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Consistency of nucleon-transfer sum rules in well-deformed nuclei
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Nucleon-transfer sum rules have been assessed via a consistent reanalysis of cross-section data from neutron-
adding (d, p) and -removing (d, t) reactions on well-deformed isotopes of Gd, Dy, Er, Yb, and W, with 92 � N �
108, studied at the Niels Bohr Institute in the 1960s and 1970s. These are complemented by new measurements
of cross sections using the (d, p), (d, t), and (p, d) reactions on a subset of these nuclei. The sum rules, defined
in a Nilsson-model framework, are remarkably consistent. A single overall normalization is used in the analysis,
which appears to be sensitive to assumptions about the reaction mechanism, and in the case of sums using the
(d, t) reaction, differs from values determined from reactions on spherical systems.

DOI: 10.1103/PhysRevC.103.024319

I. INTRODUCTION

Nucleon-transfer sum rules [1] have been explored at
length over the last 60 years since they were proposed, per-
haps most extensively in recent surveys of closed-shell and
other near-spherical systems [2–4]. The sum rules state that
the summed spectroscopic strength from nucleon-adding and
-removing reactions to final states based on an orbital j equals
the total (2 j + 1)Nj degeneracy of the orbital. Nj is a normal-
ization factor and should be equal to 1.0 if the independent
single-particle model of nuclear structure and the descrip-
tion of the reaction mechanism are correct. A consequence
of short-range correlations between nucleons means that the
model description accounts for only about 60% of the total
single-particle strength. This is supported by a wealth of re-
action data, largely on stable nuclei, using probes such as
(e, e′ p), (p, 2p), and nucleon-transfer reactions, where Nj is
consistently found to be about 0.6 [4,5]. This reduction from
unity is often called quenching and is seemingly independent
of mass, reaction type, and angular momentum.

In regions of the chart of nuclides where nuclei have
permanent quadrupole deformations, spherical single-particle
symmetry is broken and a given (2 j + 1)-fold degenerate
shell-model orbital is fragmented into j + 1/2 (� = 1/2, 3/2,
..., j) Nilsson states [6,7]. These Nilsson states correspond to
different projections of the motion on the deformation axis,
each having a degeneracy of two nucleons.

For a given shell-model orbital, the strength is dis-
tributed among the deformed states according to the Nilsson
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coefficients C2
jl . Each Nilsson state in an odd-A nucleus has

a rotational band built on it, and the appropriate pattern of
spectroscopic factors yields a distinctive fingerprint of transfer
strength over the rotational band members. Expressions for
reaction probabilities to states in deformed nuclei were first
deduced by Satchler in the late 1950s [8,9]—and are sum-
marized and discussed with reference to experimental results
by Elbek and Tjøm [10]. The relevant details are summarized
here. The nucleon-adding and -removing cross sections on an
even-even target to a state j can be expressed as

σ±
exp = 2Njg

±[Cj�Pj]
2σ±

DWBA, (1)

where σexp and σDWBA are the experimental and calcu-
lated cross sections; the latter typically determined using
the distorted-wave Born approximation (DWBA). g± are the
reciprocal of statistical factors. The P2 term is V 2 for (−)
removing reactions, the degree to which a pair of nucleons
occupy the orbital, and U 2 for (+) adding reactions, the degree
to which they do not, and U 2 + V 2 = 1. Here, Cj� is the
Nilsson coefficient. Coriolis effects, among others, can cause
mixing. The amplitude of this mixing, αi, can be calculated
and Eq. (1) can be modified accordingly by replacing the
term in brackets by [

∑
i αiCi

j�Pi
j]

2, where the sum is over the
admixed bands (see, for example, Ref. [11]).

Several sum rules apply to transfer reactions in the Nilsson
description. By considering a fixed j and Nilsson quantum
numbers �π [Nnz�] [10] a sum rule can be stated making
use of the fact that only one pair of nucleons can have those
quantum numbers. For transfer reactions on an even-even nu-
cleus, in the absence of mixing, this is the sum of the strength
determined from a single state, jπ , in each of the adding and
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removal reactions, which must equal the degeneracy of the
orbital, i.e., two. From Eq. (1), it follows that

1

C2
j�

(
(2 j + 1)σ+

exp

σ+
DWBA

+ σ−
exp

σ−
DWBA

)
= 2Nj, (2)

where 2Nj replaces 2 to account for the normalization of the
single-particle model as described above.

