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Analytic average mean-field potentials of the Fermi-function (Woods-Saxon) type for the whole nuclear chart
with space-dependent effective mass are deduced from the D1S Gogny force. Those ready-for-use potentials are
advertised as an alternative to other existing phenomenological mean-field potentials.
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I. INTRODUCTION

Phenomenological mean-field potentials of the Woods-
Saxon type have been and are still in use for various
purposes as, e.g., the low-cost evaluation of shell effects in
the microscopic-macroscopic (Mic-Mac) calculation of the
nuclear mass table. The latter approach counts still among
the most accurate ones for the prediction of nuclear masses.
However, those phenomenological mean-field potentials gen-
erally are given without effective mass, i.e., they have the bare
mass m as input. It is, however, well known that the real part
of the optical potential is energy dependent and, therefore,
an important physical ingredient is missing in present-day
phenomenological mean-field potentials.

This paper intends to contribute to fill this gap. To this
end we develop a phenomenological mean field including
effective mass, which to our knowledge does not exist in
the previous literature. We deduce with semiclassical meth-
ods an analytic mean-field potential from the D1S Gogny
force with space-dependent effective mass m∗(r). Let us point
out at this stage that the choice of the D1S Gogny force
is not essential. We could have taken as well a Skyrme
force with effective mass. The choice of the Gogny force
is rather dictated because in a follow-up paper [1] we want
to study its behavior in conjunction with the setup of a
modified Mic-Mac model. Nevertheless, a possible advantage
of using Gogny forces instead of the Skyrme ones is that
in dynamical calculations, for example, the response func-
tion, one can treat higher-momentum transfer whereas in the
Skyrme case one is limited to low momenta, since it repre-
sents a quadratic expansion in momentum. Another possible
advantage of using Gogny interactions may be the fact that
these forces are designed such that they can describe simul-
taneously the particle-hole and the particle-particle channels,
which allows one to describe successfully open-shell nuclei
with the same interaction without increasing the number of
adjustable parameters. This is not the case of the Skyrme

interactions, where the pairing field is computed with a dif-
ferent force. With our existing technology [2–4] of solving
extended Thomas-Fermi (ETF) integrodifferential equations
with density functionals up to second-order h̄ corrections
using a given (finite-range) effective force, quantities such
as mean-field potentials or effective masses can be readily
computed. These potentials are subsequently accurately fitted
by functions of the Fermi type yielding analytic expressions
ready for use. Since our approach has never been published
in a coherent way, we will present in Sec. II the semiclassical
theory which allows us to determine such mean-field poten-
tials with effective mass. However, the reader not interested in
the details of our approach may directly read Sec. III where we
give the explicit analytical form of our potentials and effective
masses. In a follow-up paper [1], we will indeed show that
this strategy can yield very accurate masses in a Mic-Mac
calculation.

The paper is organized as follows. In the second section
we review the ETF method with finite-range interactions and
apply this formalism to the specific case of Gogny forces. The
third section is devoted to the fits to generalized Fermi distri-
butions of the results of the ETF calculations, i.e., neutron and
proton densities, central and spin-orbit (SO) single-particle
potentials, and effective masses. These fits provide a simple
parametrization of the aforementioned quantities as functions
of the mass (A) and atomic (Z) numbers. These parametriza-
tions may be useful for applications where parametrized
densities, single-particle potentials, or effective masses are
required. In the fourth section we discuss some results for
energy calculations. Finally, our conclusions are given in the
last section.

II. THE EXTENDED THOMAS-FERMI APPROXIMATION
WITH FINITE-RANGE FORCES

The ETF approximation to the Hartree-Fock (HF) method
for nonlocal forces was introduced and discussed in
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Refs. [2–4]. This approximation is rather general and can be
applied to any finite-range force. However, in this paper we
will apply this formalism to the particular case of the Gogny
interaction [5]. Due to the general applicability of our approx-
imation, and given that there are several parametrizations of
the Gogny interaction available in the literature, we do not
specify the precise force here. Only later we will specialize to
the D1S force [6]. In general, the Gogny type of force [5] can
be written as

V (R, s) =
i=2∑
i=1

(Wi + BiP
σ − HiP

τ − MiP
σ Pτ )vi(s)

+ [t3(1 + x3Pσ )ρα (R) + iW0(σ̂1 + σ̂2)

· k̂† × k̂]δ(s), (1)

where Wi, Bi, Hi, and Mi are the usual spin-isospin exchange
strength parameters of the finite-range force and vi(s) =
exp(−s2/μ2

i ) (i = 1, 2) are the Gaussian form factors. The
second term in Eq. (1) is the zero-range density-dependent
contribution and the last one corresponds to the spin-orbit
interaction, which is also zero-range with a strength W0 as
in the case of Skyrme forces [7]. In Eq. (1) R = (r1 + r2)/2
and s = r1 − r2 are the center-of-mass and relative coordi-
nates. In the spin-orbit term the quantity k̂ represents the
relative momentum of the two nucleons, expressed as k̂ =
(∇1 − ∇2)/2i.

The HF energy is calculated as the integral of the en-
ergy density H, which can be split into its kinetic, nuclear,
Coulomb, and spin-orbit contributions. For a finite-range nu-

clear interaction we can write

EHF =
∫

H dR =
∫ [Hkin + Hnucl

dir + Hnucl
exch

+Hnucl
z range + HCoul + HSO

]
dR. (2)

The key quantity for writing the different contributions to the
energy density is the one-body density matrix, which, at HF
level, is defined as

ρ

(
R + s

2
, R − s

2

)
=

A∑
i=1

φ∗
i (r)φi(r′), (3)

where φi(r) are the single-particle HF wave functions. From
this density matrix the particle, kinetic-energy, and spin den-
sities can be obtained as

ρ(R) = ρ(R, s)|s=0, (4)

τ (R) = (
1
4�R − �s

)
ρ(R, s)|s=0 (5)

and

J(R) = −i
[
σ̂ × (

1
2∇R + ∇s

)]
ρ(R, s)|s=0, (6)

respectively.
The ETF approximation to the HF energy for nonlocal po-

tentials consists of replacing the quantal HF density matrix by
its semiclassical counterpart. The latter contains, in addition to
the pure Thomas-Fermi (TF)(h̄0) term, the corrective gradient
contributions up to the order h̄2 and even beyond, if so desired.
Here we will consider the corrective terms only up to the h̄2

order. In this approximation the ETF density matrix for each
kind of particles, which was derived in Refs. [2–4], can be
written as

