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Background: Many quantal many-body methods that aim at the description of self-bound nuclear or mesoscopic
electronic systems make use of auxiliary wave functions that break one or several of the symmetries of the
Hamiltonian in order to include correlations associated with the geometrical arrangement of the system’s
constituents. Such reference states have been used already for a long time within self-consistent methods that are
either based on effective valence-space Hamiltonians or energy density functionals, and they are presently also
gaining popularity in the design of novel ab initio methods. A fully quantal treatment of a self-bound many-body
system, however, requires the restoration of the broken symmetries through the projection of the many-body
wave functions of interest onto good quantum numbers.
Purpose: The goal of this work is threefold. First, we want to give a general presentation of the formalism
of the projection method starting from the underlying principles of group representation theory. Second, we
want to investigate formal and practical aspects of the numerical implementation of particle-number and
angular-momentum projection of Bogoliubov quasiparticle vacua, in particular with regard of obtaining accurate
results at minimal computational cost. Third, we want to analyze the numerical, computational, and physical
consequences of intrinsic symmetries of the symmetry-breaking states when projecting them.
Methods: Using the algebra of group representation theory, we introduce the projection method for the general
symmetry group of a given Hamiltonian. For realistic examples built with either a pseudopotential-based energy
density functional or a valence-space shell-model interaction, we then study the convergence and accuracy of
the quadrature rules for the multidimensional integrals that have to be evaluated numerically and analyze the
consequences of conserved subgroups of the broken symmetry groups.
Results: The main results of this work are also threefold. First, we give a concise, but general, presentation of the
projection method that applies to the most important potentially broken symmetries whose restoration is relevant
for nuclear spectroscopy. Second, we demonstrate how to achieve high accuracy of the discretizations used to
evaluate the multidimensional integrals appearing in the calculation of particle-number and angular-momentum
projected matrix elements while limiting the order of the employed quadrature rules. Third, for the example
of a point-group symmetry that is often imposed on calculations that describe collective phenomena emerging
in triaxially deformed nuclei, we provide the group-theoretical derivation of relations between the intermediate
matrix elements that are integrated, which permits a further significant reduction of the computational cost of the
method. These simplifications are valid regardless of the number parity of the quasiparticle states and therefore
can be used in the description of even-even, odd-mass, and odd-odd nuclei.
Conclusions: The quantum-number projection technique is a versatile and efficient method that permits to
restore the symmetry of any arbitrary many-body wave function. Its numerical implementation is relatively
simple and accurate. In addition, it is possible to use the conserved symmetries of the reference states to reduce
the computational burden of the method. More generally, the ever-growing computational resources and the
development of nuclear ab-initio methods opens new possibilities of applications of the method.
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I. INTRODUCTION

The concept of symmetry is essential to the analysis, dis-
cussion, and understanding of many natural phenomena [1].
In physics, the notion of symmetry is associated with the
existence of physical transformations that leave either the laws

of physics or the properties of physical systems invariant [2].
We will focus here on invariances of the interactions between
a system’s fundamental constituents under global space-time
symmetry transformations, such as translations in time and
space, rotations, inversion of space and time, etc., which de-
pend on a number of global parameters. Through Noether’s
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first theorem [3,4], such global invariances are connected to
the conservation of energy, momentum, angular momentum,
parity, particle number, etc.

From a mathematical perspective, the concepts of sym-
metry can be expressed within the language of group
representation theory [5–9]. In particular, for finite quantal
systems such as the atomic nucleus, the labels of the ir-
reducible representations (irreps) of the general symmetry
group of the Hamiltonian can be used as good quantum num-
bers that characterize its eigenstates. As a consequence, there
are selection rules for electromagnetic transitions in nuclei,
and also for nuclear transmutations induced by the weak and
strong nuclear forces.

When solving the nuclear many-body problem exactly, the
resulting many-body wave function will automatically be an
eigenstate of all symmetry operators that commutate with
the Hamiltonian and among each other. In one way or an-
other, however, the microscopic modeling of nuclei almost
always requires an ansatz for the nuclear many-body wave
function |�〉 and also implies the construction of an effective
many-body Hamiltonian Ĥeff adequate for the model vector
space covered by all possible |�〉. While Ĥeff is in general
constructed to preserve the physical symmetries of the “bare”
Hamiltonian, it is not straightforward to ensure that the model
wave functions |�〉 conserve the same symmetries.

The latter problem is particularly prominent in variational
methods, within which the physical state is approximated by
the trial wave function that gives the lowest expectation value
of the effective Hamiltonian within the given variational set.
Conserving the physical symmetries by artificially restricting
the variational space to symmetry-conserving product states
might at first sight appear advantageous as one keeps quan-
tum numbers and selection rules. However, when making
the simple ansatz of a single product wave function for the
variational state as it is done in self-consistent mean-field
methods, more often than not one finds that a symmetry-
breaking wave function gives a larger binding energy than a
symmetry-conserving one. This problem is known for long as
the “symmetry dilemma,” a notion first coined by Löwdin [10]
in the context of atomic physics.

This finding has many similarities with the phenomenon
of spontaneous symmetry breaking [11] that is well known
for infinite systems such as the ones treated in condensed-
matter physics. While for those systems symmetry breaking
is an observable feature of the physical systems under study,
for finite self-bound systems such as atomic nuclei, finding
a symmetry-breaking state that has the lowest energy for a
symmetry-conserving Hamiltonian might appear as an un-
wanted byproduct of the modeling.

Time has shown, however, that it is often possible to at-
tribute a physical meaning to such symmetry-breaking model
states. It has been understood in ever increasing detail since
the 1950s [12–15] that the pattern of excited states of many
atomic nuclei can be easily and intuitively explained by mak-
ing the assumption that the many-body wave function can
in one way or another be separated into a part representing
a specific geometrical arrangement of nucleons and a part
that represents the orientation of this arrangement in space,
and where only the latter respects the symmetries of the

Hamiltonian. By contrast, the part of the wave function
that represents the relative arrangement of the nucleons then
typically breaks some, but not necessarily all, of these sym-
metries. We will call those that remain intrinsic symmetries
in what follows. They leave a characteristic fingerprint on the
excitation spectrum of the system and are customarily used to
characterize the distribution of nucleons as having a “spher-
ical,” “axially deformed,” “triaxial,” “octupole deformed,” ...
shape [13–16], although for atomic nuclei the shape of the
nucleon distribution as such is experimentally not directly ob-
servable as a consequence of the nuclear Hamiltonian’s global
invariances. The same concepts are also used to interpret fine
details in the patterns of excited states at high spin in terms of
the orientation of angular momenta relative to the “intrinsic
shape” of the nucleon distribution [16].

Over fifty years of experience with variationally opti-
mized symmetry-breaking product states have shown that
they overall provide a predictive description of phenomena
that are commonly interpreted in terms of nuclear shapes.
Similarly, the use of Bogoliubov-type quasiparticle vacua
instead of Slater determinants as variational wave function
allows for the modeling of pair correlations in nuclei at the
expense of breaking the global gauge symmetry associated
with particle-number conservation. Both of these successes
explain the wide popularity of mean-field-based models, be
they self-consistent or not. Still, limiting the modeling of
nuclei to symmetry-breaking mean-field calculations has its
limits; such calculations rarely grasp all correlations associ-
ated with the broken symmetry, they often fail in the limit of
weak symmetry breaking, and the connection of observables
calculated for the intrinsic nucleon distribution to what is
observed in the laboratory frame is not straightforward and
requires additional modeling.

These limitations, however, can be overcome when doing
the calculation in two steps. First, one allows a symmetry-
breaking state to explore all degrees of freedom that
lower the energy, and then restores the broken symmetries
by projecting this trial state on good quantum numbers
[13,15,17–19]. Both can even be done simultaneously in a so-
called “variation-after-projection” (VAP) calculation, where
the symmetry-broken state is optimized to minimize the en-
ergy obtained after its projection [20]. This strategy has
to be contrasted with carrying out one after the other, as
much more frequently done in the literature, in a so-called
projection-after-variation (PAV) calculation, where the non-
projected energy is variationally optimized. In general, both
do not lead to exactly the same results. While the former is
clearly preferable on formal grounds, it is numerically much
more costly such that so far it has only been applied in
frameworks that either make simplifying assumptions for the
variational states [21] or that use very small valence spaces
[22], or for the technically simple case of particle-number
restoration [23,24]. It is also possible to design an interme-
diate strategy, used either under the name of restricted VAP
(RVAP) [25] or minimization after projection (MAP) [26],
where the minimum is sought within a small space of suitably
constructed projected states that are each obtained from a PAV
calculation. Choosing either of these strategies to generate
the final projected state, however, does not alter the formal
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properties of the actual projection technique involved in the
process.

The projection technique has been applied in many con-
texts, but most concern a framework where it is applied
to simple product states obtained either from a Hartree-
Fock (HF), HF+Bardeen-Cooper-Schrieffer (HF+BCS) or
Hartree-Fock-Bogoliubov (HFB) calculation. Many early
results were obtained within truncated valence spaces
[19,27–29]. Such calculations continue to offer a computa-
tionally efficient approximation to full shell-model diagonal-
izations for systems with inhibitively large valence spaces
[30–33].

Over the past two decades, it has also become popular to
systematically apply these techniques in the context of energy
density functional (EDF) methods that are based on reference
product states that are constructed from all occupied single-
particle states [24,34–49].

Because of its many successes, the strategy to use
symmetry-unrestricted reference states is also progressively
used within ab initio many-body methods that are based on
correlated trial states [50–53]. In this context, the restoration
of the broken symmetries, however, is not yet as widely used
as mean-field methods, but developments in this direction are
under way [53–59].

Quantum numbers of prime interest for nuclear spec-
troscopy are total angular momentum and its third component,
parity, proton and neutron number, as well as isospin. The
latter is not a conserved symmetry of the Hamiltonian, but its
breaking is usually so weak that it still can be used as a mean-
ingful label of nuclear states, and also the proper description
of its actual breaking can be facilitated when using an ex-
tension of the symmetry-breaking-plus-symmetry-restoration
scheme that has been sketched above [41]. For some applica-
tions, mainly to reaction processes, it can also be relevant to
restore translational and/or Galilean invariance [60,61]. We
will limit the discussion below to projection on angular mo-
mentum and particle number. Their restoration is arguably the
most widely discussed in the literature, and the specificities
of their respective group structures are representative also for
other cases of interest. The goals of this article are as follows:

(i) Clarifying the formal origin and the formal properties
of the projection operators as used in nuclear structure
calculations, questions that have been rarely, and to
the best of our knowledge never systematically, been
addressed in the nuclear physics literature so far.

(ii) Analyzing how applying a numerical projection op-
erator extracts the targeted components from typical
symmetry-breaking states, and how this information
can be used to reduce the numerical cost of projection.

(iii) Discussing how intrinsic symmetries of a symmetry-
breaking state influence the decomposition of this
state into symmetry-conserving components and how
this feature can be used to reduce the numerical cost
of symmetry restoration. On the one hand, these ques-
tions concern intrinsic symmetries that are inherent
to product states and that distinguish configurations
describing systems with even and odd particle num-
ber on a very fundamental level. On the other hand,

intrinsic symmetries related to the distribution of nu-
cleons and their angular momentum in the nucleus
can also be exploited to further reduce the numerical
cost of projection. Of prime interest for the latter are
subgroups of the double point symmetry group DT D

2h
as defined in Refs. [62,63].

We will not address the question how to actually evaluate
the overlap and operator kernels between rotated and nonro-
tated states. There is no universal scheme for this task that is
applicable to all types of states to be projected, nor all of their
possible numerical representations. A brief review of the most
widely used techniques for the evaluation of such kernels for
Slater determinants and Bogoliubov quasiparticle vacua can
be found in Ref. [49].

The paper is organized as follows. Section II introduces
the projection method on the grounds of group theory and ex-
plains how it allows one to build correlated symmetry-restored
states starting from an arbitrary symmetry-breaking state.
Section III then presents formal properties of particle-number
restoration and its numerical implementation as encountered
when applied to Bogoliubov quasiparticle vacua that describe
systems with either even or odd particle number. Section IV
presents formal properties of angular-momentum restoration
and its numerical implementation as encountered when ap-
plied to Bogoliubov quasiparticle vacua that describe nuclei
with even and odd total particle number. Section V describes
how point-group symmetries of the intrinsic Bogoliubov
quasiparticle vacua can be used to simplify the numerical
evaluation of the angular-momentum restoration.

While the formulation of the projection technique is
straightforward for methods employing Hamilton operators,
it has been pointed out that it can become ill defined as soon
as one makes approximations that violate the Pauli principle
when calculating the total energy [23,64] or when making
ad hoc assumptions when setting up a multireference (MR)
energy density functional that does not correspond to the
expectation value of a genuine Hamiltonian [65–70]. Reg-
ularization schemes have been proposed to overcome such
problems [67,71], but at present it remains unclear if they
lead to energies that are well defined under any circumstances.
To avoid any ambiguities, we will introduce the projection
method using Hamilton operators and present only results
obtained with such.

II. PROJECTION METHOD

A. Basic definitions

In this section, we will briefly recall those elements of
group theory that are needed to define the projection opera-
tors, and that provide an insight into the interpretation of the
projection method. For a thorough introduction into group the-
ory as needed in many-body quantum mechanics, and further
background information such as the proof of the theorems and
other relations used in what follows, we refer to Refs. [5–9].

In nuclear structure physics, we have to deal with discrete
symmetries, such as parity, and also continuous symmetries
such as global gauge and rotational invariances. The for-
mer are associated with finite groups, whereas the latter are
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represented by Lie groups. With the exception of SU (2) (the
group related to angular-momentum and isospin), all groups
of interest are Abelian. In addition, all Lie groups considered
here will be compact.

Let us consider a group G that is either a finite group
of order nG or a compact Lie group of volume1vG. Let us
then consider the unitary representation that associates to each
element g ∈ G the unitary operator Û (g) acting on the Hilbert
space H.

The different irreducible representations of G will be la-
beled by greek letters, e.g., λ, μ, or ν. For the types of groups
considered here, we know by theorem that all irreps of G are
finite dimensional [6] and we denote by dλ the dimension of
the irrep λ.

To illustrate our discussion, let us first consider the simple
case where the Hilbert space H contains one copy of each
irrep of G, i.e., it can be decomposed as

H =
⊕

λ

Sλ, (1)

with Sλ being the invariant subspace of dimension dλ associ-
ated with the irrep λ. Choosing an orthonormal basis2{|�λi〉,
i ∈ �1, dλ�} for Sλ, the transformation of the basis functions
under the action of Û (g) reads

∀ g ∈ G, Û (g)|�λi〉 =
dλ∑

j=1

Dλ
ji(g)|�λ j〉, (2)

i.e., the transformed basis function is in general a superposi-
tion of several basis functions from the same irrep with the
coefficients of the superposition being the matrix elements

Dλ
ji(g) ≡ 〈�λ j |Û (g)|�λi〉 (3)

of the unitary matrix Dλ(g), which itself is the matrix repre-
sentation of the group element g for irrep λ. Between the irreps
of a given finite group hold the orthogonality relations

dμ

nG

∑
G

Dμ

kl
∗(g)Dλ

i j (g) = δμλδkiδl j, (4)

whereas for a compact Lie group one has

dμ

vG

∫
G

dvG(g)Dμ

kl
∗(g)Dλ

i j (g) = δμλδkiδl j (5)

instead. This so-called great orthogonality theorem [6] is the
fundament on which the projection technique is built, as it

1We define the volume of the group G as the integral over its
domain of definition: vG = ∫G dvG(g), dvG(g) being the invariant
measure for G.

2Throughout this section, we use a generic notation where the
indices of states within an irrep run from 1 to the irrep’s dimension
dλ. This convention, which is independent of the specificities of a
given group, has to be distinguished from the frequently found group-
dependent labeling where indices are associated with the eigenvalue
of some operator that differentiates between the members of a given
irrep of a specific group. The latter notation, where the labels carry a
direct physical interpretation, will be used later on when discussing
the restoration of specific symmetries in Secs. III and IV.

permits us to define the linear operators

P̂μ

kl ≡ dμ

nG

∑
G

Dμ

kl
∗(g)Û (g) (6)

for finite groups, and

P̂μ

kl ≡ dμ

vG

∫
G

dvG(g)Dμ

kl
∗(g)Û (g) (7)

for compact Lie groups. These operators act on the basis
functions |�λi〉 as

P̂μ

kl |�λi〉 = δμλδli|�λk〉, (8)

i.e., the operator P̂μ

kl either cancels out the basis functions cor-
responding to irreps λ �= μ or transforms the basis functions
within the irrep μ one into another. In Dirac’s bra-ket notation,
this relation can be rewritten within our basis states as

P̂μ

kl = |�μk〉〈�μl |. (9)

It can be deduced from these expressions that by acting with
the operators P̂μ

kl on an arbitrary superposition of basis func-
tions

P̂μ

kl

∑
λ

dλ∑
i=1

cλi|�λi〉 = cμl |�μk〉, (10)

with the coefficents cλi being complex numbers, we extract
the weight of the (μ, l ) component in the original state times
the (μ, k) basis function. With that, the operators P̂μ

kl can be
used to project out the components belonging to any irrep μ

contained in such a superposed state. For that reason, these
operators are frequently called projection operators in the
physics literature. However, Eqs. (8) and (9) imply that

P̂λ
i j P̂

μ

kl = δλμδ jkP̂λ
il , (11)

meaning that the operators P̂μ

kl are in general not orthogonal
projection operators in the mathematical sense of being a
linear map p with the property p2 = p = p†. Only the oper-
ators P̂μ

kk are true projectors in that sense. To underline this
difference, the operators P̂μ

kl with k �= l are sometimes called
shift operators [8] or transfer operators [7] in the literature.
Moreover, using the unitarity of the representation, we see that
that under Hermitian conjugation the operators P̂μ

kl transform
as

P̂μ

kl
† = P̂μ

lk . (12)

From this it follows that the operators P̂μ

kk are Hermitian,
as expected for true orthogonal projection operators. For the
special case of Abelian groups the irreducible representations
are all one-dimensional [6]. For these, the index k labeling
the states within a given irrep is redundant and can hence be
omitted. In such a case, the operators P̂μ ≡ P̂μ

kk are always true
projection operators.

