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Isobaric-multiplet mass equation in a macroscopic-microscopic approach
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We study the a, b, and c coefficients of the isobaric-multiplet mass equation (IMME) using a macroscopic-
microscopic approach developed by P. Möller and collaborators [At. Data Nucl. Data Tables 59, 185 (1995);
109-110, 1 (2016)]. We show that already the macroscopic part of the finite-range liquid-drop model (FRLDM)
describes the general trend of the a and b coefficients relatively well, while the staggering behavior of b
coefficients for doublets and quartets can be understood in terms of the difference of average proton and neutron
pairing energies. The sets of isobaric masses, predicted by the full macroscopic-microscopic approaches, are used
to explore the general trends of IMME coefficients up to A = 100. We conclude that while the agreement for a
coefficients is quite satisfactory, the full approaches have less sensitivity to predict the IMME b and c coefficients
in detail. The best set of theoretical b coefficients, as given by the modified macroscopic part of the FRLDM,
is used to predict masses of proton-rich nuclei based on the known experimental masses of neutron-rich mirror
partners, and subsequently to investigate their one- and two-proton separation energies in proton-rich nuclei up to
the A = 100 region. The estimated position of the proton drip line is in fair agreement with known experimental
data. These masses are important for simulations of the astrophysical r p process.
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I. INTRODUCTION

The concept of isospin was introduced by Heisenberg in
1939 [1]. Since then, it has represented a very useful paradigm
in nuclear and particle physics, providing more beauty and
simplification in theoretical modeling and interpretation of
hadron or nuclear properties.

According to the isospin formalism, a nucleon is an isospin
t = 1/2 baryon, with a neutron and a proton being assigned
tz = 1/2 and tz = −1/2, respectively. The three Cartesian
components of the isospin operator t̂ obey the su(2) commu-
tation relations,

[t̂i, t̂ j] = iεi jkt̂k (1)

and [t̂2, t̂i] = 0, where i, j, k run over x, y, z, and t̂2 = t̂2
x +

t̂2
y + t̂2

z .
In the absence of electromagnetic interactions and under

the assumption of equal proton and neutron masses, a Hamil-
tonian of a nucleus would commute with the many-body
isospin operator, T̂ = ∑A

n=1 t̂(n), and its eigenstates would
represent degenerate isospin multiplets |T Tz〉, characterized
by two quantum numbers, T and Tz, with Tz = −T,−T +
1, . . . , T [see Fig. 1(a) for illustration]. The members of the
isobaric multiplets are called isobaric analog states. For a
given nucleus, Tz = (N − Z )/2 and the isospin quantum num-
ber can take values for different states of T = |Tz|, |Tz| +
1, . . . , A/2.

*zcemokl@ucl.ac.uk
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The presence of the Coulomb interaction between protons
and possible small isospin-nonconserving forces of nuclear
origin break the isospin symmetry. Assuming a two-body
nature of charge-dependent forces and conservation of the
isospin of a two-nucleon system, Wigner noticed [2] that
those isospin-symmetry breaking operators will be a combina-
tion of an isoscalar, an isovector, and an isotensor operators.
Estimating the splitting of the isobaric multiplets in lowest
order perturbation theory due to the expectation value of such
an operator, Wigner showed [2] that isobaric multiplets will
be split according to a quadratic equation in Tz, called the
isobaric multiplet mass equation (IMME),

M(η, T, Tz ) = a(η, T ) + b(η, T )Tz + c(η, T )T 2
z . (2)

Here, M(η, T, Tz ) refers to the atomic mass excess, η =
(A, Jπ , Nexc, . . .) denotes all other than T quantum numbers
(atomic mass number, spin and parity, number of an excited
state, etc.), which are required to label a quantum state of an
isobaric multiplet, whereas a, b, and c are coefficients. As an
example, the splittings of the lowest T = 1/2 and T = 3/2
isobaric multiplets in A = 29 are shown in Fig. 1(b).

There has always been a lot of interest in the IMME, which
proved to work for a great number of quartets and quintets
as well, serving thus as a ground for nuclear mass models
[3]. The properties of the coefficients – their global trends
and a specific staggering phenomenon – have been studied
theoretically since 1960s [4–7] up to the present (see, e.g.,
Refs. [8–15] for the very recent work). A particular attention
has been paid to experimental search (e.g., [16] and references
therein) and theoretical interpretation of cubic or quartic terms
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FIG. 1. The lowest T = 1/2 and T = 3/2 isobaric multiplets
in A = 29: (a) schematic illustration of degenerate multiplets in
the absence of charge-dependent interactions; (b) realistic situation
obtained using experimental masses excesses of the corresponding
nuclei. See text for details.

in the IMME due to isospin mixing or to manifestations of the
charge-dependent many-body forces [17–23].

The advent of modern radioactive ion beam facilities,
progress in mass measurements and particle detection tech-
niques allowed to access multiplets with more and more
short-lived members. The most recent compilations [10,11]
of IMME coefficients contain an impressive amount of highly
precise data which provides general trends of the IMME
coefficients and sometimes staggering effects as a function
of A, highlighting specific properties of the nucleon-nucleon
interaction and giving certain hints on existing shell effects.

Recent achievements in microscopic many-body theory
allow us to calculate IMME parameters using both phe-
nomenological and microscopic effective nucleon-nucleon
forces [8,9,13,14,22–27]. In empirical approaches, experi-
mental databases are often used to establish the strength in
isovector and isotensor channels of an effective nuclear force.
However, to provide a uniform description of the whole region
of data from A = 5 to A ≈ 100 nuclei is still challenging.

A particular high interest to masses of proton-rich nuclei
up to A ≈ 100 is also due to their significance for simulations
of the astrophysical r p process which powers type-I x-ray
bursts [28]. These are periodic events which occur in binary
systems consisting of a rapidly rotating neutron star, accreting
hydrogen- and helium-rich material from its companion, typ-

ically a main-sequence star. At high temperature and pressure
conditions, the burst is ignited, powered by the explosive burn-
ing of hydrogen and helium [29]. The radiative proton capture
reactions are the most important reaction sequence, which in
competition with the β+ decay is responsible for synthesis
of proton-rich nuclides up to the A = 100 region. Nuclear
physics input on masses, one- and two-proton separation en-
ergies, and β-delayed processes are thus of great importance
for x-ray burst models for reliable calculations of light curves
and predictions of final abundances (see, e.g., Ref. [30] for
the current status of state-of-the-art modelizations). This leads
to enormous experimental and theoretical efforts to provide
astrophysicists with unknown masses of proton-rich nuclei
[31]. Because of the complexity of the nuclear many-body
problem and extreme conditions, various approaches achieve
a consensus on some proton drip-line nuclei, while disagree-
ing on others. Thus, there is still need for more understanding
and more accurate theoretical predictions.