ρ̃(R, s) = 3 j1(kF s)

kF s
ρ + s2

216

({[(
9 − 2kF

fk

f
− 2k2

F

fkk

f
+ k2

F

f 2
k

f

)
j1(kF s)

kF s
− 4 j0(kF s)

]
(∇ρ)2

ρ

−
[(

18 + 6kF
fk

f

)
j1(kF s)

kF s
− 3 j0(kF s)

]
�ρ −

[
18ρ

� f

f
+

(
18 − 6kF

fk

f

)∇ρ · ∇ f

f

+12kF
∇ρ · ∇ fk

f
− 9ρ

(∇ f )2

f

]
j1(kF s)

kF s

}
− m2

h̄4

ρW 2

f 2
s2 j1(kF s)

kF s
− im

2h̄2

ρ

f
σ̂ · (W × s)

3 j1(kF s)

kF s

)
k=kF

. (7)

Notice that for the sake of brevity, the subscripts “q” denoting particle type (neutron or proton) have been suppressed. Here,
kF = [3π2ρ(R)]1/3 is the local Fermi momentum for each type of nucleons and j0(kF s) and j1(kF s) are the spherical Bessel
functions of orders 0 and 1, respectively. The quantity f = f (R, k) in Eq. (7) is the inverse of the position- and momentum-
dependent effective mass, which at ETF-h̄2 level is defined as

fq(R, k) = 1 + m

h̄2k

∂V nucl
exch,q,0(R, k)

∂k
, (8)

where V nucl
exch,q,0(R, k) is the Wigner transform of the exchange potential at TF level, which is given by

V nucl
exch,q,0(R, k) =

i=2∑
i=1

∫
ds e−ik·svi(s)

[
Xe1,iρq(R)

3 j1(kFq (R)s)

kFq (R)s
+ Xe2,iρq′ (R)

3 j1(kFq′ (R)s)

kFq′ (R)s

]
, (9)

where q = n, p and q′ = p, n, respectively. In this equation
the coefficients Xe1,i = Mi + Hi/2 − Bi − Wi/2 and Xe2,i =
Mi + Hi/2 are combinations of the strengths of the differ-

ent exchange terms in Eq. (1). It is important to note that
the function f = f (R, k) in Eq. (7) and its spatial deriva-
tives ∇ f ≡ ∇R f (R, k) and � f ≡ �R f (R, k), momentum
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derivatives fk ≡ fk (R, k) and fkk ≡ fkk (R, k) that represent
the first and second derivatives of f (R, k) with respect to
k, and mixed derivatives ∇ fk ≡ ∇R fk (R, k) are all evaluated
at k = kF after taking the corresponding derivative. This is
indicated by the subscript in the rightmost bracket of Eq. (7).
The last two terms in the density matrix [Eq. (7)] are the
contributions due to the spin-orbit force, which can be ob-
tained from the propagator including this interaction (see,
e.g., Ref. [8]). These terms depend on the form factor of the
spin-orbit potential, which for each type of nucleons is given
by

Wq = 1
2W0(∇ρ + ∇ρq). (10)

This ETF formalism is completely general for interactions
with a finite-range central term, as for example the Gogny
force given in Eq. (1). The impact of the finite-range part
of the interaction on the density matrix appears through the
momentum and position-dependent effective mass defined in
Eq. (8) and its momentum and spatial derivatives. More details
about the derivation of the ETF density matrix [Eq. (7)] and its
comparison with earlier density-matrix expansions available
in the literature [9,10] can be found in Ref. [4].

The explicit form of the semiclassical kinetic-energy and
spin densities at ETF level can now easily be derived from the
density matrix [Eq. (7)] using Eqs. (5) and (6), respectively.
The kinetic-energy density is given by

τ (R) =
(

1

4
�R − �s

)
ρ̃(R, s)|s=0

= 3

5
k2

F ρ + 1

12
�ρ

[
4 + 2

3
kF

fk

f

]

+ 1

36

(∇ρ)2

ρ

[
1 + 2

3
kF

fk

f
+ 2

3
k2

F

fkk

f
− 1

3
k2

F

f 2
k

f 2

]

+ 1

6

ρ

f

[
� f − (∇ f )2

2 f

]
+ 1

6

∇ρ · ∇ f

f

[
1 − 1

3
kF

fk

f

]

+ 1

9

∇ρ · ∇ fk

f
+ 1

2

(
2m

h̄2

)2
ρ

f 2
W 2, (11)

and the spin density at ETF level can be expressed as

JETF = −i Tr

{[
σ ×

(∇R

2
+ ∇s)

)](−im

2h̄2

)
ρ

f
[σ · (W × s)]

}
3 j1(kF s)

kF s

∣∣∣∣
s=0

= −3m

h̄2

ρ

f
[∇s × (W × s)]

3 j1(kF s)

kF s

∣∣∣∣
s=0

= −2m

h̄2

ρW
f

. (12)

Therefore, we see that at ETF level both the kinetic-energy
and spin densities become functionals of the particle densities
ρq(R) for neutrons and protons. It is worthwhile to note that
in the kinetic-energy density [Eq. (11)] finite-range effects are
encoded through the inverse effective mass f [Eq. (8)] and
its derivatives with respect to the position and momentum.
If the effective mass is independent of the momentum, as it
is the case of the zero-range Skyrme forces [7], the kinetic
energy reduces to the h̄2 expansion reported in Ref. [11]
whereas, if the effective mass is equal to the physical one, the
kinetic-energy density reduces to the well-known Weizsäcker
term. The semiclassical kinetic-energy and spin densities are
used to calculate the different pieces entering in the energy
density [Eq. (2)], which for Gogny interactions are reported
in Appendix A. It is important to note that due to the structure
of the ETF density matrix [Eq. (7)] the exchange energy can
be written as the sum of a h̄0 (Slater) contribution, which
corresponds to the exchange energy in infinite nuclear matter,
plus a h̄2 contribution, which can be finally recast in terms
of the neutron and proton densities and their gradients up
to second order, as it is explained in detail in Appendix A.
Therefore, in the ETF approximation [4], the exchange energy
becomes a local functional of the particle densities, as also
happens starting from the Negele-Vautherin or the Campi-
Bouyssy expansions of the density matrix [9,10].

