
PHYSICAL REVIEW C 103, 024317 (2021)

Nuclear structure and band mixing in 194Pt

A. Jalili Majarshin ,1 Yan-An Luo,1 Feng Pan,2,4 H. T. Fortune ,3 and Jerry P. Draayer4

1School of Physics, Nankai University, Tianjin 300071, P.R. China
2Department of Physics, Liaoning Normal University, Dalian 116029, P.R. China

3Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
4Department of Physics and Astronomy, Louisiana State University, Baton Rouge, Louisiana 70803-4001, USA

(Received 16 October 2020; revised 17 December 2020; accepted 22 January 2021; published 16 February 2021)

We introduce a two-particle, two-hole mixed configuration scheme to fit E2 strengths for the 0 ↔ 2, 2 ↔ 4,
and 4 ↔ 6 transitions in 194Pt. The interaction includes two sets of pairing operators, {S±(t ), S0(t )} (t = s, d ).
Solutions within this framework are used to analyze energy spectra, E2 transitions, and band-mixing features of
the model. The results confirm that mixing is small and similar for J = 2, 4, and 6, with the calculated energies
and transition matrix elements in excellent agreement with experimental data.
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I. INTRODUCTION

Nuclear structure studies that include band mixing at low
energies have attracted much attention from both experimental
and theoretical perspectives. In this regard, one of the more
successful models is the interacting boson model (IBM) [1–4].
Specifically, within the IBM framework one finds strong ev-
idence for band mixing [4–7] involving multi-particle-hole
excitations [2,8]. From a theoretical perspective, a commonly
used model for investigating quantum phase transitions is
the IBM [1], with three dynamical symmetries, namely, a
vibrational [U(5)] mode, a γ -soft [O(6)] mode, and a rota-
tional [SU(3)] mode [9–12]. One can consider band mixing
configurations due to multi-particle-hole excitations, which
is confirmed to be useful in describing intruder states near
closed-shell nuclei, typically those around proton numbers
Z ∼ 50 and Z ∼ 82 [2,8].

Accordingly, numerous configurations with roughly the
same excitation energies can exist [1,6,13,14]. More precisely,
the lowest-lying 0+ and 2+ states can become strongly mixed
such that it is very tricky to allocate a configuration label to
them. Recently, configuration mixing in the O(6) and U(5)
limits were proposed [15,16]. We have offered and developed
SU(1,1) coherent states to describe band mixing [15,16]. For-
tune in Refs. [17–21] has described the band mixing between
the ground and excited states of K = 0 and/or K = 2 bands
in 72Ge, 74−78Kr, 106,108Pd, 154Gd, and 182,184Hg. Likewise,
there are many publications involving the band-mixed con-
figurations in medium and heavy mass nuclei [15,16,22]. It
is not uncommon to find partial energy spectra and transition
rates that are consistent with one or more configuration mixing
schemes.

The existence of shape coexistence phenomena is as-
sociated with particle-hole (np-nh) excitations across the
shell closure. It has been shown that IBM with higher-
order interactions is a highly successful phenomenological
model in the description of both collective valence shell

and multi-particle-hole excitations in nuclei for which there
is clear evidence for the presence of mixing of particle-
hole configurations and eventual mixing of two coexisting
collective states. Various workers have estimated the mecha-
nism of the Jπ = 0+, 2+, 4+, 6+ (K = 0+ bands) and Jπ =
2+, 3+, 4+, ... (K = 2+ bands) ground-gamma or gamma-
beta band-mixing. Coexistence and mixing between K =
0+ and K = 2+ bands can be prevalent at low energy
[23–26]. The configuration mixing scheme based on the
multi-particle-hole excitations is common in understanding
shape coexistence configuration and nuclear structure by tak-
ing different symmetry limits of the IBM. Several regions are
of great interest with different shapes. When passing from
light to heavy isotopes, the Pt region is characterized by vari-
ation from the U(5)-SU(3) axis to the γ -soft U(5)-O(6) axis
[27–30]. It is a widely acknowledged interpretation that 194Pt
involves coexistence and mixing. Providing two approaches
U(5)-O(6) and γ -soft rotor Hamiltonians to explain coexisting
structures and shape changes, the question is which is most ap-
propriate to 194Pt. Nuclear structure in Pt isotopes, including
triaxiality, has been studied with γ softness playing a promi-
nent role. The nuclear structure in 194Pt can be understood
in terms of various observables. The selected observables
to be analyzed herein are energies and E2 transitions. In
our previous work [22], we presented an exact solution of
the U(5)-O(6) transitional description in the IBM with two-
particle and two-hole configuration mixing based on the Bethe
ansatz formalism to determine the normal and intruder states
and E2 transition rates. In the present paper, we report the
assignment of additional information, such as band mixing,
not presented in our previous publication [22].