Based on the aforementioned properties, we can write the
resolution of the identity within our basis as [5]

∑
μ

dμ∑
k=1

P̂μ

kk =
∑

μ

dμ∑
k=1

|�μk〉〈�μk| = 1̂. (13)
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Up to now, we have concentrated on a generic set of basis
functions of the irreps, labeled, for example, as |�μk〉. How-
ever, the Hilbert space H of interest will in general contain
multiple subspaces whose elements transform according to
the same irrep μ of G. Hence, it is necessary to distinguish the
basis functions by additional quantum numbers and/or labels
that are not related to symmetry group G. For these, we will
use the generic label ε such that the Hilbert space can then be
decomposed as

H =
⊕

μ

nμ⊕
ε=1

Sμ
ε , (14)

with Sμ
ε being one of the nμ invariant subspaces of H associ-

ated with the irrep μ.
Operators P̂μ

kl do not act on the degrees of freedom related
to ε, meaning that they cannot distinguish between states with
the same μ and k or l but different ε. As a consequence, it
is in general necessary to sum over all ε when expressing
the projection operators in Dirac’s bra-ket notation in the full
Hilbert space:

P̂μ

kl =
nμ∑

ε=1

∣∣�μk
ε

〉〈
�μl

ε

∣∣. (15)

The same is also necessary to obtain the equivalent of Eq. (13)
in the full Hilbert space:

∑
μ

dμ∑
k=1

P̂μ

kk =
∑

μ

nμ∑
ε=1

dμ∑
k=1

∣∣�μk
ε

〉〈
�μk

ε

∣∣ = 1̂. (16)

In many situations of physical interest, the full symmetry
group G of the system can be broken down into a direct
product of its subgroups, e.g., G = G1 × G2 × · · · × Gm. In
that case, basis functions of G can be constructed as tensor
products of basis functions of the constituent groups of the
direct product, and similarly for projection operators; see
Refs. [5–9] for details. In addition, the label of the irreps of
G can be expressed as a set of m labels denoting the irreps of
each of the subgroups, i.e., λ ≡ λ1, λ2, . . . , λm.

B. Tensor operators

Analogously to basis functions, it is possible to identify
certain operators that have special transformation properties
under symmetry operations. A set of dλ operators {T̂ λ

i , i ∈
�1, dλ�} that transform as

∀ g ∈ G, Û (g)T̂ λ
i Û †(g) =

dλ∑
j=1

Dλ
ji(g) T̂ λ

j (17)

will be referred to as a set of tensor operators of rank λ. The
ones that transform according to the trivial representation3

λt are called scalar operators. For such scalar operator T̂ λt
1 ,

3That is, the one-dimensional representation where all elements of
G are associated with the identity operation.

Eq. (17) can be straightforwardly recast into the commutation
relation

∀ g ∈ G,
[
Û (g), T̂ λt

1

] = 0. (18)

The vast majority of observables of interest in nuclear physics
can be expressed in terms of tensor operators of the general
symmetry group of the Hamiltonian, whether an observable is
directly a tensor operator itself or reducible as a sum of such
operators.

C. Symmetry group of the Hamiltonian

Considering a Hamiltonian Ĥ , G is said to be a symmetry
group of Ĥ if the latter commutes with all unitary operators
Û (g) associated with the elements g of G:

∀ g ∈ G, [Û (g), Ĥ ] = 0, (19)

i.e., the Hamiltonian is a scalar operator with regards to G.
The largest group under which Ĥ transforms as a scalar will
be called the general symmetry group of the Hamiltonian.
Relation (19) has several important consequences for the
eigenstates and eigenvalues of the Hamiltonian Ĥ [5]:

(i) With the exception of accidental degeneracies, each
eigenspace of Ĥ corresponds to a single irrep of G.4

Consequently, the degeneracy of the corresponding
eigenvalue of Ĥ is determined by the dimension dλ

of the irrep.
(ii) The irreps’ label λ can then be used as good quantum

number to label the eigenstates and eigenvalues of
Ĥ . In general, however, an additional label will be
needed to distinguish between different eigenspaces
of Ĥ with the same λ.

(iii) There are selection rules for the matrix elements of
tensor operators T̂ λ

i between the eigenstates of Ĥ that
are captured by the Wigner-Eckart theorem associated
with the group G.

D. Symmetry-breaking model wave functions

As outlined in the Introduction, nuclear EDF and other
methods make use of symmetry-breaking wave functions in
order to address a multitude of nuclear phenomena in a com-
putationally friendly way. But, as a result, the auxiliary states
that these models are built on break some, if not all, of the
symmetries G of the nuclear Hamiltonian Ĥ and therefore
lack some of the essential quantum mechanical characteristics
of the eigenstates of Ĥ . In particular, we loose the selection
rules related to the symmetry G for transition moments and
other observables, which may severely spoil the accuracy and
reliability of their evaluation.

4In the exceptional case of an accidental degeneracy, the corre-
sponding eigenspace of the Hamiltonian Ĥ can still be decomposed
into a direct sum of irreps. The presence of systematic degeneracies
of different irreps of G signals that one is not considering the general
symmetry group of Ĥ .
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Nevertheless, from the commutation relation (19) it fol-
lows that for an arbitrary state |�〉

∀ g ∈ G, 〈�|Û †(g)ĤÛ (g)|�〉 = 〈�|Ĥ |�〉, (20)

meaning that all elements of the set G|�〉 ≡ {Û (g)|�〉, g ∈
G}, i.e., the set of all “rotated” states built from |�〉, are
degenerate. This set is formally known as an orbit of G [72].
Equation (20) has the important practical consequence that
the orientation, i.e., the specific element in the orbit G|�〉,
that is selected to define the initial symmetry-breaking state
can be freely chosen to be whatever is the most advantageous
for its numerical representation. In addition, Eq. (20) suggests
also that the states in G|�〉 may interact with each other and
therefore that we may gain correlation energy by mixing them.
This is precisely what the projection method accomplishes.

E. Projection method

As an introductory note, we want to point out that the
projection method presented in this section can be applied
whether the group G at hand is the general symmetry group of
the Hamiltonian or if it is only a subpart of its direct product
decomposition (assuming such decomposition exists).

Starting from an arbitrary normalized, a priori symmetry-
breaking state |�〉, there is an elegant way to build symmetry-
respecting states by diagonalizing Ĥ within the subspace of H
spanned by all linear combinations of the degenerate elements
of G|�〉. This space is provided by

span(G|�〉) ≡
{∑

G

f (g)|�(g)〉, f (g) ∈ C

}
(21)

for finite groups, where C are the complex numbers, and

span(G|�〉) ≡
{∫

G
dvG(g) f (g)|�(g)〉, f ∈ L2(G)

}
(22)

for compact Lie groups, where L2(G) is the space of square-
integrable functions over G.

First of all, we notice that, by construction, span(G|�〉)
carries a natural representation of G built from the restriction5

of the operators Û (g) to this subspace. In addition, we know
by theorem [6] that any unitary representation of finite and
compact Lie groups is, up to equivalency, either irreducible
or can be completely decomposed as a direct sum of irreps.
This implies that in the general case we can decompose
span(G|�〉) into a direct sum of the invariant subspaces Sλ

ε

of dimension dλ associated with the irreps λ of G:

span(G|�〉) =
⊕

λ

nλ⊕
ε=1

Sλ
ε . (23)

5More generally, for a given operator Ô, we will for the rest of the
section only consider its restriction to the subspace span(G|�〉) that
can be written ÔS ≡ P̂SÔP̂S with P̂S being a projection operator onto
span(G|�〉). However, as there is no ambiguity on the vector space
considered and to keep notations simple, we will omit the index S
and use the label Ô both for the operator and its restricted version.

As already mentioned, the label ε is used to distinguish be-
tween the different subspaces Sλ

ε that carry an irrep with the
same λ. The number nλ of such different subspaces with the
same λ depends on the state |�〉, in particular of the remaining
symmetries it carries, but is such that 0 � nλ � dλ. The upper
bound for nλ is a consequence of the decomposition of the
regular representation (see the Peter-Weyl theorem [73] for
compact Lie groups). It is also to be remarked that not all
possible irreps λ of G have to appear in the direct sum (23),
and for those vanishing irreps we set nλ = 0.

As G is assumed to be a good symmetry of Ĥ , it is possible
to find in span(G|�〉) a basis of orthonormal eigenfunctions
of Ĥ ,

Ĥ
∣∣�λi

ε

〉 = eλ
ε

∣∣�λi
ε

〉
, (24)

such that the decomposition (23) still holds. In that case, the
label ε is used to distinguish between the different eigenspaces
of Ĥ with the same λ in span(G|�〉).

The challenge is now to construct these basis functions
in an efficient manner starting uniquely from state |�〉. One
obvious approach would be to simply diagonalize the Hamil-
tonian matrix composed by all rotated states, whose matrix
elements are

∀ (g, g′) ∈ G2, 〈�(g)|Ĥ |�(g′)〉. (25)

Unless one is working in small valence spaces that provide an
automatic sharp cutoff for the spectrum of irreps of continuous
groups that the states |�〉 can be decomposed into, for most
applications to nuclear structure physics this direct method is
in practice very inefficient, or even impossible, to implement.
It requires one to use a discretization of g for which all basis
functions |�λi

ε 〉 that |�〉 can be developed into are orthonor-
mal with a high numerical precision. The numerical cost of
calculating the kernels (25) with such discretization and of
diagonalizing the resulting matrix will often be prohibitive.

A better strategy is to exploit the properties of projec-
tion operators as defined in Sec. II A, to first pre-diagonalize
the Hamiltonian within in each subspace Sλ ≡⊕nλ

ε=1 Sλ
ε of

span(G|�〉) such that it only remains to diagonalize Ĥ within
each Sλ. From a numerical point of view, such an approach can
be implemented in a manner that is systematically improvable
to a given accuracy.

First, we notice the fact that |�〉 trivially belongs to
span(G|�〉),

|�〉 = 1̂ |�〉 = Û (1G)|�〉 ∈ span(G|�〉), (26)

where 1G is the unit element of G, to decompose it into the
|�λi

ε 〉 defined through Eq. (24),

|�〉 =
∑

λ

nλ∑
ε=1

dλ∑
i=1

cλi
ε

∣∣�λi
ε

〉
, (27)

with the coefficients cλi
ε being complex numbers with the sum

rule

∑
λ

nλ∑
ε=1

dλ∑
i=1

∣∣cλi
ε

∣∣2 = 1 (28)
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to respect the normalization of |�〉. These relations imply in
particular that we can always write |�〉 as a superposition of
basis functions having good symmetry properties.

Then, acting with the projection operator P̂λ
i j on the state

|�〉 we place ourself in the subspace Sλ of interest:

P̂λ
i j |�〉 =

nλ∑
ε=1

cλ j
ε

∣∣�λi
ε

〉
. (29)

It is to be noted that, depending on the decomposition (27),
for certain values of λ and j the states P̂λ

i j |�〉 can be the null
vector. The nonvanishing states P̂λ

i j |�〉 represent a first step
in our process as (i) they have good symmetry transformation
under the action of Û (g), i.e., the set of states {P̂λ

i j |�〉, i ∈
�1, dλ�} transform according to Eq. (2), and (ii) they partially
diagonalize the Hamiltonian:

〈�| P̂μ
i j

† Ĥ P̂λ
kl |�〉 = δμλ δik 〈�| Ĥ P̂λ

jl |�〉, (30)

〈�| P̂μ
i j

† P̂λ
kl |�〉 = δμλ δik 〈�| P̂λ

jl |�〉, (31)

where we have used the properties (11) of the projection
operators and also that the projection operators commute with
the Hamiltonian,

∀μ, i, j,
[
Ĥ , P̂μ

i j

] = 0, (32)

as a consequence of relation (19). However, neither the Hamil-
tonian matrix Hλ nor the norm matrix Nλ, whose elements are

Hλ
i j ≡ 〈�| Ĥ P̂λ

i j |�〉, (33)

Nλ
i j ≡ 〈�| P̂λ

i j |�〉, (34)

are automatically diagonal. This is necessarily true only in
the trivial, but important, case where nλ = dλ = 1. This is for
example the case for Abelian groups because they have only
one-dimensional irreps and therefore 0 � nλ � dλ = 1.

In the case of non-Abelian groups, in addition to acting
with the projection operator, we also have to concurrently
diagonalize the norm and the Hamiltonian matrix among the
states P̂λ

i j |�〉. We thus represent the eigenstates of Ĥ as a
superposition of states of the form

∣∣�λi
ε

〉 = dλ∑
j=1

f λ j
ε P̂λ

i j |�〉, (35)

where the weight factors f λ j
ε are complex numbers. Injecting

Eq. (35) into Eq. (24), we obtain the generalized eigenvalue
problem (GEP)

Hλ f λ
ε = eλ

ε Nλ f λ
ε , (36)

with f λ
ε being a column vector containing the weight factors.

The energies eλ
ε are generalized eigenvalues, i.e., the roots of

the characteristic equation

det(Hλ − eNλ) = 0. (37)

The matrix Hλ is Hermitian, whereas the matrix Nλ, being
a Gramiam matrix,6 is positive semidefinite. As a conse-
quence, the GEP defined by Eq. (36) is a Hermitian positive
semidefinite GEP and therefore has a number nλ of finite real
eigenvalues eλ

ε equal to the number of nonzero eigenvalues
of Nλ. In particular, for matrices Nλ that are strictly definite
one obtains nλ = dλ finite real eigenvalues eλ

ε when solving
Eq. (36). Otherwise it is necessary to diagonalize Nλ first and
to remove all its dλ − nλ zero eigenvalues in an intermediate
step before diagonalizing the Hamiltonian in such a reduced
subspace [15].

Equation (36) is independent of the label i of the state
|�λi

ε 〉, i.e., the same equation holds for all dλ values it can
take. This implies that the energies eλ

ε are dλ-fold degenerate,
as expected for the eigenvalues of Ĥ from the discussion in
Sec. II C. With that, Eq. (36) has to be solved only for one state
|�λi

ε 〉 out of each eigenspace. All other symmetry partners of
the basis can then be obtained through the use of the shift
operators

∀ k ∈ �1, dλ�,
∣∣�λk

ε

〉 = P̂λ
ki

∣∣�λi
ε

〉
. (38)

Having solved the GEP of Eq. (36), we have the weights
f λ j
ε entering the states |�λi

ε 〉, Eq. (35), and the corresponding
energy eλ

ε , Eq. (36), at our disposal. Repeating the process for
each λ that can be found in the symmetry-breaking state |�〉,
we obtain a set of orthonormal basis functions {|�λi

ε 〉, λ, ε ∈
�1, nλ�, i ∈ �1, dλ�} of span(G|�〉) that transform according
to the restored symmetry and diagonalize the Hamiltonian in
this space:

Û (g)
∣∣�λi

ε

〉 = dλ∑
j=1

Dλ
ji(g)

∣∣�λ j
ε

〉
, (39a)

〈
�

μi
ξ

∣∣�λ j
ε

〉 = δμλ δi j δξε, (39b)〈
�

μi
ξ

∣∣ Ĥ ∣∣�λ j
ε

〉 = δμλ δi j δξε eλ
ε . (39c)

F. Discussions

Thus formulated (see also [9,18,72]), the projection
method is not simply the extraction of states with good quan-
tum numbers from |�〉, but the efficient construction of states
diagonalizing Ĥ in the subspace span(G|�〉), which automat-
ically have good symmetry properties.

Alternatively, the projection method can also be formulated
from a variational point of view [18,74], where the projection
operators emerge naturally from the knowledge of the decom-
position of L2(G) in terms of irreps. From that perspective,
the projection method can also be interpreted as a special case
of the Generator Coordinate Method (GCM) based on the
set made of the degenerate rotated states G|�〉 ≡ {Û (g)|�〉,
g ∈ G}, where the group element g provides the generator

6The Gramian matrix Ai j = 〈vi|v j〉 is the matrix built from the
scalar products of all pairs of vectors |vi〉 within a given set, which in
our case is the set {P̂λ

i j |�〉, j ∈ �1, dλ�}. A Gramian matrix is always
positive semidefinite, with the strictly definite case being realized if
and only if all the vectors in the set are linearly independent.
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coordinate and where the weights are partially determined
by the structure of the group G. Depending on the properties
of the corresponding group, the form of the GCM trial wave
function is then given by either Eq. (21) or Eq. (22).

The diagonalization of Ĥ in span(G|�〉) as such should
not be interpreted as an approximation to the diagonalization
of Ĥ in the full model space the Hamiltonian has been con-
structed for. The energy spectrum and all other properties of
the symmetry-respecting basis functions |�λi

ε 〉 depend very
sensitively on the choices made for the symmetry-breaking
state |�〉. The main purpose of projection is to construct an
orthogonal set of symmetry-respecting states that provide the
lowest possible energy for each irrep of interest contained
in |�〉. To find an approximation to the physical states of a
system, it will be necessary to embed projection into a many-
body method that scans a suitably chosen and sufficiently
large model space for the optimal symmetry-breaking states
{|�〉} that give the lowest possible energy for each irrep of
interest after projection. In general, the optimum state |�〉
will be different for each irrep. Such a search can be achieved
with variational methods for single product states [75,76] and
also for superpositions of product states, formulated either as
a generator coordinate method [24,77] or as the configuration
mixing in a nonorthogonal basis [30,31,78]. In both cases,
the evaluation of matrix elements between projected states
remains tractable, although nontrivial,7 while the calculation
of the projected wave function is not. It is to be noted that,
inspired by the effectiveness of the projection method within
EDF-based methods, recent theoretical schemes have been
proposed to incorporate symmetry breaking and restoration
into ab initio methods [54,56–59,84].