In this work, we propose to construct theoretical a, b,
and c coefficients and study their properties using a global
macroscopic-microscopic approach developed during a few
decades by P. Möller and collaborators [32,33]. This frame-
work, designed for global nuclear mass calculations, consists
of two parts: a macroscopic part and a microscopic one.
Two different models have been used throughout the years
to represent a macroscopic contribution, giving the names to
the corresponding approaches: (i) the finite-range liquid-drop
model (within the FRLDM), and (ii) the finite-range droplet
model (within the FRDM). The former is a far more refined
version of the uniformly charged liquid drop model, while
the latter includes in addition a few high-order terms in A.
In both cases, a similar microscopic term has been used,
consisting of a shell-plus-pairing correction. The parameters
of the models have been thoroughly adjusted to a large variety
of known data on nuclear masses. The details of the approach
and parametrization strategy can be found in the original work
[32,33].

Although phenomenological, the macroscopic-
microscopic models have robust grounds and are optimized
to describe a few thousands of nuclear masses (around
2150) with very small root-mean-square (rms) error of
around 0.56 MeV (0.66 MeV) for FRDM (FRLDM) [33].
The models have been applied mainly to predict masses of
(super)heavy elements and fission barriers. In this work, we
apply this approach rather to nuclei along the N = Z line and
study the general trends and fine structure of the deduced
IMME coefficients as a function of the mass number. Some
preliminary expressions for b and c coefficients obtained
from the macroscopic part of the FRLDM have already been
deduced in Refs. [8,26] and applied for either sd or p f shell
nuclei. In the present study, we go beyond and we obtain all
IMME coefficients from the macroscopic part of FRLDM
and from the full macroscopic-microscopic approaches, and
we apply them to the whole range of experimental data
(excluding only very light nuclei). Starting with a well-known
uniformly charged liquid-drop model in Sec. III, we introduce
the macroscopic part of the FRLDM from Ref. [32,33] as a
more involved and improved way of global description of
the IMME coefficients (Sec. IV). We discuss general trends
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provided by the model, as well as showing that the staggering
effect of b coefficients can be described by different proton
and neutron pairing energy parameters. In Sec. V, we explore
the predictions given by the full FRLDM and FRDM [32,33].
Finally, in Sec. VI, we use the macroscopic part of the
FRLDM, which provides the “best” set of b coefficients,
to calculate masses of proton-rich nuclei in the vicinity of
the proton drip line from Mn isotopes up to Te isotopes.
We discuss the estimated one- and two-proton separation
energies in the context of the available experimental data.
The last section summarizes the conclusions and outlines the
perspectives of this study.

II. EXPERIMENTAL DETERMINATION
OF IMME COEFFICIENTS

Starting from Eq. (2), one can express a, b, and c coeffi-
cients for a given isobaric multiplet (η, T ) in terms of mass
excesses of its members. Denoting M(η, T, Tz ) ≡ MTz , we get
for doublets (Jπ , T = 1/2) that

a = (M1/2 + M−1/2)/2,
(3)

b = M1/2 − M−1/2,

while a, b, and c coefficients for triplets (T = 1) can be
expressed as

a = M0,

b = (M1 − M−1)/2 (4)

c = (M1 + M−1)/2 − M0.

It is obvious from these expressions that ground state mass
excesses only can serve to obtain a and b coefficients for
ground state doublets and b coefficients for the lowest triplets.
Generally, M0 involves an excited state, which is situated at
a particularly high excitation energy in an N = Z even-even
nucleus. This prohibits derivation of a and c coefficients for
triplets from masses only for detailed comparison with the
experimental data.

For quartets (T = 3/2), quintets (T = 2), or other high T
multiplets, where masses of more than three members are
involved, one determines a, b, and c coefficients by a least-
squares fit. For example, for quartets, the mass excesses of the
isobaric analog states are related by the IMME coefficients via
the following system:

M3/2 = a + 3
2 b + 9

4 c, (5)

M1/2 = a + 1
2 b + 1

4 c, (6)

M−1/2 = a − 1
2 b + 1

4 c, (7)

M−3/2 = a − 3
2 b + 9

4 c. (8)

The members with Tz = ±1/2 require knowledge of the exci-
tation energy of those states.

In the present study, we approximate b coefficients for
T > 1 multiplets by their relation to the Coulomb displace-
ment energies between members with Tz = T and Tz = −T
[9,34]:

b = (MT − M−T )/2T . (9)

This turns out to be sufficient for a discussion of the general
trends and even of staggering phenomena.

III. IMME COEFFICIENTS FROM A UNIFORMLY
CHARGED LIQUID DROP

We start with estimates of the contributions to a, b, and c
coefficients from the uniformly charged sphere model [35].
The total Coulomb energy of a uniformly charged spherical
nucleus of radius R = r0A1/3 reads

Ecoul = 3e2

5R
Z (Z − 1)

= 3e2

5r0A
1
3

[
A

4
(A − 2) + (1 − A)Tz + T 2

z

]
, (10)

giving rise to the following contributions to the IMME a, b,
and c coefficients [20,34]:

a = 3e2

20r0

A(A − 2)

A1/3
, (11)

b = −3e2

5r0

(A − 1)

A1/3
+ �nH , (12)

c = 3e2

5r0

1

A1/3
, (13)

where e2 = 1.44 MeV fm and we use here the value of r0 =
1.27 fm. The quantity �nH = 782.346 keV is the difference
between the neutron (Mn) and hydrogen (MH ) mass excesses.
The smooth trends, given by these equations for b and c coeffi-
cients, are shown in Figs. 2(b) and 2(c), respectively (labeled
as LDM: liquid-drop model) in comparison with the exper-
imental data on b coefficients for doublets with A = 17–71
and c coefficients for triplets with A = 18–58. We observe
that although the general trends are reproduced, there is a
visible mismatch between experimental data and predictions,
and there are no characteristic staggering patterns (weakly
seen for b coefficients of doublets and a pronounced ‘sawtooth
effect’ of c coefficients for triplets). For large A values, one
often uses an approximate form of b coefficients, namely

b = −3e2

5r0
A2/3 + �nH , (14)

showing that the leading-order term in b coefficients is pro-
portional to A2/3.