In nuclear structure theory, it is very important to get the
energy spectra and transition rates correct. Here, we employ
a relatively simple solvable pairing model that includes two-
particle and two-hole configuration mixing based on the affine
SU(1,1) Lie algebra [31–34]. The associated Hamiltonian we
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use generates two-particle, two-hole mixing to calculate par-
tial low-lying level energies and B(E2) rates. It is within this
framework that we show this configuration mixing scheme is
an effective model for systematically exploring band mixing
in ground and excited states. The main goals of this study in-
volve two aspects. First, to find shape coexistence or quantum
phase transitions based on a simplified configuration-mixing
scheme. Second, it is demonstrated that the simple two-state
model seems necessary to describe the band mixing in 194Pt.
It is further shown that deformation can be well described by
quadrupole-quadrupole interaction in the standard coherent
state of the IBM-1. Using the γ -soft rotor Hamiltonian, we
can describe the deformation based on coherent state configu-
ration.

II. CALCULATIONS AND RESULTS

Here, we present the pairing Hamiltonian of configuration
mixing scheme for transitional nuclei. References [15,16,22]
are the best reviews of studies with the configuration mixing
scheme. Also, we make use of quasi-spin algebras, which
have been explained in detail in Refs. [31,34,35]. By using
this relation as generators of SU(1,1) algebra for ρ = s and
d boson we have S+(ρ) = 1

2ρ†.ρ† for creation operator of
bosons, S−(ρ) = 1

2 ρ̃.ρ̃ for annihilation operator and S0(ρ) =
1
2 (ρ†.ρ̃ + 2ρ+1

2 ) for number-conserving operator with ρ = 0
for s boson and ρ = 2 for d boson [31].

We use the theory of affine SU(1,1) algebraic technique
[31], which determines the properties of energy spectra, mix-
ing of states, and electric transition rates. By employing the
generators of SU(1,1) algebra in terms of ρ-boson operators,
the solvable Hamiltonian is constructed for the transitional
region between normal U(5) and the intruder O(6) configura-
tions. The Hamiltonian can be written as Ĥ = S+

0 S−
0 + S0

ρ by
adding the second Casimir operator, where ρ† is the creation
operator of ρ bosons and ρ̃ν = (−1)νρ−ν .

The Hamiltonian, which describes the interaction between
the normal and deformed bands, is formed by two-boson
creation and annihilation with 2p2h excitations. For the sake
of band mixing, we have the combination of two terms in
the Hamiltonian as H = HIBM + HMix. So the Hamiltonian to
describe the band mixing may be written as [15,16]

Ĥ = PN
(
Ĥ (1)

IBM

)
PN + PN+2

(
Ĥ (2)

IBM

)
PN+2 + P(ĤMix) P, (1)

where PN and P are projection operators, which projects to the
N-boson subspace, while P project to the subspace with N and
N + 2 bosons,

Ĥ (i)
IBM = a(i)

s S0
s + a(i)

d S0
d + g(i)S+S−, (2)

for i = 1 and 2 are the U(5)-O(6) transitional Hamiltonians
[31], and for two-configuration mixing we have

ĤMix = gs(s
† × s† + s × s) + gd (d† × d† + d̃ × d̃ )

= gs(S
+
s + S−

s ) + gd (S+
d + S−

d ). (3)

We have the SU(1,1) algebra, which satisfies the commu-
tation relations[

S0
ρ ′ , S±

ρ

] = ±δρ ′ρS±
ρ , [S+

ρ ′ , S−
ρ ] = −2δρ ′ρS0

ρ. (4)

Basis vectors |N ; τνsνdηLM〉 can also be expressed as
those SU(1,1) algebra with two sets of operators {S±

ρ , S0
ρ} for

d and s bosons,

|N, τνsνdηLM〉 = (−1)τ N (S+
s )

N−νd −νs
2 −τ (S+

d )τ |νs; νdηLM〉,
(5)

in which nd = 2τ + νd and τ = 0, 1, 2, . . . , 1
2 (N − νd − νs)

with νs = 0, 1. Here N, v, L are the total number of bosons,
seniority numbers, and angular momentum quantum number,
respectively, with the third component of the angular momen-
tum M. To distinguish different states with the same L, we
need an additional quantum number η.