In general, any remaining intrinsic symmetry of |�〉
adopted during its generation might leave some characteristic
fingerprint on the outcome of the projection scheme. Indeed,
when the symmetries of |�〉 involve the same degrees of free-
dom as Û (g), they will cause linear dependences among the
rotated states in G|�〉 and thus will reduce the dimensionality
of span(G|�〉). The most basic example is that when we start
with a state |�〉 that is already a basis function of a particular
irrep λ, by applying Û (g) on |�〉, we just generate a space
span(G|�〉) = Sλ

1 that contains all dλ linearly independent
degenerate basis states of the single irrep λ. No correlation
energy is generated along the way, which assures us of the
internal consistency of the method. Another simple example is
that when we assume that the state |�〉 has, for a given g′ ∈ G,
the symmetry relation Û (g′)|�〉 = η|�〉, η ∈ C, it is easy to
understand that the number of linearly independent rotated
elements Û (g)|�〉 that we can built is reduced and thus also

7For example, the calculation of overlaps between arbitrary Bo-
goliubov quasiparticle states that are required to compute the norm
matrix between projected states in multireference EDF methods re-
mained an open problem for decades, with solutions known only
for special cases. Only recently, with the use of Pfaffians [79–82]
or other techniques [83], the problem was solved in a general and
unambiguous manner.

is the dimension of span(G|�〉).8 Illustrative examples will be
discussed below when addressing specific symmetries.

Using the resolution of the identity [Eq. (16)], it is pos-
sible to obtain for an arbitrary operator Ô a sum rule for its
projected matrix elements:

〈�|Ô|�〉 =
∑

λ

dλ∑
j=1

〈�|ÔP̂λ
j j |�〉. (40)

In particular, when applied to the norm (Ô ≡ 1̂) or the Hamil-
tonian (Ô ≡ Ĥ ), it leads to useful equations

〈�|�〉 =
∑

λ

dλ∑
j=1

〈�|P̂λ
j j |�〉, (41a)

〈�|Ĥ |�〉 =
∑

λ

dλ∑
j=1

〈�|Ĥ P̂λ
j j |�〉, (41b)

that can be used to evaluate the numerical accuracy of the
symmetry projection. But as the numerical solution of the
GEP (36) often introduces substantial numerical noise into
some of the basis states, for the benchmarking of numerical
implementations of the projection method it may be also of
advantage to look also at the sum rules through the direct
calculation of the coefficients,

cλi
ε = 〈�λi

ε

∣∣�〉 =
dλ∑
j=1

f λ j∗
ε 〈�|P̂λ

ji|�〉, (42)

that are then injected in the expression (28) for the norm and
the equivalent expression for the energy.

In addition, using the sum rule (41b), it is also easy to
prove that the decomposition of a symmetry-breaking state
|�〉 yields some symmetry-respecting states |�λi

ε 〉 that have
an energy eλ

ε lower than the expectation value 〈�|Ĥ |�〉 of the
state one started with. Indeed, from the decomposition of |�〉
into the basis functions |�λi

ε 〉 of span(G|�〉), Eq. (41b) can be
recast as

〈�|Ĥ |�〉 =
∑

λ

nλ∑
ε=1

dλ∑
i=1

∣∣cλi
ε

∣∣2 eλ
ε . (43)

Then, calling e0 the lowest energy obtained among the states
|�λi

ε 〉, we have the inequality

〈�|Ĥ |�〉 �
∑

λ

nλ∑
ε=1

dλ∑
i=1

∣∣cλi
ε

∣∣2 e0 = e0, (44)

where we assume the state |�〉 to be normalized to 1 such that
we can make use of (28). In general, for a state |�〉 of un-
known nature we do not know a priori to which irrep(s) λ will
belong the state(s) of lower energy.9 In addition, depending

8This can be seen through the relation it implies among the compo-
nents of |�〉, namely η cλi

ε =∑dλ

j=1 Dλ
i j (g

′) cλ j
ε .

9In practice, however, for realistic nuclear Hamiltonians and states
that are their self-consistent solutions, there is a large body of empir-
ical knowledge about what to expect.
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on the particularities of the energy spectrum obtained when
restoring a specific symmetry, the states one is interested in
to project out are not necessarily among the ones of lowest
energy.

Assuming now that Ô is a scalar operator, the decomposi-
tion of a projected matrix element reads

〈�|ÔP̂λ
j j |�〉 =

nλ∑
ε=1

nλ∑
ε′=1

(
cλ j
ε

)∗
cλ j
ε′
〈
�λ j

ε

∣∣Ô∣∣�λ j
ε′
〉
, (45)

which in the case of the norm can be simplified to

〈�|P̂λ
j j |�〉 =

nλ∑
ε=1

∣∣cλ j
ε

∣∣2. (46)

Obviously, these equations imply that

〈�|P̂λ
j j |�〉 = 0 ⇔ ∀ ε, cλ j

ε = 0

⇒ 〈�|ÔP̂λ
j j |�〉 = 0, (47)

such that the same components contribute to the summa-
tion in (41a) and (40). Note that, when using any of the
frequently used prescriptions to calculate energy kernels for
a non-Hamiltonian-based EDF [65–70,85], neither (47) nor
(41b) necessarily have an analog for the such calculated
energies [68].

III. PROJECTION ON PARTICLE NUMBER

A. General considerations

For a first practical example of the projection method,
we turn our attention towards the projection on particle
number. While Slater determinants are eigenstates of the
particle-number operator by construction, for Bogoliubov
quasiparticle states and other types of states that are not, a
projection on particle number is necessary to restore the global
gauge invariance, i.e., the invariance under a rotation in Fock
space [18], that is associated with a fixed particle number of
the many-body system. Bogoliubov quasiparticle states ex-
hibit fluctuations in their number of particles, and can only be
constrained to have a specific particle number on average. As
a benefit of the symmetry breaking, these states provide a de-
scription of pairing correlations at play between the nucleons
while keeping the simplicity and the modest computational
cost of working with product-state wave functions. Never-
theless, working with states that are not eigenstates of the
particle-number operator poses problems with contributions
from components having the wrong particle number that spoil
the calculation of observables.

In addition, it has been long known that the HF+BCS
and HFB schemes break down in the limit of weak pairing
correlations and that the resulting sharp transition to a trivial
nonpaired solution is an “artificial feature of the theory arising
mainly from the number fluctuation in the wave function”
[86]. Various approximate schemes for variation after projec-
tion on particle number have been designed to circumvent this
problem and to ensure the presence of pairing correlations
also in the weak-pairing limit. The most widely used one is
the Lipkin-Nogami (LN) method [87–90], which corresponds
to a development of nondiagonal kernels in terms of matrix

elements of the diagonal one. The LN method is, in fact,
an easy to implement nonvariational approximation to the
much more rarely used (variational) second-order Kamlah
expansion [91,92]. An alternative constructive scheme for
systematic approximations to VAP calculations has been pro-
posed in Ref. [93], but never applied in realistic calculations.
Yet another alternative is the Lipkin method [94], where,
depending on the order at which it is implemented, one or
a few nondiagonal kernels are to be calculated explicitly. This
approach can also account for the cross terms appearing in
simultaneous projection on proton and neutron number that
are absent in the LN and Kamlah schemes. While all of
these provide pairing correlations in the weak-pairing limit,
they nevertheless fail to provide their realistic description on
their own in this delicate case. This deficiency disappears
only when combining the LN or Kamlah schemes with exact
projection after variation [25], or, even better, when directly
solving the full VAP equations [20,23,95–98].

Another problem arises when mixing two or more different
Bogoliubov quasiparticle vacua, for example in GCM calcu-
lations [85] or when restoring a spatial symmetry [40,99]. In
general, the mixed state |�〉 will not have the same average
particle number as the states it was constructed from. In prin-
ciple, this can be approximately corrected for by using the
Lagrange method, i.e., by subtracting −λ(〈�|N̂ |�〉 − N0) in
the variational configuration mixing process, where λ is the
Fermi energy and N0 the targeted particle number, from the
expectation value of the total energy [40,85,99]. However, it
has to be noted that for a typical size of the Fermi energy of
about −10 MeV such correction takes the order of 1 MeV al-
ready when the deviation of mean particle number is as small
as 0.1 particles, and therefore can easily become larger than
the spacing of levels resulting from the configuration mixing
of interest. In such a case, the reliability of the configuration-
mixing configuration becomes very sensitive to the remaining
deficiencies of the approximate particle-number correction. In
addition, such a constraint compromises the orthogonality of
the mixed states [85]. As a consequence, it is highly desirable
to restore the particle number exactly whenever Bogoliubov
quasiparticle states are mixed.

We will now go into more details about the operation of
projection on the number of particles. But as the projections
on the neutron and proton numbers work identically in their
respective spaces, for the sake of simplicity we will consider
for the moment only one generic particle species, labeled by
N , and associated with the group U (1)N . How projection on
proton and neutron numbers have to be combined will then be
outlined in Sec. III E. In addition, to keep notations as simple
as possible, we omit all other symmetry quantum numbers
throughout this section.

B. Basic principles

The group associated with global gauge rotations is the uni-
tary group of degree 1, labeled U (1)N . As a group structure,
U (1)N is a one-parameter Lie group, and therefore is Abelian.
The parameter will here be labeled by ϕn ∈ [0, 2π ] such that
the volume reads

vU (1)N =
∫ 2π

0
dϕn = 2π. (48)
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The gauge rotations are represented by the unitary operators

Û (ϕn) = e−iϕnN̂ , (49)

where N̂ is the particle-number operator.
The group U (1)N , being Abelian, has only one-

dimensional irreps such that the label k used in the general
discussion above can be dropped. The basis functions |�N0〉
of the irreps are eigenstates of the particle number operator N̂
with an eigenvalue N0, which will be used to label the irreps.
Under gauge rotations, they transform as

Û (ϕn) |�N0〉 = DN0 (ϕn) |�N0〉, (50)

where

DN0 (ϕn) = e−iϕnN0 . (51)

While all positive and negative integers N0 are possible irreps
for U (1)N from a mathematical point of view, only positive or
null values for N0 have physical meaning for the description
of a many-body system. Moreover, as we consider states be-
longing to the Fock space, they will automatically be such that
N0 � 0.10

For the irrep with particle number N0, the corresponding
projection operator P̂N0 is given by

P̂N0 = 1

2π

∫ 2π

0
dϕn e−iϕn (N̂−N0 ). (52)

It is a true projector in the mathematical sense with the prop-
erties

P̂N0 P̂N1 = δN0N1 P̂N0 , (53)

(P̂N0 )† = P̂N0 , (54)

as a consequence of the group U (1)N being Abelian.
Let us now consider a Bogoliubov quasiparticle

state |�〉. All linear superpositions of the gauge-rotated
states {Û (ϕn)|�〉, ϕn ∈ [0, 2π ]} span a vector space
span(U (1)N |�〉) that can be decomposed into a direct
sum,

span(U (1)N |�〉) =
⊕
N0�0

SN0 , (55)

of one-dimensional subspaces SN0 , each associated with a
given irrep N0 of U (1)N .

As shown in Sec. II, the reference state |�〉 obviously
belongs to span(U (1)N |�〉) and therefore can be written as

|�〉 =
∑
N0�0

cN0 |�N0〉, (56)

where cN0 in general is a complex number and |�N0〉 is a basis
function of SN0 . The projected states are directly obtained, up

10This property propagates to the evaluation of matrix elements of
any operator. It can be shown, however, that an energy functional
that is not constructed as the expectation value of a true Hamiltonian
can also be decomposed onto negative particle numbers, which is a
clear indication of the presence of nonphysical components in such
an EDF [68].

to a normalization factor, by simply applying the projection
operator on |�〉:

|�N0〉 ≡ P̂N0 |�〉
〈�|P̂N0 |�〉1/2

= 1√
|cN0 |2

P̂N0 |�〉, (57)

where

|cN0 |2 = 〈�|P̂N0 |�〉. (58)

C. Number parity

For the further discussion, it is useful to define the number
parity operator

̂N = e−iπN̂ . (59)

The set of operators {1̂, ̂N } forms a cyclic group of or-
der 2, which is also a subgroup of the operators Û (ϕn). As
such, it has two one-dimensional irreps that we label by
πn = ±1.

Eigenstates of the particle-number operator are automati-
cally eigenstates of number parity with eigenvalue

̂N |�N0〉 = (−1)N0 |�N0〉. (60)

As a consequence, those with even particle number have
(even) number parity +1, whereas those with odd particle
number have (odd) number parity −1.

Broken global gauge symmetry, however, is not necessarily
accompanied with broken number parity. And indeed, as a
consequence of the properties of the Bogoliubov transfor-
mations, Bogoliubov quasiparticle states have good number
parity11 [72]:

̂N |�〉 = πn|�〉. (61)

In practice, the number parity of a Bogoliubov quasiparticle
state can easily be determined by just counting the number of
single-particle states with occupation strictly equal to 1 in its
canonical basis [103].

By applying the number parity operator ̂N on the decom-
position (56) of a quasiparticle state, and, using Eq. (61), we
obtain that

cN0 = πn (−)N0 cN0 . (62)

As a consequence, a quasiparticle state with number par-
ity πn = +1 is a superposition of basis states |�N0〉 with
an even number of particles, whereas a quasiparticle state
with πn = −1 is a superposition of basis states with an odd
number of particles. Note that this statement is completely
independent of the average particle number 〈�|N̂ |�〉 that
the state has been constrained to and which can be any

11Note that this is not the case anymore for ensemble averages
of quasiparticle states as they are used in the equal-filling approx-
imation for efficient calculation of odd-A nuclei [100] and also in
finite-temperature HFB theory [101]. For such cases, the projection
on number parity and other quantum numbers has been outlined in
Ref. [102].
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(positive) real number. Bogoliubov quasiparticle states of dif-
ferent number parity have an inherently different physical
structure [49].

The number parity of Bogoliubov quasiparticle states can
be exploited in order to reduce the numerical cost of their
particle-number projection. Indeed, as can be easily shown
[103], when applied to a state with good number parity, the
integration interval in the projection operator (52) can be
reduced from [0, 2π ] to [0, π ]. Therefore, we can define the
(simpler) reduced projection operator

P̂N0 = 1

π

∫ π

0
dϕn e−iϕn (N̂−N0 ). (63)

Its form is the same for both number parities; however, the
reduced projection operator (63) cannot distinguish anymore
between states of different number parity. Indeed, the operator
of Eq. (63) is now a projection operator for a specific class of
states, where the irrep N0 one projects out has to be chosen
according to the number parity of the states it acts on, i.e.,
πn = (−)N0 . Conversely, when applying P̂N0 to a state with
πn �= (−)N0 , the resulting matrix elements will in general not
be zero, although they would be when applying P̂N0 instead.

D. Evaluation of observables

All relevant operators for nuclear structure calculations
are tensor operators Ô with respect to the group of gauge
rotations, U (1)N , and their rank r is given by the difference
between the number of creation and destruction operators in
the second quantized form of Ô. They transform under gauge
rotation as

∀ϕn ∈ [0, 2π ], e−iϕnN̂ Ô e+iϕnN̂ = e−iϕnr Ô, (64)

and they satisfy the commutation relation

[N̂, Ô] = r Ô. (65)

Only irreps of U (1) with positive or null values of particle
numbers play a role in the decomposition of many-body wave
functions. By contrast, tensor operators can also transform
according to irreps with negative number of particles. When
one is interested in the calculation of spectroscopic properties
of a given nucleus, such as the excitation energies, the charge
radius, or the nuclear moments, the operators of interest are
scalar operators, r = 0, i.e., they conserve the number of
particles:

[N̂, Ô] = 0. (66)

Higher-rank tensor operators come into play when looking at
reactions or nuclear decays that change the particle number.
For example, the neutrinoless double-beta decay process in
which two neutrons are transformed into two protons and two
electrons was studied within formalisms that include particle-
number projection such as the well known Gogny MR EDF
method [104] or the newly developed In-Medium Generator
Coordinate Method [59],

For the particle-number projection operators, Eq. (64)
leads to the relation

∀ N0 ∈ N, P̂N0 Ô = Ô P̂N0−r, (67)

which in turn simplifies the evaluation of operators between
projected states, as only one projection has to be computed in
practice:

〈�|(P̂N0 )† Ô P̂N1 |�〉 = 〈�| Ô P̂N1 |�〉 δN1N0−r

= 〈�| P̂N1 Ô |�〉 δN1N0+r . (68)

E. Combined projection on proton and neutron number

The group to consider when combining the restoration
of proton and neutron number is the group direct product
U (1)N × U (1)Z , and the projection operator is built as the ten-
sor product P̂N0 P̂Z0 ≡ P̂N0 ⊗ P̂Z0 of the projection operators

P̂N0 = 1

2π

∫ 2π

0
dϕn e−iϕn (N̂−N0 ), (69)

P̂Z0 = 1

2π

∫ 2π

0
dϕz e−iϕz (Ẑ−Z0 ), (70)

for U (1)N and U (1)Z , respectively, and where N̂ and Ẑ are the
neutron and proton number operators, respectively.

Because the groups U (1)N and U (1)Z are Abelian, so
is U (1)N × U (1)Z , and therefore it possesses only one-
dimensional irreps. This implies in particular that the
application of the projection operator P̂N0 P̂Z0 is sufficient
to completely diagonalize the Hamiltonian in the (one-
dimensional) subspace associated with a given irrep (N0, Z0).
With this, one trivially restores also the total mass number
A0 = N0 + Z0 and the third component of isospin T̂3 = N̂ −
Ẑ . The restoration of isospin T̂ 2 itself, however, is much more
involved.

For the further discussion of practical aspects of particle-
number projection, we will treat protons and neutrons as
distinct species of particles, as done in the vast majority of
applications of nuclear structure models. Single-particle states
with good isospin serve as elementary building blocks to con-
struct separate product states for protons and neutrons. The
nuclear many-body wave function is then built as the tensor
product of the many-body wave function for each particle
species. In that case, it is sufficient to project the proton and
the neutron parts of the wave function separately on proton
and neutron number, respectively. In addition, it is possible
to take advantage of the fact that each part of the wave func-
tion has a good number parity to reduce the integral of each
projection operator according to Eq. (63).