We do not discuss the trend of the a coefficients, since it
requires all other members of the liquid-drop model (known
as the Weizsäcker formula) and therefore a careful fitting of
its parameters [36].

We also remark that it was noticed long ago that the
Coulomb interaction alone, even accurately treated, cannot
describe observed Coulomb displacement energies of isobaric
multiplets [37]. This conclusion gave rise to a special interest
in nuclear models capable of providing contributions other
than Coulomb isovector or isotensor contributions to the nu-
clear binding energy (e.g., see Ref. [38] and references therein
for the earlier work on this subject). It is exactly the purpose
of this study to address these issues within the macroscopic-
microscopic approach of Refs. [32,33].
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FIG. 2. Theoretical IMME a and b coefficients for doublets [panels (a) and (b), respectively] and c coefficients for triplets [panels (c) and
(d)] obtained from the macroscopic part of the FRDLM (FL-MAC) in comparison with experimental data (EXP) and liquid-drop model
predictions (LDM). The calculations labeled as FL-MAC-M in panels (a) and (d) refer to the modified macroscopic part of the FRLDM, while
calculations labeled as FL-MAC-C on panel (c) designate a Coulomb approximation for c coefficients. Results from the mass models in the
last panel have been supplemented by the experimental excitation energy in Tz = 0 members. See text for further details.

IV. IMME COEFFICIENTS FROM THE MACROSCOPIC
PART OF THE FRLDM

A. General trend

The macroscopic part of the FRLDM proposes a more
involved expression for the Coulomb contribution to the
atomic mass excess as compared to the liquid-drop model. We
adopt the following formulation proposed by Möller et al. in
Refs. [32,33]:

M(Z, A) = MH Z + Mn(A − Z ) (15)

− av (1 − kvI2)A (16)

+ as(1 − ksI
2)B1A2/3 + a0A0BW (17)

+ c1Z2B3/A − c4Z4/3Bs/A1/3 (18)

+ f (k f rp)Z2/A − ca(N − Z ) (19)

+ EW + Epair − ael Z
2.39, (20)

where the first two terms are mass excesses of Z hydrogen
atoms and A − Z = N neutrons, followed by the volume term
in line (16), then by the surface term and the so-called A0

energy, a constant, that can be seen in line (17). The parameter
B1 defines the generalized surface energy in the model, and for
a spherical nucleus it can be evaluated as

B1 = 1 − 3

x2
0

+ (1 + x0)

(
2 + 3

x0
+ 3

x3
0

)
exp (−2x0), (21)

with x0 = βA1/3, where r0 = 1.16 fm and β = r0/a ≈ 1.706.
We adopt here BW = 1 [32].

Line (18) contains the direct and exchange Coulomb term
with c1 = 3e2/(5r0) and c4 = 5/4(3/(2π ))2/3c1. The param-
eter B3, defining the relative Coulomb energy for an arbitrary
shape nucleus, has in leading order (for a spherical nucleus)
the following expression:

B3 = 1 − 5

y2
0

+ 75

8y3
0

− 105

8y5
0

(22)

with y0 = αA1/3, and α = r0/aden ≈ 1.657. We suppose here
that the relative surface energy parameter is Bs = 1 (a spheri-
cal nucleus).

The proton form-factor correction to the Coulomb energy,
f (k f rp), is parametrized as

f (kF rp)= − r2
pe2

8r3
0

[
145

48
− 327

2880
(kF rp)2 + 1527

1209600
(kF rp)4

]
,

(23)
with the proton radius rp = 0.8 fm, and kF being the Fermi
wave number:

kF =
(

9πZ

4A

)1/3 1

r0
. (24)

The proton form-factor depends on A, and Tz and varies be-
tween about −0.212 and −0.215 for the nuclei of interest,
with the average value being −0.2138 MeV for Tz = 0 nuclei.
We have checked that the resulting rms errors for the IMME
coefficients are not very sensitive to this parameter, so we kept
the average value for our estimation. The charge-asymmetry
term [the second term in line (19)], with the strength ca, is of
pure isovector character and, hence, it will contribute to the b
coefficient only [see below Eq. (29)].

The first two terms in line (20) are the Wigner contribution,
EW ,

EW = W |I| +
{

1/A if Z = N odd,

0 otherwise, (25)

and the average pairing term, parametrized as

Epair =

⎧⎪⎪⎨
⎪⎪⎩

�n + �p − δpn if Z odd, N odd,

�p if Z odd, N even,

�n if Z even, N odd,

0, if Z even, N even.

(26)

The average neutron and proton pairing gaps and the average
neutron-proton interaction energy have been parametrized as

�n = rnBs

N1/3
,

�p = rpBs

Z1/3
, (27)

δnp = h

BsA2/3
,

with rn = rp = rmac = 4.80 MeV being a macroscopic pairing
gap parameter. In the original work, this parameter is kept
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the same for protons and neutrons. In the present study, we
adopted two sets of numerical values of various constants
and parameters from both Refs. [32,33]. More details on the
model can be found in those references as well. Regarding the
macroscopic part of the FRLDM, we find always a somewhat
better description when using the parametrization from 1995
[32], so we keep this particular set of parameters in the present
section.

The last term in line (20) is the energy of the bound elec-
trons with ael = 1.433 × 10−5 MeV. Due to the smallness of
this quantity we neglect this term in the present study.