To get the Bethe ansatz approach, the eigenstate of Eq. (1)
can be written as

|τνs; νdηLM〉

=
(

ατ
νs,νd ,η,L

k∏
ρ=1

S+(
x(τ )
ρ

) + βτ
νs,νd ,η,L

k+1∏
ρ=1

S+(
y(τ )
ρ

))

× |νs; νdηLM〉, (6)

where ανs,νd ,η,L and βνs,νd ,η,L, in general, are complex num-
bers to be determined, τ labels the τ th set of the solution
(xτ

1 , ...xτ
k , yτ

1 , ...y
τ
k+1) with the k numbers of pairing. The ex-

plicit form of the functional S+(x) is similar to the format used
in Ref. [35],

S+(x) = xS+(s) + S+(d ), (7)

where x is the spectral parameter to be determined. Gaudin
first introduced an equivalent form of S+(x) as an ansatz
in determining the exact solutions of a spin-spin interaction
scheme [36], which is now applied to be a consistent operator
form in designing the Bethe ansatz wave-function Eq. (6) for
the configuration mixing scheme in IBM. By using the com-
mutation relation and act of Hamiltonian to the Bethe ansatz
wave-function Eq. (6) and diagonalization, Ĥ |τνs; νdηLM〉 =
E τ

νs,νd ,L|τνs; νdηLM〉, we can get the eigenvalues similar to the
form used in Ref. [35].

It has been shown that the Platinum isotopes are suitable
candidates within the U(5)-O(6) transitional area. As illus-
trated in the earlier study [30,37], the vibrational feature in
172−194Pt isotopes is not insignificant, mainly in A � 190.
U(5) and O(6) limits are pertinent to the normal and intruder
states, respectively [38,39]. It means that Pt isotopes as col-
lective nuclei with multiphonon excitations of particle-hole
configuration lead us to the shape coexistence between nor-
mal U(5) and intruder SO(6) configuration. For this reason,
however, the existence of intruder states in 182−184Pt isotopes
is much more obvious, so that the present model based on
the configuration mixing scheme is only appropriate to ex-
plain 194Pt, which is closest to the O(6)-limit in the Casten
triangle [30,37]. Using the band mixing Hamiltonian Eq. (1)
with Bethe Ansatz approach, we can explain most aspects
of the ground and excited states of 194Pt up to 2.5 MeV.
The Bethe Ansatz approach has been explained in detail in
Refs. [15,16,22]. Energy spectra can be constructed based
on the diagonalization in the N ⊕ (N + 2)-boson subspace,
of which the complete basis vectors in each configuration
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FIG. 1. Some low-lying energy levels for (a) experimental and (b) theoretical result in 194Pt. Available experimental data were taken from
Ref. [40].

can be taken as those of U(6)⊃ U(5)⊃ O(5)⊃ O(3) with
|N, νsνdηLM〉. In the diagonalization, the Hamiltonian Eq. (1)
is applied to obtain a low-lying spectrum of 194Pt with N =
2τ + νs + νd , for which the term ĤL = L.L is added to Eq. (1)
to lift the degeneracy of the levels with the same seniority to
form the angular momentum sequences with different angular
momentum quantum numbers. One note to mention is that
in the Hamiltonian, if g(1) = g(2) = 0, the system is in the
O(6)-limit without configuration mixing. With the variation
of g values, the mixing occurs. Energy spectra of low-lying
states related to band mixing in 194Pt are plotted and compared
in Fig. 1.

The model parameters are taken as a(1)
s = 0, a(1)

d =
1.05 MeV, g(1) = −1 keV, a(2)

s = 150 keV, a(2)
d = 1.17 MeV,

g(2) = −72 keV, gs = 200 keV, and, gd = 150 keV. It can be
observed that the ground and some partial excited states below
2.5 MeV, which belong to the band mixing, are included.
Moreover, the energy spectra with odd-spin and parity assign-
ments (J−) are also not included. In addition, some excited
states higher than 2.42 MeV, such as 7+

1 , 10+
2 , and so on, are

not considered due to the pair-broken state with major com-
ponents of proton-holes in 1h11/2-orbit and neutron-holes in
i13/2-orbit. Also, We have plotted energies versus J (J + 1) for
band 1, 2, k = 2 and other in Fig. 2. Theoretical calculations
can be verified against the experimental energy spectra shown
in Ref. [40] that most ground and excited states are fitted
quite well. The root-mean-square deviation, σ = 174.89keV
is calculated between the calculated energy spectra and exper-
imental counterparts.