For given values of jπ and �π [Nnz�], it is possible to track
a given excitation across several chains of isotopes and assess
the degree to which the analysis yields consistent sums, and
how much the value differs from the expected value of two,
i.e., what is the value of Nj . To the best of our knowledge, such
a study has not been carried out before and past analyses have
not been carried out with modern finite-range DWBA codes
and optical-model parametrizations. In the following we ex-
plore the sum rules under the assumptions of a single-step
transfer mechanism and that this is for nuclear states based
upon pure (unmixed) Nilsson orbitals. The justification for
this is discussed in Sec. II B.

II. THE NIELS BOHR INSTITUTE DATA

A. The cross sections

To explore this nucleon-transfer sum rule, data collected
at the Niels Bohr Institute (NBI) in the late 1960s and early
1970s by Elbek and collaborators [12–16] were initially used.
The (d, p) and (d, t) reaction cross sections were measured
simultaneously using a broad-range (large-acceptance) mag-
netic spectrograph [17] with photographic plates at the focal
plane. The incident deuteron energies for all of the studies
discussed here were close to 12 MeV, and the Q-value res-
olution was around 6–12 keV FWHM. The uncertainties on
the reported cross sections were estimated to be around 10%–
15% for relative cross sections, that is for peaks within each
spectrum, and around 15%–20% in absolute terms for cross
sections larger than 20 μb/sr.

The cross sections were recorded at angles of 60◦, 90◦,
and 125◦, with some exceptions where contaminants obscured
peaks. At these energies, the (d, p) and (d, t) angular dis-
tributions have broad maxima between θlab = 60◦ to 90◦. In
most cases jπ assignments were already known at the time
that these measurements were carried out, so detailed angu-
lar distributions were not required for spin assignments. The
momentum matching in the (d, p) and (d, t) reactions is well
suited for � = 1 transfer and has proven to be reliable for
� = 3 transfer [3]. We note that, for all isotopes studied here,
the outgoing triton in the (d, t) reaction was within a MeV or
so of the Coulomb barrier.

The data collected were on the (d, p) and (d, t) reactions on
stable, even isotopes of Gd (Z = 64) [12], Dy (Z = 66) [13],
Er (Z = 68) [14], Yb (Z = 70) [15], and W (Z = 74) [16],
spanning a range in neutron number from 92 to 108. These
nuclei all have ground-state deformation parameters β greater
than 0.3 (with the exception of 180,182W, which are around
0.25) [18] and all have ratios of E (4+) to E (2+) of ≈3.3 [19],
i.e., they have well-defined rotational ground-state bands. A
list of the isotopes and some of their relevant properties are
given in Table I.

B. Analysis of the Niels Bohr Institute data

The sum of the strengths [Eq. (2)] for the adding and re-
moving reactions on a given target for the jπ = 1/2− member
of the 1/2−[521] band can be determined from these data
for fifteen cases. The summed strength of the jπ = 7/2−
member of the 5/2−[512] band was similarly extracted in
three isotopes of Er and and three of Yb. The C2

j� coefficients
were calculated using the method described in Chi [20] and
are listed in Table I. Note that the C2

j� coefficients for the two
different bands are markedly different.

To calculate the DWBA cross sections, a standard ap-
proach was taken, as described, for instance, in Refs. [2–4].
The finite-range distorted-wave-Born-approximation code
PTOLEMY [21] was used throughout. For the (d, p) reaction,
the deuteron wave function was described by the Argonne
ν18 potential [22]. The target bound-state wave functions
were defined by a Woods-Saxon potential with a spin-orbit
derivative term, having parameters r0 = 1.28 fm, a = 0.65
fm, Vso = 6 MeV, rso0 = 1.1 fm, and aso = 0.65 fm. In the
case of the (d, t) reactions, the parametrized potential of Brida
et al. [23] defined the wave functions and the also the 〈d|t〉
overlap. No allowance is made for deformation in the DWBA
calculations.