It is obvious that terms (15)–(19) can be expressed in terms
of Tz and A, and thus they can be cast into the form of the
IMME. Not considering for the moment the Wigner term and
the pairing contribution and keeping up to quadratic terms in
1/A, one can get the following (approximate) expressions for
the IMME a, b, and c coefficients:

a =
(

MH+Mn

2
− aV − 5c1

4α2
− c4

24/3
+ f (k f rp)

4

)
A

+ 1

4
c1A5/3 +

(
aS + 75

32α3

)
A2/3

− 3aS

β2
+ a0A0BW − 105

32α5
, (28)

b = �nH − c1A2/3 − 75c1

8α3
A−1/3 − 105c1

8α5
A−1

− 5c1

α2
− 4c4

3(2)1/3
+ f (k f rp) + 2ca, (29)

c = 4aV kV + (c1 − 4aSkS )A−1/3

−
(

5c1

α2
+ 4c4

9(2)1/3
− 12aSkS

β2
− f (k f rp)

)
A−1

+ 75c1

8α3
A−4/3 − 105c1

8α5
A−2. (30)

For doublets (T = 1/2), it is straightforward to include con-
tributions of the Wigner term and of the pairing term to the
a coefficient, which provides the following addition to the a
coefficient above:

�aW+pair = W

A
− rmacBS

(
2

A

)1/3

, (31)

while no contribution is expected to the doublets’ b coeffi-
cients if rn = rp. The resulting numerical expressions are

a = 0.1862A5/3 − 8.939A + 21.586A2/3

− 19.420 + 6.048A−1/3 + 30A−1 [MeV], (32)

b = −0.7448A2/3 + 2.748 − 1.534A−1/3

+ 0.7823A−1 [MeV]. (33)

These relations represent a very good approximation to the
theoretical a and b coefficients for doublets obtained from the
full macroscopic part of FRLDM and are shown in Figs. 2(a)
and 2(b) (labeled as FL-MAC) in comparison with the avail-
able experimental data. First, we observe that the general
trends of a and b coefficients are well reproduced. For a
coefficients, it is interesting to note that FRLDM predicts that

the Coulomb term takes over beyond A ≈ 75, where the a
coefficient curve reaches its minimum, and starts to grow for
larger values of A. To assess the quality of the results, we use
here the rms error, defined as

rmse(x) =
√√√√1

n

n∑
i=1

[xth(i) − xexp(i)]2, (34)

where x stands for a, b, or other quantity, xth(i) are theoretical
values, xexp(i) are experimental values, and i runs over the
available data points (i = 1, . . . , n). The resulting rms errors
of the macroscopic part of the FRLDM for a and b coefficients
can be found in Table I (see the entry FL-MAC).

The original parametrization results in relatively large rms
errors for the IMME coefficients, as seen from Table I. This
is due to the fact that the parameters have been fixed together
with the microscopic part (shell correction) of the model. The
rms deviations can be greatly improved, if we adjust some
selected parameters. To this end, we choose three parameters,
namely, a0, ca, and rmac, which contribute to the isoscalar,
isovector and isotensor channels, and we show that by slightly
changing their values we can improve the description of the a,
b, and c coefficients, respectively. The corresponding mod-
ified version is named FL-MAC-M, where “M” stands for
“modified.” For example, increasing a0 from 2.165 to 4.7
MeV, we can reduce the rms error for the a coefficients from
3 to about 1.9 MeV. The modifications of ca and rmac, which
influence b and c coefficients, respectively, will be described
below. (To be precise, the parameter rmac also slightly impacts
the isoscalar channel: our modification reduces the rms error
on the a coefficient by additional 30 keV). The results for the a
coefficients obtained from FL-MAC-M are shown in Fig. 2(a).

The macroscopic part of the FRLDM predicts rather well
both the trend and the magnitude of b coefficients, leading to
a much better agreement with the data than the liquid-drop
model. However, it can be noticed that the b coefficients from
the FRLDM have a kind of offset with respect to the data.
To address this issue, we study various contributions to the
b coefficients as easily seen from Eq. (29): The Coulomb
direct and exchange terms, the proton form-factor contribu-
tion, and the asymmetry term. The general trend is assured
by the term (∼A2/3), dominating the Coulomb contribution.
The other terms provide (in our approximation) only small
constant shifts of b coefficients. Among them, we notice
that the proton-neutron asymmetry term contributes only to
the b coefficient. We have varied this term and found that
a global improvement in the rms error for b coefficients
can be achieved by slightly changing its value from ca =
0.10289 MeV to ca = 0.186 MeV: The rms error for a total
number of data points reduces from 189 to 91 keV (see the en-
try FL-MAC-M in Table I). Figure 3 shows this improvement
and illustrates the affect of various terms on the b coefficient
value, with the new value of ca taken into account. From
now on, we therefore keep this optimized value of ca in our
modified version of the macroscopic part of the FRLDM.

For c coefficients, the implication of terms (15)–(19) is
not well defined. As we mentioned in Sec. II, the FRLDM
is designed to describe nuclear masses, while to get the c

024316-5



O. KLOCHKO AND N. A. SMIRNOVA PHYSICAL REVIEW C 103, 024316 (2021)

TABLE I. The rms errors of the IMME a, b, and c coefficients calculated within the macroscopic part of the FRLDM (denoted as FL-MAC),
as well as from the full versions of the FRDM and FRLDM as given in Ref. [32] (1995) and [33] (2016). Calculations labeled as FL-MAC-M
refer to updated values of a0, ca, and rmac with respect to the original model, while FL-MAC-NP exploits in addition the different neutron and
proton pairing gap parameters as explained in Sec. IV B. See text for details.

T = 1/2 (A = 17–67) T = 1 (A = 18–58) T = 3/2 (A = 19–39) Total

Model rmse a (keV) rmse b (keV) rmse b (keV) rmse c (keV) rmse b (keV) rmse b (keV)

FL-MAC 3009 189 191 841 186 189
FL-MAC-M 1857 113 72 632 75 91
FL-MAC-NP 1857 95 71 632 70 81
FRLDM (1995) 1210 454 416 984 442 438
FRLDM (2016) 1109 434 469 484 529 467
FRDM (1995) 1145 321 250 823 231 278
FRDM (2016) 1062 246 234 1038 227 238

coefficient we have to know the excitation energies of |Tz| <

T isobaric-multiplet members (e.g., of the Tz = 0 member
in triplets). Following Ref. [8], we can restrict ourselves by
assuming that only Coulomb terms (both direct and exchange
ones) contribute to the c coefficient. This means that we sup-
pose kV = kS = 0 in Eq. (30), which results in the following
numerical expression:

c = 0.7448A−1/3 − 1.771A−1 + 1.535A−4/3

− 0.7823A−2 [MeV]. (35)

The corresponding overall trend of c coefficients is shown in
Fig. 2(c) (a smooth curve named FL-MAC-C) in comparison
with the experimental data on c coefficients for triplets and the
liquid-drop model (LDM) predictions.