Only levels of normal states with (N = 2τ + νd + νd , ν �
3), and intruder levels are shown in the figures. In Fig. 1 we see
that the first set of levels with τ = 1 are the same as those gen-
erated from the model without configuration mixing (g = 0),
the second set of levels with τ = 2 are built on the intruder
0+

4 level to the normal ground level, and so on. Each set of
the levels with τ � 2 is a reproduction of those with τ = 1
generated from the original intruder O(6) limit. Also, we know
from Fig. 2 that all the known positive-parity states below
1.65 MeV are plotted, but only high-J above that energy. Two
tentative (5+) states are included. Band 1 is the ground band,

band 2 is the beginning of a band based on the excited 0+ state.
Placements of states within bands were guided by energies
and E2 strengths. Both the energy and E2 behavior indicate
that the second 2+ state is not associated with the second 0+
state. That distinction belongs to the third or fourth 2+. All
other states below 1.65 MeV are indicated as “other.” Odd-J
states with positive parity are placed in the K = 2 band.

Excited states with leading Jπ = 2+, 3+, 4+ (K = 2+
bands) components are allocated to the γ band, while
the β band includes states defined by dominant Jπ =
0+, 2+, 4+, 6+ (K = 0+ bands) components. The mixing con-
figuration calculation reproduces the experimental values, in
particular, it predicts that the first excited band-head 0+

2 has
the lowest excitation energy in quasi-β band groups with
respect to β deformation, while the first excited band-head
2+

2 has the lowest excitation energy in quasi-γ band groups.
Excited energies are also in quantitative agreement with ex-
perimental data. It must be pointed out that the 0+

2 , 2+
3 , and

4+
3 levels are allocated to the quasi-β bands. Similarly, as one

can see in Fig. 1, the calculated 3+
1 and the 4+

2 levels in 194Pt
are allocated to the quasi-γ bands lying on top of the 2+

2 state.

FIG. 2. Plot of excitation energy vs. J (J + 1) for first three bands
in 194Pt.
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In the next step by the simple model, we have a mixing of the
states (K = 0+ bands) and (K = 2+ bands), assigned to the
ground and γ bands, respectively.

Pairing model with a configuration mixing scheme is ap-
plied to describe the energy spectra and E2 transition rates
in which the configuration mixing scheme keeps the lower
part of the γ -unstable spectrum unchanged and generates
the intruder states through the mixing term. Describing the
shape coexistence pattern can be achieved by mixing the
normal U(5) and the intruder O(6) configurations. The ob-
served intruder states in even-even Pt isotopes are well-known
in the Casten triangle [28,41,42]. Their presence in even-
even nuclei can be explained with an intruder O(6)-limit
Hamiltonian. Also, there are still many experimental signa-
tures [27,43] revealing the presence of γ -soft O(6) nuclei
in Pt isotopes. That’s why we have selected the O(6)-limit
Hamiltonian in our work. We should also consider that
Pt isotopes with configuration mixing exist in a region of
the nuclear chart, around the proton shell closure Z = 82,
characterized by different deformations [44]. Furthermore,
the O(6) quadrupole-quadrupole interaction in connection
with the shape coexistence phenomenon within a coher-
ent state requires the presence of states with very different
deformations. One might try to use this property to establish
a coherent theory of triaxiality in the IBM framework. It is
proved [45] that the coherent state procedure is acceptable be-
tween quantum parameters and geometrical parameters. The
classical equilibrium shapes and their evolution of a nucleus
described by IBM have been studied [46,47] to show the
potential shape of Eq. (8) in the classical limit. The most
general Hamiltonian is of the form

ĤO = ζ Q̂.Q̂ + ξ L̂2 + φT3 + χT4, (8)

where ζ , ξ , φ, and χ are adjustable parameters and
T3 =

√
30
6 (L̂ × Q̂ × L̂)(0) and T4 = − 5

√
3

18 [(L̂ × Q̂)(1) × (L̂ ×
Q̂)(1)](0) are the operators with quadrupole-quadrupole in-
teraction terms. To obtain a more intuitive insight into the
problem of triaxial shapes and validate our work, we use the
standard coherent state defined as [48]

|N, β, γ 〉 = [N!(1 + β2)N ]−(1/2)(s† + βcosγ d†
0

+ 1√
2
βsinγ (d†

2 + d†
−2)N |0〉. (9)