None of this is a necessity, though. Single-particle states
can be set up as mixtures of proton and neutron components,
such that the many-body product state built from them cannot
be factorized anymore. This allows for the modeling of vari-
ous phenomena such as proton-neutron pairing [59,105] and
other subtle effects related to isospin, in particular when com-
bined with subsequent isospin restoration [41].12 In contrast

12In the general case, the nuclear Hamiltonian contains electromag-
netic, and possibly also other, terms that are not isospin invariant
such that the symmetry is physically broken. In that instance, the
projection onto good isospin can still be used to remove the un-
physical sources of symmetry breaking in the model, but the method

024315-11



BENJAMIN BALLY AND MICHAEL BENDER PHYSICAL REVIEW C 103, 024315 (2021)

with the case case assumed throughout the rest of this paper,
the many-body wave function then only possesses a good
number parity for the total number of nucleons A0 = N0 + Z0

such that only the projection operator

P̂A0 = 1

2π

∫ 2π

0
dϕa e−iϕa (Â−A0 ), (71)

where Â = N̂ + Ẑ , can be reduced according to Eq. (63), but
not the individual projection operators on N0 and Z0.

F. Numerical implementation

1. Discretization of the projection operator

In practice, the projection is carried out computationally.
There are several strategies to evaluate particle-number pro-
jected operator matrix elements that have been used in the
literature. One is to map the gauge-space integral (52) onto
a contour integral in the complex plane that then can be
evaluated with the residue theorem. This approach has been
used in several pioneering papers [95,106] and remains very
instructive for formal analyses of the particle-number restora-
tion method [65,68,69]. A second approach is through the
use of recurrence relations [15,95,107–109]. Both have the
disadvantage that they cannot be easily combined with other
projections or a configuration mixing calculation. A more
versatile strategy to evaluate matrix elements containing the
number projection operator is to discretize the integral over
the gauge angle in Eq. (52). In this section, we will discuss
this discretization and its specificities such as its convergence
with the number of discretization points.

Following the prescription first introduced by Fomenko
[110], we discretize the projector on particle number N0 with
the Mϕ-point trapezoidal quadrature13

P̂ N0
Mϕ

= 1

Mϕ

Mϕ∑
m=1

e−iπ m−1
Mϕ

(N̂−N0 )
, (72)

explicated here for neutrons. As the first integration point
is always at ϕ = 0, using a discretization with only integra-
tion point in total, Mϕ = 1, is equivalent to not projecting,
P̂ N0

Mϕ=1|�〉 = |�〉, independent of the particle number N0

projected on.
For numerical reasons it is in general safer to use odd

values of Mϕ than even ones. This avoids having the angle
ϕ = π/2 in the set of integration points, for which, in the
projection of a quasiparticle vacuum, one might have to eval-
uate fractions with both numerator and denominator that can
become arbitrarily close to zero; see Appendix B of Ref. [23].
However, in a calculation that combines particle-number

requires a generalization to account for the noncommutation of the
Hamiltonian with the projection operators and to include the mixing
of irreps through the diagonalization of the Hamiltonian in the space
of isospin-projected states [41].

13Other different, but similar, choices for a discretized projection
operator are discussed in the Appendix.

TABLE I. Characteristics of the quasiparticle vacua analyzed in
Figs. 1–6.

Label Z 〈N̂〉 〈�N̂2〉
a 20 24 4.9
b 50 70 7.9
c 82 138 16.4

projection with other projections or configuration mixings,
such a numerical problem might appear at any gauge angle.14

The operator defined through Eq. (72) is a discretization of
the reduced expression of Eq. (63); hence, P̂ N0

Mϕ
can be applied

only to states |�〉 that have a number parity equal to (−)N0 . A
more general discretized operator that can be applied to states
of unknown number parity is easily defined by replacing the
factor π in the exponential by a factor 2π . From a numerical
point of view, however, such an operator is not as efficient
as Eq. (72), as it doubles the number of calculated points
necessary to reach the same level of convergence; see the
Appendix.

2. Convergence of the projected components

To illustrate the further discussion of the convergence of
results obtained with the discretized projection operator P̂ N0

Mϕ

(72) in dependence of the number of discretization points
Mϕ , we will examine the decomposition of three (normal-
ized) fully paired Bogoliubov-type quasiparticle states |�〉.
The states were constructed for 44Ca, 120Sn, and 220Pb. Also,
the states were chosen such that their dispersion of neutron
number,

〈�|�N̂2|�〉 ≡ 〈�|N̂2|�〉 − 〈�|N̂ |�〉2, (73)

which provides a measure for the breaking of global gauge
symmetry through the presence of pairing correlations, is
increasing.15 The actual values for the mean neutron number
〈�|N̂ |�〉 and its dispersion are given in Table I.

For our purpose it is sufficient to consider only projection
on neutron number, while leaving the proton part of the wave
function untouched.

14This difficulty to evaluate near-zero values that exactly cancel
each other analytically has to be distinguished from the so-called
“pole problem” that appears at the same angle when calculating the
energy from Hamilton operator, neglecting exchange terms [64], or
from an ill-defined EDF [23,65–69] for which the near-zero value in
the denominator is not canceled by the same factor in the numerator.

15While the dispersion 〈�|�N̂2|�〉 increases with particle number
for the quasiparticle states chosen here, this is not a necessity as
the size of the dispersion depends very sensitively on the pairing
interaction and the position of the Fermi energy in a configuration-
dependent single-particle spectrum. Large values of 〈�|�N̂2|�〉
usually require large 〈�|N̂ |�〉, but the dispersion can take very small,
even zero, values in any nucleus for some state that disfavors the
presence of pairing correlations.
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In Fig. 1, we plot, for these three states, the weights of the
numerically projected states

|cN0 (Mϕ )|2 = 〈�|P̂ N0
Mϕ

|�〉 (74)

in dependence of the total number of discretization points Mϕ .
As already mentioned, for Mϕ = 1 the discretized projection
operator (72) is the unit operator. This means that P̂ N0

1 does not
project at all and attributes the unaltered original state to any
particle number N0 compatible with that state’s number parity,
independent of whether or not that component is contained in
the state’s physical decomposition; cf. Fig. 1. From a different
perspective, for Mϕ = 1 the discretized projection operator
attributes the complete sum of all physical components |�N1〉
with their physical weight cN1 = cN1 (Mϕ = ∞) to any particle
number N0 compatible with its number parity:

P̂ N0
1 |�〉 = |�〉 =

∑
N1

cN1 |�N1〉. (75)

Each of the thus numerically “projected” states is equal, and
its observables take the value of the sum rule for projection,
even when the respective component is absent from the origi-
nal symmetry-breaking state.

These observations provide the starting point for the un-
derstanding of how the discretized projection operator (72)
generates projected states for finite values of Mϕ by eliminat-
ing nontargeted components from the summation in Eq. (75).
As demonstrated in the Appendix, for finite Mϕ > 1 applying
the discretized projection operator P̂ N0

Mϕ
on a state removes

exactly all components that do not satisfy the condition N1 =
N0 + 2lMϕ , l ∈ Z, from the original state. The final result can
be expressed in a compact way as the double sum

P̂ N0
Mϕ

|�〉 =
∑
l∈Z

∑
N1�0

cN1 |�N1〉 δN1N0+2lMϕ
. (76)

The subset of nontargeted components contained in the orig-
inal state that are not eliminated by the discretized projection
operator quickly becomes smaller with increasing Mϕ . For a
given N0, the closest nonsuppressed components are the ones
at N0 ± 2Mϕ .

In theory, the nonvanishing irreps N0 contained in a Bogoli-
ubov quasiparticle state |�〉 will fall into an interval bounded
by Nmin and Nmax. The lower bound Nmin is given by the num-
ber of fully occupied single-particle states in the canonical
basis of |�〉 while the upper bound Nmax is given by the total
number of single-particle states with nonzero occupation in
the same basis. In practice, however, the wave function is
generated numerically such that the bounds might be affected
by the numerical accuracy of the computation, which is ul-
timately limited by floating-point arithmetic, and can only
delimit an interval outside of which the respective components
cannot be distinguished from numerical noise.

For a given irrep N0 with nonzero weight, the discretized
projection operator (72) becomes exact when all other com-
ponents from Nmin to Nmax have been eliminated. For a given
Mϕ , the interval for which the discretized numerical projection

|cN
0
(M

ϕ
)|2

N0

Mϕ = 1
Mϕ = 3
Mϕ = 5

Mϕ = 7
Mϕ = 9

|cN
0
(M

ϕ
)|2

N0

Mϕ = 1
Mϕ = 3
Mϕ = 5

Mϕ = 7
Mϕ = 9
Mϕ = 11

|cN
0
(M

ϕ
)|2

N0

Mϕ = 1
Mϕ = 3
Mϕ = 5

Mϕ = 7
Mϕ = 9
Mϕ = 11

Mϕ = 13

FIG. 1. Evolution of the weight |cN0 (Mϕ )|2 of the numerically
projected states as a function of the number of neutrons N0 on which
one projects for different choices for the number of discretization
points Mϕ for the quasiparticle states |�a〉 [panel (a)], |�b〉 [panel
(b)], and |�c〉 [panel (c)] as specified in the text. On each panel,
the results obtained with the largest value of Mϕ cannot be dis-
tinguished from exact results for the values of N0 shown. Points
calculated with the same Mϕ are connected by straight lines to guide
the eye.
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on particle number N0 (72) becomes exact is

Nmax − 2Mϕ + 2 � N0 � Nmin + 2Mϕ − 2. (77)

Nevertheless, if one has a prior knowledge of the distribution
of the projected components, it is possible to adapt the dis-
cretization depending on the localization of the targeted irrep
within the distribution. As will be demonstrated later on, for
Bogoliubov quasiparticle vacua one can assume up to a very
good approximation a Gaussian shaped distribution centered
around the average particle number of the state; see the dis-
cussion of Eq. (79) in what follows. In that case, for N0 next
to the center of the distribution at (Nmin + Nmax)/2 ≈ 〈N̂〉,
this requires Mϕ > (Nmax − Nmin)/4 ≈ 1.5 〈�N̂2〉1/2 points,
where we used Eq. (79) for the estimate in terms of the dis-
persion in particle number (73). This represents the simplest
case that sets the lower limit for an acceptable value of Mϕ .
On the other hand, for targeted irreps N0 at the boundary of
the interval, all other components are eliminated for Mϕ >

(Nmax − Nmin)/2 ≈ 3 〈�N̂2〉1/2; see Fig. 1.
For components N0 absent from the original state, however,

the convergence towards the correct result cN0 = 0 in general
requires more integration points. Indeed, Eq. (76) implies that
the discretized projection operator has a periodicity of 2Mϕ

and therefore yields the same numerical result for particle
numbers N0 that differ by multiples of 2Mϕ . As a conse-
quence, it generates mirror images of the results for N0 that are
repeated every 2lMϕ , as can be clearly seen in Fig. 1. A special
case is Mϕ = 1, for which these mirror images superpose in
such a way that the numerically “projected” state is the sum
of all physical components for all values of N0 permitted by
number parity. When Mϕ > (Nmax − Nmin)/2, then some com-
ponents outside of this interval are also correctly identified
as having weight zero, but not all of them. A safe choice in
that case would be to take Mϕ > |(Nmax + Nmin)/2 − N0| ≈
|〈N̂〉 − N0|, although fewer points may already be sufficient.

As the periodic mirror images of the dominant components
are pushed away from the interval of physical components
when increasing Mϕ , the numerical results obtained for
weights |cN0 (Mϕ )|2 of components N0 far outside of the in-
terval defined through Eq. (77) will oscillate between the
values of various weights of physical components (or sums
thereof) and zero, until they fall into the interval defined
in Eq. (77). The effect can be seen for example in panel
(a) of Fig. 1 for |c14|2 and |c34|2, which nonmonotonically
jump around before falling to zero. For components much
further outside, such oscillation will repeat several times with
increasing Mϕ .

The queues of the distributions analyzed in Fig. 1 fall
off relatively slowly, which can be more clearly seen when
plotting the same data on a logarithmic scale, as done for
the decomposition of one of the states in Fig. 2. Still, the
numerical convergence of these tiny components continues in
the same way as the convergence of the dominant ones until a
level of 10−13 has been reached, beyond which the numerical
noise from the calculation of many-body matrix elements sets
in in our code. This figure also shows even more clearly
than Fig. 1 how the identical mirror images at N0 + 2Mϕ

of converged physical components at N0 move outside with
increasing Mϕ in the discretized projection operator.

|cN
0
(M

ϕ
)|2

N0

Mϕ = 1

Mϕ = 3
Mϕ = 5

Mϕ = 7
Mϕ = 9
Mϕ = 11

Mϕ = 13
Mϕ = 15

Mϕ = 17

FIG. 2. Same as panel (a) of Fig. 1, but in logarithmic scale and
some additional values of Mϕ .

The sum rule for the weights (28) establishes an additional
test of the internal consistency and the numerical accuracy of
the projection of a given state. Focusing on state |�a〉, we
display in Fig. 3 the sum rule for the components |cN0 (Mϕ )|2,
summing from N0 = 0 to 48 and subtracting 1, i.e., the quan-
tity

�(Mϕ ) ≡
∣∣∣∣∣

48∑
N0=0

|cN0 (Mϕ )|2 − 1

∣∣∣∣∣, (78)

as a function of Mϕ .
As argued above, for Mϕ = 1, the numerical projection

operator P̂ N0
1 attributes the entire sum rule to any irrep N0

compatible with the number parity of the original state (75).
Calculating the sum rule in that case yields the mean-field ex-
pectation value of the operator in question times the number of
irreps summed over. With increasing number of discretization
points Mϕ in the numerical projector P̂ N0

Mϕ
(72), the nonphysi-

Σ
(M

ϕ
)

Mϕ

|Φa

FIG. 3. Deviation (78), in logarithmic scale, of the sum rule for
the components |cN0 (Mϕ )|2 of the state |�a〉 from the analytical value
1, as a function of Mϕ . See text for details.
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cal contributions to the matrix element for N0 are eliminated
as a result of relation (76) until convergence to the physical
value for the irrep N0 is reached. For convergence of the sum
rule, it is obviously necessary that the summation covers all
irreps found in the original state |�a〉 and that the number of
discretization point is sufficient to converge the calculation of
the projected matrix elements.

To be sure about the numerical convergence of results
without running test calculations with different values of Mϕ

requires the a priori knowledge of the boundaries Nmax and
Nmin of the distribution of irreps in the original state. As has
been demonstrated in Ref. [93], the distribution of the weights
(58) of components with particle number N in the decomposi-
tion of a fully paired Bogoliubov quasiparticle state |�〉 can be
estimated by a Gaussian centered around its average particle
number 〈�|N̂ |�〉,

|cN0 |2 ≈ 2√
2πσ 2

exp

[
− (〈�|N̂ |�〉 − N0)2

2σ 2

]
, (79)

whose width is determined by that state’s dispersion of parti-
cle number: σ 2 = 〈�|�N̂2|�〉; see also Ref. [111].

For the fully paired quasiparticle vacua decomposed in
Figs. 1, the exact values of the |cN0 |2 are indeed very well
approximated by the Gaussian of Eq. (79), even for very small
components, as can be seen from Fig. 4. However, it should be
noted that the presence of such small components far from
the center of the distribution depends on choices made for
cutoffs when solving the HFB equations. A cutoff that limits
pairing correlations to some valence space will inevitably
cut the tails from the distribution of irreps contained in the
symmetry-breaking state. In any event, the remaining differ-
ences between the estimate and the calculated values are quite
small, mainly in the form of a slight asymmetry around the
center. The latter is not too surprising, as the estimate (79) im-
plies in one way or another equally distributed single-particle
states and a state-independent pairing interaction, neither of
which is the case in a realistic calculation. Nevertheless, the
agreement is remarkable, and the estimate (79) can hence be
used to determine an a priori indication for the number of
points Mϕ needed to converge the numerical projection, which
in practice remains rather small (Mϕ � 10) for atomic nuclei.

3. Convergence of observables

It can be easily shown that for numerically projected matrix
elements of any operator, for example a scalar operator Ô, the
elimination of untargeted components follows the same rule as
for the plain norm overlap. Indeed, the normalized expectation
value of such operator can be written as

〈Ô〉N0 (Mϕ ) ≡
〈�|Ô P̂ N0

Mϕ
|�〉

〈�|P̂ N0
Mϕ

|�〉

=

∑
l1 ∈ Z
N1 � 0

|cN1 |2 〈�N1 |Ô|�N1〉 δN1,N0+2l1Mϕ∑
l2 ∈ Z
N2 � 0

|cN2 |2 δN2,N0+2l2Mϕ

. (80)

For Mϕ = 1, the normalized projected matrix element reduces
to the plain expectation value 〈�|Ô|�〉. Otherwise, for irreps

|cN
0
(M

ϕ
)|2

N0

Mϕ = 9

|cN
0
(M

ϕ
)|2

N0

Mϕ = 11

|cN
0
(M

ϕ
)|2

N0

Mϕ = 13

FIG. 4. Comparison between the weight |cN0 (Mϕ )|2 of the nu-
merically projected states (markers) and its Gaussian approximation
(79) (solid line) as a function of the number of neutrons N0 on which
one projects for the quasiparticle states |�a〉 [panel (a)], |�b〉 [panel
(b)], and |�c〉 [panel (c)] as specified in the text. On each panel, the
number of points Mϕ used is the same as the largest one displayed in
Fig. 1.

with |cN0 |2 �= 0 in |�〉, all other contributions but the targeted
one have been eliminated in the numerator and the denomi-
nator when Mϕ is large enough that N0 falls into the interval
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FIG. 5. Evolution of the deviation of the expectation value of the
neutron number from the value it is projected on (a) and dispersion
of the neutron number (b) for states numerically projected on particle
number N0 from the same state with 〈�a|N̂ |�a〉 = 24, as specified
in Table I, for the number of discretization points Mϕ as indicated.
Points calculated with the same Mϕ are connected by straight lines to
guide the eye.

defined by Eq. (77). The rate of convergence, however, may
depend also on the values of the exact projected matrix ele-
ments in the numerator.