Alternatively, we can use all isotensor terms of the macro-
scopic part of the FRLDM, as well as the contribution from
the Wigner and pairing terms. Bearing in mind that the model
approximates nuclear masses, we take into account the exper-
imentally observed excitation energies of the IAS in Tz = 0
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FIG. 3. Theoretical IMME b coefficients for doublets: the total
value (from FL-MAC-M) and the contribution of different terms
from Eq. (29) in comparison with experimental data. The asymmetry
parameter is set to ca = 0.186 MeV. See text for further details.

nuclei in order to reconstruct isobaric triplets. By doing this,
indeed we get an overall description including a staggering
effect. The original parametrization results in the rms error
for the c coefficients of triplets of around 841 keV. Again,
we checked that increasing a value of the average pairing gap
parameter rmac from 4.80 to 5.51 MeV, we can reduce the rms
deviation to 632 keV. This value is still too big as compared
to the absolute value of the c coefficients (between about 200
and 350 keV), as is easily seen from the resulting curve for
the c coefficients shown in Fig. 2(d) (labeled as FL-MAC-M).
Although the rms error is reduced, we observe, however, that
theoretical c coefficients exhibit staggering of a very large
amplitude as compared to experiment. Only up to A = 28, this
staggering is in phase with the data. For heavier nuclei, oscil-
lations become irregular. This means that the isotensor part
of the model is not well constrained by the fit and, therefore,
not suitable for understanding the c coefficients. In Sec. V,
we will see that the addition of the microscopic part does not
remedy the situation.

While it looks difficult to refine the description of the
IMME c coefficients in detail, we would be interested in
getting a staggering pattern of the b coefficients. This is,
however, not provided by the formal analytical expressions of
the original macroscopic part of the FRLDM. We address this
question in the next section, carefully considering the pairing
energy parametrization.

B. Staggering pattern of b coefficients and average proton
and neutron pairing gaps

The rmac parameter of the macroscopic part of the FRLDM
is an average between proton and neutron pairing energies.
As is explained in the original work [32,33], its magnitude
is not important for the full model, since it is the microscopic
part which is added and optimized to ensure a good agreement
with experiment. However, a precise magnitude of the average
pairing in the macroscopic part can help us to understand the
staggering phenomenon. In the context of different models,
this effect has also been discussed in Refs. [4,8,9].

From the study of proton and neutron pairing gaps, we
know that those proton and neutron energies may be different.
Following the work of Möller and Nix [39], to determine the
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FIG. 4. Theoretical IMME b coefficients for doublets (a), triplets (b), and quartets (c) obtained from the macroscopic part of the FRDLM
with different proton and neutron rn and rp parameters (FL-MAC-NP) in comparison with experiment.

rn and rp parameters separately, we performed a least-squares
fit of �n and �n from Eqs. (27) to the experimental neutron
and proton pairing gaps, respectively, of nuclei along the
N = Z line from A = 12 to A = 74, which are of interest in
our work. The established values are rn = 6.83 MeV and rp =
6.65 MeV, resulting in a difference of rn − rp = 0.18 MeV. It
is this difference between rn and rp that leads to the staggering
of the b coefficients, as we will show below. The obtained rms
errors are summarized in the third line of Table I, referred
to as FL-MAC-NP (the parameter ca = 0.186 MeV, as was
proposed in the previous section). We see that there is a further
improvement in the rms error for the b coefficients compared
to FL-MAC-M: it reduces in total from 91 to 81 keV. The
corresponding b coefficients for T = 1/2, 1, 3/2 multiplets
are shown in comparison with experimental data in Fig. 4.
Indeed, we notice staggering of the b coefficients for doublets
and triplets which is in accord with the experimental data.
To better see this effect, we plot in Fig. 5 the quantity �b =
b(A) − b(A − 2) for various T multiplets in comparison with
the available experimental data. The results on staggering
can be understood analytically. The contribution of the pairing
term to b coefficients of A = 4n + 1 and A = 4n + 3 doublets
are

bT =1/2
pair =

⎧⎪⎪⎨
⎪⎪⎩

(rn − rp)
21/3Bs

(A + 1)1/3
, A = 4n + 1,

(rp − rn)
21/3Bs

(A − 1)1/3
, A = 4n + 3,

(36)

which results in a staggering amplitude �b = b(A) − b(A −
2) of

�bT =1/2 ≈ 2(rn − rp)
21/3Bs

A1/3
, (37)

if we assume A = 4n + 1. At the same time, for quartets we
get the following contributions to the b coefficients:

bT =3/2
pair =

⎧⎪⎪⎨
⎪⎪⎩

(rp − rn)
21/3Bs

3(A + 3)1/3
, A = 4n + 1,

(rn − rp)
21/3Bs

3(A − 3)1/3
, A = 4n + 3,

(38)

which results in a staggering amplitude of

�bT =3/2 ≈ −2(rn − rp)
21/3Bs

3A1/3
, (39)

if we assume A = 4n + 1. This is about of 1/3 of the ampli-
tude of staggering for doublets in absolute value and is out
of phase. The resulting trends of �b can be seen in Fig. 5
for T = 1/2 on the first panel and for T = 3/2 multiplets
on the third panel in comparison with available experimental
data. For reference, we also plot �b for half-integer values of
T = 1/2, 3/2, and 5/2 that comes from the modified macro-
scopic part of the FRLDM with rn = rp (FL-MAC-M): it does
not show any staggering.
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FIG. 5. Differences of IMME b coefficients, �b = b(A) − b(A − 2), for T = 1/2, 1, 3/2, 2, 5/2 multiplets as obtained from the modified
macroscopic part of the FRDLM with either identical proton and neutron pairing gap parameters (FL-MAC-M) or with different proton and
neutron pairing gap parameters (FL-MAC-NP), in comparison with experiment. See text for details.
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Estimation of the staggering effect for b coefficients of
triplets shows that