Taking into account the semiclassical kinetic-energy and
spin densities, the latter one used to compute the spin-orbit
energy, the total HF energy [Eq. (2)] at ETF level, EETF

HF , can

be finally recast as a functional of the neutron and proton
densities only (see Appendix A for further details). Therefore
to find the semiclassical energy and the density profiles of a
nucleus, one shall solve the following set of coupled equations
of motion for neutrons and protons:

δ

δρn

[
EETF

HF − μn

∫
ρn(R)dR

]
= 0 (13)

and

δ

δρp

[
EETF

HF − μp

∫
ρp(R)dR

]
= 0. (14)

This set of coupled second-order nonlinear integrodiffer-
ential equations can be solved for the neutron and proton
densities by using, for example, the imaginary time-step
method (see for example Refs. [12] and references therein).
The self-consistent solution of Eqs. (13) and (14) provides the
semiclassical proton and neutron densities, ρn and ρp, respec-
tively, which correspond to the fully variational solution of
the ETF HF energy. An application of this semiclassical ETF
method using the D1 Gogny force was reported in Ref. [3].

However, in this paper instead of solving the full varia-
tional equations (13) and (14), which give the proton and
neutron densities numerically point by point, we perform a
restricted variational minimization of the ETF HF energy
[Eq. (2)] using trial neutron and proton densities of gener-
alized Fermi type for a large set of nuclei along the whole
periodic table. In a second step, we fit the parameters of
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the trial densities, i.e., radii and diffuseness, as functions of
the atomic mass and charge numbers. The semiclassical ETF
approximation to obtain density profiles and binding energies
in a restricted variational method with trial densities has been
employed quite often in the past together with Skyrme forces
[11]. A detailed comparison between the predictions of the
ETF approach using trial densities and solving the full equa-
tions of motion in the case of Skyrme forces can be found
in Ref. [12]. From this study the following conclusions are
obtained. On the one hand, it turned out that the density
profiles using trial densities nicely reproduce the fully vari-
ational ones. On the other hand, the energies derived through
the restricted variational procedure lie very close to energies
computed from the fully variational solutions of the equations
of motion [11,12].

It is long known that the variational solution of EETF
HF at

h̄2 order including the spin-orbit contribution overbinds the
nuclei and gives neutron and proton radii too small and a
diffuseness too sharp as compared with the corresponding
quantal HF results [11,12]. This fact is probably due to the
truncation of the semiclassical expansion at second order.
To try to simulate higher-order contributions, at least in the
case of Skyrme interactions, Treiner and Krivine proposed
to renormalize the h̄2 contribution to the kinetic energy [13].
Following this idea, we renormalize the h̄2 kinetic energy by
a factor βKT to obtain a semiclassical energy of the nucleus
208Pb ≈ − 1625 MeV, such that, by adding a shell correction
≈ − 11 MeV, one gets a total energy close to the experimental
value ≈ − 1636 MeV. This relatively small value of shell
correction for 208Pb has been argued to be a robust “experi-
mental” value (see, for example, Refs. [14–16]) of the shell
correction.

A very efficient way of recovering quantal effects, which
are absent in semiclassical approximations of ETF type, is, in
the spirit of the Kohn-Sham scheme, to replace in the semi-
classical energy density the ETF particle, kinetic-energy, and
spin densities by the corresponding HF expressions (see for
instance Refs. [3,4]). Applying now the variational principle
using the single-particle wave functions φ and φ∗ for each
type of particles as functional variables, one can write the
following set of coupled single-particle differential equations:

Hqφi = εiφi, (15)

where the single-particle Hamiltonian Hq reads

Hq = −∇ h̄2

2m∗
q (R)

∇ + Uq(R) − iWq(R) · [∇ × σ ], (16)

where the effective mass, the mean-field, and the spin-orbit
potential for each kind of nucleons are given by

h̄2

2m∗
q (r)

= δH
δτq

, Uq = δH
δρq

, Wq(r) = δH
δJq

. (17)

This HF method reported here was introduced formally
in Ref. [17] through a quasilocal reduction of the nonlocal
density functional theory and generalized later on to take into
account pairing correlations [18]. Using this approximation
one can solve the HF problem with finite-range interactions
in coordinate space, if spherical symmetry is assumed, with

the same simplicity as for the case of Skyrme forces. It is
found that this reproduces extremely well the full HF or
Hartree-Fock-Bogoliubov (HFB) calculations as it can be seen
in Refs. [17–19].

III. NUMERICAL INVESTIGATIONS

Our aim in this paper is twofold. On the one hand, we
want to provide parametrized ETF densities, single-particle
and spin-orbit potentials, as well as the effective mass for both
neutrons and protons, which average the corresponding HF
values obtained by solving Eqs. (15)–(17) with the same inter-
action. To this end we use the D1S Gogny force [6], which has
been extensively applied in different nuclear calculations (see,
for example, Ref. [20]). These fully quantal calculations at HF
or HFB levels, however, are usually numerically expensive,
because of the fact that the Gogny interactions are finite-
range interactions. Therefore, it is interesting and important
to investigate the possibility of the existence of an accurate
parametrization in terms of the mass and atomic numbers
of different ETF quantities associated with the Gogny D1S
interaction, which can be used without performing explicitly
the more cumbersome HF or HFB calculations.

On the other hand, these parametrized single-particle po-
tentials fitted in this paper could be used profitably to compute
the shell corrections and therefore to estimate, perturbatively,
the HF energy without performing explicitly the full HF cal-
culation. In particular, the parametrized potentials are a key
ingredient to obtain the shell corrections through the so-called
Wigner-Kirkwood h̄-expansion method [21,22] and this will
be used in the microscopic-macroscopic calculation of nuclear
masses based on the Gogny interaction reported in a follow-
up paper [1]. It is worth pointing out that this perturbative
calculation of the shell corrections using semiclassical mean-
field potentials has been recently applied to describe the inner
crust of neutron stars in the Wigner-Seitz approximation using
Gogny forces [23].