Note that, while theoretically Eq. (80) can be written only
for irreps N0 with nonzero weights |cN0 |2 �= 0 in the original
state, numerically neither the numerator nor the denominator
will ever fully vanish, such that numerically one ends up with
the division of numerical noise representing 〈�|Ô P̂ N0

Mϕ
|�〉 =

0 by different numerical noise representing 〈�|P̂ N0
Mϕ

|�〉 = 0.
This is an artifact of the numerical treatment of projection, as
formally operators can have nonzero expectation values only
for irreps with nonzero weights; cf. Eq. (47). For that rea-
son, the expectation values of operators for small components
〈�|P̂ N0

Mϕ
|�〉 have to be considered with care.

As an example for the numerical convergence of the matrix
elements projected on irreps in the tails of the distribution,
Fig. 5 displays the evolution of the deviation of the expecta-
tion value of the neutron number,

〈N̂〉N0 (Mϕ ) =
〈�|N̂ P̂ N0

Mϕ
|�〉

〈�|P̂ N0
Mϕ

|�〉 , (81)

from the value N0 projected on, and also the dispersion

〈�N̂2〉N0 (Mϕ ) = 〈N̂2〉N0 (Mϕ ) − 〈N̂〉2
N0

(Mϕ ), (82)

in dependence of the number of discretization points Mϕ

for a wide range of components projected from the state
with 〈�a|N̂ |�a〉 = 24. Assuming again that the original state
contains numerically significant irreps between Nmin � 8 and
Nmax � 40, then Eq. (77) indicates that components can be ex-
pected to be converged for the maximum number of Mϕ = 17
points when they fall in the interval between about 8 and 40.
In practice, however, for the very small components below
N0 � 12 and above N0 � 32, the precision of the numerical
calculation of the matrix elements is visibly degraded com-
pared to those in between. With our implementation that uses
a double-precision floating-point format, further increasing
the number of discretization points, Mϕ , does not significantly
improve the quality of these components anymore.

Another quantity that is sensitive to the number of particles
is the projected binding energy

EN0 (Mϕ ) =
〈�|Ĥ P̂ N0

Mϕ
|�〉

〈�|P̂ N0
Mϕ

|�〉 . (83)

As we are interested only in the accuracy of the discretized
projection operator, neither the precise form of the Hamilto-
nian nor the exact values of the energies are relevant, except
that we specify that a true Hamiltonian is used when evalu-
ating the projected energies in order to avoid any influence
of the possible problems analyzed in Refs. [23,64–71] on our
discussion. The results are displayed in Fig. 6 for projection
of the three Bogoliubov quasiparticle vacua as specified in
Table I on particle numbers N = 24, 70, and 138, respectively
As we can see, as we increase the number of points in the
discretization, the energy converges rapidly. Beyond a cer-
tain value of Mϕ , however, the numerical noise kicks in and
increasing the number of points does not improve anymore
the projected energy. It is also interesting to note that, for the
state |�a〉, the projected energy E24

a (Mϕ ) is several hundreds
of keV higher than the expectation value 〈�a|Ĥ |�a〉 of the
original state. Indeed, as previously explained in Sec. II F,
if the projection method guarantees finding at least one pro-
jected state of lower energy than the expectation value of
the Hamiltonian of the original unprojected state, there is no
reason that this will be the case for the irrep one is interested
in. The latter depends both on the Hamiltonian at hand and
how the unprojected state has been obtained.

Finally, we note in passing that particle-number-projected
overlaps 〈�a|P̂ N0

Mϕ
|�b〉 and nondiagonal matrix elements

〈�a|Ô P̂ N0
Mϕ

|�b〉 will converge with increasing Mϕ according
to the values of Nmin and Nmax found in the two states. In
the typical case where the distributions of components for
|�a〉 and |�b〉 have a large overlap, the extremal values
max(Nmin,a, Nmin,b) and min(Nmax,a, Nmax,b) will govern the
convergence of the numerical projection. In more extreme
cases, however, it is possible that the periodicity of the dis-
cretized projector induces contamination coming from distant,
but physical, components.
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FIG. 6. Evolution of the projected energy, for states with N0 =
24, 70, and 138, projected from states with the same mean particle
number as specified in Table I, as a function of the total number of
points Mϕ used for the discretized projection operator.

IV. PROJECTION ON ANGULAR MOMENTUM

A. General considerations

The second projection that we will analyze in detail is
the projection on total angular momentum J . Together with
proton number, neutron number, and parity, angular momen-
tum is the most relevant quantum number for the analysis
of spectroscopic data of atomic nuclei. As it provides se-
lection rules for the existence of electromagnetic and other
transitions and establishes rules for their relative strength, it
provides the guideline to group states into characteristic level
sequences [5].

As explained in Sec. III A, the angular-momentum pro-
jection (AMP) of paired Bogoliubov-type quasiparticle
vacua should be combined with particle-number projec-
tion. Angular-momentum projection is nowadays a widely
employed technique in the context of nuclear EDF meth-
ods [24,34–49]. And angular-momentum projected quasi-
particle vacua can also used as building blocks for
configuration-interaction methods. Prominent examples are
the MONSTER/VAMPIR approach [29,112], the so-called
projected shell model [32,33], and the Monte Carlo shell
model [30,31], that all present alternative numerical strategies
to conventional shell-model calculations.

Only very few ground states of even-even nuclei will take
the spherical symmetry of a J = 0 state when calculated in a

(symmetry-unrestricted) self-consistent mean-field approach.
In fact, when calculated in the HF approximation, only nuclei
with subshells that are either completely filled or empty are
even compatible with a strict spherical symmetry of the wave
function.16

Including pairing correlations in the modeling provides
the means to describe spherical even-even open-shell sys-
tems with a single Bogoliubov quasiparticle vacuum, but
such solutions are usually only found in the direct vicinity
of major shell closures. Similarly, because of self-consistent
core-polarization effects, it is virtually impossible that the
variationally determined states for odd and odd-odd nuclei
will be eigenstates of angular momentum.

Indeed, for the vast majority of nuclei, correlations related
to the spatial arrangement of the nucleons are important. This
is evidenced for example by the observation of collective
rotational excitations that are a ubiquitous feature of nuclei
throughout the chart of nuclei [12–16], or by the evolution of
charge radii that cannot be explained by consecutive filling
of spherical shells with increasing nucleon number [115]. To
efficiently describe such correlations, it is advantageous to
work with deformed reference states. Doing so, however, ro-
tational symmetry is broken, and the resulting reference states
are not eigenstates of angular momentum anymore. Angular
momentum projection becomes mandatory to obtain a faithful
and accurate description of related phenomena.

There is a noteworthy difference between the applications
of angular-momentum and particle-number projection. In the
literature, the latter is almost always exclusively used to
extract one specific irrep from a symmetry-breaking state,
which is very often the irrep with a particle number equal,
or at least very close, to the one that the reference state has
been constrained to, whereas angular-momentum projection
in the majority of cases is used to project out a spectrum of
states with different J . There are several reasons for this prac-
tice. The main reason is that nuclear structure often changes
quickly with particle number, such that it is in most cases
advantageous to construct reference states that are as close
in particle number to the targeted one as possible. This is dif-
ferent for states with different angular momentum in a given
nucleus: experiment indicates that they often have almost the
same internal structure over a wide range of angular momenta,
unless there is a backbending or other alignment phenomenon.
And indeed, when being projected from a suitably chosen
well-deformed quasiparticle vacuum, the angular-momentum
restored states usually group into one or several rotational
bands whose energies roughly scale with J (J + 1). Projecting
on many irreps then even becomes a necessity for the interpre-
tation of the internal structure of such a symmetry-breaking
state.

That collective rotational bands emerge naturally from an
angular-momentum projected theory of quadrupole-deformed

16In the zero-pairing limit of the HFB approximation, however, it
is possible to obtain spherically symmetric states also for open-shell
systems. Nevertheless, as their resulting density matrices are not the
ones of a single Slater determinant [113,114], we will discard such a
possibility from the further discussion.
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states can be shown analytically when expanding the Hamilto-
nian and norm kernels entering the projected energy in terms
of rotation angles [17], thereby justifying phenomenological
collective models for deformed nuclei [13–15].

The same kind of expansion for well-deformed nuclei
at high rotational frequency also yields the self-consistently
cranked HF and HFB methods as a first-order limit
[28,91,116–119]. In this approach, the energy is minimized
with an auxiliary condition on the expectation value of a
component of the angular momentum vector, where the ro-
tational frequency plays the role of the Lagrange parameter,
which leads to the so-called Thouless-Valatin moment of
inertia [120].

There are several possibilities of how to embed angular-
momentum projection into a given framework. When the
framework is variational, then VAP calculations are in general
preferable over PAV, but they are computationally so costly
that up to now such schemes have only been implemented
for schematic bases [21] or small valence spaces [22,29,112].
Using a VAP scheme also has the drawback that in principle
one has to do one such calculation for each value of J of inter-
est.17 The vast majority of applications use the PAV scheme
instead. There are, however, several strategies to arrive at an
intermediate scheme in the spirit of an RVAP or MAP. As
far as the optimal deformation of the state to be projected is
concerned, one can construct a set of deformation-constrained
states first that are then in a second step all projected on J
in order to identify the one giving the lowest energy. This
is particularly important for light nuclei in general and also
nuclei with ground states at small deformation, including
spherical ones, for which the deformation of the reference
state that gives the lowest projected states is usually very
different from the deformation of the self-consistent ground
state [26]. When combining angular-momentum projection
with shape mixing in a GCM, such MAP is automatically done
[26]. When projecting from the lowest variational state at a
given deformation, such calculation is often characterized in
terms of the Peierls-Yoccoz (or sometimes Yoccoz) moment
of inertia [17] and systematically leads to excitation spectra
that are slightly too spread out. This can be compensated for
when working with states that are cranked to some rotational
frequency, again either in a MAP scheme or by mixing states
at different rotational frequency in a GCM. The latter strategy
is characterized as using Peierls-Thouless moments of inertia
[121]. First applications along these lines using the Gogny
EDF have recently become available [43,45,47,48]

We will now go into the details about the operation of
projection on angular momentum. Neither for its formal as-
pects nor for the analysis of the convergence of the discretized
projection operator is it of importance in which framework
they are used. As above, for the sake of clarity we drop all
symmetry indices not related to angular momentum through-
out this section.

17Note that only the energy of the lowest irrep with given J can be
optimized in such a calculation, but not the one of the other irreps
of same J that possibly can be projected out as well from the same
reference state.

B. Basic principles

The rotations in space18 of a single-particle state are char-
acterized by the special unitary group SU (2). Unlike global
gauge rotations discussed above, SU (2) is not Abelian. This
will lead to a large number of formal and practical differences
that make angular momentum projection more involved than
particle-number projection.

The rotational invariance of the many-body Hamiltonian
ensures that its eigenstates have good total angular momentum
J . Contrarily to gauge invariance that is verified by protons
and neutrons separately—and thus gives to two separate good
quantum numbers N and Z—the rotational invariance is a
property of the total wave function made by all the nucle-
ons. Mathematically, this means that, for a nucleus made
of A nucleons, the group of interest is the tensor prod-
uct diag[SU (2) × · · · × SU (2)],19 where the direct product
contains A times the group SU (2). As diag[SU (2) × · · · ×
SU (2)] is isomorphic to SU (2), for the sake of simplicity
we will simply label it as SU (2)A. The irreps of SU (2)A are
labeled by the angular momentum quantum number J and
have each a dimension dJ = 2J + 1. This means that, but for
the trivial representation (J = 0), the irreps of SU (2)A are not
one-dimensional as was the case when dealing with the group
U (1)N × U (1)Z for particle number. This is a consequence of
the fact that the compact Lie group SU (2)A is not Abelian.

We choose to represent the unitary rotation operator Û (g)
of this group in terms of a sequence of three subsequent
rotations about the z, y, and again the z axis of a fixed co-
ordinate system parametrized through the three Euler angles
(α, β, γ ) ∈ [0, 2π ] × [0, π ] × [0, 4π ] [122]:

R̂(α, β, γ ) = e−iαĴz e−iβ Ĵy e−iγ Ĵz , (84)

where Ĵi (i = x, y, z) is the component along the i axis of

the total angular momentum vector �̂J . To lighten the nota-
tion, throughout this article we define the angular momentum
operators without a factor h̄. We note that there exist also
alternative representations of the rotation operator that use
different sequences of rotations about different axes and
angles [122].

As this will be of importance later on, we define next the
three specific rotations of angle π around each of the Cartesian
axes:

R̂x = e−iπ Ĵx = e−iπ Ĵy e−iπ Ĵz = R̂(0, π, π ), (85a)

R̂y = e−iπ Ĵy = R̂(0, π, 0), (85b)

R̂z = e−iπ Ĵz = R̂(0, 0, π ) = R̂(π, 0, 0), (85c)

with the operator R̂i (i = x, y, z) being usually denoted as the
i-signature in the nuclear physics literature [62].

18Here, we consider the space that contains both spatial positions
and spin degrees of freedom.

19Considering a group G, the group diag(G × G) is composed
of the diagonal elements of the group direct product G × G. Thus
defined, diag(G × G) is trivially a subgroup of G × G and it is
isomorphic to G.
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In the parametrization of Eq. (84), the volume of the group
is given by

vSU (2)A =
∫ 2π

0
dα

∫ π

0
dβ sin(β )

∫ 4π

0
dγ = 16π2. (86)

Its value being 16π2 is a consequence of looking at systems
of fermions, whose total wave functions can take integer or
half-integer total angular momenta. The different intervals
covered by the Euler angles α and γ can be interchanged
without affecting the results.

The set of eigenstates |�JM
ε 〉 of Ĵ2 and Ĵz,

Ĵ2
∣∣�JM

ε

〉 = J (J + 1)
∣∣�JM

ε

〉
, (87)

Ĵz

∣∣�JM
ε

〉 = M
∣∣�JM

ε

〉
, (88)

and their respective quantum numbers J and M ∈ �−J, J�
provide the basis functions and labels for the irreps of SU (2)A.
The generic label ε in (87) represents all additional character-
istics of a state not directly affected by spatial rotations. Under
such rotation, the basis functions transform as

R̂(α, β, γ )
∣∣�JM

ε

〉 = J∑
M ′=−J

DJ
M ′M (α, β, γ )

∣∣�JM ′
ε

〉
, (89)

where the matrix representation DJ
M ′M (α, β, γ ) of the group

in the space of the rotation angles is provided by the Wigner
rotation matrices [122]

DJ
M ′M (α, β, γ ) = δJ ′J

〈
�J ′M ′

ε

∣∣R̂(α, β, γ )
∣∣�JM

ε

〉
= e−iαM ′

dJ
M ′M (β ) e−iγ M (90)

with dJ
M ′M (β ) being a Wigner d-matrix20 [122].

The operator that projects onto angular momentum J for
given (M, K ) ∈ �−J, J�2 reads

P̂J
MK = 2J + 1

16π2

∫ 2π

0
dα

∫ π

0
dβ sin(β )

∫ 4π

0
dγ

× DJ∗
MK (α, β, γ ) R̂(α, β, γ ), (91)

and has the properties

P̂J
MK P̂J ′

M ′K ′ = δJJ ′ δKM ′ P̂J
MK ′ , (92)(

P̂J
MK

)† = P̂J
KM . (93)

These two equations indicate that for M �= K the operator P̂J
MK

is a transfer operator as defined in Sec. II, which is again a
consequence of SU (2) being non-Abelian.

While the integral representation (91) is the most trans-
parent one from a group-theoretical point of view and the
most flexible one as far as its combination with other sym-
metry restorations and configuration mixing is concerned,
there are alternative representations of P̂J

MK that have been
sometimes used in specific contexts. One is in terms of
angular-momentum shift operators [123], whose connection
to the form (91) is sketched in Ref. [19]. Another one that

20We note in passing that, within our representation of rotations,
the Wigner d-matrices are always real.

is based on direct diagonalization of angular momentum was
proposed in Ref. [124]. More recently, the projection by solv-
ing a system of linear equations was also proposed [125,126].
For a comparison of the computational cost of the various
possibilities see for example Refs. [19,126–128].

Let us now consider the decomposition of a symmetry-
breaking state |�〉 into its content in orthogonal eigenstates of
angular momentum. As explained in Sec. II, from very general
properties of compact Lie groups it follows that the linear
span span[SU (2)A|�〉] constructed from all rotated states,
i.e., the set {R̂(α, β, γ )|�〉, (α, β, γ ) ∈ [0, 2π ] × [0, π ] ×
[0, 4π ]}, can be decomposed as the direct sum of subspaces of
dimension dJ = 2J + 1 that each carry an irrep J of SU (2)A:

span[SU (2)A|�〉] =
⊕

J

nJ⊕
ε=1

SJ
ε . (94)

The number nJ of subspaces SJ
ε carrying the same irrep J

that can be found in the decomposition of span[SU (2)A|�〉]
depends on the structure of |�〉, and we use the label ε to
distinguish between them.

The natural way to obtain a full set of orthonor-
mal basis states {|�JM

ε 〉, J, M ∈ �−J, J�, ε ∈ �1, nJ�} withtin
span[SU (2)A|�〉] is to diagonalize the Hamiltonian within
this space. To that end, in addition of the application of the
operator it is necessary to solve the GEP

HJ f J
ε = eJ

εNJ f J
ε , (95)

where HJ and NJ are the Hamiltonian and norm matrices,
respectively, whose matrix elements are

HJ
KK ′ = 〈�|Ĥ P̂J

KK ′ |�〉, (96)

NJ
KK ′ = 〈�|P̂J

KK ′ |�〉. (97)

At the end of the procedure, we end up with symmetry-
restored states of the form21

∣∣�JM
ε

〉 = J∑
K=−J

f JK
ε P̂J

MK |�〉, (98)

that are, from a variational point of view, the optimal
states with good angular momentum in the vector space
span[SU (2)A|�〉].