bT =1
pair =

{
0, A = 4n + 2,

2(rp − rn)
21/3Bs

3A4/3
, A = 4n,

(40)

which results in a staggering amplitude �b = b(A) − b(A −
2) of

�bT =1 ≈ 2(rn − rp)
21/3Bs

3A4/3
, (41)

if we assume that A = 4n + 2. This is a factor of 1/(3A) or
1/A smaller as compared to the staggering in b coefficients
for doublets or quartets, respectively (the effect cancels in the
leading order of the Taylor expansion). As we can observe
from Fig. 5, second panel, the staggering is indeed hardly
visible on the scale of the figure, while the general trend is in
robust agreement with experiment. The value of �b obtained
from FL-MAC-M is not shown in the plots for T = 1 (and
T = 2), because it coincides with the present theoretical curve
FL-MAC-NP in the scale of the figure.

Similarly, going further, we get that the staggering effect
for b coefficients of quintets (T = 2) is negligible, as given by
the analytical expression

�bT =2 ≈ −2(rn − rp)
21/3Bs

3A4/3
, (42)

assuming that A = 4n + 2. These are of the similar magni-
tude, but out of phase compared to those for triplets. For
T = 5/2 multiplets, the staggering is again stronger, and in
phase with the T = 1/2 pattern, being five times smaller in
amplitude, according to

�bT =5/2 ≈ 2(rn − rp)
21/3Bs

5A1/3
. (43)

The resulting trends can be seen in Fig. 5 (last two panels).
These patterns are expected to hold for higher half-integer
and integer T multiplets. Future experiments will verify these
predictions.

We remark that although the macroscopic part of the
FRLDM can grasp the overall trend and phases of this peculiar

staggering behavior, it can predict only a smooth variation
of the staggering amplitude with mass because of the ansatz
given by Eq. (27). This is due to the fact that the pairing
effect is accounted in an average way. At the same time, we
observe variations of the staggering amplitude in Fig. 5 which
are probably related to the shell effects and the underlying
microscopic structure of the many-nucleon systems. For ex-
ample, for doublets, we notice stronger variations in b value
for A = 41 and A = 65, 67 and oscillations of very small am-
plitude in the f7/2 nuclei between A = 43 and A = 53 (Fig. 5,
first panel). Similarly, various irregularities can be noticed for
other multiplets. The macroscopic part of the FRLDM alone
cannot account for these fine structures. It is an accurately
added shell correction or a fully microscopic model which has
to deal with these effects.

C. IMME beyond the second order

The mass excess parametrization proposed by the FRLDM
allows one to extend the IMME beyond the second order
in Tz. This can be done by expanding in Taylor series the
contribution of the Coulomb exchange term up to the fourth
order in Tz. The extended IMME thus would be of the form

M(η, T, Tz ) = a(η, T ) + b(η, T )Tz + c(η, T )T 2
z

+ d (η, T )T 3
z + e(η, T )T 4

z , (44)

where d and e coefficients come out to have the following
expressions:

d = 4 c4

21/3 81 A2
, e = − 40 c4

21/3 243 A3
. (45)

Indeed, these quantities appear to be very small, the d co-
efficients are positive, while the e coefficients are always
negative. The numerical values are larger for lower masses.
For example, for A = 17, d ≈ 77 eV and e ≈ −15 eV, while
for A = 8 these values would be about 350 eV and −150 eV,
respectively. These values are considerably smaller than those
few nonzero cases determined experimentally (which are all
of the order of keV, e.g., Refs. [10,11]).
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FIG. 6. Theoretical IMME a and b coefficients [panels (a) and (b), respectively] and c coefficients for triplets (c) obtained from the full
FRDM and FRLDM in comparison with the experimental data. To deduce theoretical c coefficients we used theoretical masses from the
FRDM/FRLDM and experimental excitation energies in Tz = 0 nuclei.
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FIG. 7. Differences of IMME b coefficients, �b = b(A) − b(A − 2), for doublets (a), triplets (b), and quartets (c) as obtained from the
FRDM and FRDLM in comparison with the experimental data.

There might be a specific contribution from the pairing
term as well as from the proton form-factor, but these are
expected to be of even smaller magnitude.

V. IMME COEFFICIENTS FROM THE FRLDM AND FRDM

In this section, we deduce the IMME a, b, and c coefficients
using the mass predictions from the full FRDM and FRLDM
for multiplets with A > 16 up to 101 for a coefficients, up to
A = 71 for b coefficients, and up to A = 60 for c coefficients.
The results obtained from the values of the mass compilation
[33] are shown in Fig. 6, while the rms errors are summarized
in Table I for both mass compilations, the one from 1995
[32] and the other from 2016 [33]. The overall rms errors are
generally smaller for the latest set, with a few exceptions.

First, it is very well seen that both models, the FRDM
and FRLDM, perfectly describe the a coefficients for dou-
blets, reproducing the end of the strong downsloping trend
up to A ≈ 57. The predicted a coefficients for heavier nuclei
along the N = Z line are expected to stay roughly flat up to
about A ≈ 90 and to decrease in their absolute value towards
A = 100. No data exist yet to compare with.

For b coefficients, the agreement between the two models
(FRDM and FRLDM) and the data is less convincing com-
pared to what we could obtain from the macroscopic part
of the FRLDM only [cf. with Fig. 4(a)]. The corresponding
rms errors, shown in Table I, support this conclusion. The
staggering effect is plotted in Fig. 7 for doublets, triplets, and
quartets and is seen to be too much exaggerated compared to
the data and not always in phase with experiment. A similar
conclusion is valid for c coefficients, which are shown in
Fig. 6(c): the precision of the FRLDM/FRDM is not sufficient
to describe the data in detail. The corresponding rms errors
can be found in Table I. This conclusion is not surprising: the
overall rms error of the models is 550 keV over almost the full
mass chart (almost 2150 masses). Since b and c coefficients
are linear combinations of two or three masses, the overall
error may reach even higher values. This prevents the detailed
description. We also believe that considering the experimental
constraints on the b and c coefficients may help to improve on
the modelization.