The global optical-model potentials of An and Cai [24]
were used for the deuterons, those of Koning and De-
laroche [25] for the protons, and those of Pang et al. [26]
for the tritons. All of these have been assessed over a broad
range of nuclei, have led to largely consistent results for
spherical nuclei [4], and include in the data from which they
are derived nuclei close to, but not in, the rare-earth region.
It is not clear how well these global parametrizations can
approximate the distorted wave functions in the incident and
outgoing channels, those of the bound states of the transferred
neutrons and the overlaps between them in deformed nuclei.
Coupled-channel effects, which account for some of these, are
expected to be important in deformed nuclei, with strongly
enhanced B(E2) values from 0+ ground states to at least the
first (2+) state in the rotational band, and similar couplings
in odd-A nuclei. There have been several previous studies of
these effects. Both modifications to the shapes of the angular
distributions can be seen, as well as the magnitude of the
cross section [27] at the 10%–20% level depending on the
case [28,29]. The work of Kunz, Rost, and Johnson [29] finds
that, in a DWBA analysis, coupled-channel effects may be
approximated by a larger bound-state radius which leads to
larger cross sections.

The 1/2−[521] band can be considered a so-called decou-
pled band, being at the rotationally aligned coupling limit as
evinced by the energy spacing of its j, j + 2, ..., members
matching the energy spacing of the even-even core 0+, 2+, ...,
excitations [31]. This is the case of all nuclei studied here. For
this � = 1/2 case, a decoupling parameter ad modifies the Cj�

coefficient, such that ad = −∑N+1/2
j=1/2 (−) j+1/2( j + 1/2)C2

j�.
For the 1/2−[521] bands studied here, ad ranges from 0.86
to 0.93. These corrections are assumed negligible. For the
5/2−[512] band, it lies neither in the rotationally aligned limit
nor the strongly coupled limit with an odd-A-to-average-even-
even transition energy ratio of around two.
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TABLE I. The normalized strength for neutron adding and removing and the summed strength from the present analysis, derived from
the NBI (d, p) and (d, t) reaction data. The average normalization factor is N = 1.18(15). The uncertainties on the sums are discussed in
the text. The E4+

1
/E2+

1
ratio is given, along with the ground-state deformation parameter β, the orbital label ( jπ , �π [Nnz�]), and the Nilsson

coefficients (Cj�).

jπ , �π [Nnz�] Isotope Z N E4+
1
/E2+

1
βa C2

j�
b Adding Removing Sum

1
2

−
, 1

2

−
[521] 160Gd 64 96 3.302 0.353 0.245 1.21 0.46 1.67

158Dy 66 92 3.206 0.326 0.248 1.46 0.52 1.98
160Dy 66 94 3.270 0.339 0.247 1.20 0.39 1.59
162Dy 66 96 3.294 0.343 0.246 1.04 0.76 1.81
164Dy 66 98 3.301 0.348 0.246 1.31 0.43 1.73
164Er 68 96 3.277 0.333 0.247 1.27 0.58 1.86
166Er 68 98 3.289 0.342 0.246 1.50 0.81 2.31
168Er 68 100 3.309 0.338 0.247 1.45 1.12 2.58
170Er 68 102 3.310 0.336 0.247 0.49 1.73 2.22
168Yb 70 98 3.266 0.322 0.248 1.33 0.85 2.18
170Yb 70 100 3.293 0.326 0.248 0.78 1.18 1.96
172Yb 70 102 3.305 0.330 0.247 0.47 1.93 2.41
174Yb 70 104 3.310 0.325 0.248 0.12 1.94 2.06
180W 74 106 3.260 0.254 0.255 0.14 1.70 1.83
182W 74 108 3.291 0.251 0.256 0.09 1.91 2.00

7
2

−
, 5

2

−
[512] 166Er 68 98 3.289 0.342 0.783 1.67 0.15 1.82

168Er 68 100 3.309 0.338 0.784 1.78 0.40 2.18
. 170Er 68 102 3.310 0.336 0.784 1.24 0.84 2.08

170Yb 70 100 3.293 0.326 0.785 1.19 0.46 1.65
172Yb 70 102 3.305 0.330 0.785 1.23 0.66 1.89
174Yb 70 104 3.310 0.325 0.785 0.46 1.72 2.18

aThe quoted ground-state deformation parameters β are taken from Ref. [18] and defined as β = (4π/3ZR2
0 )[B(E2) ↑ /e2]1/2.

bThe Cj� coefficients are calculated from the formalism in Ref. [20] using the code of Ref. [30].