Expanding |�〉 on these orthonormal basis states, we can
write

|�〉 =
∑

J

nJ∑
ε=1

J∑
K=−J

cJK
ε

∣∣�JK
ε

〉
, (99)

with the normalization of |�〉 leading to the sum rule

〈�|�〉 = 1 =
∑

J

nJ∑
ε=1

J∑
K=−J

∣∣cJK
ε

∣∣2 =
∑

J

J∑
K=−J

NJ
KK . (100)

This sum rule can be used to probe the numerical accuracy
of the AMP and determine the appropriate number of points
required to converge the discretized integral over Euler angles
(see Sec. IV E for details) in numerical calculations. While

21The normalization of the state is absorbed in the weights f JK
ε .
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both lines of Eq. (100) are equivalent, the second one has
the practical advantage that it requires only the evaluation of
projected matrix elements and not the precise determination
of the weights

cJK
ε = 〈�JK

ε

∣∣�〉 = J∑
K ′=J

(
f JK ′
ε

)∗
NJ

K ′K (101)

that can be done only after solving the GEP of Eq. (95). On
the other hand, the advantage of calculating the coefficients
cJK
ε to make use of the first line of Eq. (100) is that it allows

one to check the numerical accuracy of the resolution of the
GEP. In the end, both equalities can be used at the same time
to test the numerical precision of at each step of the symmetry
restoration.

It is interesting to remark that while the space
span[SU (2)A|�〉] contains for a given irrep all components
M ∈ �−J, J�, the decomposition (99) of the state |�〉 may
contain only part of them (but at least one). This is possible be-
cause span[SU (2)A|�〉] is by design invariant under rotation,
i.e., it is generated by rotating |�〉 in every possible way, and
therefore contains all the components M of a given irrep, even
those not present originally in the decomposition of |�〉. For
that reason, when discussing angular-momentum projection,
one often uses a notation which distinguishes the angular-
momentum components K that a symmetry-breaking state |�〉
can be decomposed into from the angular-momentum compo-
nents M that enter the calculation of the matrix elements of
irreducible tensor operators between symmetry-restored states
in the space span[SU (2)A|�〉].

In the literature, the K are sometimes associated with the z
component of angular momentum expressed in an “intrinsic”
frame of reference, whereas M labels angular momenta in the
“laboratory” frame of reference. The notion of intrinsic and
laboratory frames, however, has its ambiguities as it suggests
that there are two different bases involved, one in an “intrinsic
frame” attached to the nucleus as chosen by the theoretician
when setting up the nucleus’ wave function and another one
corresponding to what an experimentalist is observing in the
laboratory. In the projection formalism described above, how-
ever, the z direction that the such interpreted K and M refer
to is the same, i.e. the basis states |�JM

ε 〉 are part of the
same set of eigenstates of Ĵz. The terminology of intrinsic
and laboratory frame is in fact used by analogy with the
Unified Model of Bohr and Mottelson and other collective
models [13–15], where the total wave function is assumed
to be a factorization of an intrinsic part, which captures the
internal structure of the nucleus, times a Wigner D-matrix that
describes the orientation of the nucleus in the laboratory frame
in terms of collective angular momentum degrees of freedom.
In that case, the Wigner rotation matrix does indeed describe
a transformation between two differently oriented frames of
reference as mentioned above. The same relations are also
used as an approximation when connecting self-consistent
mean-field results for electric and magnetic moments with
experimental data without symmetry restoration [129].

By contrast, within the projection method, the importance
often given to the decomposition (99) into K components
of a state |�〉 has to be tempered by the the fact that this

decomposition depends on the orientation chosen to represent
the state within the reference frame. As far as the projection
method is concerned, this choice is completely arbitrary22 as
from a formal point of view it has no effect on the final set
of projected states |�JM

ε 〉. When the state to be projected
has some intrinsic symmetries, as is usually the case, some
specific choices can be more advantageous than others from
a computational point of view as they simplify the numerical
construction of the reference state and the numerical solution
of the GEP.

The more fundamental difference is between the states
P̂J

MK |�〉 simply obtained by the application of the projection
operators and the states |�JM

ε 〉 that diagonalize the Hamilto-
nian in span[SU (2)A|�〉]. Indeed, the former keep a memory
of the K component they have been constructed from and
therefore of the particular orientation chosen for |�〉. By
contrast, the latter (98) are constructed explicitly as a super-
position of all K components present in the decomposition
of |�〉 when diagonalizing the Hamiltonian, and as such they
are independent of the initial orientation chosen for |�〉. All
states |�〉 and |�′〉 = R̂(α, β, γ )|�〉 that differ only by a ro-
tation will generate the same subspace span[SU (2)A|�〉] and
therefore the same symmetry-restored states after solving the
GEP (95). Nevertheless, it is important to stress that whether
we consider the states P̂J

MK |�〉 or |�JM
ε 〉, the projection cannot

be reduced to a mere change of reference frame. As a matter of
fact, this interpretation would be contradictory to the fact that
the Hamiltonian is rotationally invariant as it implies that one
obtains different values for the energy in different reference
frames.

C. Distinguishing odd and even nuclei

We have seen in Sec. III C that Bogoliubov quasiparticle
vacua |�〉 are always eigenstates of a number parity operator
(59), which permits us to distinguish the states |�〉 that only
decompose on irreps with even particle number from those
that decompose exclusively on irreps with odd particle num-
ber. The symmetry under this operator can then be used to
reduce the integration interval for numerical particle number
projection, provided that the number parity of a given Bogoli-
ubov state is known a priori.

Given our choice of parametrization for the Euler angles,
the operator that takes the same role for angular-momentum
corresponds to a rotation about 2π around the z axis,

̂J = e−2iπ Ĵz , (102)

although, in practice any rotation about 2π around an arbitrary
axis yields the same result. This operator is linked to the point-
group operators discussed in Sec. V below by being equal to
the square of any signature operator ̂J = (R̂x )

2 = (R̂y)
2 =

(R̂z )
2
, which is why we will call it the squared signature. To-

gether with the usual binary operation, the set {1̂, ̂J} defines
a cyclic group of order 2 with two distinct irreps labeled by
πJ = ±1, and which is a finite subgroup of SU (2)A.

22Nevertheless, it may be interesting to look at the K decomposition
of a state from a purely theoretical point of view.
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Because of the rules of angular-momentum coupling, the
wave function of a system composed of an even number of
fermions is such that πJ = 1, whereas a state with an odd
number of fermions has πJ = −1. This implies that for a
fermionic wave function number parity and squared signature
are equal:

πJ = πn. (103)

As a consequence, the Bogoliubov quasiparticle state |�〉,
which is a superposition of projected states with either an even
or an odd number of fermions, is such that

̂J |�〉 = πJ |�〉, (104)

which leads also to the equality

cJK
ε = πJ (−)2J cJK

ε (105)

for the weights cJK
ε entering the decomposition (99).

As a result, a quasiparticle state with squared signature
πJ = +1 is a superposition of basis states |�JK

ε 〉 with an
integer angular momentum, whereas a quasiparticle state with
πJ = −1 is a superposition of basis states with an half-integer
angular momentum.

Analogously to the simplification of particle-number pro-
jection for states with good number parity, we can simplify
angular-momentum projection for eigenstates of squared sig-
nature. Indeed, as can be easily shown, in this case the
integration interval for the angle γ in the projection operator
can be reduced from [0, 4π ] to [0, 2π ] [103,122], leading to
the numerically less costly reduced projection operator

P̂J
MK = 2J + 1

8π2

∫ 2π

0
dα

∫ π

0
dβ sin(β )

∫ 2π

0
dγ

× DJ∗
MK (α, β, γ ) R̂(α, β, γ ). (106)

Its form is the same for both possible eigenvalues of squared
signature. However, the reduced projection operator (106)
cannot distinguish anymore between states having different
eigenvalues of ̂J . Indeed, the operator of Eq. (106) is now
a projection operator for a specific class of states, where the
irrep J one projects out has to be chosen according to the
squared signature of the states it acts on, i.e., πJ = (−)2J .

D. Evaluation of observables

A large number of the observables of interest in nuclear
structure are either irreducible tensor operators with respect
to SU (2)A or can be decomposed in terms of sums and/or
products of such operators. This is in particular the case for
the observables of interest in nuclear spectroscopy such as
the energy, radii, or electromagnetic moments and transition
moments.

Labeling generically T̂ λ
m an irreducible tensor 23 of rank

λ, with m ∈ �−λ, λ�, for any angle (α, β, γ ) we have the

23Note that the operator T̂ λ
m defined here corresponds to a covariant

operator as defined in Ref. [122] in spite of the difference in notation.

relation

R̂(α, β, γ ) T̂ λ
m R̂†(α, β, γ ) =

λ∑
m′=−λ

Dλ
m′m(α, β, γ ) T̂ λ

m′ . (107)

The operators that are irreducible tensors with respect to the
spatial rotations are often called spherical tensor operators. In
the case of a scalar operator T̂ 0

0 , e.g., the energy or the charge
radius, the above relation reduces to the simple commutation
relation [

R̂(α, β, γ ), T̂ 0
0

] = 0. (108)

from which directly follows the commutation relation of the
scalar operator with the projection operators

∀J, ∀(M, K ) ∈ �−J, J�2,
[
P̂J

MK , T̂ 0
0

] = 0. (109)

From a practical point of view, relations (92) and (109) imply
that the evaluation of projected matrix elements of scalar oper-
ators requires only one application of the projection operator,
either on the bra on the ket, which substantially reduces the
numerical cost. We have already used this relation above when
discussing the derivation of the GEP (95).

For irreducible tensor operators of higher rank, the commu-
tator [P̂J

MK , T̂ λ
m ] is nonzero, but can be evaluated using relation

(107) and using the Clebsch-Gordan series for the product
of two Wigner D-matrices [122]. With this, one finds for the
reduced matrix elements of the tensor operator T̂ λ

m , as defined
through the Wigner-Eckart theorem [130,131], between two
projected states,

〈
�J ′

ε′
∣∣∣∣T̂ λ

∣∣∣∣�J
ε

〉 = √
2J ′ + 1

J ′∑
K ′=−J ′

J∑
K=−J

(
f J ′K ′
ε′
)∗

f JK
ε

×
λ∑

m=−λ

J∑
M=−J

(JMλm|J ′K ′)〈�|T̂ λ
m P̂J

MK |�〉,

(110)

where the (JMλm|J ′K ′) are Clebsch-Gordan coefficients
[122]. The reduced matrix elements are independent of the
z component of the angular momenta of the bra and the ket.
Matrix elements between specific states from the two irreps
can then be obtained from

〈
�J ′M ′

ε′
∣∣T̂ λ

m

∣∣�JM
ε

〉 = (JMλm|J ′M ′)√
2J ′ + 1

〈
�J ′

ε′
∣∣∣∣T̂ λ

∣∣∣∣�J
ε

〉
. (111)

Proceeding in such a way, one formally reduces the calcula-
tion of doubly projected matrix elements 〈�|P̂J ′

M ′K ′ T̂ λ
m P̂J

MK |�〉
between all nontrivial combinations of K , K ′, M, M ′, and
m to the evaluation of singly projected matrix elements
〈�|T̂ λ

m P̂J
MK |�〉 between all combinations in the much smaller

set of K , M, and m. This brings a substantial reduction of
the numerical cost of the calculation. The state on which the
projection operator acts can either be the bra or, as chosen
here, the ket.

From a different perspective, it is the Clebsch-Gordan co-
efficient by which the projected matrix element 〈�|T̂ λ

m P̂J
MK |�〉

is multiplied in Eq. (110) that directly selects, through the
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orthogonality relation

λ∑
m=−λ

J∑
M=−J

(JMλm|J ′K ′) (JMλm|J ′′K ′′) = δJ ′J ′′ δK ′K ′′ ,

(112)

the projected angular momentum J ′ and component K ′ of the
bra that gives a nonzero contribution to the reduced matrix
element without the need to explicitly project it out.

The discussion above can be trivially generalized to the cal-
culation of matrix elements between states |�J ′M ′

aε′ 〉 and |�J ′M ′
bε 〉

projected out from different reference states |�a〉 and |�b〉,
respectively. In that context, and using that T̂ λ†

m = (−1)m T̂ λ
−m,

one can derive an additional useful symmetry for the reduced
matrix elements [132]〈

�J ′
aε′
∣∣∣∣T̂ λ

∣∣∣∣�J
bε

〉 = (−1)J ′−J
〈
�J

bε

∣∣∣∣T̂ λ
∣∣∣∣�J ′

aε′
〉∗

. (113)

This relation implies that, having calculated the reduced ma-
trix elements 〈�J ′

aε′ ||T̂ λ||�J
bε〉 for all relevant combinations of

(J , ε) and (J ′, ε′) for given |�a〉 and |�b〉 along the lines
of Eq. (111), one can use relation (113) to reconstruct all
required reduced matrix elements 〈�J

bε ||T̂ λ||�J ′
aε′ 〉 without the

need to numerically calculate matrix elements where the pro-
jection operator acts on |�a〉.

Examples of observables of interest whose operators can-
not be written in terms of irreducible tensor operators are the
spatial densities and transition densities between symmetry-
restored states [133,134]. As a consequence, their calculation
requires the projection (hence, rotation) of both states entering
the matrix elements. There are, however, tricks to simplify the
application of one of the rotation operators; see [133,134].
Note, however, that the resulting densities take the quantum
numbers of the projected states for which they are calculated.

E. Numerical implementation

1. Discretization of the projection operator

For several reasons, the numerical evaluation of the
angular-momentum projection of Bogoliubov-type quasipar-
ticle vacua is much more involved than their particle-number
projection. First, in the general case one has to deal with the
evaluation of a three-dimensional integral over Euler angles
instead of two separate one-dimensional integrals over proton
and neutron gauge angles, respectively. Second, as will be
explained later on, the number of points required to accurately
discretize each of the three integrals over Euler angles is
usually larger than what is typically needed for gauge-space
integrals as discussed in Sect. III F, such that the total number
of integrands to be evaluated can be several orders of magni-
tude larger. Also, unless when working in a spherical basis,
which becomes problematic at large deformation, the numer-
ical representation of rotation in space about the Euler angle
β always mixes all states of same parity in the single-particle
basis with each other.

Nevertheless, each combination of angles (α, β, γ ) being
independent from the others, one deals with an embarrassingly
parallel problem that can be parallelized with almost a perfect
linear scaling. In addition, profiting from the structure of the

integrands, it is possible to use efficient discretization of the
three integrals.

As the integrals over α and γ have a structure like the one
of the integral over gauge angles, we use for both of them
a discretization similar to the one of Fomenko for particle-
number projection (72),

P̂ K0
z,Mγ

= 1

Mγ

Mγ∑
n=1

e−i2π
n− 1

2
Mγ

(Ĵz−K0 )
, (114)

explicated here for the angle γ . There are a few comments that
we can make about the motivation of this choice

(i) The use of a midpoint rule (114) instead of the
repeated rectangular rule used to discretize the
particle-number projection operator (72) will be of
advantage for the efficient exploitation of symmetries
of the integrand that result from intrinsic symmetries
of the states to be projected and that will be discussed
in Sec. V. As a consequence, however, the first point
of the discretization is at π

Mγ
instead of zero. There-

fore, the operator (114) does not reduce to the identity
for Mγ = 1, and the case of “no projection” has thus
to be treated separately.

(ii) Note that because of the identical choice of quadra-
ture for the integrals over α and γ , the action of the
discretized projection operator is trivially symmetric
under the exchange of the bra and ket as long as the
same number of discretization points is used for both
of these angles.

(iii) The operator P̂ K0
z,Mγ

is a discretization of the reduced
projection operator of Eq. (106). Therefore we can use
P̂ K0

z,Mγ
only to project states that have a squared sig-

nature equal to (−)2K0 . A more general operator that
works for any squared signature of the reference state,
meaning that its application to a state with squared
signature πJa �= (−)2K0 yields matrix elements that
are numerically zero, could be defined by replacing,
either for α or γ , the factor 2π in the exponential
by a factor 4π . As in the case of particle number
projection, applying such operator would be twice as
costly.

By applying the discretized operator P̂ K0
z,Mγ

on a reference

state |�a〉 with squared signature πJa = (−)2K0 , we remove
exactly24 all K components such that K1 �= K0 + lMγ , l ∈ Z
from the wave function:

P̂ K0
z,Mγ

|�a〉 =
∑

J1

nJ1∑
ε=1

∑
l∈Z

(−)l c
J1K0+lMγ

aε

∣∣�J1K0+lMγ

aε

〉
. (115)

Unfortunately, there is no discretization for the integral over
β that would lead to a similar removal of directly identifiable
J components from the nonprojected state. But the structure

24The rationale used to demonstrate this is identical to the one used
in the Appendix for particle-number projection.
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of the volume element suggests using a Mβ-point Gauss-
Legendre quadrature rule:

P̂ J0M0K0
y,Mβ

= 2J0 + 1

2

Mβ∑
i=1

ωi dJ0
M0K0

(βi ) e−iβi Ĵy , (116)

where βi = arccos(xi ), xi being the abscissa and wi the weight
of the ith point in the quadrature. One of the advantageous
features of this quadrature is that it is exact for any polynomial
in x = cos(β ) that has an order lower than or equal to (2Mβ −
1). Given that the transformation of a state |�J1K0

aε 〉 under
rotation involves Wigner d-matrices of rank J1, Eqs. (99),
(89), and (90) imply that each component J1 present in the
state |�a〉 contributes as a polynomial of order (J1 + J0) in
cos(β ) to the expectation value dJ0

M0K0
(βi ) 〈�a|e−iβi Ĵy |�a〉 of

the left-hand side of Eq. (116). Gauss-Legendre quadrature
of the integral over this polynomial becomes exact if Mβ �
(J0 + J1 + 1)/2. This means that when dealing with a wave
function |�a〉 that is a superposition of irreps up to some
Jmax, the projection of the component with J0 using P̂ J0M0K0

y,Mβ

becomes formally exact for

Mβ � J0 + Jmax + 1

2
. (117)

Depending on the weight of the highest J components in the
state |�a〉, smaller values of Mβ might well be sufficient to
calculate projected matrix elements with a numerically ac-
ceptable precision.