VI. MASSES OF PROTON-RICH NUCLEI UP TO A = 100

One of the major impacts of nuclear masses for heavy
proton-rich nuclei is related to their importance for astro-
physics, in particular, for type-I x-ray burst models [28].
Special attention from experiment and theory has been fo-
cused on the so-called waiting points of the r p process, e.g.,
64Ge, 68Se, and 72Kr [40]. The proton capture on these nuclei
results in a proton-unbound or weakly bound nucleus and thus
the β+ decay may take over and divert the r p process path.

As nuclear mass increases along the N = Z line, nuclei
become more and more short lived due to increasing Coulomb
effects and, as a result, it becomes harder and harder to dis-
cover them and determine their disintegration modes. Lots of
experimental efforts have been devoted to explore the proper-
ties of very proton-rich nuclei and to trace the position of the
proton drip line (e.g., Refs. [41–50]). Still, beyond Zr nuclei,
astrophysical simulations rely only on atomic mass extrapola-
tions [51] or on various theoretical predictions [9,26,52–57].

Since our best b coefficients obtained from the modi-
fied macroscopic part of the FRLDM with different proton
and neutron pairing gaps (FL-MAC-NP) results in a rel-
atively small rms error of known b coefficients of about
80 keV, we decided to use this model to calculate the masses
of the proton-rich nuclei and thus to map the proton drip
line. To reach this goal, we exploit the method of Coulomb
displacement energies. Using the notations from Sec. II,
M(η, T, Tz ) ≡ MTz for a given isotopic multiplet (η, T ), we
can express the mass excess of a proton-rich nucleus (with
Tz = −T ) on the basis of an experimental mass excess of its
neutron-rich mirror (with Tz = T ) and a theoretical b coeffi-
cient [26,52,54,58] as follows:

M−T = MT − 2 b T . (46)

Theoretical b coefficients have been calculated using the
proton-neutron version of the modified macroscopic part of
the FRLDM (FL-MAC-NP). The experimental masses of
neutron-rich nuclei and N = Z nuclei have been taken from
Ref. [51]. Thus, the mass excesses of nuclei with Z > N have
been obtained via Eq. (46). The resulting one- and two-proton
separation energies (Sp and S2p) for proton-rich nuclei with
25 � Z � 52 and −4 � Tz � −1/2 are summarized in the
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FIG. 8. A fragment of the nuclear chart for Z > N nuclei with 25 � Z � 38. Theoretical values of Sp and S2p are indicated in each box
below a nucleus symbol. The uncertainties are indicated in parentheses. The thick red line shows a tentative position of the proton drip line
based on the average values of Sp and S2p. See text for details.

form of two nuclear chart fragments shown in Figs. 8 and
9. The position of the one-proton or two-proton drip line is
sketched by the thick read line, based on the central values of
Sp for odd-Z isotopes or S2p for even-Z isotopes, respectively.

The uncertainties on the obtained values of mass excesses
of nuclei with Z > N are estimated as

�
(
M th

−T

) =
√[

�
(
Mexp

T

)]2 + 4 T 2 [�(bth )]2, (47)

where �(bth ) ≈ 81 keV, estimated from the average rms er-
ror of theoretical b coefficients, while �(Mexp

T ) refers to the
uncertainty on the experimental mass excess of neutron-rich
mirrors. It follows that, for the majority of cases, the uncer-
tainty on the mass of a proton-rich nucleus, and therefore
on the one- and two-proton separation energies, is mainly
governed by the magnitude of the 2T �(bth ) term and, thus, is
particularly large for high-T isobaric multiplets. Nevertheless,
with increasing N and Z , the proton drip line approaches the
N = Z line and our results bring more accurate predictions for
the stability of the nuclides of interest.

In general, we conclude that in spite of large uncertainties,
our model provides a relatively robust picture of this exotic
region of the nuclear chart and the position of the proton (and
two-proton) drip line agrees for a majority of cases with the
predictions of Ref. [9,26,54], taking into account the assigned
theoretical uncertainties. Although we traced the drip line
on the basis of the average values of Sp and S2p, often the
uncertainty may allow shifting it one nucleus left or right.

The nuclear chart fragments in Figs. 8 and 9 contain in total
220 theoretical Sp and S2p values. From these numbers, only
103 sets of Sp and S2p can be calculated based on the masses
present in the AME2016 database [51] (24 experimentally
measured masses and 79 extrapolated values). Overall, our
calculated theoretical one- and two-proton separation energies
are in fair agreement with these data. To address the quality
of the results, we have calculated the rms error according to
Eq. (34) with x being either Sp or S2p. We find that rmse(Sp) =
320 keV and rmse(S2p) = 353 keV for a total number of
n = 103 data points.

We note, however, that extrapolated masses in AME2016
[51] may contain big associated uncertainties and therefore
the application of Eq. (34) may not be an optimal choice. If we
exclude all extrapolated masses in Ref. [51] and estimate the
rms error for the 24 experimentally measured cases, we get
rmse(Sp) = 148 keV and rmse(S2p) = 154 keV. In addition,
we have calculated the χ2 per number of degrees of freedom
(χ2/ν) with ν = n − 1,

χ2/ν = 1

n − 1

n∑
i=1

[Sth(i) − Sexp(i)]2

σ 2
th(i) + σ 2

exp(i)
, (48)

and get that, for n = 24 experimentally measured cases,
χ2/ν = 0.88 for Sp, while χ2/ν = 0.94 for S2p. These close
to the unity estimates show that the theoretical outcome is
reasonable.

Now, let us briefly discuss the results. In the lower part
of the nuclear chart (Fig. 8), the position of the drip line and
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FIG. 9. A fragment of the nuclear chart for Z > N nuclei with 39 � Z � 52. Theoretical values of Sp and S2p are indicated in each box
below the nucleus symbol. The uncertainties are indicated in parentheses. The thick red line shows a tentative position of the proton drip line
based on the average values of Sp and S2p. See text for details.

the properties of near lying nuclei are largely known exper-
imentally [59,60]. According to our calculation, the odd-Z
nuclei 45Mn, 49Co, 55Cu, 59Ga are proton unbound. 50Co is
obtained to be weakly bound, although our large uncertainty
does not exclude the possibility that it is proton unbound. The
one-proton separation energy in 60Ga is obtained to be zero
with an uncertainty of 180 keV, however. At the same time,
54Cu is expected in our model to be proton unbound with
|Sp| < 1 MeV.