A. Neutron and proton densities

In this paper the trial density profiles are chosen of the
modified Fermi type. Explicitly,

ρ(r) = ρo g(r; R, a) (18)

with

g(r; R, a) = f ν (r; R, a) (19)

and

f (r; R, a) = 1

1 + e(r−R)/a
, (20)

where the half-density radius (R) and diffusivity (a) of each
type of particles are the variational parameters, and ρo is to be
determined by the norm requirement. It is known that the ex-
ponent ν in (19) is practically unaffected by the minimization
procedure [11], remaining always close to its starting value.
Therefore, we fix values of these indices to be ν = 1.5 for
neutrons and ν = 2.5 for protons. The reason for this choice
will be discussed below in Sec. III B 1.
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FIG. 1. The nucleon density distributions for 40Ca, 68Ni, 132Sn, and 208Pb. The densities obtained by using the local and global parameters
along with those from the Hartree-Fock calculations (denoted HF) and expectation value method (denoted EVM, see Sec. IV for further details)
are displayed in the figure.

Using these trial densities we minimize the ETF-HF total
binding energies with a βKT factor equal to 1.9 and adding
the direct and exchange (at Slater level) Coulomb contribu-
tions for a large set of 551 even-even nuclei (assumed to be
spherical) covering a wide range of charge numbers, namely,
from 20Ne to 232Ds. With the aforementioned values of the
exponents ν of the neutron and proton densities and of βKT ,
the binding energy for 208Pb works out to be ≈1625 MeV, as
discussed before.

As already mentioned, one of the aims of this paper is to
attempt a parametrization of the ETF self-consistent densities,
mean fields, and spin-orbit form factors computed with the
Gogny D1S force, which give the average behavior of the
corresponding HF densities and fields. This in turn implies
a systematization of the half-density radii and diffusivities
as a function of N and Z . The deformation can then be in-
corporated within this scheme by appropriately defining the
distance function (see, for example, Refs. [21,22]). Thus, in
order to study the systematics of the Fermi distribution param-
eters, spherical symmetry is assumed in the ETF calculations.
The half-density radii and diffusivities thus obtained for the
individual nucleus through a minimization process will be
generically called “local” parameters henceforth. The system-
atized radii and diffusivities as functions of N and Z will be
termed as “global” parameters. The corresponding results in
the figures below have been labeled by the terms “local fit”
and “global fit,” respectively.

The kinetic-energy densities, mean fields, spin-orbit po-
tentials, and effective masses are obtained once the density
parameters are optimized through a minimization process.
These quantities will be termed as “exact.” These are then
fitted to model form factors of the modified Fermi type for
each individual nucleus. The parameters thus obtained for the
individual nucleus will be termed “local” parameters, whereas
the systematized radii and diffusivities as functions of N and
Z will be termed as “global” parameters. As in the case of the

densities, the quantities obtained by using these parameters
will be called “local fit” and “global fit,” respectively.

The optimized half-density radii and diffusivity parameters
for each kind of densities are modeled as

R(i) = r (i)
1

(
1 + r (i)

2 I
)
A1/3 + r (i)

3 , (21)

a(i) = a(i)
1

(
1 + a(i)

2 I
)

(22)

where i = n (neutrons) or p (protons), I = (N − Z )/A is the
asymmetry parameter, and r (i)

1,2,3 and a(i)
1,2 are free parameters

of the model. These are determined by using an imple-
mentation of the well-known Levenberg-Marquardt algorithm
[24,25]. The fits work out to be excellent, with rms residues
being of the order of or even smaller than 10−2 in all the cases.
The explicit values of these parameters have been listed in
Appendix B.

In Figs. 1(a) and 1(b) we display the point neutron and
proton densities obtained from the minimization procedure
discussed previously for the nuclei 40Ca, 68Ni, 132Sn, and
208Pb (local fit) together with the densities provided by the
global fit in comparison with the HF densities obtained by
solving the set of Schrödinger equations [Eq. (15)]. From
these figures we also can see that the semiclassical densities
nicely average the quantal oscillations and have a similar
falloff at the surface.

B. Parametrized HF potentials and effective masses

We next investigate the possibility to parametrize the
smoothly varying part of the HF neutron and proton mean
field, the spin-orbit potentials, and the r-dependent effective
masses employing the semiclassical ETF model described
above. At HF level, the single-particle potential for each type
of particles is obtained as the functional derivative of the
energy density [Eq. (2)] with respect to the corresponding
particle density [Eq. (17)]. The corresponding ETF mean-field
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potentials, which we call ETF-HF potentials, are obtained
by replacing in the HF potential the quantal kinetic-energy
and spin densities by the corresponding ETF counterparts,
Eqs. (11) and (12), respectively. In an equivalent way, the
semiclassical mean-field potential can also be derived from
the ETF energy density functional using explicitly Eq. (A10)
of Appendix A and performing the variation with respect to
the corresponding type of density, keeping the kinetic-energy
and spin densities as independent variables, as in the quan-
tal case, and replacing them by the ETF expressions after
variation.

Using the variational densities we can obtain all the quanti-
ties derived from the energy density functional, as for example
the mean field or the effective mass for each type of nu-
cleons (which are the so-called exact quantities discussed in
the previous subsection). However, these exact quantities are
obtained numerically and are not easy to handle in a global
way. We therefore undertake a second fit procedure, where we
directly express these quantities by modified Woods-Saxon
form factors the parameters of which are adjusted to reproduce
the exact results. The parameters obtained from this local fit
for a large set of nuclei are finally expressed as a function of
the mass and atomic numbers, which allow us to express the
nuclear mean fields, spin-orbit potentials, and effective masses
in a global form, which is ready for an easy and direct use
as were before the phenomenological Woods-Saxon potentials
(without effective mass) as given, e.g., by Shlomo [26].

1. Mean field

Let us start with the mean field. Specifically, we use

V (r) = Vo f ν (r; R, a) (23)

where the symbols have the same meaning as before. The
indices ν for the neutronic and protonic mean fields have
been taken to be 1.5 and 3.0, respectively. In the global fit the
strengths, diffusivities, and half-density radii are parametrized
as

V (i)
m = V (i)

1

(
1 + V (i)

2 I
) + V (i)

3 A1/3, (24)

a(i)
m = b(i)

1

(
1 + b(i)

2 I
)
, (25)

R(i)
m = z(i)

1

(
1 + z(i)

2 I
)
A1/3 + z(i)

3 . (26)

As before, the index i stands for neutrons (n) and protons (p).
The quantities Vk , bk , and zk are free parameters.

