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In the previous paper [Bhagwat, Centelles, Viñas, and Schuck, Phys. Rev. C 103, 024320 (2021)] we have
shown that self-consistent extended Thomas-Fermi (ETF) potentials and densities associated with a given
finite-range interaction can be parametrized by generalized Fermi distributions. As a next step, a comprehensive
calculation of ground-state properties of a large number of spherical and deformed even-even nuclei is carried
out in the present paper using the Gogny D1S force within the ETF scheme. The parametrized ETF potentials and
densities of the previous paper are used to calculate the smooth part of the energy and the shell corrections within
the Wigner-Kirkwood semiclassical averaging scheme. It is shown that the shell corrections thus obtained, along
with a simple liquid drop prescription, yield a good description of ground-state masses and potential-energy
surfaces for nuclei spanning the entire periodic table.
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I. INTRODUCTION

The development of radioactive beam facilities, such as
Spiral, Radioactive Beam Experiment at ISOLDE/CERN
(REX-ISOLDE), Facility for Antiprotons and Ion Research
(FAIR), and the future Facility for Rare Isotope Beams
(FRIB), has allowed researchers to produce and determine the
masses of many nuclei far away from the stability line [1].
Therefore, the study of nuclear masses continues to be an im-
portant and active field in nuclear physics. On the theoretical
side there are basically two different approaches to compute
nuclear masses. One of them starts from effective interactions,
such as the Skyrme [2–5], Gogny [6–9], simple effective
interaction [10], or M3Y [11] forces; energy density function-
als like Barcelona-Catania-Paris-Madrid (BCPM) [12,13]; or
relativistic mean-field (RMF) models [14], and calculates the
masses through the Hartree-Fock-Bogoliubov (HFB) method
[15] with eventual additional corrections beyond mean field.
As examples of HFB calculations of nuclear masses along the
whole periodic table we shall mention the ones obtained by
the Brussels-Montreal group (see Refs. [16,17] and references
therein). They build up a sophisticated energy density func-
tional using a generalized Skyrme interaction, which contains
a density-dependent momentum term, a microscopic pairing
contribution, and a macroscopic Wigner term. This functional
depends on 30 parameters, which are fitted to reproduce,
among another properties, 2353 nuclear masses as well as the
behavior of microscopic equations of state in neutron matter
at high density. As a result, the so fitted BSk22 → Bsk26
forces predict mass rms deviations between 629 and 544 keV
[17], which are among the best estimates of nuclear masses.

Other parametrizations of the Skyrme force applied to large
scale calculations of nuclear masses are the ones developed by
the Universal Nuclear Energy Density Functional (UNEDF)
collaboration. Reference [18] reports three different fits of the
Skyrme interaction to nuclear masses that for 555 even-even
nuclei predict rms deviations of 1.428 MeV (UNEDF0), 1.912
MeV (UNEDF1), and 1.950 MeV (UNEDF2), which are in
harmony with other estimates of masses for the same set of
nuclei using different mean-field models [12]. Finally, let us
mention that there exists another large scale compilation of
nuclear masses computed through HFB calculations with the
Gogny D1S force [19].

Another method to obtain nuclear masses is the so-called
microscopic-macroscopic (Mic-Mac) model [20–25]. This
model is based on the Strutinsky energy theorem. According
to this theorem, the nuclear ground-state energy can be de-
composed in two parts. One of them, which varies smoothly
with mass and atomic numbers, is usually evaluated through
liquid drop models (LDMs) of different degrees of sophisti-
cation. The other part is an oscillating contribution, which is
directly related to the quantal shell effects. This part is the
sum of the shell correction energy and the pairing correlation
energy. In the Mic-Mac models the oscillatory contribution is
usually evaluated by means of an external potential. The shell
correction for each kind of particles is obtained as the total
quantal energy (the sum of neutron and proton eigenvalues)
minus the corresponding neutron or proton averaged energy.
The fact that in Mic-Mac models the macroscopic part and
the microscopic one are not connected may be seen as a
drawback if one has in mind an ab initio calculation with no
ambiguities concerning the inputs and the results. However,
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in nuclear physics we are yet to reach a state where unam-
biguous ab initio calculations can be done for any system
across the periodic table. We have recourse to phenomeno-
logical density functionals, which are not unique and give the
macroscopic properties in a somewhat indirect way. Hence,
an independent but rather direct fit via a LDM approach of
the macroscopic properties can eventually have some practical
advantages. Energy density functionals derived from effective
forces probably never can catch all the correlations necessary
for a fine tuning of the energies. The LDM has the advantage
of fitting directly relevant quantities such as binding ener-
gies, surface and curvature energies, etc. For example, the
theoretically difficult zero-point energies of HFB calculations
are also directly fitted into the LDM ones. In contrast, in
shell corrections, since they are obtained from differences of
two energies, errors may cancel out. It is worth noting that
successful functionals such as those derived in Refs. [16,17]
include a Wigner term, which has a clear macroscopic LDM
origin. Certainly the fine structure of the microscopic energy
depends sensitively on details like spin orbit (SO), isospin de-
pendence of the mean-field potential, effective mass, pairing
correlations, etc. However, these contributions can be investi-
gated separately without the heavy machinery of fitting all the
parameters from self-consistent calculations. It should also be
mentioned that there is still room for additional improvements
of the Mic-Mac model, as for example in what concerns the
most important contributions around magic and doubly magic
nuclei. In this sense we will pursue in this paper our studies
of the Mic-Mac model, which in any case is also among the
more successful methods for predictions of nuclear masses.

In many Mic-Mac calculations the average shell energy is
obtained using the so-called Strutinsky method [26,27], which
is a well-defined mathematical procedure for dealing with the
smoothing of shell effects in finite nuclei. This technique,
however, runs into practical difficulties for finite potentials
because its calculation requires the knowledge of the discrete
single-particle spectrum at least in three major shells above
the Fermi level. For realistic nuclear single-particle poten-
tials to perform the Strutinsky average implies to take into
account the continuum, which in many cases is discretized
by diagonalizing the single-particle Hamiltonian in a basis
of an optimal size. This is a very delicate process and not
everyone can handle this easily (see for example in this respect
Ref. [28]).

