)TBA
results are also in a better agreement with the parametrization
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FIG. 8. Electron capture rate as a function of electron density for
neutron-rich even-even nuclei around 78Ni at T = 1.5 MeV.

of Eq. (23) than the FT-pnR(Q)RPA ones. Especially good
agreement is obtained for the nuclei 76Fe and 80Ni at the
temperatures 0.5 � T � 2 MeV, while it is not so good for
the others. Nevertheless, the general trends are reproduced
quite reasonably. The significant differences that remain for
76,78Ni and 80Zn can be attributed to the use of a different
interaction, missing forbidden transitions and still missing
correlations of higher rank in our FT-pnR(Q)TBA approach.
However, it is difficult to predict whether these distinctions
can increase the EC rates by 1–2 orders of magnitude. A
puzzling discrepancy is found at low temperatures in 78Ni,
where the parametrization of Eq. (23) returns quite sizable
EC rates of the order of 10 s−1, while the model space of our
microscopic calculations does not offer possibilities of having
transitions that could produce such EC rates. Notice here, that
the parametrization of Eq. (23) is also known to overestimate
the EC rates in neutron-rich nuclei at high densities and tem-
peratures [34]. A contrasting disagreement remains for the
nuclei 76Fe and 80Ni at the temperatures 0 � T � 0.5 MeV,
where FT-pnR(Q)TBA leads to nonvanishing rates while the
parametrization predicts nearly zero rates.

The comparison between the three approaches is para-
phrased in Fig. 8 showing the EC rates as functions of
the electron densities at fixed temperature T = 1.5 MeV.
The general trends suggest that (i) the role of PVC corre-
lations included in FT-pnR(Q)TBA levels off at very high
densities, however, their importance persists at least up to
lg(ρYe) = 11; (ii) FT-pnR(Q)TBA demonstrates generally a
better agreement with the parametrization of Ref. [56] than
FT-pnR(Q)RPA; and (iii) at very high densities the discrep-
ancy between FT-pnR(Q)TBA and the parametrization of
Ref. [56] increases significantly. It would be interesting to
investigate the latter observation further. At high electron
densities lg(ρYe) ≈ 12, when the electron phase-space factor
unlocks the GT+ strength up to ≈50 MeV, the obtained dis-
crepancy indicates that at such high energies either the GT+
spectra are very different in different approaches or the role of
forbidden transitions is more important.
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FIG. 9. (Left panel) Gamow-Teller GT+ transitions in 78Ni com-
puted within pnRRPA (blue curve) and beyond it taking into account
the PVC mechanisms: without (pnRTBA, red curve) and with
(pnRTBA + GSCPVC, light green curve) ground-state correlations in-
duced by PVC. (Right panel) Electron capture rate at T = 1 MeV as
a function of electron density for 78Ni within the respective approx-
imations (temperature dependence of the GT+ strength functions is
neglected).

In this context, we would like to emphasize again that,
indeed, the GT+ spectra of neutron-rich nuclei are highly sen-
sitive to the model assumptions and to the complexity of the
nuclear wave functions adopted in the theoretical approach. In
Ref. [25] it was demonstrated how the correlations associated
with the time reversed particle-vibration loops, or the ground-
state correlations caused by PVC (GSCPVC), can unlock GT+
transitions in 90Zr, which are strongly suppressed in both
pnRRPA and pnRTBA with the conventional ph ⊗ phonon
configurations. The particularity of the neutron-rich nuclei is
that the GT− transitions strongly dominate GT+ ones. There-
fore, because of the conserved Ikeda sum rule, small relative
changes in the total strength in the GT− sector corresponds
with large relative changes in the total GT+ strength. Thus,
such GSCPVC may not appear important for the GT−, but play
the dominant role for the GT+ spectra. Figure 9 illustrates the
effect of these complex ground-state correlations on the GT+
strength in 78Ni. At the low-energy end of the spectra, one
can observe how the PVC effects taken into account within
the conventional pnRTBA produce new states at considerably
low energies than those of pnRRPA, but with the inclusion of
the GSCPVC this strength is partially pushed back indicating
that pnRTBA might overestimate the spreading of the GT+
strength to lower energies. Another and more remarkable ef-
fect of the GSCPVC is seen as the appearance of new states
with high intensity in the 30- to 40-MeV range. These are
the new unlocked transitions which are, in principle, absent in
the other, more simple, two approaches. While the formation
of this type of strength is explained in detail in Ref. [25],
here we concentrate on the impact of these correlations on
the EC rates. It is illustrated in the right panel of Fig. 9,
where we show the rates extracted from the strength functions
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of the left panel keeping T = 1 MeV for the electron kine-
matics, to better illuminate the effects of correlations. One
can notice that at low electron densities the correlations of
the GSCPVC type lead to lower rates than pnRTBA, almost
coinciding with the pnRRPA results. Once the density raises
and higher-energy transitions start to contribute, pnRTBA +
GSCPVC competes with pnRTBA and after lg(ρYe) ≈ 11.5
begins to produce higher EC rates. Because our pnRTBA +
GSCPVC approach does not yet include thermal effects, we
do not compare the rates of Fig. 9 with the parametrized
rates, but conclude that correlations of the GSCPVC type
have the potential of enhancing the EC rates at high electron
densities.