Here, we carry out two different fits of the neutron
and proton single-particle potentials. In the first case, the
optimal densities, deduced through the variational proce-
dure discussed before, are used to obtain the single-particle
HF potentials (ETF-HF potentials) for neutrons and pro-
tons as explained before. Those potentials are then fitted to
modified Woods-Saxon form factors. These potentials can
be directly compared with the true HF potentials obtained
self-consistently.

In the second case, the contribution from the r-dependent
effective mass is subsumed in the potential energy, thereby
ensuring that only the constant (r-independent) bare mass
appears in the kinetic-energy operator. The motivation for
this approach comes from the fact that the optical potentials,

the phenomenological potentials used in the Mic-Mac cal-
culations of nuclear masses, as well as the potentials fitted
to reproduce the experimental observed single-particle states
available in the literature have the effective mass equal to
the bare mass. It should also be mentioned that the existing
programs for this type of potentials work with bare mass and
then would be complicated to include the effective mass in
them, in particular in the deformed case. A few examples are
the potential proposed by Shlomo [26] and the Wyss poten-
tial, used in our previous Mic-Mac calculations reported in
Refs. [21,22]. This scenario can also be easily simulated with
our ETF approach. Notice that in the ETF energy density the
contribution [Eq. (A10)] can be split into a pure kinetic-energy
term with the bare mass [Eq. (A1)] and a h̄2 contribution to the
exchange energy [Eq. (A9)]. In this way, the effective mass
contributions to the energy density have been subsumed in the
potential part. This ensures that only the bare mass appears
in the kinetic-energy term [Eq. (A1)] and that the total ETF
energy remains unchanged. Within the strict semiclassical
ETF approximation, the kinetic-energy densities entering in
the h̄2 exchange energy [Eq. (A9)] have to be replaced by
their semiclassical counterparts [Eq. (11)], which in turn are
functionals of the particle densities. Only then one computes
the neutron and proton single-particle potentials as functional
derivatives of the potential-energy density with respect to the
density of each type of particles. We refer to the neutron and
proton single-particle potentials obtained in this way as ETF
phenomenological mean-field potentials.

For each single-particle potential, the strengths, the half-
density radii, and the diffusivities are systematized using the
ansatz defined earlier [Eqs. (24)–(26)]. The optimization of
the parameters Vk , bk , and zk is done separately in the two
cases, by employing again the Levenberg-Marquardt algo-
rithm. In both these cases, the fits are found to be good,
with rms residues of the order of 10−2. The explicit values
of the parameters appearing above in both cases are listed in
Appendix B under “Hartree-Fock mean-field potentials” and
“Phenomenological mean-field potentials,” respectively. It is
worth remembering here that the exact mean-field potentials
are complicated functions of the proton and neutron densities,
which in turn depend on the exponent ν. The exact potentials
are then fitted to generalized Fermi functions. We have chosen
the exponents ν in the neutron and proton densities and mean
fields by a double optimization procedure in such a way that
the fitted, local or global, single-particle potential for each
type of particles reproduces as well as possible the exact mean
field. The fact that the proton mean field is slightly flatter at the
bottom than the neutron mean field (see Figs. 2 and 3) is the
reason why the proton exponents, for both density and mean
field, are larger than the corresponding neutron exponents.

As an example, the actual ETF-HF mean fields obtained
using the variational densities (denoted by “exact”), as well
as those obtained from the local and global parametrizations,
are plotted in the lower panel of Fig. 2 for 208Pb. In the upper
panel of the same figure we also show the global fit and HF
potentials for the nucleus 132Sn. The single-particle potentials
with m∗ = m are displayed in Fig. 3. In the latter case, the
phenomenological mean fields used in Refs. [21,22], labeled
“Wyss Potential,” as well as the one reported by Shlomo [26],
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FIG. 2. Calculated and fitted mean fields for 132Sn and 208Pb compared with the corresponding HF potentials.

labeled “Shlomo Potential,” are also plotted for comparison.
In the former case, as can be seen in Fig. 2, the computed
potentials nicely average out the HF potentials, which is as
expected. Further, an excellent agreement between the dif-
ferent potentials for protons as well as neutrons is very clear
from the above figure, indicating reliability of the fits achieved
in this paper. Regarding the phenomenological mean-field
potentials, we see in the lower panel of Fig. 3 that both the
local and the global fits nicely reproduce the exact potential.
In the upper panel of this figure we show that for the nucleus
132Sn the global fit of the ETF Gogny potential in the m = m∗
case qualitatively follows the trends of the Shlomo [26] and
Wyss [21,22] phenomenological potentials. Similar results
are found and the same comments hold for all the nuclei
considered here. Actually, since the phenomenological mean-
field potentials of Refs. [21,22,26] are fitted to experiment,
one can assume that a finite effective mass is also implicitly
included in those potentials. Therefore, the closeness of the
phenomenological potentials with the one from the Gogny
force where we incorporate the effective mass into the local
mean-field potential is not so astonishing.

2. Spin-orbit potential

The SO potential is studied next. Its form factor is given by
Eq. (10), which we parametrize as

VSO(r) = νUSO

a
g( f − 1) (27)

where f and g are as defined above, and the other symbols
have their usual meanings. Since the spin-orbit form factor
[Eq. (10)] has been obtained by differentiating the neutron and
proton densities, the indices ν for the spin-orbit form factor
have been chosen to be the same as those for the densities,
namely, 1.5 and 2.5 for neutrons and protons, respectively.

The strengths, the diffusivities, and the half-density radii of
the spin-orbit potentials are parametrized as

U (i)
SO = U (i)

1

(
1 + U (i)

2 I
) + U (i)

3 A1/3, (28)

a(i)
SO = b(i)

1

(
1 + b(i)

2 I
)
, (29)

R(i)
SO = z(i)

1

(
1 + z(i)

2 I
)
A1/3. (30)

As an example, the neutron and proton SO potentials obtained
from Eq. (10) using the variational densities (exact calcula-
tion) for the nucleus 208Pb as well as the corresponding local
and global fits are displayed in Fig. 4. The excellent agreement
between the different potentials for protons as well as neutrons
is very clear from the above figure. This observation for spin-
orbit potentials is particularly important, since the accurate
description of the spin-orbit potential has a bearing on the
ground-state masses as well.