For even-Z 49Ni, 55Zn, 60Ge, 64Se, 68Kr, 73Sr we find Sp >

0, while S2p < 0; however, these |S2p| values stay rather small.
Indeed, all of these nuclei have been observed [43,47,50,61].
Some of them have tentatively been proposed as potential
candidates for two-proton radioactivity according to experi-
mental indications, while β decay might still be the preferred
decay mode for a few of them (e.g., for 49Ni [61], 68Kr [62],
and 73Sr [50]). Their neighbors with one neutron less, 48Ni,
54Zn, 59Ge, 63Se, 67Kr, 72Sr, as well as 45Fe, are calculated
to have a more pronounced and negative S2p and thus may be
considered as possible candidates for 2p emission (confirmed
for 45Fe [63,64], 48Ni [65,66], 54Zn [42], and 67Kr [67]). At
the same time, 59Ge and 63Se have been observed to disinte-
grate via β decay [67], which may not be surprising, since
the predicted |S2p| value is smaller than the one found for
67Kr (see also a recent study from 78Kr fragmentation reported
in Ref. [47]).

For heavier odd-Z nuclei, we report on the possibil-
ity of negative Sp values for 64,65As, 68,69Br, 71,72,73Rb,
which is in accord with experimental studies of those nuclei
[44,46,49,50,68]. The less negative Sp values for 64,65As are
in agreement with the fact that those nuclei have been ob-
served experimentally [41,68], while 69Br and 73Rb, having
more negative Sp values, were not observed [44,46,49] and,
therefore, may be proton-unbound with a very short half-
life. Among these nuclei are the r p-process waiting-point
neighbors, 65As, 69Br and 73Rb, which have thus important
implication for astrophysics simulations.

We notice another interesting feature for a few series of
odd-Z isotopes, namely, we indeed observe the existence of
the so-called “sandbanks” [49]: Sp for an even A nucleus can
be similar or even less negative than for an odd-mass (A + 1)
nucleus. It is well illustrated by numerous examples from our
chart, e.g., 68Br–69Br, 66Br–67Br, 72Rb–73Rb, 70Rb–71Rb, and
heavier 80Nb–81Nb, etc.

For 76,77Y, our Sp values stay small, but negative, within
relatively small error bars (see Fig. 9), which is not completely
excluded by the results on β-decay half-lives of these isotopes
deduced from the experimental studies [45,50]. At the same
time, we remark on a very good agreement with the experi-
mental indications for 81Nb, 85Tc, 89Rh, 93Ag, and 97In to be
proton unbound (see Refs. [45,48]). In particular, we find that
our theoretical one-proton separation energies for 89Rh, 93Ag,
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and 97In are close to experimentally determined values [48].
Similarly, we confirm a general tendency of a decrease of |Sp|
and, therefore, of an increase of stability, when approaching
Z = 50 (see a slight change in the average value of Sp when
going from 85Tc to 89Rh, 93Ag and further to 97In). These are
the nuclei which result from a proton-capture on even-even
N = Z nuclei (possible waiting points).

For even-Z Sr and Zr, according to our calculation, 73Sr
and 77Zr are slightly unbound, with the S2p value being close
to zero. At the same time, we find 82Mo slightly bound with
respect to two-proton emission, with a large uncertainty, how-
ever.

For the heavy even-even nuclei 86Ru, 90Pd, 94Cd, 98Sn,
we get Sp > 0 and S2p < 0, with S2p being very small. Due
to this reason, we would be cautious to provide any definite
answer about the exact position of the two-proton drip line
here. Their neighbors with one neutron less, 85Ru, 89Pd, 93Cd,
97Sn, are predicted to have −1.5 � S2p � −1 (MeV), and thus
are expected be two-proton unbound. However, one might
need to go to still more exotic isotopes, 84Ru, 88Pd, 92Cd, or
96Sn, in a search for plausible candidates for 2p emission.

We remark that the masses of heaviest Tz = −1/2 nu-
clei from 89Rh to 99Sn are based on the extrapolated
masses of their Tz = 1/2 mirrors [51]. Beyond Sn isotopes,
we cannot approach the N = Z line with our calculation,
since the mass excesses of neutron-rich mirrors become
unknown.

Addition of the proper shell correction, capable of repro-
ducing variations of b coefficients in a better way, would in
principle reduce the uncertainty on the proton and two-proton
separation energies, and it could also modify their central
values.

VII. CONCLUSIONS AND SUMMARY

In the present work, we have applied the macro-
microscopic approach of P. Möller and collaborators, the
FRDM and FRLDM, to estimate the IMME a and b coeffi-
cients in nuclei in the vicinity of N = Z until A ≈ 100. We

found that the macroscopic part of the FRLDM, representing a
refined version of the well-known liquid-drop model, is rather
well suited to describe the general trends of the coefficients. In
particular, introduction of proton and neutron pairing energy
parameters adjusted to experiment allowed us to reproduce the
staggering effect of b coefficients in very good agreement with
the data.

The full FRDM and FRLDM approaches prove to be ad-
vantageous in providing the general trend of the a coefficients
towards heavier nuclei along the N = Z line, which would be
interesting to confirm experimentally. However, the descrip-
tion of b and c coefficients is not satisfactory. This may hint at
a possible opportunity to improve the parametrizations with a
specific consideration of the isovector and isotensor parts of
the total energy.

The “best” set of b coefficients obtained from the modified
macroscopic part of FRLDM is used to calculate the masses
of proton-rich nuclei based on experimental masses of their
neutron-rich mirrors and theoretical b coefficients. The results
obtained on one- and two-proton separation energies of nuclei
in the vicinity of the proton drip line are in robust agreement
with the available experimental data. The predictions made
for heavier nuclei near 100Sn can serve to guide future experi-
ments.

We hope that our study can motivate further exploration
and developments of the FRDM and FRLDM, aiming at a
better description of the isospin degree of freedom, which
could in future provide the community with more accurate
predictions of masses of proton-rich nuclei. The properties of
those nuclei up to A ≈ 100 are very important for simulations
of the astrophysical r p process.
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