It should be noted that the recent Refs. [3,14] also in-
vestigated the EC rates in 78Ni. This was done within the
formalism of thermo field dynamics confined by the RPA-type
wave functions. The numerical implementation was based
on the Skyrme-Landau-Migdal interaction without thermal
modification of the nuclear mean field. Although the authors
included the effects of first-forbidden transitions on the EC
rates in their study, the GT+ spectra and their contributions
to the EC rates were presented separately, that allows us to
make a meaningful comparison with our case. Because the
calculations of Refs. [3,14] are based on the RPA type of
approximation, they should correspond to our FT-pnRRPA
with a minimal amount of correlations. Indeed, qualitatively
similarly to Refs. [3,14], in FT-pnRRPA with the tempera-
ture increase we obtain some general thermal unblocking that
leads to the appearance of new transitions at the low end
of the spectrum, which begin to be visible at T = 1 MeV in
Fig. 1. However, we did not observe the strong low-energy
p f7/2 → n f5/2 transition in the GT+ branch at this tempera-
ture value, which leads us to somewhat lower EC rates than
those of Refs. [3,14].

It would be desirable to extend the applicability area of
the present approach. Away from the shell closures atomic
nuclei are known to acquire shapes different from the spher-
ical ones. Deformed calculations are presently available
within the QRPA [59–63]. In particular, the recent studies
of Refs. [62,63] conclude that the electron capture rates in-
crease with the increasing axial deformation. The possibility
of extending the pnR(Q)TBA to nonspherical geometry will
be explored in the future work. Complete nuclear structure
input for the supernova modeling also requires the EC rates
in nuclei with odd numbers of particles. An accurate descrip-
tion of such systems should involve the calculation of the
three-fermion propagator, or the propagator of one fermion
coupled to a vibration in the strongly correlated medium. This
can be done within the same formalism, but the analytical
part of the approach should be modified accordingly. A much
simpler, but perhaps less accurate, alternative is blocking
the odd particle, as many practitioners do; see, for instance,
Refs. [64,65].

IV. SUMMARY AND OUTLOOK

In this work we investigated the role of complex nu-
clear correlations in the stellar electron capture process for
the nuclei around 78Ni which are abundantly produced, for

instance, during the stellar collapse at temperatures T ≈ 10
GK and densities lg(ρYe) ≈ 11. A more advanced approach
(FT-pnRTBA), taking into account complex nuclear corre-
lations originated from coupling between the single-particle
and collective degrees of freedom, the particle-vibration cou-
pling, was compared with the simpler approach (FT-pnRRPA)
neglecting these correlations. While the finite-temperature
RPA is known conceptually since many decades, the finite-
temperature relativistic time blocking approximation was
developed only recently. Both approaches adopted for charge-
changing transitions on the base of the relativistic effective
meson-exchange Lagrangian were applied to calculations of
the Gamow-Teller excitations in the β+ branch in even-even
nuclei around 78Ni. The electron capture rates for the range of
temperatures and electron densities around those of the most
abundant production of such nuclei in stars were extracted in
the zero momentum transfer limit. The GT+ strength distri-
butions and EC rates obtained within these two models were
compared to reveal how the PVC correlations, being purely
microscopical effects of internal nuclear structure, propagate
to the electron capture processes in the stellar media, which
determine large-scale features of star evolution. In general, we
found that the PVC correlations increase the EC rates. As a
consequence, they further reduce the electron-to-baryon ratio
leading to lower pressure, thus promoting the gravitational
collapse. The concurrent increase of the neutrino flux inten-
sifies the effective cooling that, in turn, allows heavy nuclei to
survive the collapse.

The EC rates calculated within the FT-pnRTBA were com-
pared to the existing systematics based on the parametrization
of SMMC and RPA calculations and found to be in par-
tial agreement with that systematics, while the FT-pnRRPA
results showed considerably lower EC rates. The overall
agreement between the FT-pnRTBA and the parametrized
rates is better at low electron densities, while at higher
densities FT-pnRTBA returns lower EC rates than the sys-
tematics. The discrepancy can be attributed to the absence
of the forbidden transitions in the present calculations and
missing correlations of higher complexity. To verify the
latter possibility, we explored the potential of the most re-
cent approach which further extends the FT-pnRTBA with
the GSCPVC correlations of higher complexity, that were
found important for the description of GT+ strength in
neutron-rich nuclei. Although this approach is not yet gener-
alized for finite temperatures, our estimate showed that these
correlations should enhance the EC rates at high electron
densities.

In this way, the complex nuclear correlations beyond the
one-loop approximation of the (FT)-QRPA type are found
important and to be included in the calculations of EC rates
in stellar environments. In particular, the PVC correlations
are necessary as they reproduce the GT strength distributions
considerably better. However, in some cases the leading-
approximation PVC correlations may be not sufficient for the
accurate determination of the GT+ excitations and EC rates
in neutron-rich nuclei and more sophisticated correlations are
needed. Further model developments as well as experimental
studies of the GT+ transitions in neutron-rich nuclei are ex-
pected to clarify the remaining issues.
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