A possible way to deal with the shell corrections bypassing
these difficulties of the genuine Strutinsky smoothing is the
so-called Strutinsky integral method [29]. In this approach one
first minimizes the semiclassical energy density correspond-
ing to a given effective interaction at Thomas-Fermi (TF) or
extended Thomas-Fermi (ETF) level. Next, one computes the
shell correction as the difference between the quantal energy
(sum of the eigenvalues of the lowest occupied single-particle
levels) and the corresponding semiclassical counterpart within
the self-consistent TF or ETF mean field, considered as an
external potential. In this way the microscopic energy is added
perturbatively to the macroscopic LDM energy provided by
the semiclassical energy. A first estimate of nuclear masses
using this method was performed in the 1980s [30,31]. Later
on a more complete mass table, called ETFSI-I, was reported

[32–34]. Later on a set of mass formulas, computed also with
the same method together with the MSk1 → MSk6 Skyrme
forces, was also obtained, finding a mass rms deviation in the
range between 0.709 and 0.848 MeV [35]. In addition, a study
of the fission barriers of neutron-rich and superheavy nuclei
was performed also using the ETF-plus-Strutinsky integral
method [36]. This ETF-plus-Strutinsky integral method has
been widely used in the context of neutron star calculations to
compute the equation of state of the inner crust using Skyrme
forces (see Ref. [37] and references therein) and Gogny inter-
actions [38].

To avoid this problem, we proposed some years ago an
alternative technique. In Ref. [24] it was shown that in order
to evaluate the average energy of a set of N neutrons and Z
protons in an external single-particle potential, the Strutinsky
average could be replaced by the corresponding semiclassical
energy obtained by means of the Wigner-Kirkwood (WK)
h̄ expansion of the one-body partition function [15,39–45]
associated to the external potential. There are several reasons
supporting this choice of using the WK approach instead of
the Strutinsky average to compute the shell corrections. First,
the Strutinsky level density is known to be an approximation
to the Wigner-Kirkwood level density in the least-square sense
[46]. Second, the WK level density avoids the problems re-
lated with the treatment of the continuum, as far as the upper
limit of the energy needed for its calculation is the Fermi
level. Although the WK level density including h̄ corrections,
gWK(ε), has a ε−1/2 divergence for potentials that vanish at
large distances [47], the integrated moments of this quantity
are well behaved [45].

As it has been shown in previous literature [24,25], the
use of the WK expansion to compute the shell correction
allows one to obtain ground-state masses along the whole
periodic table with a quality similar to that found using the
well-established Mic-Mac models such as the finite range
droplet model (FRDM) of Möller-Nix [21] or the Strasbourg-
Lublin drop (SLD) [22] for the same set of nuclei. In this
paper we explore the interesting possibility of using self-
consistent single-particle potentials computed with effective
nuclear interactions to calculate shell corrections using the
WK approximation. This choice would provide a link between
the well-known mean-field approximation using effective
forces and the Mic-Mac models. To this end, instead of the
fully quantal single-particle potential obtained from the HFB
scheme, we use, in the spirit of the so-called expectation value
method [42,48], the semiclassical single-particle potentials
developed in paper I [49]. These potentials have been calcu-
lated self-consistently in the ETF approximation (see paper I
for further details). The ETF approach is based on the WK ex-
pansion of the distribution function and has some advantages.
First, due to the fact that the ETF method is deeply rooted in
the classical periodic orbit theory [43], it gives a very intuitive
picture of the physical process. Second, the ETF approach
provides energy density functionals expanded order by order
in h̄. The ETF approach has been widely used together with
Skyrme forces for describing binding energies of finite nuclei
at zero and finite temperature [42] as well as in the RMF
framework [50,51]. The ETF approach has also been extended
to the case of nonlocal single-particle Hamiltonians [52] and,
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therefore, can be applied to the case of effective finite-range
forces, like the Gogny interaction [52–54] as we will do in this
paper.

We begin with a very brief overview of the essentials of
the Mic-Mac approach using the WK averaging scheme. The
results will be presented and discussed in the third and fourth
sections. The summary and conclusions are contained in the
last section.

II. FORMALISM AND DETAILS OF CALCULATIONS

A. The microscopic part of the model

The essential ingredient to evaluate the microscopic part in
the Mic-Mac models is the external single-particle potential.
Using this potential the quantal effects, namely, the shell cor-
rections and the pairing correlations, are calculated. Usually
this external mean field is chosen as a phenomenological
potential that is able to reproduce as closely as possible the
experimental single-particle energy levels of some selected
nuclei. Examples of these potentials are the one derived by
Wyss that was used in our previous Mic-Mac WK calculations
[24,25] or the Yukawa folded interaction used in the FRDM
[21] and SLD [22] Mic-Mac calculations. Alternatively, in the
present paper we propose to use as external potential the one
obtained semiclassically employing the D1S Gogny interac-
tion. For practical purposes this Gogny-based potential has
been fitted to generalized Woods-Saxon functions, as has been
explained in detail in paper I [49]. Our aim here is to see, on
the one hand, whether, and in which way, this procedure can
compete with the version where also the mean-field potential
is entirely phenomenological. On the other hand, we want to
investigate what can be learned from the comparison between
our Mic-Mac and the HFB calculations obtained with the
same interaction.

The single-particle Hamiltonian reads

Ĥ = −h̄2

2m
∇2 + V (�r) + V̂LS (�r), (1)

where V (�r) is the one-body central potential and V̂LS (�r) is the
spin-orbit potential. In order to remain as close as possible
to the phenomenological mean-field potentials, we chose the
semiclassical Gogny single-particle potential derived from the
energy density that includes the effective mass contribution in
the potential-energy part (see paper I [49] for further details),
which is consistent with the single-particle Hamiltonian (1).

As discussed in paper I [49], the central and spin-orbit
potentials entering in Eq. (1) are computed at ETF level with
the D1S Gogny interaction and then parametrized for each
type of nucleon i = n, p as

V (i)(r) = V (i)
m

[
f
(
r; R(i)

m , a(i)
m

)]ν (i)
m (2)

and

V (i)
SO (r) = U (i)

SO

d

dr

{[
f
(
r; R(i)

SO, a(i)
SO

)]ν
(i)
SO

}
, (3)

respectively, with

f (r) = 1

1 + exp [l (�r)/a]
. (4)

In Eqs. (2) and (3) V (i)
m and U (i)

SO are the strengths of the central
and spin-orbit potentials, respectively; a is the diffuseness;
and l (�r)/a is the distance function, which is defined under the
requirement that the skin thickness remains constant through
the nuclear surface. Thus the distance function reads [24]

l (�r) = r − Rs

|∇(r − Rs)|r=Rs

, (5)

where Rs is the position of the deformed surface, which is
parametrized as

Rs = CR0

(
1 +

∑
λ,μ

αλ,μYλ,μ

)
. (6)

In this equation R0 is the half-density radius of the Woods-
Saxon function (2), C is a constant to ensure the volume
conservation, and the coefficients αλ,μ are related to the three
degrees of freedom considered in this paper, namely, β2, β4,
and γ , through the standard relations given in Ref. [24]. The
numerical values of the parameters that define the central
[Eq. (2)] and spin-orbit [Eq. (3)] potentials are reported in
Appendix B of paper I [49].