As it can be seen, there are quasi-β and quasi-γ bands
from the ground band up to 8+

1 . The authors of Ref. [30]
investigated the Pt isotopes in the IBM framework by
using the extended consistent-Q framework, in which in-
truder configuration was not taken into account. It has been
shown in Refs. [30,37], that some partial energy spectra
below 1.5 MeV in 194Pt were included. It can be said
that the energy of 5+

1 state in both the IBM and the ex-
tended consistent-Q framework displayed in Ref. [37] is
0.5–0.7 MeV higher than the corresponding experimental
value. Actually, there are 4+, 5+, 6+, and 8+ states with ex-
citation energy ∼2.0 MeV. One could assume that the energy
spectra of other excited states with higher angular momen-
tum quantum numbers provided from both the IBM and the
extended consistent-Q framework calculations would also be

FIG. 3. The potential-energy surface in 194Pt. The expectation
value in the coherent state used with the configuration mixing cal-
culations. We observe that the parameter χ taken to be 0 is always
better as far as the level energies are concerned. The other parameters
used are ζ = −3.3 keV, ξ = 2.8 keV, and φ = −3.5 keV, for the 0+

2

level energy.

much higher than the corresponding experimental values.
Now we can get the expectation value in the coherent state
with 〈N, β, γ |ĤO|N, β, γ 〉 in Fig. 3.

When we are moved higher than the critical area, the mini-
mal region becomes a global minimum point around β = 1.4
and γ = 60 (deg), indicating that an oblate phase appears. In
addition, γ varies from 0 to 60 in the equilibrium valley at the
critical area, which indicates a γ -soft shape [1].

Based on the above points, let us turn to the band mixing
in some ground and excited states. The existence of intruder
states leads to the band mixing, which is unavoidable, espe-
cially to explain the B(E2) values. Also, a simple two-state
model can work well when we have intruder states involved
in the band mixing. Typically, band mixings are associated
with the normal ground and excited intruder states. The simple
two-state model has been used to describe the band mixing
in connection with the intruder states. At this point, it is
worthwhile to determine the band mixing in 194Pt. It has
been found that coexistence configurations is described by
mixing between the normal U(5) and the intruder O(6) con-
figuration in Pt isotope. On the other hand, this configuration
can make a condition where the normal configuration ap-
proaches the U(5) limit while the intruder configuration is
closer to the O(6) limit. Suppose the normal states (N bosons)
with vibration limit and the intruder states (N+2 bosons)
with rotational limit coexist, they can interact and mix. In
that case, the total lowest weight |lw〉 wave function can be
A|lwN 〉(g) + B|lwN+2〉(e), where the subscripts g and e refer
to the ground and excited bands, respectively, and |lw〉 ≡
N, nd , ν, n�, L, M.

If all the matrix elements M(E2) are known, then the
mixing analysis for 0 ↔ 2, 2 ↔ 4, and 4 ↔ 6, for example,
can be done separately. Here, we could not apply the band
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mixing for 0 ↔ 2. It doesn’t apply in the present case because
the second 2+ state is not connected to the second 0+ state.
We have applied the simple two-state mixing to the transitions
2 ↔ 4 and 4 ↔ 6.

We introduce two bands as the Refs. [17–21], g and e, with
2+, 4+, and 6+ basis-state wave functions 2g, 2e; 4g, 4e; and
6g, 6e, respectively. We have

|lw〉(2+
1 )(

194Pt) = A|lw〉(g) + B|lw〉(e),

|lw〉(2+
2 )(

194Pt) = B|lw〉(g) − A|lw〉(e), (10)

for 2+
1 and 2+

2 states,

|lw〉(4+
1 )(

194Pt) = C|lw〉(g) + D|lw〉(e),

|lw〉(4+
2 )(

194Pt) = D|lw〉(g) − C|lw〉(e), (11)

for 4+
1 and 4+

2 or higher states, and

|lw〉(6+
1 )(

194Pt) = E |lw〉(g) + F |lw〉(e),

|lw〉(6+
2 )(

194Pt) = F |lw〉(g) − E |lw〉(e), (12)

for 6+
1 and 6+

2 or higher states, where the coefficients of A, B,
C, D, E , and F are the mixing amplitudes.