The full discretized projection operator on angular momen-
tum thus reads

P̂J0M0K0
MαMβ Mγ

= P̂ M0
z,Mα

P̂ J0M0K0
y,Mβ

P̂ K0
z,Mγ

, (118)

with Mα points for α, Mβ points for β, and Mγ points for γ .
Note first that, as the rotations around axes z and y do not
commute, it is not possible to change the order in which the
discretized projection operators are applied on a state. Also, it
is important to remark that because the orthogonality relation
between two Wigner d-matrices is realized only for matrix
elements of the same row (M0) and column (K0) [122], the
accuracy of the operator that involves rotations around the y
axis by β, and which is always applied as the second one, is
directly impacted by the accuracy of the operators acting on
α and γ . An accurate numerical projection thus requires the
simultaneous convergence of the three parts of the operator
P̂J0M0K0

MαMβ Mγ
.

Eventually, considering a number of points Mα , Mβ , Mγ

large enough, the full discretized projection operator will
select only the desired component out of the reference state
|�a〉, i.e.,

P̂J0M0K0
MαMβ Mγ

|�a〉 −−−−−−−→
Mα,Mβ ,Mγ →∞

nJ0∑
ε=1

cJ0K0
aε

∣∣�J0M0
εa

〉
. (119)

2. Convergence of the projected components

To illustrate our discussion on the behavior of the dis-
cretized projection operators, we will study the numerical
convergence of the angular-momentum projection of sev-
eral Slater determinants constructed in the sd-shell valence

TABLE II. Characteristics of the four Slater determinants con-
sidered for the convergence analyses displayed in Figs. 7, 8, 9, and
10 (see text). The values of Zval and Nval indicate the number of
valence protons and neutrons, respectively, whereas β and γ indicate
the intrinsic quadrupole deformation. Finally, 〈Ĵz〉 and 〈Ĵ2〉 denote
the mean values of the angular-momentum operators as indicated.
The columns P and T indicate if the symmetry-unrestricted self-
consistent procedure converged towards a state that adopted the
symmetry to be even or odd under space inversion and time reversal,
either exactly or to a good numerical approximation, respectively
(see text).

Label Zval Nval (β, γ ) 〈Ĵz〉 〈Ĵ2〉 P T

a 2 2 (0.075, 30◦) 0 20 + +
b 1 2 (0.025, 30◦) −2.58 26.2 + −
c 2 2 (0.130, 0◦) 0 16.1 + +
d 2 3 (0.130, 0◦) 1.5 18.9 + −

space using the numerical suite TAURUS [135,136]. The use of
Slater determinants for such analysis has the advantage that
no particle-number projection is required, thus simplifying
the calculations and removing a source of numerical inaccu-
racies (in particular as different [N, Z] components will in
general have different angular-momentum decompositions).
Similarly, the sd shell being solely made of positive parity
single-particle states, the Slater determinants are automati-
cally eigenstates of parity with eigenvalue +1. Performing
the calculations with only a few particles in a restricted
model space further simplifies the calculations, reduces the
numerical noise (in particular as rotations are more accurately
represented in a spherical harmonic oscillator basis than on a
coordinate-space mesh), and provides a natural cutoff for the
highest angular momentum than can appear in the decompo-
sition of a given state.

To start with, we consider four Slater determinants built
in the sd-shell using the USDB interaction [137]. The states
were obtained each starting from a randomly generated and
symmetry-unrestricted seed wave function but were con-
strained to have a certain value of the triaxial parameters
(β, γ ). Their main characteristics are summarized in Table II.
To cover all cases of major interest, we consider for states
for even-even [cases (a) and (c)] and odd [cases (b) and (d)]
systems that at convergence either adopt an axial [cases (c)
and (d)] or nonaxial [cases (a) and (b)] shape. We have to
stress, however, that in a fully symmetry-unrestricted code the
symmetries adopted by the self-consistent solutions are never
perfect, such that there might also appear tiny contributions in
the decomposition that result from the slight breaking of these
intrinsic symmetries.

To investigate the projection on the third component of the
angular momentum, in Fig. 7 we plot the sum of J0 compo-
nents for a given K0, i.e.,

�K0 (Mα, Mβ, Mγ ) =
∑

J0

〈�|P̂J0K0K0
MαMβ Mγ

|�〉, (120)

for different choices for the number of discretization points
Mα = Mγ , while we fix a large value of Mβ = 20. As will
be shown later on, with the latter choice, we can assume that
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FIG. 7. Evolution of �K (Mα, Mβ, Mγ ) as a function of the value
of K on which one projects for different choices for the number
of discretization points Mα = Mγ for the Slater determinants |�a〉
[panel (a)] and |�b〉 [panel (b)], as specified in Table II. Points
calculated with the same Mα = Mγ are connected by straight lines
to guide the eye. On each panel, the results obtained with the largest
value of Mα = Mγ cannot be distinguished from exact results for the
values of J0 shown.

the numerical evaluation of P̂ J0M0K0
y,Mβ

is converged for the states
considered for our analysis.

We first notice that the two decompositions converge to-
wards the physical values as one increases the number of
discretization points in a manner that is very similar to
what we observed for the projection on particle number in
Sec. III F. In particular, the discretized projection operator
creates mirror images that are more and more pushed away
to higher angular momenta until only the true distribution
remains. Nevertheless, there are some key differences with the
particle-number case. First of all, here the copies appear with
the smaller periodicity Mα (instead of 2Mφ), which is to be
expected given the factor 2π (instead of π ) in the discretized
operator of Eq. (114). Also, the mirror images are not perfect
copies of each other but present some noticeable asymmetries.
As pointed out above, an imperfect projection on M0 or K0

will spoil the application of the intermediate operator P̂ J0M0K0
y,Mβ

that is in between the two others, which might be the cause of
those differences.

It is also interesting to remark that the two states display
very different decompositions. The even-even state |�a〉 has a
perfectly symmetric decomposition centered around K0 = 0
and with only even values of K0. On the other hand, the

odd-even state |�b〉 has nonvanishing components only for
negative values of K0 but does not display any selection rules
for the values of K0. Typically, the distribution in terms of K
can be very different depending on the nature of the unpro-
jected state (even or odd system, degree of nonaxiality, etc.)
and the orientation of its major axes and therefore, contrarily
to the particle-number case, there is no simple relation that
could help us determine the minimal number of points suffi-
cient to project out the targeted states with a good accuracy.
However, symmetries of the unprojected many-body states,
either imposed on them or adopted by them when solving the
self-consistent HFB equations, will affect the components that
can exist in their decompositions, as we will discuss in Sec. V.

Another complication comes from the fact that an accurate
projection of all K0 components for a given J0 is necessary
to perform the subsequent mixing of K components, which
is necessary to fully diagonalize the Hamiltonian in the sub-
space of the projected states {P̂J0

MK |�〉}, Eq. (95). This fact
tends to increase the number of discretization points required
compared to the particle-number projection, as this means that
one needs to use enough points to converge even the extreme
values of K0 at the tail of the distribution. In the valence-
space calculations employed here to illustrate convergence,
however, we can easily calculate the extremal values that K0

can take and that are ±8 for state |�a〉 and ±13/2 for state
|�b〉. When the number of discretiztion points is insufficient,
however, we can see that even higher values of K0 numerically
give nonvanishing results as they are part of mirror images of
the physical distribution.

As mentioned before, the operator P̂ J0M0K0
y,Mβ

has a different
numerical structure than the other two that enter the full dis-
cretized projection operator of Eq. (118) and that behave very
similar to the discretized particle-number operator. To analyze
the convergence of the operator P̂ J0M0K0

y,Mβ
more specifically, we

consider now the two states |�c〉 and |�d〉 as specified in
Tabke II that adopted axial symmetry and therefore can be
treated as eigenstates of Ĵz with eigenvalue K , such that only
the integral over β has to be calculated numerically. In Fig. 8,
we display the weight of the projected component K0

|cJ0K0 (Mβ )|2 = 〈�|P̂ J0K0K0
y,Mβ

|�〉, (121)

for different choices for the number of discretization points
Mβ . Analogously to what is observed in Fig. 7, the discretized
projection operator converges progressively as one increases
the number of discretization points. The convergence pat-
tern is, however, quite different. For a given value of Mβ ,
one observes an oscillatory behavior as a function of J0 that
numerically can even take negative values whereas the exact
projected weights |cJ0K0 |2 considered here are necessarily a
positive quantity that can only take values between 0 and
1. When increasing the number of discretization points Mβ ,
the oscillatory behavior of the distribution of the |cJ0K0 (Mβ )|2
disappears and converges towards the physical values for the
weights.

Again, we remark that the distributions of the weights of
the irreps that can be projected out from the two states |�c〉
and |�d〉 are very different. The even-even state |�c〉 contains
only even values J0 and the projection vanishes identically
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FIG. 8. Evolution of the weight |cJ0K0 (Mβ )|2 of the numerically
projected states as a function of the angular momentum J0 on which
one projects for different choices for the number of discretization
points Mβ for the Slater determinants |�c〉 [panel (c)] and |�d 〉 [panel
(d], as specified in Table II. Points calculated with the same Mβ

are connected by straight lines to guide the eye. On each panel, the
results obtained with the largest value of Mβ is the first one for which
the projection is exact for all values of J0 plotted.

for odd values of J0 for all values of Mβ , even the smallest
ones. That the state |�c〉 can only be decomposed onto irreps
with even J0 follows from the relations for the decomposition
of states with intrinsic symmetries that will be elaborated in
Sec. V, and is a consequence of this state having positive par-
ity by construction and taking an axial shape. As the Wigner
matrices dJ

00( cos(β )) are even (odd) functions of cos(β ) for
even (odd) values of J , the kernel 〈�c|R̂y(0, β, 0)|�c〉 of an
axial state whose physical decomposition only contains even
values of J will also be an even function of cos(β ). When
choosing a discretization of cos(β ) that is symmetric around
zero, as done with Eq. (116), then the numerical integrals over
such kernel times an odd Wigner matrix dJ

00( cos(β )) are au-
tomatically zero, irrespective of the number of discretization
points Mβ . Such a selection rule is specific to K = 0 states
and has no analog for the state |�d〉 that has K = 3/2. For
the latter, the only component that necessarily has to vanish
is J0 = 1/2, which numerically is achieved already for small
values of Mβ .
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FIG. 9. Evolution of the difference between the numerical values
for the weight |cJ0K0 (Mβ )|2 at Mβ as indicated and the converged
values |cJ0K0 (Mc

β )|2 obtained with Mc
β = 11 in logarithmic scale as

a function of angular momentum J0 on which one projects for the
Slater determinants |�c〉 [panel (c)] and |�d〉 [panel (d)], as specified
in Table II. Points calculated with the same Mβ are connected by
straight lines to guide the eye.

Given that the state |�c〉 is made of two neutrons and two
protons in the sd shell, the largest possible value of J0 is 8,
which is also what is found at convergence in the numerical
decomposition. Having an additional neutron, the state |�d〉
can contain components having up to J0 = 19/2. In this case,
only Mβ = 11 reproduces exactly this result.

The convergence pattern explicated in Eq. (117) can be
more explicitly seen in Fig. 9, where we display (in logarith-
mic scale) the same projected weights but subtracted from the
converged values obtained with the discretization Mc

β , which
is equal to the largest value of Mβ used in each panel of Fig. 8,
i.e.,

�cJ0K0 (Mβ ) = ∣∣〈�|P̂ J0K0K0
y,Mβ

|�〉 − 〈�|P̂ J0K0K0
y,Mc

β
|�〉∣∣. (122)

For example, in panel (d), the discretization Mβ = 8 gives
exact results for components up to J0 = 11/2: the difference
to the converged value obtained with Mc

β = 11 is of the order
of the numerical noise. This can be easily understood using
Eq. (117), as the largest physical value of J1 in the distribution
is 19/2 and therefore 11/4 + 19/4 + 1/2 = 8. Note that this
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FIG. 10. Evolution in logarithmic scale of the difference Je
0 − J0,

where Je
0 is extracted from Eq. (123), for the state |�d 〉 as a function

of the angular momentum J0 onto which one projects for different
choices of the number of discretization points Mβ . Points calculated
with the same Mβ are connected by straight lines to guide the eye.

rule applies even if the value J0 onto which one projects is not
in the distribution of components contained in the state to be
projected. Indeed, Mβ = 11 is required to get the appropriate
vanishing result for J0 = 21/2, a component that cannot be
contained in the Slater determinant |�d〉.

We note that the components with odd J0 are not exactly
zero on panel (c). This is a consequence of the state |�c〉
not having adopted a perfectly axially symmetric shape when
stopping the HFB iterations in the symmetry-unrestricted
code. Even though the �cJ0K0 (Mβ ) are all tiny for odd
values of J0, at small values of Mβ they are nevertheless
approximately eight order of magnitudes larger than the fully
converged results.

Finally, in Fig. 10 we plot, for the state |�d〉, the difference
between the value of angular momentum Je

0 extracted from
the numerically projected matrix elements of Ĵ2 through the
equation

〈�|Ĵ2 P̂ J0K0K0
y,Mβ

|�〉 = Je
0

(
Je

0 + 1
)

(123)

and the targeted value J0 as put into the projection operator. As
one can see, the convergence of Je

0 follows the same pattern as
for the overlap. At the same discretization of the projection
operator, however, the numerical accuracy of the J0 value is
generally inferior.

3. Well deformed nuclei in large model spaces

The possible maximal angular momentum, and thereby
the possible maximal width of the distribution of angular-
momentum components, increases with the number of active
particles in the model space. As a consequence, the angular-
momentum projection of a state represented in the full space
of occupied single-particle states can become much costlier
than projecting a state represented in a small valence space,
not only because of the larger size of the single-particle basis,
but also because of the larger number of discretization points
that is needed for the projection operator.

Φ
a
|R

(0
,β

,0
)|Φ

a

cos(β)

β20 = 0.1 J2
⊥ = 12.9

β20 = 0.3 J2
⊥ = 107.2

β20 = 0.6 J2
⊥ = 248.4

β20 = 0.9 J2
⊥ = 440.2

β20 = 1.2 J2
⊥ = 648.2

β20 = 1.5 J2
⊥ = 794.3

FIG. 11. Norm kernel as a function of the Euler angle β on a
logarithmic scale for axial reflection-symmetric states of 240Pu with
dimensionless quadrupole moment β20 and dispersion of angular mo-
mentum 〈�a|Ĵ2

⊥|�a〉 perpendicular to the symmetry axis as indicated.
Dots indicate calculated values for the kernel using Mβ = 96 points,
whereas the dotted lines represent the estimate defined in Eq. (124).
For axial reflection-symmetric states, the norm kernel is a symmet-
ric function around β = π/2 ⇔ cos(β ) = 0, 〈�a|R̂(0, β, 0)|�a〉 =
〈�a|R̂(0, π − β, 0)|�a〉, cf. Eqs. (132b) and (132c), such that only
half the integration interval for β is shown.

As a rule of thumb, in a given model space the distribu-
tion of components contained in a state stretches further out
with increasing deformation and increasing collective angular
momentum [138], thereby requiring an increasing number
of discretization points for P̂ J0K0K0

y,Mβ
that are needed to attain

the same level of convergence for a component with given
J0. This, however, is partially counterbalanced by the norm
and operator kernels becoming increasingly sharply peaked
as a function of β [26], such that the kernels might not have
to be numerically evaluated for all combinations of Euler
angles in the discretized projection operator. For the sake of
clarity, we will exemplify this for the simple case of axial
and reflection-symmetric time-reversal-invariant quasiparticle
vacua of 240Pu calculated with a Skyrme EDF in a space
that comprises all single-particle states with nonzero occu-
pation. The projection calculations were performed using the
same early version of the Cartesian three-dimensional (3d)
coordinate-space code ESPERANCE [37] as employed in [139].
We choose states with dimensionless prolate quadrupole mo-
ments of β20 = 0.1, 0.3, 0.6, 0.9, 1.2, and 1.5. The state at 0.3
is close to the normal-deformed ground state, the state at 0.6
is in the region of the inner fission barrier (whose saddle point
corresponds to a nonaxial state not considered here), the state
at 0.9 is close to the deformation of the excited superdeformed
fission isomer, and the states at 1.2 and 1.5 are in the outer
barrier (whose actual saddle point corresponds to a nonaxial
reflection-asymmetric state not considered here).

To focus on angular-momentum projection, the states
|�a〉 used to prepare Figs. 11 and 12 are normalized
particle-number projected quasiparticle vacua. Recalling that
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FIG. 12. Decomposition of the weights |cJ00|2 of the projected
components as defined in Eq. (121) on a logarithmic scale for axial
reflection-symmetric states of 240Pu with dimensionless quadrupole
moment β20 and number of discretization points Mβ as indicated.
The number in parentheses indicates the number of Euler angles
whose contribution is at most ten orders of magnitude smaller than
the largest one. Because of the reflection symmetry imposed on

the quasiparticle vacua, the |cJ00|2 are exactly zero for odd angular
momenta and therefore not plotted.

the weights |cJ0K0 |2 of the numerically projected compo-
nents are the sum over the product of the norm kernel
〈�a|R̂(α, β, γ )|�a〉 times a factor that is at most on the order
1, it follows immediately that in a numerical representation
that uses double-precision floating point arithmetic that Euler
angles for which of the norm kernel between normalized states
is smaller than 10−16 cannot meaningfully contribute to the
sum. As the level of numerical noise is usually at a larger level,
the limit for significant contributions can already be drawn at
about 10−10.

Figure 11 shows the norm kernel as a function of the Euler
angle β for these states. For the smallest deformation, β20 =
0.1, all Euler angles β contribute significantly to the projected
matrix elements. But already at the typical ground-state defor-
mation of heavy nuclei, β20 � 0.3, the norm kernel falls off to

values much smaller than 10−10 over a wide range of Euler an-
gles, such that only those with | cos(β )| � 0.7 will contribute
to the projected matrix elements. With increasing deformation
the peak of the norm kernel narrows further, which reflects
that for simply geometrical reasons an ever increasing part of
the wave function that is at the tip of an elongated shape is ro-
tated outside of the nucleus. This behavior of the norm kernel
indicates that there is an additional condition for the numerical
convergence of angular momentum projection: there has to be
a sufficient number of integration points in the region where
the overlap is peaked.