As we did in previous calculations [24,25], we compute
the Coulomb potential, which for protons contributes to the
central part of the single-particle Hamiltonian (1), by folding
the proton density with the Coulomb interaction. In order
to simplify the calculation, we take the proton density as
parametrized in paper I [49] and use the same deformation
parameters as for the nuclear potential for protons.

The shell correction is given by the difference between the
quantal energy and its averaged counterpart. In the case of an
external potential the quantal energy is given by the sum of
eigenvalues associated to the single-particle Hamiltonian (1).
The average energy in our Mic-Mac model is given by the
WK energy associated to the Wigner transform of the quantal
Hamiltonian (1). The pairing correlations are important for
open-shell nuclei. As we have done in our previous works
[24,25], we include the pairing effects for both neutrons and
protons through the Lipkin-Nogami model of pairing on top of
the quantal Hamiltonian (1). The microscopic energy, which
in the Mic-Mac models is given by the sum of the shell
corrections and pairing correlations for each type of nucleons,
reads

δE = Eshell,n + Epair,n + Eshell,p + Epair,p. (7)

To obtain the semiclassical WK energy the starting point is
the quantal partition function:

Z (β ) = Tr[exp (−βĤ )], (8)

where Ĥ is the Hamiltonian of the system (1), which includes
the central and spin-orbit terms.

The semiclassical WK expansion of the one-body partition
function in powers of Planck’s constant h̄ was developed by
Wigner [39] and Kirkwood [40]. It allows one to obtain sys-
tematic corrections to the Thomas-Fermi energy and particle
number (see for example also Refs. [15,41,43,45] for more
details). Here, we expand the semiclassical partition func-
tion up to the fourth order in h̄. Symbolically, this can be
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expressed as

Z (4)
WK(β ) = Z (4)

CN(β ) + Z (4)
SO (β ), (9)

where Z (4)
CN(β ) and Z (4)

SO (β ) are the WK partition functions
for the central and spin-orbit terms [41], respectively. For
each kind of nucleons, the level density, energy, and particle
number can be obtained through suitable Laplace inversions
of the partition function as follows:

gWK(ε) = L−1
ε Z (4)

WK(β ), (10)

N = L−1
λ

(
Z (4)

WK(β )

β

)
, (11)

and

EWK = λN − L−1
λ

(
Z (4)

WK(β )

β2

)
, (12)

where λ is the chemical potential, fixed by demanding the
right particle number. Details of this procedure as well as
the corresponding formulas for the various quantities can be
found in Refs. [24,25].

According to Ref. [41], we write the WK energy in the
following way:

EWK = λN − (
ECN

h̄0 + ECN
h̄2 + ECN

h̄4

) − (
ESO

h̄2 + ESO
h̄4

)
, (13)

where ECN
h̄2k and ESO

h̄2k denote the contributions to the average

energy of the order h̄2k arising from Laplace inversion of
the central and spin-orbit parts of the partition function (9),
respectively. Explicit expressions of each contribution to the
WK energy in Eq. (13) are reported in Ref. [25] and we
summarize them in Appendix A for the sake of completeness.

B. The macroscopic part of the model

The macroscopic part of the energy is determined using the
liquid drop model. Here, we use a version inspired by the one
of Pomorski and Dudek [22] (see also Refs. [24,25]):

Emac = av

[
1 + 4kv

A2
Tz(Tz + 1)

]
A

+ as

[
1 + 4ks

A2
Tz(Tz + 1)

]
A2/3

+ acur

[
1 + 4kcur

A2
Tz(Tz + 1)

]
A1/3

+ 3Z2e2

5r0A1/3
+ C4Z2

A
+ EW , (14)

where av , as, acur, kv , ks, kcur, r0, and C4 are free parameters;
Tz = |N − Z|/2 is the third component of isospin; e is elec-
tronic charge; and EW is the Wigner energy, given by

EW = w1 exp

{
− w2

∣∣∣∣N − Z

A

∣∣∣∣
}

(20 − Z )
(40 − A) (15)

with w1 and w2 as free parameters. Most of the nuclei con-
sidered in the investigation are deformed. The liquid drop
quantities defined above, in particular, surface, curvature, and
Coulomb energies, therefore become deformation dependent.
Details can be found in Ref. [25]. It is important, however,

to point out that in our previous works [24,25] the curvature
energy was dropped because we had found that it was very
difficult to adjust the corresponding parameter reliably: the
rms error in the parameter worked out to be of the order of
100%. In the present paper, however, the curvature correction
is found to make a significant contribution. The inclusion of
the curvature correction (without any isospin component) is
crucial to ensure that the isotopes 182,184,186Pb work out to be
spherical (see below).

C. The fitting procedure

As we have mentioned before, the total energy in our Mic-
Mac model can be written as

E (N, Z, β̂ ) = ELD(N, Z, β̂ ) + η δE (N, Z, β̂ ), (16)

with ELD(N, Z, β̂ ) being the LDM part of the energy and
δE (N, Z, β̂ ) the microscopic part of the energy (shell correc-
tion plus pairing à la Lipkin-Nogami). N and Z represent the
neutron and proton numbers, and the symbol β̂ stands for
three deformation parameters, namely, β2, β4, and γ . In our
previous works [24,25], where we developed the WK Mic-
Mac model based on the Wyss potential, the renormalization
factor η was chosen to be 0.85 (see Refs. [24,25] for details).

In this paper, where we use the Gogny-based mean field as
external potential, we proceed in a similar way. Starting with
the value η = 0.85 and from the optimal deformation param-
eters for each nucleus obtained from the Wyss potential [25],
we have performed a new minimization for each considered
nucleus in order to find the optimal deformation parameters
associated to the Gogny-based single-particle potential as well
as the coefficients of the macroscopic part Eq. (14). However,
the Gogny Mic-Mac model fitted in this way ran into trou-
bles while the potential-energy surfaces (PESs) were being
explored. It turned out that the 182,184,186Pb isotopes had strong
prolate minima, which is not acceptable, given that these are
all semimagic nuclei, and Z = 82 is a very robust proton shell
closure. It was also found that this lack of sphericity of the
previously mentioned Pb isotopes was not avoided by varying
the η parameter within a range of reasonable values. To solve
this problem it is important to point out that the deformation
properties, which impact on the microscopic part, are strongly
linked with the surface properties of the macroscopic part of
the model, which are determined by the surface and curva-
ture terms in Eq. (14). Therefore the pathology found in the
shape of 182,184,186Pb should be attributed to a deficiency of
the macroscopic part because only the surface contribution
was taken into account in the minimization procedure. Thus,
we have performed a new minimization of the difference
between the theoretical and experimental energies by adopting
η = 0.67. In this minimization we have additionally explicitly
taken into account the curvature coefficient, along with its
deformation dependence, in the macroscopic part and checked
explicitly that the nuclei 182,184,186Pb were spherical in their
ground state.