In this analysis, Coriolis mixing matrix elements have not
been included. Coriolis mixing will modify the cross sections.
Previous analyses of data for several isotopes of Gd, Dy,
Er, and Yb, suggest these modifications are small, around
20% [32]. A detailed exploration of Coriolis couplings can
be found in Ref. [16], which is part of the original analysis of
the tungsten data used here. Note that Coriolis couplings are
negligible for the 1/2−[521] band, which is used in the bulk
of our reanalysis, and only non-negligible (10%–20%) for the
5/2−[512] band.

Table I shows the normalized summed spectroscopic fac-
tors derived from this analysis. An average normalization, N ,
which is the average of the 21 different determinations of Nj

has been deduced [Eq. (2)], yielding N = 1.18(15) across all
isotopes. The rms spread, which is the standard deviation of
the 21 different values, is 15%, which is similar to the esti-
mated relative uncertainty in the cross sections. Similar values
are found for subsets of the data, with the � = 1 transfer giving
N1/2 = 1.19(17) and the � = 3 transfer, N7/2 = 1.16(13).

This consistency is quite remarkable across � = 1 and 3
transfer, for final states with significantly different C2

j� coef-
ficients and occupancies, from 64 � Z � 74 and 96 � N �
108. It shows that the sum rules, expressed in this manner
[Eq. (2)] in the framework of the Nilsson model, are robust for
these well-deformed nuclei. Figure 1 shows the normalized
summed strength and the fraction of which is the (d, p) and
(d, t) strength. The emptying (U 2) and filling (V 2) of pairs of

nucleons in these orbitals can be seen most dramatically in the
Yb isotopes between 98 � N � 104. The occupancy is shown
in Fig. 2 to emphasize the filling pattern, where the occupancy
is determined from the average of the adding and removing
strength.

The value of the normalization is quite a bit larger than
the 0.6 found in spherical nuclei. The dependence of the
normalization on the geometry assumed for the bound state
is well known for spherical nuclei and we used r0 = 1.28 fm
following previous works [4]. It was already noted by Erskine
and Siemssen [28] in their study of tungsten that the spectro-
scopic factors were larger than in spherical systems, and the
reason for this was somewhat explained by Kunz, Rost, and
Johnson [29] who pointed out the need for a larger radius for
the bound state, to account for the effect of deformation on the
potentials. In exploring the sensitivity of DWBA calculated
cross sections, albeit it in a spherical basis, we note that the
(d, t) cross sections are much more sensitive, by as much as a
factor of five, to the radius of the bound-state wave functions
than for the (d, p) and (p, d) reactions. This is perhaps be-
cause of the much stronger surface absorption in the distorting
parameters for tritons than those for protons and deuterons.

III. THE MUNICH DATA AND ANALYSIS

To further explore these systems, and as an independent
test of the NBI absolute cross sections, we collected new data
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FIG. 1. The normalized summed strength, defined in the text, for Nilsson orbitals as determined from (d, p) (lighter shade) and (d, t)
(darker shade) reaction data from NBI on isotopes of Gd [12], Dy [13], Er [14], Yb [15], and W [16]. The blue bars (left) are for the jπ = 1/2−

member of the 1/2−[521] band, and the orange bars (right) are for the jπ = 7/2− member of 5/2−[512] band. The gray band is the rms spread.

using the tandem facility at Munich. The (d, p), (d, t), and
(p, d) reactions were carried out on targets of 170Er and 174Yb.
The (d, p) and (d, t) reactions were carried out at the same
energy of 12 MeV as the NBI measurements and the (p, d)
reaction at 18 MeV. As noted above, DWBA cross sections
for the (d, t) reaction are more sensitive to choices of bound-
state and optical-model potentials than the (p, d) reaction,
so measurements with the latter reaction might reveal some
further insights into the reaction mechanism and analyses. The
(d, p) and (p, d) reactions were carried out at energies ideal
for � = 1 and 3 transfer, a few MeV/u above the Coulomb
barrier in the entrance and exit channels [2,3], where cross
sections are larger and the angular distributions more forward
peaked and distinctive. This is in contrast to the (d, t) reaction
where the tritons are closer to the barrier in the exit channel.