For comparison, the HF values of the SO potentials are also
plotted in the same graphs. The two profiles are quite similar
to each other, but it can be seen that the SO potentials obtained
from HF calculations have smaller radii, and they are a bit
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FIG. 3. Calculated and fitted single-particle potentials with m∗ = m for 132Sn and 208Pb compared with the phenomenological mean fields
of Refs. [21,22] and [26].

wider than the other potentials. This can be easily understood
in the light of the density profiles, plotted in Fig. 1. Notice
that the HF and ETF densities have very similar slopes, but
the HF densities tend to bulge slightly more in the surface
region. The spin-orbit potential being proportional to the first
derivative of the density profile, the ones obtained from HF
and ETF densities are bound to be slightly different from each
other, as is seen from Fig. 1. It is important to point out that
in order to reproduce the HF strength at the peak of the SO

potentials, the spin-orbit strength has been taken as W0 =
−105 MeV instead of the original D1S value W0 = −130
MeV. This is due to the fact that although the ETF densities
are in good agreement with the HF ones at the surface, their
slopes are not exactly identical, which has a direct impact on
the SO potential. As far as shell effects are dominated by
the SO potential, we have renormalized the ETF prediction
to remain as close as possible to the HF result for the SO
potential.

FIG. 4. Calculated and fitted SO potentials for 208Pb compared with the corresponding HF results.
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FIG. 5. Calculated and fitted effective masses for 208Pb compared with the corresponding HF results.

3. Effective mass

We next assume that the inverse of the effective mass
[Eq. (11)] computed at k = kFq (R) can be parametrized as

m

m∗(r)
− 1 = Mo g(r; R, a). (31)

Here, the indices ν are chosen to be 1.5 and 2.5, respec-
tively, for neutrons and protons (same as those for densities).
The strengths, half-density radii, and diffusivity constants are
parametrized as

M (i)
o = M (i)

1

(
1 + M (n)

i I
)
, (32)

a(i)
em = c(i)

1

(
1 + c(i)

2 I
)
, (33)

R(i)
em = d (i)

1

(
1 + d (i)

2 I
) + d (i)

3 . (34)

As in the case of the other quantities described above, the pa-
rameters M1,2, c1,2, and d1,2,3 are taken to be free parameters,
and are determined through a χ2 minimization process. As
observed for the parameters of the mean field and the other
quantities, the fits work out to be excellent, with typical rms
deviation being of the order of 10−2 or smaller. The explicit
values of these parameters can be found in Appendix B.

In Fig. 5 we plot the quantity m/m∗(r) for 208Pb, com-
puted at ETF level using the variational densities (denoted
by “Exact”), the corresponding local and global fits, as well
as the HF result. The results from the three approaches are
almost indistinguishable from each other, indicating the good
quality of the fits. It can be seen that the HF and ETF m/m∗(r)
ratios are very similar to each other. In fact, the ETF inverse
effective mass nicely averages out that obtained from the HF
calculations, as expected.

IV. ENERGY CALCULATIONS

The densities, mean fields, and effective masses for neu-
trons and protons are the outcome of a restricted variational
calculation of the semiclassical HF energy at ETF level. These
energies computed for a set of doubly magic nuclei are re-
ported in Table I. The HF energies, computed quantally as
mentioned in Sec. II and explained in detail in Ref. [17], are
also given in the same table. From the comparison between the
HF and ETF results, we can see that for some nuclei the ETF

energy overbinds the HF calculation. The semiclassical values
go through the average of oscillating quantal energies. There-
fore, it is natural that ETF sometimes gives higher, sometimes
lower values than the quantal results.

According to the Strutinsky energy theorem [27,28] the
HF energy splits in a large smoothly varying part plus a
small oscillating shell correction that strongly depends on
the considered nucleus. In our semiclassical calculation the
smooth part of the energy is provided by the ETF value. A
very efficient way to recover shell corrections is the so-called
expectation value method (EVM) introduced by Bohigas et al.
more than 40 years ago [29]. This method consists of in-
cluding the shell corrections perturbatively on top of the
semiclassical calculation by performing a single HF run using
the semiclassical mean fields computed with the semiclassical
densities. As stated in Ref. [29], the EVM treats basically
the difference between the HF and ETF kinetic energies as a
perturbation and allows one to recover the shell effects missed
in the semiclassical calculation. The EVM results obtained
starting from our variational ETF calculation are also reported
in Table I. We can see that the EVM reproduces the full HF
calculations accurately, the differences being always smaller
than 1% in all the considered nuclei. The EVM can also
reproduce the HF densities in a rather precise way as it can be

TABLE I. Total ground-state energies (in MeV) obtained by
using the Hartree-Fock, expectation value method, and ETF
approaches.

Approach

Nucleus HF EVM ETF

16O −127.43 −126.08 −118.16
40Ca −341.70 −339.34 −338.95
48Ca −414.96 −413.57 −412.33
56Ni −479.82 −476.36 −479.01
78Ni −638.36 −636.12 −632.27
90Zr −783.51 −781.63 −785.75
100Sn −826.62 −822.66 −820.03
132Sn −1100.72 −1097.68 −1089.09
208Pb −1636.08 −1632.37 −1625.76
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TABLE II. The rms neutron and proton radii obtained by using
the Hartree-Fock, expectation value method, and ETF approaches.

rn (fm) rp (fm)

ETF EVM HF ETF EVM HF

16O 2.54 2.57 2.67 2.51 2.65 2.70
40Ca 3.28 3.29 3.38 3.28 3.38 3.43
48Ca 3.54 3.61 3.60 3.40 3.45 3.45
56Ni 3.62 3.67 3.64 3.64 3.77 3.70
78Ni 4.14 4.21 4.18 3.91 3.97 3.90
90Zr 4.24 4.28 4.28 4.18 4.21 4.22
100Sn 4.33 4.36 4.34 4.38 4.48 4.42
132Sn 4.84 4.87 4.86 4.66 4.71 4.65
208Pb 5.56 5.58 5.58 5.44 5.48 5.43

seen in Fig. 1, where in addition to the ETF and HF densities,
we also plot the densities generated by the EVM. The rms
radii of densities of a set of spherical nuclei, along with those
included in Fig. 1, are presented in Table II, for all the three
approaches (ETF, EVM, and HF). As expected, the radii are
quite close to each other in all the three cases.