The liquid drop parameters in Eq. (14) for the Gogny-
based WK Mic-Mac model fitted to the experimental energies
[1] (without the electronic binding energy, which has been
subtracted from the energies reported in Ref. [1]) of 551 even-
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TABLE I. Liquid drop parameters in Eqs. (14) and (15).

Parameter Expt. HFB

av (MeV) −15.9030 −16.7564
kv −1.8549 −1.9764
as (MeV) 20.2648 26.2775
ks −2.1017 −2.1297
acur (MeV) −3.7770 −12.6004
kcur 0 0
r0 (fm) 1.1919 1.1376
C4 (MeV) 1.3210 2.0892
w1 (MeV) −1.5279
w2 7.8563
rms dev. (MeV) 0.834 3.950

even spherical and deformed nuclei are reported in Table I
with the label “Expt.” The complete list of energies of these
551 nuclei can be found in the Supplemental Material [55].
The rms deviation of the energies from experiment is 834
keV, as reported in the bottom row of Table I. For the sake of
ascertaining whether our Mic-Mac approach leads to consis-
tent results, we have also performed another different fit of the
macroscopic part of our model to reproduce the Gogny-D1S
HFB energies of the same set of nuclei. The values of the
corresponding liquid drop parameters are given in the same
table with the label “HFB”; the energy rms deviation from
experiment in this case increases to 3.95 MeV. It is worthwhile
to mention here that the isospin curvature term in Eq. (14)
is not considered in these fits for the following reasons. On

the one hand, the statistical error of this term is usually very
large. On the other hand, this term usually weakens the isospin
surface term by a large factor. In our fit of the macroscopic part
we have also included the Wigner term, which is relevant for
describing light nuclei and practically not needed for nuclei
with mass numbers greater than A = 40. Our Gogny-based
WK Mic-Mac model has been fitted for atomic numbers above
Z = 20, which implies that only few nuclei are affected by the
Wigner term. We have checked that if this term is not taken
into account in the macroscopic part of the energy, one obtains
basically the same energy rms deviation. The reason for that is
a correlation between the curvature and Wigner terms, which
produce larger contribution of the curvature energy when the
Wigner term is not considered. In the third column of Table I
we report with the label “HFB” the liquid drop parameters of
the model fitted to reproduce the HFB energies computed with
the D1S Gogny interaction. In this case the fit is performed
without taking into account the Wigner term for the reasons
pointed out before.

III. RESULTS AND DISCUSSIONS

A. Mic-Mac versus HFB calculations with the D1S
Gogny interaction

In Fig. 1 we display by red solid circles the residues (the
differences between the calculated and experimental energies)
of 551 spherical and deformed even-even nuclei, the masses
of which are experimentally well determined, calculated with
our Gogny-based WK Mic-Mac model. In the same figure we
show with magenta empty circles the residues of the HFB

0 40 80 120 160
Neutron Number

-6

-3
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3

6

9

12

15

ΔE
 (

M
eV

)

HFB (D1S)
Mic-Mac (HFB, D1S)
Mic-Mac (D1S)

FIG. 1. Residues with respect to the experimental energies of 551 spherical and deformed even-even nuclei predicted by the HFB
calculation with the Gogny D1S force (magenta empty circles) [57] and by the Mic-Mac Gogny-based models fitted to experimental energies
(red solid circles) and to HFB energies (cyan empty triangles).
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FIG. 2. Residues with respect to experiment for the energies of 551 spherical and deformed even-even nuclei calculated with the WK
Mic-Mac models based on the Gogny D1S force (red solid circles) and on the phenomenological Wyss potential (blue solid triangles).

energies computed using the same D1S force and the same
set of nuclei. As it can be seen, the pattern exhibited by the
two calculations performed with the same D1S interaction is
clearly different. On the one hand, the HFB energies calcu-
lated with the D1S interaction show the well-known energy
drift for neutron-rich nuclei [56], while in the Mic-Mac cal-
culation, where the macroscopic part is fitted to experimental
masses, this drift is completely washed out and the predic-
tions are very similar to the ones obtained in our previous
calculation [25] with the phenomenological Wyss potential,
as it can be clearly appreciated in Fig. 2. On the other hand,
our Gogny-based Mic-Mac model is able to reproduce quite
accurately the HFB results when the liquid-drop parameters
of our model have been fitted to the HFB energies. This
can be seen in Fig. 1 where the predictions of our Mic-Mac
model in this case are given by cyan empty triangles. The
Gogny-based WK Mic-Mac model fitting the macroscopic
part to the full quantal HFB energies reproduces the exper-
imental masses of the selected set of nuclei with a similar
rms deviation ≈4 MeV as the one provided by HFB calcu-
lation, pointing out that the Mic-Mac model is a consistent
approach and captures the essential physics of the full quantal
calculation.

Our results show that the energies calculated using our WK
Mic-Mac model with the macroscopic part fitted to the exper-
imental data are to some extent independent of the external
potential used to determine the microscopic part. This is due
to the fact that the relatively small differences in the micro-
scopic energies computed with different external potentials
can be easily absorbed by the large macroscopic part through

a variation of the liquid drop parameters. In this respect, it
is expected that the energies predicted by our Gogny-based
model starting from a different Gogny interaction, say D1M

TABLE II. Binding energies (in MeV) for Pb isotopes. Those
reported in Ref. [57] and the experimental values are also quoted for
comparison. Notice that the contribution to the experimental energies
from electronic binding has been removed here.

A This paper Ref. [57] Expt.

178 −1367.60 −1369.13 −1368.40
180 −1389.28 −1389.94 −1390.05
182 −1410.37 −1410.26 −1411.08
184 −1430.90 −1430.09 −1431.45
186 −1450.88 −1449.44 −1451.23
188 −1470.31 −1468.37 −1470.50
190 −1489.26 −1486.88 −1489.25
192 −1507.70 −1505.02 −1507.54
194 −1525.58 −1522.79 −1525.32
196 −1542.83 −1540.20 −1542.62
198 −1559.33 −1557.26 −1559.45
200 −1575.19 −1573.96 −1575.79
202 −1590.56 −1590.28 −1591.63
204 −1605.48 −1606.21 −1606.94
206 −1619.91 −1621.66 −1621.76
208 −1633.29 −1636.44 −1635.86
210 −1643.09 −1643.79 −1644.98
212 −1652.12 −1650.81 −1653.95
214 −1660.87 −1657.49 −1662.72
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FIG. 3. Residues with respect to experiment for the energies of 551 spherical and deformed even-even nuclei obtained with the Mic-Mac
models FRDM [21], SLD [22], and our WK model using the Gogny-based and the phenomenological (Wyss) potentials as external mean
fields.