There is a unique determination for the two-state model
based on the Refs. [17–21]. But here we develop an exact solu-
tion based on the configuration mixing scheme. Details about
exact solutions have been presented in Refs. [15,16,22,31].
For various multi-particle-hole configurations, we need the
effective boson charge to calculate the E2 transitions
[8,13,14,49]. The E2 operator is written as

T (E2)
μ = qe2P̂N

[
(s† × d̃ + d† × s̃)(2)

μ

]
P̂N

+ q′
e2P̂

[
(s† × d̃ + d† × s̃)(2)

μ

]
P̂, (13)

where P̂N is the projection operator onto the configuration
mixing without multiparticle-hole excitations. And B(E2) is
given by

B(E2; αiLi → α f L f ) = |〈α f L f ||T E2||αiLi〉|2
2Li + 1

, (14)

where the reduced matrix element is defined in terms
of the Clebsch-Gordan coefficients and 〈α f L f ||Î||αiLi〉 =
δα f ,αiδL f ,Li with unit identity operator Î .

For projection operator we have

P̂|N ′, nd , ν, n�, L, M〉

=
{|N ′, nd , ν, n�, L, M〉 if N ′ � N

0 otherwise , (15)

which keeps the operator effective only within the boson
subspace by [N] ⊕ [N + 2] ⊕ [N + 4] ⊕ ... mixed configura-
tions. As those shown in Refs. [15,16], the band mixing from
the ground up to the excited states in the normal and intruder
bands 2+, 4+, and 6+ of 194Pt deduced in Ref. [40] are consid-
ered. The best global fit produces the model parameters for E2
transitions to the experimental data. The fitted partial B(E2)
transitions are shown in Fig. 4, in which the corresponding
results of the 2n-particle and 2n-hole configuration mixing are
also provided. The reduced matrix elements of T (E2) based

FIG. 4. E2 transition rates for lowest J → J-2 transitions in
194Pt. Available experimental data with error bars were taken from
Ref. [40].

on the configuration mixing obtained in this work agree to the
corresponding experimental results.

Furthermore, most transition matrix elements calculated
in this work agree with the experimental data. Each value
is very close to the corresponding result calculated from
the configuration mixing scheme. Based on the experimental
E2 transition matrix elements, for the M0 label, we have
0.749 eb, and for the M1 label, we have 0.0069 eb. So,
B(E2, 2+

1 → 4+
1 ) is 108 times larger than B(E2, 2+

2 → 4+
1 ),

furthermore B(E2, 6+
1 → 4+

1 ) is 18 times larger than the cor-
responding experimental value of B(E2, 4+

2 → 6+
1 ). Similar

to the B (E2; Ji → Jf ) result we have the same pattern for
M (E2; Ji → Jf ) results.

Here, we define the matrix elements Mg and Me for con-
necting 2+ and 4+ states and also M ′

g and M ′
e for connecting

4+ and 6+ states

Mg = 〈2g|E2|4g〉, Me = 〈2e|E2|4e〉, (16)

TABLE I. E2 transition matrix elements (eb) for 0 ↔ 2 transi-
tions in 194Pt.

M(E2) M(E2)
Label i f Exp.a This work

M0 2+
1 0+

1 2.45 2.73
M1 2+

2 0+
1 0.66 0.89

M2 2+
3 0+

2 Unknown 1.70
M3 2+

3 0+
1 Unknown 0.93

M4 0+
2 2+

1 0.26 0.29
M5 0+

2 2+
2 0.48 0.88

M6 0+
4 2+

1 0.55 0.60
M7 0+

4 2+
2 0.55 0.26

aUsed M(E2) from Ref. [51].
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TABLE II. E2 strengths and transition matrix elements for 2 ↔ 4 transitions in 194Pt.

B(E2)(e2b2) M(E2)(eb)

Label i f Exp.a Exp. C Exp.b This work

M0 2+
1 4+

1 0.749+0.016
−0.010 1.935+0.021

−0.013 1.935+0.021
−0.013 1.935

M1 2+
2 4+

1 0.0069+0.0100
−0.0029 0.186+0.135

−0.039 0.25+0.14
−0.06 0.0

M2 2+
1 4+

2 0.0027(4) 0.116(9) 0.220(9) 0.11
M3 2+

2 4+
2 0.26(5) 1.14(11) 1.784+0.045

−0.029 1.43

aUsed M(E2) from Ref. [50].
bfrom Ref. [51].

and

M ′
g = 〈4g|E2|6g〉, M ′

e = 〈4e|E2|6e〉. (17)

Furthermore, we assume that for the band mixing of the
ground and excited states, the g states are not connected to
the e states by the E2 operator. We select eight transitions,
connecting 0 ↔ 2 from M0 − M7 in Table I.