V. SUMMARY AND CONCLUSIONS

Extensive ETF calculations for a large number of even-
even nuclei spanning the entire periodic table have been
carried out using the Gogny D1S interaction, with the aim to
deduce analytic average mean-field potentials from the D1S
force with space-dependent effective mass, m∗(r). In order
to achieve this, the energy density at ETF level including
second-order h̄ corrections is minimized using trial neutron
and proton densities parametrized as generalized Fermi distri-
butions. The resulting densities are used to compute quantities
such as mean field, spin-orbit potentials, and effective masses
for each kind of particles. For each kind of nucleons the mean
field has been computed in two different ways. In the first
one, the kinetic-energy operator includes the space-dependent
effective mass, whereas in the second one the effective mass
contributions from the kinetic-energy operator have been sub-
sumed in the potential energy. The former approach has
the advantage that the resulting analytical potentials are di-
rectly comparable with the Hartree-Fock potentials, whereas
the potentials obtained in the latter case are similar to the
phenomenological potentials available in the literature. We
have demonstrated that the mean fields, spin-orbit potentials,
and position-dependent effective masses can be parametrized
accurately using a simple modified Fermi function. It has
been further shown that the parameters appearing in these
Fermi-function forms can be systematized as functions of
neutron and proton numbers up to a very high degree of
precision. The resulting semiphenomenological potentials and
other quantities are found to be very close to those obtained
by the explicit ETF calculation with the D1S force. Our fitted
densities, mean-field potentials, and effective masses are
ready for use for any kind of nucleus, including the deformed
ones albeit by suitable modifications of the distance function
in the Woods-Saxon form factor. To our knowledge no such
potential with effective mass can be found in the literature.

The fitted neutron and proton densities may be useful in
folding model calculations to obtain the nucleon-nucleus and
nucleus-nucleus optical potentials [30]. The knowledge of
these fitted quantities is an advantage for accurate pairing
calculations, where it is well known that effective masses play
an important role [5,31]. Finally let us mention that these
fitted mean-field potentials can directly be used to get accurate
shell correction energies in Mic-Mac models for nuclear mass
tables, as it will be shown in a follow-up paper [1].
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APPENDIX A: ADDITIONAL DETAILS ON THE
EXTENDED THOMAS-FERMI METHOD WITH

FINITE-RANGE FORCES

Using the semiclassical particle, kinetic-energy, and spin
densities [Eqs. (4)–(6)] given in Sec. II for each type of
nucleons, the kinetic, zero-range, Coulomb, and spin-orbit
contributions to the ETF energy density functional can be
easily obtained as

Hkin(R) = h̄2

2m
[τn(R) + τp(R)], (A1)

Hnucl
z range(R) = t3

4
ρα (R)

{
(2 + x3)ρ2(R)

−(2x3 + 1)
[
ρ2

n (R) + ρ2
p(R)

]}
, (A2)

HCoul(R) = 1

2
ρp(R)

∫
dR′ ρp(R − R′)

|R − R′|

−3

4

(
3

π

)1/3

ρ4/3
p (R), (A3)

HSO(R) = 1

2
W0[ρ(R)∇ · J(R) + ρn(R)∇ · Jn(R)

+ρp(R)∇ · Jp(R)]. (A4)

The contributions to the HF energy density due to the
finite-range part of the force are collected in the direct and
exchange terms. The direct energy reads

Hnucl
dir (R) = 1

2

i=2∑
i=1

∫
dR′v(|R − R′|){Xd1,i[ρn(R)ρn(R′)

+ ρp(R)ρp(R′)]

+ Xd2,i[ρn(R)ρp(R′) + ρp(R)ρn(R′)]}, (A5)

where Xd1,i = Wi + Bi/2 − Hi − Mi/2 and Xd2,i =
Wi + Bi/2, respectively.
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The HF exchange energy density is given by

Hexch
HF = 1

2

∫
V nucl

exch (R, s)ρ(R, s) dR ds, (A6)

where R and s are the center-of-mass and relative coordinates, respectively; ρ(R, s) is the ETF one-body density matrix [Eq. (7)];
and V nucl

exch (R, s) is the exchange potential, which is defined as

V nucl
exch (R, s) = −v(R, s)ρ(R, s), (A7)

where v(R,s) is the finite-range nucleon-nucleon interaction, which in the case of the Gogny interaction is given by the first
term of Eq. (1). In the ETF approximation the exchange energy density consists of two terms. The first one corresponds to the
Thomas-Fermi (h̄0) contribution, which in the Slater approach is given by

Hnucl
exch,0(R) =

i=2∑
i=1

∫
ds v(s)

{
1

2
Xe1,i

[(
ρn(R)

3 j1[kFn (R)s]

kFn (R)s

)2

+
(

ρp(R)
3 j1[kFp (R)s]

kFp (R)s

)2]

− Xe2,i

[
ρn(R)

3 j1[kFn (R)s]

kFn (R)s
ρp(R)

3 j1[kFp (R)s]

kFp (R)s

]}
. (A8)

The second term of the ETF exchange energy density, which contains the h̄2 corrections, is given by

Hnucl
exch,2(R) =

∑
q=n,p

h̄2

2m

{
( fq(R) − 1)

(
τq(R) − 3

5
k2

Fq
(R)ρq(R) − 1

4
�ρq(R)

)
+ kFq (R) f ′

q(R)

[
1

27

[∇ρq(R)]2

ρq(R)
− 1

36
�ρq(R)

]}
.