[9] for example, would predict on average similar energies
if the parameters of the macroscopic part are fitted to the
experimental data, the differences with the results reported
in this paper, obtained using the D1S force, being relatively
marginal.

It is well known that the D1S Gogny interaction suffers
from a drift in the energy with respect to the experimental
values when the number of neutrons increases for a given
nucleus (see Ref. [56] and references therein) as can be clearly
seen in Fig. 1. To overcome this deficiency, new Gogny inter-
actions of the D1 family, namely, D1N [8] and D1M [9], were
proposed. These interactions include in the fitting protocol of
their parameters new constraints such as, among others, that of
reproducing qualitatively the trends of a microscopic equation
of state in neutron matter. As can be seen in Fig. 1, the Mic-
Mac model based on the Gogny D1S force also removes the
drift in the binding energies along isotopic chains. Therefore
it is expected that this Mic-Mac model can reproduce the
experimental energies in heavy neutron-rich nuclei better than
the HFB calculations using in both cases the same D1S inter-
action. To analyze more in detail the differences between the
full HFB and the Mic-Mac ground-state energies, we report
in Table II the binding energies along the Pb isotopic chain
computed at HFB and Mic-Mac levels. From this table it is
seen that the HFB energies in this isotopic chain exhibit a sys-
tematic behavior with respect to the Mic-Mac Gogny results
obtained in the present paper. In particular, we see that for
neutron-deficient Pb isotopes, both HFB and Mic-Mac agree
well with the experiment. With increasing neutron number,
the two predictions deviate from each other. The Mic-Mac

results remain close to the experiment, but the HFB results
deviate strongly from it. As the shell closure approaches, the
Mic-Mac results start to deviate from the experiment, whereas
the HFB values go on improving. Away from the shell closure,
the Mic-Mac calculations again improve, whereas HFB starts
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FIG. 4. Binned data and the corresponding Gaussian fits for the
different Mic-Mac models considered in the present paper (see text
for more detail).
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FIG. 5. The difference between the calculated and the experimental [1] energies for Zn, Ba, Pt, and Rn isotopes.

deviating from experiment (214Pb) as a consequence of the
energy drift mentioned before.

B. Comparison with other Mic-Mac models

In this subsection we want to compare the predictions of
our Gogny-based Mic-Mac models with the results provided
by very well-known Mic-Mac models such as the FRDM of
Möller and Nix [21], the SLD of Pomorski and Dudek [22],
and the WK Mic-Mac model based on the phenomenological
Wyss potential [24,25]. These comparisons are performed for
the chosen set of 551 spherical and deformed nuclei with
well-determined masses according to the Audi 2012 evalua-
tion [1]. To this end, we display in Fig. 3 the residues with
respect to the experimental energy predicted by the FRDM,
SLD, WK Wyss potential, and Gogny-based WK Mic-Mac
model developed in this paper. From Fig. 3 we can see that,
globally, all the considered Mic-Mac models are quite equiva-
lent for describing ground-state energies with residuals that
are not larger than ±2 MeV along the whole periodic ta-
ble. All the considered models show, globally, similar trends,

with the largest residues corresponding to magic numbers.
Another common property of these residues is the fact that
they are relatively larger for low mass than for heavy mass
nuclei. The fact that all these models qualitatively behave
more or less alike needs a more detailed analysis. In order
to do so, we have binned the residues �E = Ecal − Eexpt.,
i.e., the difference between the calculated and experimental
energies, in a suitable way to get the normalized frequency
distribution. The bin size was chosen carefully through the
well-known Freedman-Diaconis procedure [58,59]. It is well
known that this choice of the bin size is quite robust, and
works well for a range of underlying probability distributions,
so long as the probability distributions are square integrable
functions.

The binned data plotted along with the corresponding fitted
Gaussian profiles are displayed in Fig. 4. We can see that
all the four sets of data yield almost Gaussian profiles, with
correlation coefficients greater than 0.95 in all the four cases.
All the distributions have a central peak of height ≈0.13 at
�E ≈ 0, indicating that about 13% of the data is described
with deviation of approximately zero with respect to the ex-
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FIG. 6. Calculated and experimental values of two-neutron separation energies.

perimental data. Apart from the different standard deviations
in all the four models, the profiles of the residues were found
to be very similar, supporting the previous observation that
all the four mass models are more or less equivalent, globally
speaking. A more detailed inspection of Fig. 4 shows that our
WK models are well centered around �E ≈ 0, while SLD and
FRDM show a small shift towards negative �E values, which
is more important for the SLD data. This fact indicates that on
average our WK results are well scattered around the experi-
mental energies while SLD and FRDM show a slight tendency
of overbinding, at least for the considered set of nuclei. The
widths of the Gaussian fits suggest that, for the considered set
of nuclei, the quality of the WK results using the phenomeno-
logical Wyss potential is somewhat better than the quality of
the predictions of the FRDM and SLD calculations. From this
figure it is also clear that width of the Gaussian associated
to the WK Gogny-based potential calculation is larger than
the other widths displayed in the figure, pointing out that the
energy description for the set of considered nuclei provided
by the WK Gogny-based Mic-Mac model is a fringe worse

than the one obtained using the other models considered in
this analysis.

In order to investigate the predictive power of the WK
Gogny-based model in different regions of the nuclear chart,
we show in Fig. 5 the residues with respect to the experi-
mental values of the energies along the Zn, Ba, Pt, and Rn
isotopic chains computed with our Gogny-based WK model in
comparison with the predictions of the FRDM, SLD, and WK
Wyss potential. For Zn isotopes, the FRDM and SLD predic-
tions are somewhat better than the ones of both WK models
for mass numbers between A = 60 and 70, and the opposite
is true for the heaviest isotopes of the chain, where the mass
numbers are in the range between A = 74 and 80. However,
in general, the predictions of the WK Gogny-based model un-
derbind the experimental energies, mainly around A = 60–66.
For Ba isotopes, the predictions of the FRDM, SLD, and both
WK models agree reasonably well except, maybe, around
the magic neutron number N = 82 (corresponding to 138Ba)
where the Gogny-based WK calculation predicts larger differ-
ences with respect to the experiment than the FRDM, SLD,
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FIG. 7. Residues with respect to experiment for the energies of 551 spherical and deformed even-even nuclei calculated with the WK
Mic-Mac model based on the Gogny D1S force (filled red symbols) and the HFB results calculated with the Gogny D1M force (open blue
symbols).

and WK Wyss models. For Pt isotopes, the FRDM, SLD,
and both WK residues show, qualitatively, a similar behavior.
However, in general, the residues corresponding to the WK
Gogny-based model are larger than the ones predicted by the
FRDM, SLD, and WK Wyss calculations. For Rn isotopes,
the WK Gogny-based model predicts similar binding energies
to the other Mic-Mac models considered in the range of mass
numbers between A = 196 and 206, while in the intermediate
region with mass numbers between A = 208 and 210, the
residues predicted by the WK Gogny-based model are a bit
smaller than the ones found in the FRDM, SLD, and WK
Wyss calculations. Let us mention that the good agreement
between the residues obtained in the FRDM and SLD calcula-
tions is, actually, due to the fact that both models use the same
microscopic part.