Experimental result of
∑7

i=0 M2
i , connecting 0 ↔ 2 from

M0 − M7, is 7.33 e2b2. The theoretical result of
∑7

i=0 M2
i

without considering unknown transitions, connecting 0 ↔ 2
from M0 − M7, is 9.51 e2b2. We have similar magnitudes for∑

i M2
i connecting 2 ↔ 4 and 4 ↔ 6. Here, M (E2; Ji →

Jf ), is defined as M 2(E2; Ji → Jf ) = (2Ji + 1)
B(E2; Ji → Jf ).

Also, We select eight transitions, including the four E2
transitions, connecting 2 ↔ 4 from M0 − M3, and four E2
transitions, connecting 4 ↔ 6 from M ′0 − M ′3 in 194Pt. These
transition matrix elements are listed in Tables II and III.

Based on the experimental data and pairing model, the
corresponding results obtained from the configuration mixing
scheme for the 2 ↔ 4 and 4 ↔ 6 fits are shown in Tables IV
and V for comparison in 194Pt.

Good agreement between experiment and model is obvious
from the M’s. Based on the fitting for experimental data and
model calculations, we have compared the ratios of basis-state
matrix elements in Table VI.

Mixing is found to be small and similar for J = 2, 4, and
6 by the fitting values of wave-function amplitudes. For Mg,
Me, M ′

g, and M ′
e, it is shown that M ′

g > Mg and M ′
e > Me.

The ratios M ′
g/Mg and M ′

e/Me are larger than both the ro-
tational and vibrational limits. Also we have seen that the
experimental B (E2; 61 → 41) is larger than the value from
the pairing model calculation. These patterns are the same as
Refs. [17–21] in the band mixing.

TABLE III. E2 transition matrix elements for 4 ↔ 6 transitions
in 194Pt from Coulomb excitation.

M(E2) M(E2)
Label i f C Exp.a This work

M ′0 6+
1 4+

1 2.90+0.10
−0.04 2.310

M ′1 4+
2 6+

1 0.16+0.06
−0.16 0.0

M ′2 6+
1 4+

2 0.224+0.017
−0.019 0.217

M ′3 6+
2 4+

2 2.09+0.11
−0.07 1.87

aUsed M(E2) from Ref. [51].

We have obtained some partial transition matrix elements
for mixing band by fitting procedure. Transition matrix ele-
ments for M (E2; 2+

1 → 4+
1 ) and M ′ (E2; 6+

1 → 4+
1 ) have

very strong strength for 2 ↔ 4 and 4 ↔ 6. Based on the
Coulomb excitation data, the value of M (E2; 2+

1 → 4+
1 ) is

7.74 times larger than the value of M (E2; 2+
2 → 4+

1 ), while,
the value of M ′ (E2; 6+

1 → 4+
1 ) is 18.12 times larger than the

value of M ′ (E2; 4+
2 → 6+

1 ) in configuration mixing scheme.
It means that the lower basis-state band is slightly more col-
lective than the excited states. Of course, the 4+ mixing in the
2 ↔ 4 and 4 ↔ 6 analyses should be the same. Usually, the
two results are not exactly equal, but usually, they can be made
to be equal by making minor changes in one or more of the
M’s. In the present case, D from Fit 2 is nowhere near D from
the 4 ↔ 6 fit. For Fit 1, the value of D is quite close to the
value from the 4 ↔ 6 analysis, and equality is easily achieved
by a minor adjustment to any of the input matrix elements.
This demonstrates that Fit 2 is invalid. The large difference
between the two experimental values of M3 [50,51] remains
a minor mystery, but the present analysis indicates a strong
preference for the smaller value.

For particular evidence and justification, the experimental
sum of M2 and M ′2 for connecting 2 ↔ 4 and 4 ↔ 6 is
proportional to the sum of configuration mixing model. The
experimental sum of transition matrix elements, M2 and M ′2,
for connecting 2 ↔ 4 and 4 ↔ 6 is 4.99 and 12.85 (e2b2),
respectively. In contrast, the theoretical sum of transition ma-
trix elements, M2 and M ′2, for connecting 2 ↔ 4 and 4 ↔ 6 is
5.79 and 8.96 (e2b2), respectively. The theoretical calculations
are somewhat less collective than the experimental sum of

TABLE IV. Results of fitting 2 ↔ 4 and 4 ↔ 6 matrix elements
in 194Pt.