The data were taken and cross sections deduced in the same
manner as those described in detail in Ref. [33]. Beams of 12-
MeV deuterons and 18-MeV protons were delivered from the
MP tandem accelerator at the Maier-Leibnitz Laboratorium

92 96 100 104 10892 96 100 104 108
0

0.2

0.4

0.6

0.8

1
Gd

Dy

Er

Yb

W

 jπ = 7/2–, 5/2–[512] jπ = 1/2–, 1/2–[521]

 N

O
cc

up
an

cy

FIG. 2. The occupancy, derived from the average of the adding
and removing strength as determined from the NBI data [12–16], as
a function of neutron number, N .

(MLL) to the Q3D spectrometer [34], which was used to
momentum analyze the reaction products.

The product of the target thickness and spectrometer
aperture were determined from elastic-scattering yields of
12-MeV deuterons at θlab = 20◦. Under these conditions, the
cross section is estimated to be within 1% of the Rutherford
scattering cross section. The 170Er and 174Yb targets, isotopi-
cally enriched to 96.1% and 95.8% and supported on carbon
backings of nominal thickness 20 μg/cm2, were determined
to have a thickness of 44(2) and 50(3) μg/cm2, respectively.

Yields from the (d, p) and (d, t) reactions were also mea-
sured at 12 MeV to follow the previous NBI studies. For the
(d, p) measurements, the cross sections were determined at
angles of θlab = 60◦ and 90◦, again used in the NBI studies,
and an additional angle of 40◦. Similarly, with the (d, t) mea-
surements, data were collected at angles of θlab = 60◦ and 90◦,
as well as θlab = 30◦ for 170Er. The additional angles were
added to guide choices in the optical-model parametrizations
used in the analysis. The (p, d) reaction has more distinctive
forward-peaked angular distributions and the (d, p) and (d, t)
reactions. The (p, d) reaction yields were measured at θlab =
17◦ and 38◦, which were estimated to be the peak angles for
� = 1 and 3 transfer cross sections. For the 174Yb(p, d) reac-
tion, only θlab = 17◦ data were analyzed due to an incorrect
field setting at θlab = 38◦.

Example spectra are shown in Fig. 3 for each reaction.
The spectra were calibrated by using well-known states in the
literature and the bands of interest are labeled, emphasizing
the distinctive fingerprints of their energies and strengths.
Due to the dispersion of the Q3D spectrometer, only a small
range of excitation energy is probed in one magnet setting.
The Q-value resolution achieved was ≈10 keV FWHM across
the different reactions. The broad background features seen
in the (d, p) reaction spectra are from the carbon backings
and were also seen in the original NBI data, however, due to
the dispersion of the Munich Q3D spectrograph, these appear
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FIG. 3. (a) Excitation-energy spectra for the 170Er(d, p) 171Er re-
action at 12 MeV for θlab = 90◦. States belonging to the 5/2−[512]
(blue lines, text) and 1/2−[521] (black lines, text) Nilsson config-
urations are labeled by their energy and spin. The states with their
spin value given in a rectangle are those of interest in this work.
The lines connect the states in a given band, highlighting their
similarities in each isotope. (b) The same as in panel (a) for the
174Yb(d, p) 175Yb reaction at 12 MeV for θlab = 90◦. (c) Yields for
both the 170Er(p, d ) 169Er reaction at 18 MeV for θlab = 17◦ (black
histogram) and the 170Er(d, t ) 169Er reaction at 12 MeV for θlab = 90◦

(red histogram). (d) The same reactions as in panel (c) on the 174Yb
target.

as broad, weak peaks. The absolute cross sections, which
are given in the Supplemental Material [35], have estimated
uncertainties of around 5%.