More quantitative information about the goodness of the
different Mic-Mac models analyzed in this paper is provided
by the energy rms deviations, which for the set of considered
nuclei are 635 keV (FRDM), 731 keV (SLD), 609 keV (WK
Wyss), and 834 keV (WK Gogny). The fact that the rms devia-
tion predicted by our WK Gogny-based calculation (834 keV)
is larger than the one obtained with our WK method using the
phenomenological Wyss potential (609 keV), which in turn is
similar to the rms deviation corresponding to FRDM and SLD
models for the same set of nuclei, can be appreciated in Fig. 2.
In this figure we can see that the prediction of the WK model
based on the Wyss potential gives a better description of the
experimental energies in the range between A ≈ 100 and 200
than the WK Gogny-based calculation. These facts show the
limits of the predictive power of the Mic-Mac model based on

the D1S interaction and suggest the two following comments.
On the one hand, the use of a more accurate Gogny interaction
for describing finite nuclei, as for example D1M [9], which is
free of the energy drift discussed before, may slightly improve
the quality of the description of ground-state energies with the
WK Gogny-based model. Although the global quality of the
WK Gogny-based model is lower by a very small amount for
describing ground-state energies as compared with the predic-
tions of the other Mic-Mac models considered in this paper,
it is accurate enough to give predictions in good agreement
with the experimental data. As an example, we display the
two-neutron separation energies for Sn, Dy, and Pb isotopes
in Fig. 6. The excellent agreement between calculations and
experiment can be clearly seen in the figure. However, despite
the globally good performance, we must admit that the use of
a more microscopically based mean field as the one used here,
which is based on the Gogny D1S force, does not show any
decisive advantage over, e.g., the purely phenomenological
Wyss potential, in what concerns the calculation of nuclear
masses.

However, some remarks on the underlying physics of our
Mic-Mac approach are in order. The Gogny D1S Mic-Mac
results clearly show that the relatively large rms deviation of
3.95 MeV (see Table I) of the microscopic HFB D1S masses
is not necessarily to be attributed to a bad behavior of the
shell structure (given by the shell correction energies) but
rather to a deficiency of the bulk behavior. It is most obvious
that the LDM part of our Mic-Mac model saves the bulk
part from the neutron drift. But even if we take a Gogny
version which is free from the drift, as for instance D1M, for
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FIG. 8. Potential-energy surfaces for a set of nuclei spanning almost the entire periodic table. See text for details.

which the rms deviation is 1.34 MeV, our Mic-Mac model
for the considered nuclei still performs essentially better (as
a reminder the rms deviation is 0.834 MeV in our model), as
it can also be seen from Fig. 7 where the residuals obtained
from the D1M HFB calculation and from our Mic-Mac model
are plotted as a function of the neutron number. This suggests
that, in general, a HFB calculation with effective Gogny forces
cannot reproduce at the same time good bulk and good shell
effects behavior. This fact is clear for the calculation with the
D1S interaction, but can also be appreciated in the case of
the D1M force as just explained. Actually it can be concluded
that it is the bulk part of the HFB energy computed with the
Gogny force which is deficient and can be improved by the
LDM contribution. For example the difficulty for evaluating
the zero-point motion contribution is automatically included
in the LDM part. This conclusion is in fact quite general and
it arises from the lack of flexibility of the effective interaction,
where both microscopic and macroscopic parts are coupled.
It is by means of a highly sophisticated functional with 30
parameters including an additional Mac part (Wigner term)
that the semimicroscopic HFB model of the Brussels group
[17] yields simultaneously good bulk and good shell structure.

In our opinion, there is room for further improvement in the
Mic-Mac models. This concerns not so much the LDM part,
which we think is determined in a quite optimal way, as the
shell correction part with, for instance, its behavior around
magic and doubly magic nuclei. It is one of our objectives to
work on this in the future.

IV. POTENTIAL-ENERGY SURFACES

The PESs have been generated by suitably transforming the
binding energies into Cartesian representation. Considering
the fact that the maxima and the minima differ by at the most
10 MeV in our present set of nuclei, the sampling has been
done with a bin size of 0.4 MeV.

As representative cases, we plot in Fig. 8 the potential-
energy surfaces for 72Kr, 90,92,94Se, 98,100,102Ru, 124Xe, and
186Pb. These have been so chosen as to demonstrate ex-
istence of well-defined minima (prolate or oblate), the
shape-coexistence phenomenon, as well as γ softness.

As expected, 72Kr turns out to be very well defined oblate,
with deformation parameter (β2) of the order of 0.3. This is
in agreement with the other Mic-Mac calculations, such as
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Möller-Nix and our calculation with the Wyss potential. The
72Kr nucleus turns out to have a second prolate minimum at
β2 ≈ 0.275 around 1.5 MeV away from the deepest minimum.
This topography is at variance with that predicted by the pure
HFB calculation with the D1S force, which predicts the exis-
tence of two closely spaced minima in the oblate region [19].

The three selenium isotopes exhibit the shape coexistence
phenomenon. In particular, the ground state of the nucleus
90Se is predicted to be prolate with β2 ≈ 0.175, and possesses
a second minimum for oblate β2 ≈ 0.2, with a difference
between the two of the order of just 200 keV. On the other
hand, 92,94Se are predicted to have oblate minima, with the
second minima (prolate) ≈200 and 600 keV away, respec-
tively. Further, the potential-energy surface as a function of
γ for β2 around 0.2 turns out to be quite flat, particularly
for 90Se, indicating a possible existence of γ softness. These
observations are similar to that reported in Ref. [60]. Out of
the three ruthenium isotopes, 98,100Ru are strongly prolate,
with a rather flat PES for γ up to 20◦. The nucleus 102Ru
turns out to be γ soft, with a triaxial minimum appearing
for β2 ≈ 0.2 and γ ≈ 20◦, which is in agreement with the
Möller-Nix predictions.