2 ↔ 4

Fit (1)a Fit (2)b 4 ↔ 6

Quantity Value Value Quantity Value

B 0.191 0.540 D 0.213
D 0.169 0.523 F 0.226
Mg(eb) 1.96 2.03 M ′

g 2.94
Me(eb) 1.07 1.69 M ′

e 2.05

aUsed M3 = 1.14(11) eb obtained by combining 4+
2 lifetime and

branching ratio [50].
bUsed M3 = 1.784+0.045

−0.029eb from Coulomb excitation [51].

024317-6



NUCLEAR STRUCTURE AND BAND MIXING IN 194Pt PHYSICAL REVIEW C 103, 024317 (2021)

TABLE V. Results of fitting pairing model 2 ↔ 4 and 4 ↔ 6
matrix elements in 194Pt.

2 ↔ 4

Fit (1)a Fit (2)b 4 ↔ 6

Quantity Value Value Quantity Value

B 0.091 0.201 D 0.202
D 0.123 0.202 F 0.252
Mg(eb) 1.94 1.96 M ′

g 2.34
Me(eb) 1.42 1.41 M ′

e 1.85

aUsing results from last column of Tables II.
bUsing M1 = 0.107eb, rather than 0, to get agreement for D.

transition matrix elements. Of course, in the two-state mixing
procedure, the sums of M2 and M ′2 are conserved

In the extraction procedure for results of fitting exper-
imental, 2 ↔ 4 transitions, the values of transition matrix
elements for the g and e band are about 1.96 and 1.07 eb,
with a ratio of 1.83. Moreover, we have the same procedure
for connecting the 4 ↔ 6 transitions. The values of transition
matrix elements for the g and e band are about 2.94 and 2.05
eb, with a ratio of 1.43. Results of fitting in pairing model
calculation, connecting the 2 ↔ 4 transitions, the values of
transition matrix elements for the g and e band are about
1.94 and 1.42 eb, with a ratio of 1.36. For connecting the
4 ↔ 6 transitions, the values of transition matrix elements in
pairing model calculation for the g and e band are about 2.34
and 1.85 eb, with a ratio of 1.26. Recent studies have shown
the interesting results for the R = Me/Mg and R′ = M ′

e/M ′
g

ratios. The ratio of transition matrix elements for connecting
2 ↔ 4 is compatible to the 4 ↔ 6 transitions in our model.
Our results suggest that basis-state transition matrix elements
for g bands are stronger than e bands.

We have shown energy levels and relevant transition matrix
elements from the fits for the pairing model with a config-
uration mixing scheme. A detailed similarity of most of the
ground excited states up to 2.5 MeV with known electric
quadrupole transition rates obtained in this work to the ex-
perimental results [40,51] have been presented in the figures.
It can be found from figures and tables that the explanations
of the band mixing for connecting the 2 ↔ 4 and 4 ↔ 6 tran-
sitions in 194Pt values are quite excellent. Not only the energy
spectra and even the transition rates, but also the positions of
the ground and excited states of 2+, 4+, and 6+ are correctly
reproduced, indicating that a lower basis-state is somewhat

TABLE VI. Ratios of (6 → 4)/(4 → 2) basis-state matrix ele-
ments from fitting and from various models.

Ratio Fit to Exp. Model ratio Fit to Model Calcs.

M ′
g/M ′

g 1.5 – 1.2
M ′

e/M ′
e 1.9 – 1.3

Vibrational – 1.47 –
Rotational K = 2 – 1.69 –
Rotational K = 0 – 1.26 –

more collective than the second one. Finally, exact solution
of the vibrational to γ -soft transitional region proposed in
this work may also be valuable in diagonalizing a more com-
prehensive pattern dependent consistent-Q formalism in the
same configuration mixing scheme, though only a solvable
procedure is possible in even-even 172−196Pt, which will be
considered in our future work.

III. SUMMARY AND CONCLUSION

This work explains energy spectra and transition rates of
γ -soft nuclei such as 194Pt. A solvable model in transitional
Hamiltonian of the interacting boson model with two-particle
and two-hole configuration mixing is proposed. By adding the
configuration mixing Hamiltonian (Hmix) in pairing model,
we have achieved the band mixing in the ground and excited
states. Diagonalization method was made with configuration
mixing scheme, which is designed for energy spectra and elec-
tric quadrupole transition rates. Configuration mixing scheme
has been applied to members of some lowest ground and ex-
cited states of 2+, 4+, and 6+ bands in 194Pt. Results indicate
that the lower basis-state band is slightly more collective than
the excited-state band.
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