(A9)

The h̄2 contribution to the ETF exchange energy contains gradients of the neutron and proton densities and is explicitly
connected with the nucleon-nucleon interaction through the effective mass [Eq. (8)] and its derivative with respect to the position
and momentum k computed at the Fermi momentum kF = [3π2ρ(R)]1/3. Notice that in the case of finite-range forces, such as
the Gogny interaction, the nucleon effective mass only appears explicitly in the energy density when the h̄2 corrections are taken
into account. In this case adding to the kinetic-energy density [Eq. (A1)] the second-order exchange energy density one can write

Hkin(R) + Hnucl
exch,2(R) =

∑
q=n,p

h̄2

2m
fq(R)τq(R) +

∑
q=n,p

h̄2

2m

{
[1 − fq(R)]

[
3

5
k2

Fq
(R)ρq(R) + 1

4
�ρq(R)

]

+ kFq (R) f ′
q(R)

[
1

27

[∇ρq(R)]2

ρq(R)
− 1

36
�ρq(R)

]}
. (A10)

APPENDIX B: DETAILS OF FITS

As mentioned in Sec. III, here we present the details
of parametrizations developed for the half-density radii, dif-
fusivities, strength parameters, etc. As discussed there, the
densities, mean fields, spin-orbit form factors, as well as ef-
fective masses are assumed to be of appropriately defined
modified Woods-Saxon form.

1. Densities

We take

ρ (i) = ρ (i)
o g(r; R(i), a(i) ) (B1)

with i = n or p (neutron or proton) and ρ (i)
o being determined

from the normalization condition, and

g(r; R(i), a(i) ) = [ f (r; R(i), a(i) )]ν
(i)

(B2)

with

f (r; R(i), a(i) ) = 1

1 + e(r−R(i) )/a(i) . (B3)

The half-density radius and diffusivity parameters for neu-
trons and protons are parametrized as

R(n) = 1.2031(1 + 0.0434 I )A1/3 − 0.0390, (B4)

R(p) = 1.2559(1 − 0.1200 I )A1/3 + 0.1705, (B5)

a(n) = 0.4619(1 + 0.8685 I ), (B6)

a(p) = 0.5656(1 − 0.3175 I ), (B7)

where I = (N − Z )/A is the asymmetry parameter.

2. Hartree-Fock mean-field potentials

With the definitions of f and g similar to those defined for
the densities, the mean fields are assumed to be of the form

V (i)(r) = V (i)
m

[
f
(
r; R(i)

m , a(i)
m

)]ν (i)
m (B8)

where the function f is similar to the one defined for density
distributions. The strength, half-density radius, and diffusivity
of neutrons and protons are parametrized as

V (n)
m = −71.5435(1 − 0.3695 I ) + 0.7552 A1/3, (B9)

V (p)
m = −68.1452(1 + 0.4571 I ) − 0.2045 A1/3, (B10)
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R(n)
m = 1.2251(1 − 0.1061 I )A1/3 + 0.4424, (B11)

R(p)
m = 1.1899(1 + 0.1359 I )A1/3 + 1.2094, (B12)

a(n)
m = 0.5587(1 + 0.4344 I ), (B13)

a(p)
m = 0.7636(1 + 0.3639 I ). (B14)

3. Phenomenological mean-field potentials

With a definition similar to the Hartree-Fock mean-field
potentials, we have

V (n)
m = −55.0321(1 − 0.4682 I ) + 0.5261 A1/3, (B15)

V (p)
m = −51.4006(1 + 0.6258 I ) − 0.4422 A1/3, (B16)

R(n)
m = 1.2310(1 − 0.1042 I )A1/3 + 0.4586, (B17)

R(p)
m = 1.1801(1 + 0.1561 I )A1/3 + 1.2245, (B18)

a(n)
m = 0.4876(1 + 0.7583 I ), (B19)

a(p)
m = 0.6776(1 + 0.2940 I ), (B20)

where the symbols have their usual meanings.

4. Spin-orbit potential

The spin-orbit potential is assumed to be proportional
to the derivative of the modified Woods-Saxon form factor.
Specifically, we take

V (i)
SO (r) = U (i)

SO

d

dr

{[
f
(
r; R(i)

SO, a(i)
SO

)]ν
(i)
SO

}
(B21)

with the various quantities defined in a manner similar to those
in the density distributions and mean fields. The strength,
half-density radius, and diffusivity for neutrons are protons
are parametrized as

U (n)
SO = 13.1889(1 + 0.3072 I ) − 0.1928 A1/3, (B22)

U (p)
SO = 13.0247(1 − 0.1840 I ) − 0.2657 A1/3, (B23)

R(n)
SO = 1.2201(1 − 0.0014 I )A1/3 − 0.0752, (B24)

R(p)
SO = 1.2360(1 − 0.0452 I )A1/3 + 0.1840, (B25)

a(n)
SO = 0.4836(1 + 0.4937 I ), (B26)

a(p)
SO = 0.5336(1 + 0.0966 I ), (B27)

where the symbols have their usual meanings.

TABLE III. The indices ν appearing in the present parametrizations.

Index Quantity where it appears Value

ν (n) Neutron density 1.5
ν (p) Proton density 2.5
ν (n)

m Neutron mean field 1.5

ν (p)
m Proton mean field 3.0

ν
(n)
SO Neutron spin-orbit potential 1.5

ν
(p)
SO Proton spin-orbit potential 2.5

ν (n)
em Neutron effective mass 1.5

ν (p)
em Proton effective mass 2.5

5. Effective mass

Finally, the r-dependent effective mass is parametrized
through

m

m∗(r)
− 1 = M (i)

o

[
f
(
r; R(i)

em, a(i)
em

)]ν (i)
em (B28)

where m is the average nucleon mass, and the other symbols
have their usual meanings. The strength, half-density radius,
and diffusivity for neutrons and protons are parametrized
through

M (n)
o = 0.4311(1 − 0.6033 I ), (B29)

M (p)
o = 0.4349(1 + 0.5772 I ), (B30)

R(n)
em = 1.2411(1 − 0.0827 I )A1/3 + 0.3806, (B31)

R(p)
em = 1.1824(1 + 0.1636 I )A1/3 + 0.9225, (B32)

a(n)
em = 0.3788(1 + 0.4480 I ), (B33)

a(p)
em = 0.4976(1 + 0.7033 I ), (B34)

where the symbols have their usual meanings.
The numerical values of the parameters here have been

obtained through a χ2 minimization process, as discussed in
Sec. III of this paper.

For the sake of completeness, we summarize the indices
(ν) used for different quantities in Table III.
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