The nucleus 124Xe possesses a prolate minimum (β2 ≈
0.2) and the second minimum is oblate, which is about
400 keV away from the deepest minimum. Interestingly, the
PES for this nucleus turns out to be quite flat as a function
of γ , for β2 values around 0.2, hinting towards a possible
existence of γ softness. Notice that this behavior is similar to
that observed for selenium isotopes. The nucleus 186Pb turns
out to have a very rich structure in its PES. The minimum in
this case is spherical as expected, but there are also several
possible deformed solutions within ≈400 keV of the lowest
solution. From the plot of the PES it can be seen that there is
a well-defined prolate minimum at β2 ≈ 0.25 and two rather
well-defined oblate minima, one at β2 ≈ 0.30 and the other
one at β2 ≈ 0.10, which is located in a very small contour line
along the oblate axis. This pattern for the PES of the nucleus
186Pb is in agreement with the results reported by Möller et al.
[61].

V. SUMMARY AND CONCLUSIONS

In this paper we used mean-field potentials which have
been derived via the semiclassical ETF method, includ-
ing h̄2 corrections, from the Gogny-HF approach using the
D1S force. The semiclassical mean fields are local with the
effective mass incorporated into the potentials [52]. This
choice was dictated by the numerics. Using those mean-
field potentials in a one-shot diagonalization (the so-called
expectation-value method [42,48]) allows one to recover very
accurately the fully microscopic results (see paper I [49]).
In this paper, we therefore tried to combine the Mic-Mac
approach and the microscopic HFB method with the Gogny
force. We, thus, have first taken the liquid drop model for the
smooth part of the energy, the parameters of which are fitted
to the experimental masses, plus, second, the shell correction
part obtained with our semiclassical Gogny-adopted mean-
field potentials. This then constitutes a Mic-Mac approach
where only the shell corrections are directly connected to the

parameters of the Gogny force (D1S in the present case). Not
astonishingly the neutron drift of the binding energies inherent
to HFB calculations with the D1S force has been eliminated
while the shell effects are reproduced very accurately. The
Mic-Mac calculations performed in this way are found to
yield a reasonably good description of ground-state binding
energies for the nuclei spanning the entire periodic table. The
rms value for binding energies obtained in this way is 834 keV.
This is a value only very little worse than the ones obtained
with the completely phenomenological mean-field potential
of, e.g., Wyss [24] for the shell effects. The present Mic-Mac
calculations tend to perform well in the regions away from
shell closures, whereas the HFB-Gogny results are found to be
better near the shell closures. One of the main conclusions of
this paper is that phenomenological effective forces, like the
Gogny or Skyrme forces with a limited number of adjustable
parameters (around 10), are not able to yield optimal values
for the macroscopic part of the energy and, at the same time,
the shell model contribution. In contrast, we think that a direct
fit of the macroscopic part, via a liquid drop model, can
optimize the smoothly varying macroscopic part of the ener-
gies, bringing it very close to its exact value. This can also be
seen in Fig. 7 where the average of the remaining fluctuations
practically adds up to zero. For example, in this way the zero-
point fluctuations are taken care of automatically while in a
pure HFB approach they are difficult to calculate and in most
HFB approaches they are not determined unambiguously. The
shell effects can then be added additionally and their theo-
retical evaluation becomes a separate treatment making the
whole approach more flexible. Since the shell energies are
obtained from the difference between a semiclassical and a
quantal calculation, errors may cancel out. Nonetheless, there
may be more room for improvements in the shell corrections
than in the LDM part. For example, it has been conjectured
that the spin-orbit potential may be responsible for persisting
oscillations in the differences between theoretical and exper-
imental values. Further investigations along these lines are
in progress. Let us also point out that our Mic-Mac method
based on an effective two-body force performs practically as
well as the most efficient Mic-Mac models on the market in
order to describe ground-state properties. Only the mean-field
HFB approach by the Brussels group can compete with this
(actually with a slightly better result) at the price to adjust
around 30 parameters and still employ a macroscopic piece
(the Wigner energy) on top of it. Finally, let us mention
that the results reported in this paper concern ground-state
energies only, and the application of this Mic-Mac method to
other scenarios where large deformations are needed, such as
the description of fission phenomena, would require one to
modify the distance function used here. Work in this direction
is in progress.
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APPENDIX A: ORDER BY ORDER CONTRIBUTIONS TO WK ENERGY

The WK particle number N and energy can be calculated directly by Laplace inversion as

N = L−1
λ

(
Z (4)

WK(β )

β

)
(A1)

and

EWK = λN − L−1
λ

(
Z (4)

WK(β )

β2

)
, (A2)

where λ is the chemical potential, determined to ensure the correct particle number, Z (4)
WK is the WK partition function up to h̄4

order, and L−1
λ denotes the Laplace inversion. These Laplace inversions can be performed analytically.

Let gWK be semiclassical level density (up to h̄4 order, in the present context), and let λ be the chemical potential as defined
above. In terms of these quantities, particle number can be expressed as

N =
∫ λ

0
gWK(ε) dε. (A3)

This expression can be thought of as a convolution of gWK and the Heaviside step function (u). Since Z (4)
WK is the Laplace

transform of gWK, the Laplace transform of convolution of gWK and u is Z (4)
WK(β )/β, which directly yields Eq. (A1).1

On the other hand, the averaged energy (EWK) can be expressed in terms of gWK as

EWK =
∫ λ

0
gWK(ε)ε dε. (A4)

Integrating by parts one gets

EWK = λN −
∫ λ

0

∫ ε

gWK(ε) dε dε. (A5)

Notice that the second term on the right-hand side of Eq. (A5) can be thought of as the convolution of u with the convolution of
u and gWK. Therefore, the Laplace transform of this quantity is Z (4)

WK(β )/β2, which automatically leads to Eq. (A2).
The explicit expressions of the energy, which are used in Eq. (13) of the main text, are as follows (see Ref. [24] for further

details):

ECN
h̄0 = 1

3π2

(
2m

h̄2

)3/2 ∫
d�r

{
2

5
(λ − V )5/2

}

(λ − V ), (A6)

ECN
h̄2 = − 1

24π2

(
2m

h̄2

)1/2 ∫
d�r{(λ − V )1/2∇2V }
(λ − V ), (A7)

ECN
h̄4 = − 1

5760π2

(
h̄2

2m

)1/2[∫
d�r(λ − V )−1/2{7∇4V }
(λ − V ) + 1

2

∫
d�r(λ − V )−3/2{5(∇2V )2

+∇2(∇V )2}
(λ − V )

]
, (A8)

ESO
h̄2 = κ2

6π2

(
2m

h̄2

)1/2 ∫
d�r{(λ − V )3/2(∇ f )2}
(λ − V ), (A9)