The Munich (MLL) data for the (d, p) and (d, t) reactions
were analyzed in the same way as that described above for

TABLE II. Comparison of normalization factors derived from the
Niels Bohr Institute (NBI) data and the Munich (MLL) data.

Isotope(s) Reactions Dataset N

Alla (d, p) & (d, t) NBI 1.18(15)
170Er & 174Yb (d, p) & (d, t) MLL 1.08(6)
170Er & 174Yb (d, p) & (p, d) MLL 0.71(10)

aAll 21 cases used in the analyses shown in Table I.

the reanalysis of the NBI data. As with the NBI dataset, the
results from the Munich experiment reveal consistent summed
strengths [Eq. (2)] across the nuclei studied and the differ-
ent Nilsson states. Table II summarizes the normalization
factors derived from these analyses. The (d, p) and (d, t)
datasets from NBI and MLL are in close agreement, with
N = 1.18(15) and 1.08(6), respectively.

In the case of the new (p, d) data, the same proton and
deuteron optical-model parametrizations were used as for the
(d, p) analysis. As with the analysis of the (d, p) and (d, t)
reactions, good consistency is seen in the summed strengths
determined from the (d, p) and (p, d) reactions, across the dif-
ferent isotopes and states of different angular momenta. The
normalization for MLL (d, p) and (p, d) sums is lower, with
N = 0.71(10), which is a value in line with data from spher-
ical systems. A comparison of the NBI and MLL datasets for
(d, p), (d, t), and (p, d) data is shown in Fig. 4.

The value of the normalization describes the degree to
which single-particle motion is quenched. In these deformed
nuclei, when the normalization value is determined from the
summed strength derived from the (d, p) and (d, t) reactions
at incident-beam energies of 12 MeV, there is no apparent
quenching, with N ≈ 1. However, when determined from
the neutron-adding (d, p) reaction at 12 MeV, but with the
neutron-removing strength calculated using yields from the
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FIG. 4. Information similar to that given in Fig. 1, comparing the
new MLL data to the NBI data, labeled by the source of the data and
by reaction, with the sum being (d, p) [+n] and either (d, t) or (p, d)
[−n] as indicated. The (p, d) data are also hatched to distinguish
them from the (d, t) data.
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(p, d) reaction at 18 MeV, the quenching factor is ≈0.7, which
is a value consistent with expectations [4,5]. As described
above, the value of ≈1 determined from sums which make
use of the (d, t) reaction is suspected to be due to a deficiency
in the DWBA calculated cross sections for the (d, t) reaction.

IV. SUMMARY

In summary, we have studied how well single-nucleon
transfer sum rules are obeyed in well-deformed nuclei, re-
analyzing in a consistent way data published by the NBI
group in the 1960s and 1970s. The data are for fifteen pairs
of neutron-adding and -removing cross sections for the 1/2−
members of the 1/2−[521] band and six of the jπ = 7/2−
member of the 5/2−[512] band, between neutron numbers
N = 94–108. Given the assumption that the states populated
are pure Nilsson states, remarkable consistency is found when
comparing equivalent sums across a broad range of nuclei.

The value of the normalization required to satisfy the sum
rules for the combined (d, p) and (d, t) reactions is found
to be ≈1 instead of the ≈0.6 characteristic of (d, p) and
(p, d) data in spherical nuclei. Analysis of new data from
Munich, using the (p, d) reaction at above barrier energies
as an alternative to the (d, t) reaction, yield a normalization
around 0.7, more nearly consistent with the large body of data

using various probes [though not including (d, t) data] from
closed and near-closed shell spherical systems. The origin of
the discrepancy is perhaps in the treatment of deformation in
reaction theory, including the sensitivity to radii in the triton
channel.

In the era of radioactive ion beams, there has been a
resurgence of interest in interpreting transfer reaction data
for lighter nuclei using the Nilsson model [36–38]. As data
become more plentiful, exploiting the sum rules across wider
ranges of isotopes will become increasingly important.
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