ESO
h̄4 = 1

48π2

(
h̄2

2m

)1/2 ∫
d�r(λ − V )1/2

[
κ2

{
1

2
∇2(∇ f )2 − (∇2 f )2 + ∇ f · ∇(∇2 f ) − (∇ f )2∇2V

2(λ − V )

}

− 2κ3

{
(∇ f )2∇2 f − 1

2
∇ f · ∇(∇ f )2

}
+ 2κ4(∇ f )4

]

(λ − V ), (A10)

1If G is the Laplace transform of a function g, then the convolution u ∗ g has the Laplace transform G(s)/s, where u is the Heaviside step
function.
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where CN and SO refer to the contributions arising from the central and spin-orbit parts of the partition function, κ is the
strength of the spin-orbit interaction, and f is the spin-orbit form factor. In the present paper the potentials appearing in the
above expressions as well as the spin-orbit form factor are of the generalized Woods-Saxon form. The explicit expressions of the
derivatives of the generalized Woods-Saxon function have been listed in Appendix B.

We shall now demonstrate that the semiclassical energy, as written above, reduces to the well-known Thomas-Fermi form. In
order to do so, first, notice that the chemical potential λ here is obtained by demanding the correct particle number. The particle
number, in turn is obtained by integrating the semiclassical density, which needs to be expanded only to the second order in h̄
so that the energy is correct up to the fourth order in h̄ (see, for example, Ref. [41]). If ρWK is the semiclassical density, we can
write

λN =
∫

d�r {λρWK}
(λ − V ) =
∫

d�r {(λ − V )ρWK}
(λ − V ) +
∫

d�r {ρWK V }
(λ − V ).

Up to leading order, ρWK is given by

ρWK = 1

3π2

(
2m

h̄2

)3/2

(λ − V )3/2
(λ − V ). (A11)

Using this expression in the expression for λN above, we get

λN = 1

3π2

(
2m

h̄2

)3/2 ∫
d�r {(λ − V )5/2}
(λ − V ) + 1

3π2

(
2m

h̄2

)3/2 ∫
d�r {V (λ − V )3/2}
(λ − V ) (A12)

up to leading order. This expression, when combined with that for ECN
h̄0 , yields

ETF = 1

3π2

(
2m

h̄2

)3/2 ∫
d�r

{
3

5
(λ − V )5/2

}

(λ − V ) + 1

3π2

(
2m

h̄2

)3/2 ∫
d�r {V (λ − V )3/2}
(λ − V ). (A13)

On the right-hand side of ETF, the first term corresponds to the kinetic energy and the second to the potential energy within the
Thomas-Fermi approximation. Proceeding along the same lines, we get the usual expressions (see, for example, Ref. [43]) for
second-order corrections to kinetic and potential energies (excluding the spin-orbit contributions):

EKE
h̄2 = 1

24π2

(
2m

h̄2

)1/2 ∫
d�r

{
(λ − V )1/2∇2V − 3

4

(∇V )2

(λ − V )1/2

}

(λ − V ) (A14)

EPE
h̄2 = −1

24π2

(
2m

h̄2

)1/2 ∫
d�r

{
V ∇2V

(λ − V )1/2 + 1

4

V (∇V )2

(λ − V )3/2

}

(λ − V ). (A15)

APPENDIX B: EXPLICIT FORMULAS FOR DERIVATIVES OF THE MODIFIED WOODS-SAXON FORM FACTOR

Here we list the explicit formulas for derivatives of the Woods-Saxon form factor. Let

g(r) = [g0(�r)]γ (B1)

with γ > 0 and

g0(�r) = 1

1 + exp [l (�r)/a]
(B2)

where l (�r) is a suitably defined distance function (see, for example, Ref. [24]) and a is the diffusivity parameter. We shall
henceforth suppress all the arguments of the functions for the sake of brevity. Define

ξ = g(g0 − 1), (B3)

ξ0 = g0(g0 − 1), (B4)

ζ = (γ + 1)g0 − γ . (B5)

Evaluation of the different contributions to the semiclassical energy requires the gradient of g as well as derivatives of (∇g)2.
These are listed below first. We have

∇g = γ

a
ξ∇l, (B6)

giving us

(∇g)2 = γ 2

a2
ξ 2(∇l )2, (B7)

∇(∇g)2 = γ 2

a2
ξ 2

[
∇(∇l )2 + 2

a
ζ (∇l )2∇l

]
, (B8)
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∇2(∇g)2 = 2γ 2

a3
ξ 2 ζ

[
∇l · ∇(∇l )2 + 2

a
ζ (∇l )4

]
+ γ 2

a2
ξ 2

[
∇2(∇l )2 + 2

a
ζ {∇2l (∇l )2 + ∇l · ∇(∇l )2} + 2

a2
(γ + 1)ξ0(∇l )4

]
.

(B9)

In addition to these, the expressions for different terms appearing in the semiclassical energy require the Laplacian of g as
well as derivatives of ∇2g. These can be expressed as

∇2g = γ

a
ξ

[
∇2l + 1

a
ζ (∇l )2

]
, (B10)

∇(∇2g) = γ

a2
ξ ζ

[
∇2l + 1

a
ζ (∇l )2

]
∇l + γ

a
ξ

[
∇(∇2l ) + 1

a2
(γ + 1)ξ0(∇l )2∇l + 1

a
ζ∇(∇l )2

]
, (B11)

∇2(∇2g) = γ

a2
ξ ζ

[
∇2l + 1

a
ζ (∇l )2

]
∇2l + 2γ

a2
ξ ζ

[
∇l · ∇(∇2l ) + 1

a
ζ∇l · ∇(∇l )2 + 1

a2
(γ + 1)ξ0(∇l )4

]

+ γ

a3
ξ (∇l )2{ζ 2 + (γ + 1)ξ0}

[
∇2l + 1

a
ζ (∇l )2

]
+ γ

a
ξ

{
∇2(∇2l ) + 1

a3
(γ + 1)(2g0 − 1)ξ0(∇l )4

+ 1

a2
(γ + 1)ξ0[(∇l )2∇2l + 2∇l · ∇(∇l )2] + 1

a
ζ∇2(∇l )2

}
. (B12)

The derivatives of the distance function are not presented here, since the details would depend on the particular choice of
distance function. In the present context, we are assuming reflectionally symmetric shapes. Therefore, it is most convenient to
work in a spherical polar system, as explained in Ref. [24]. In this case, spherical harmonics appearing in the distance function
can be suitably combined to write Rs [see Eq. (6)] in terms of multiple angle formulas of the trigonometric functions, which
makes explicit evaluation of the derivatives relatively easier.
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