The norm kernels between two different states |�a〉 and
|�b〉 might have a different angular dependence, depending
on differences in elongation of the shapes and differences in
orientation. For example, when calculating matrix elements
between prolate and oblate states, the norm kernel is peaked
at β = π/2 instead [140]. Although they are of course not
strictly proportional to each other, for very deformed states
all operator kernels 〈�a|T̂ λ

μ R̂(α, β, γ )|�a〉 have in general
the same overall dependence on the Euler angles as the norm
kernel, which for tensor operators of nonzero rank λ might be
superposed with an oscillatory behavior.

Figure 12 shows the convergence of the numerical calcula-
tion of the weights |cJ00|2 of the components at three different
deformations as a function of Mβ . The number of points in the
full interval 0 � β � π that is necessary to reach a sufficient
level of convergence increases dramatically with deformation,
which is again a direct consequence of the rule established
in Eq. (117). It is, however, not necessary to evaluate the
matrix elements at all of these integration points, as indicated
in Fig. 12 by the number of significant integration points
given in the parentheses. In fact, to reach a similar level of
convergence, the number of necessary significant integration
points is similar in all three cases, but they do not cover the
same range of Euler angles.

The Wigner d-matrix dJ0
00(β ) equals the Legendre polyno-

mial of order J0 in cos(β ) [122]. As a consequence, when
using the discretization (116) the weights |cJ00|2 are numer-
ically exactly zero for J0 = Mβ , as in that case all abscissas
coincide with the zeros of dMβ

00 (β ). Therefore, for discretiza-
tions with Mβ � 24 the curves in Fig. 12 end at J0 = Mβ − 2.
The weights of some components with J0 � Mβ are again
numerically nonzero as in the examples discussed above, but
have been omitted in Fig. 12 for the sake of clarity. From the
discussion leading to Eq. (117) it is clear that the numerically
calculated values of these components cannot be correct.

Assuming that |�a〉 is a normalized axial reflection-
symmetric state, at small Euler angles β the norm kernel for
projection of that state can be estimated to be [141]

〈�a|R̂(0, β, 0)|�a〉 � exp{−[1 − cos(β )] 〈�a|Ĵ2
⊥|�a〉}.

(124)

where Ĵ2
⊥ is the square of the expectation value of angular

momentum in a direction perpendicular to the symmetry axis.
As can be seen from Fig. 11, this estimate closely follows
the calculated points for values of cos(β ) between 1.0 and
about 0.85, which is sufficient to estimate the range of Euler
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angles β that will contribute significantly to the projected
overlap and operator matrix elements. This information can
be used to adapt Mβ such that one can expect to have a
certain number of significant integration points, and also to
optimize approximate schemes for angular momentum pro-
jection that rely on interpolation between a small number of
exactly calculated kernels [26,140]. If needed, higher-order
corrections to Eq. (124) can also be derived. Generalizations
of Eq. (124) to full 3d rotations of nonaxial states such as the
ones given in [119,141] can also be used to anticipate the num-
ber of discretization points needed to project more complex
states.

To conclude, the number of discretization points for
each Euler angle required to represent accurately the three-
dimensional integral over Euler angles depends very sensi-
tively on the nature and orientation of the state one starts
with. The large variety of possible decompositions that can
be encountered prevents the existence of a simple recipe for
the selection of integration points that can be expected to
be near-optimal for all situations. To achieve a numerically
precise projection of irreps up to J0 one needs an estimate
of the largest values of J and K contained in decomposition
of a given states, as well as an estimate of the width of
the norm kernel as a function of the Euler angles. In cer-
tain cases, the number of significant discretization points that
have to be evaluated numerically in order to reliably perform
the angular-momentum projection can be as large as several
times 104.

V. PROJECTION OF CRANKED TRIAXIAL
QUASIPARTICLE STATES

A. General considerations

Even considering the simple structure of a Bogoliubov-
type quasiparticle vacua, numerical calculations for com-
pletely symmetry-unrestricted Bogoliubov reference states are
far from being trivial. Besides their numerical cost, there are
also practical issues such as the necessity to fix the position
of the center of mass and also the orientation of the nu-
cleus when self-consistently constructing the reference states,
which can become complicated to implement and delicate to
converge. In addition, there is a large body of empirical evi-
dence that for many phenomena of interest the self-consistent
solution of the HFB equation adopts one or several symme-
tries, which can be used to simplify the numerical treatment
by imposing these as intrinsic symmetries throughout the
calculation.

All such conserved intrinsic space-time symmetries have
in common that in one way or another they introduce lin-
ear dependences between the states in the vector space
span[SU (2)A|�〉] that can be constructed through rotations
of a given Bogoliubov state |�〉. This has two important
consequences. First, these linear dependences can be used to
reduce the number of rotated states that actually have to be
constructed through application of the rotation operator. Sec-
ond, these linear dependences reduce the number of different
irreps ε for a given value of J that a given Bogoliubov state
|�〉 can be decomposed into in Eq. (94), from 2J + 1 to a

smaller number, sometimes even zero. The latter manifests
itself either through vanishing matrix elements in the Hamilto-
nian and norm kernels of Eqns. (96) and (97), or through linear
dependences between their respective matrix elements, which
in either case reduces the rank of these matrices. We have
seen already some examples for such reduction in Sec. IV E.
Ultimately, the linear dependences between rotated states can
be exploited to reduce the number of actual matrix elements
〈�a|T̂ λ

m P̂J
MK |�b〉 that have to be calculated numerically. Even

more importantly, the reduction of the rank of the norm and
Hamiltonian matrices might jeopardize the numerical solution
of the the GEP (95) when not taken care of.

As an example for the practical consequences of intrinsic
symmetries, we will discuss here the case of time-reversal
breaking triaxial HFB states, which offer the flexibility to
cover a large number of cases of interest in nuclear spec-
troscopy [24,37,38,40,42,43,45], such as arbitrary quadrupole
deformation and collective rotation about a principal axis.
There are several possibilities of how triaxial symmetry can be
realized by imposing different subgroups of the double point
symmetry group DT D

2h as defined in [62,63]. To exemplify the
procedure, we will use here the subgroup consisting of parity
P̂, the x signature R̂x, and the y time simplex ŜT

y ≡ R̂yP̂T̂ ,

with T̂ being the time-reversal operator. We will label the
group generated by these three operators as 〈P̂, R̂x, ŜT

y 〉.
This choice is not unique, and there are others that offer

the same physical degrees of freedom [63], but differ by an
exchange of coordinate axes. The actual specific choice of
symmetry group has some consequences for the convenience
of numerical implementations. The choice made here allows
for simplifications during the mixing of K components when
solving the GEP that will be discussed in Sec. V C. For single-
reference calculations, however, it is of advantage to impose
z signature R̂z instead of x signature as described in [142].
The transformation between both representations [103] can
be achieved with an axis permutation operator as proposed
in Ref. [143].

The symmetries of the quasiparticle vacua have actu-
ally to be implemented at the level of the one-quasiparticle
states, meaning that one has to use a basis of single-
particle states that respect this set of intrinsic symmetries,
and construct Bogoliubov matrices that have the appropriate
symmetry-preserving block structure. This has, however, no
importance for our discussion. For further details we refer to
Refs. [62,63].

Let us now specify the properties of a quasiparticle vacuum
|�a〉 that has the symmetries of the group 〈P̂, R̂x, ŜT

y 〉. This
implies that

P̂|�a〉 = pa |�a〉, (125a)

R̂x|�a〉 = ηa |�a〉, (125b)

ŜT
y |�a〉 = |�a〉, (125c)

where only the first two relations are eigenvalue equations,
whereas the third one for the antilinear operator ŜT

y fixes a
phase through a symmetry transformation [62,63]. From |�a〉
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being a fermionic product state one also automatically has the
relations

̂A|�a〉 = πa |�a〉, (126a)

R̂2
μ|�a〉 = πa |�a〉 for μ = x, y, z, (126b)

T̂ 2|�a〉 = πa |�a〉 (126c)

for the number parity ̂A (59), squared signature R̂2
μ, and the

square of the time-reversal operator.
As we assume that |�a〉 is a direct product of a neutron

and a proton many-body wave functions, and as our symmetry
operators factorize in the corresponding tensor product space,
for example ̂A ≡ ̂N ⊗ ̂Z , the total number parity πa, total
parity pa, and total signature ηa are then the products of the
proton and neutron number parities, parities, and signatures,
respectively:

πa = πna πza, (127a)

pa = pna pza, (127b)

ηa = ηna ηza, (127c)

where if the particle species q = n, p, has even number parity
we have

πqa = +1, pqa = ±1, ηqa = ±1, (128)

whereas if the particle species q has an odd number parity we
have

πqa = −1, pqa = ±1, ηqa = ±i. (129)

Finally, defining a shorthand notation for the time-reversed
state,

|�a〉 = T̂ |�a〉, (130)

we can derive an additional useful relation between |�a〉 and
its time-reversed |�a〉 from (125):

R̂z|�a〉 = πa pa η∗
a |�a〉, (131)

which follows from ŜT
y ≡ R̂y P̂ T̂ = R̂z R̂x P̂ T̂ . Further de-

tails about the derivation of these relations can be found in
Ref. [103]. As said above, quasiparticle vacua respecting these
symmetries cover the vast majority of cases of interest for
single-reference applications to nuclear spectroscopy. And we
will see that these symmetries allow also for great simplifica-
tions at the multireference level.

We note that the symmetries of the 〈P̂, R̂x, ŜT
y 〉 point group

can only be imposed on the unrotated states. The noncom-
mutativity of rotations about different axes implies that the
symmetry relations under R̂x and ŜT

y transformations get lost
when rotating a state to an arbitrary angle R̂(α, β, γ ) |�a〉,
such that only parity remains as a common symmetry of the
rotated and unrotated states.

B. Symmetries of the rotated matrix elements

The numerical cost of the evaluation of an angular-
momentum projected matrix element scales with the number
Mα × Mβ × Mγ of discretization points. As we have seen in
Sec. IV E, to numerically converge projected matrix elements
might require one to consider several tens of thousands of
combinations of rotation angles, which can become a bot-
tleneck in MR calculations that involve angular-momentum
projection.

Therefore, to keep the computational time under control it
is advantageous to find ways to reduce the number of angles
that have to be calculated without altering the accuracy of
the discretized integrals. By using the symmetries defined in
Sec. V A, we can derive a set of helpful relations between
rotations by certain angles.

We will consider here the general case where we want to
evaluate projected matrix elements of the 2λ + 1 components
m of a spherical tensor operator T̂ λ

m between two different
reference states |�b〉 and |�a〉, which are assumed to have the
same number parity for both protons and neutrons. Defining

T̂ λ
m ≡ T̂ T̂ λ

m T̂ † as a shorthand for the operator obtained by a
time-reversal transformation of T̂ λ

m , we obtain the following
seven relations [103]:

〈�a|R̂(π − α, β, π − γ ) T̂ λ
m |�b〉 = (−)λ πa ηa η∗

b 〈�a|R̂(α, β, γ ) T̂ λ
−m|�b〉, (132a)

〈�a|R̂(π + α, π − β, 2π − γ ) T̂ λ
m |�b〉 = (−)λ πa η∗

b 〈�a|R̂(α, β, γ )T̂ λ
−m|�b〉, (132b)

〈�a|R̂(2π − α, π − β, π + γ ) T̂ λ
m |�b〉 = πa ηa 〈�a|R̂(α, β, γ ) T̂ λ

m |�b〉, (132c)

〈�a|R̂(α, π − β, π − γ ) T̂ λ
m |�b〉 = (−)λ+m pa pb ηa 〈�a|R̂(α, β, γ ) T̂ λ

−m|�b〉∗, (132d)

〈�a|R̂(π − α, π − β, γ ) T̂ λ
m |�b〉 = (−)m pa pb η∗

b 〈�a|R̂(α, β, γ ) T̂ λ
m|�b〉∗, (132e)

〈�a|R̂(π + α, β, π + γ ) T̂ λ
m |�b〉 = (−)m πa pa pb ηa η∗

b 〈�a|R̂(α, β, γ ) T̂ λ
m|�b〉∗, (132f)

〈�a|R̂(2π − α, β, 2π − γ ) T̂ λ
m |�b〉 = (−)λ+m pa pb 〈�a|R̂(α, β, γ ) T̂ λ

−m|�b〉∗. (132g)

Each of these relations is obtained by replacing either the
left and/or right quasiparticle vacuum entering the matrix ele-

ment with a suitable symmetry-transformed state from one of
the relations in Eq. (125) or (126), followed by commutation
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of the rotation operator contained in the symmetry transforma-
tion with T̂ λ

m according to Eq. (107), using the special values
of the Wigner rotation matrices at rotation angles that are
multiples of π [122] and regrouping of the remaining rotation
operators into a single one [103]. The above relations connect
the matrix elements of any irreducible tensor operator at Euler
angles (α, β, γ ) with those at seven other combinations of
Euler angles in the full integration interval of the discretized
projection operator (118), which reduces the necessary com-
putational cost of the projected matrix element by a factor
of 8.

In addition to these relations, there is another one that
relates matrix elements involving the time-reversed of one of
the states with matrix elements at a different rotation angle:

〈�a|R̂(α, β, π + γ ) T̂ λ
m |�b〉

= (−)m pb η∗
b 〈�a|R̂(α, β, γ ) T̂ λ

m|�b〉∗. (132h)

This relation is different in several respects from those
of Eqs. (132a)–(132g). First, it only is a symmetry relation
when time-reversal is conserved, i.e., when |�a〉 = |�a〉. In
the more general case that we address here the matrix element
on the right-hand side (r.h.s.) of Eq. (132h) still has to be
numerically evaluated in addition to the one on the r.h.s. of
Eqs. (132a)–(132g). However, constructing the time-reversed
of a product state is usually much less costly, and numerically
more precise, than rotating it. Second, relation (132h) can
be combined with any of the seven relations (132a)–(132g)
above, such that the number of necessary applications of
the rotation operator is reduced by a factor of 16, from the
full interval [0, 2π ] × [0, π ] × [0, 2π ] to the much smaller
one [0, π

2 ] × [0, π
2 ] × [0, π ]. But, for each of the remaining

combinations of angles (α, β, γ ), one has to construct two
matrix elements: one involving the original state the other
its time reverse. Omitting global prefactors, the application
of the reduced angular momentum projection operator (106)
becomes

∫ 2π

0
dα

∫ π

0
dβ sin(β )

∫ 2π

0
dγ DJ∗

MK (α, β, γ ) 〈�a|R̂(α, β, γ )T̂ λ
m |�b〉

=
∫ π

2

0
dα

∫ π
2

0
dβ sin(β )

∫ π

0
dγ
[{[

DJ∗
MK (α, β, γ ) + πaηaDJ∗

MK (2π − α, π − β, π + γ )
]〈�a|R̂(α, β, γ )T̂ λ

m |�b〉

+ (−)λ
[
πaηaη

∗
bDJ∗

MK (π − α, β, π − γ ) + πaη
∗
bDJ∗

MK (π + α, π − β, 2π − γ )
]〈�a|R̂(α, β, γ )T̂ λ

−m|�b〉
+ (−)m

[
pa pbη

∗
bDJ∗

MK (π − α, π − β, γ ) + πa pa pbηaη
∗
bDJ∗

MK (π + α, β, π + γ )
]〈�a|R̂(α, β, γ )T̂ λ

m|�b〉∗

+ (−)λ+m
[
pa pbηaDJ∗

MK (α, π − β, π − γ ) + pa pbDJ∗
MK (2π − α, β, 2π − γ )

]〈�a|R̂(α, β, γ )T̂ λ
−m|�b〉∗

}
+ (−)m pbη

∗
b

{[
DJ∗

MK (α, β, π + γ ) + πaηaDJ∗
MK (2π − α, π − β, 2π + γ )

]〈�a|R̂(α, β, γ )T̂ λ
m|�b〉∗

+ (−)λ
[
πaηaη

∗
bDJ∗

MK (π − α, β,−γ ) + πaη
∗
bDJ∗

MK (π + α, π − β, π − γ )
]〈�a|R̂(α, β, γ )T̂ λ

−m|�b〉∗
}

+ (−)m pbηb

{
(−)m

[
pa pbη

∗
bDJ∗

MK (π − α, π − β, π + γ ) + πa pa pbηaη
∗
bDJ∗

MK (π + α, β, 2π + γ )
]〈�a|R̂(α, β, γ )T̂ λ

m |�b〉

+ (−)λ+m
[
pa pbηaDJ∗

MK (α, π − β,−γ ) + pa pbDJ∗
MK (2π − α, β, π − γ )

]〈�a|R̂(α, β, γ )T̂ λ
−m|�b〉

}]
. (133)

The above equation is valid for any eigenvalue of the x sig-
nature and any number parity of the considered quasiparticle
vacua. Thereby, this equation constitutes a generalization of
the expression given in Ref. [144] that is limited to quasipar-
ticle vacua with a x signature ηa = ηna = ηpa = 1 describing
even-even nuclei.

As already mentioned when defining them through
Eqs. (114) and (116), respectively, the use of the symmetries
(132a)–(132h) of the rotated matrix elements imposes some
conditions on the form of the discretized operators P̂ K0

z,Mγ
and

P̂ J0M0K0
y,Mβ

. First, the angles connected by the symmetries have
all to be contained in a given discretization of the complete in-
tervals. Second, it should be avoided that discretization points
are located on the borders of the reduced intervals [0, π

2 ] ×
[0, π

2 ] × [0, π ]. Indeed, when the quasiparticle vacua have
eigenvalues of parity or signature that are different from +1,
or when the two states entering the matrix element have differ-

ent signatures,25 then (132a)–(132h) imply that for symmetry
reasons the norm overlap and some other operator matrix
elements are zero on some of the boundaries of the reduced
integration intervals. Using a discretization with points on
the boundaries would then implicitly reduce the order of the
quadrature rules. In addition, the same technical problems
already mentioned in Sec. III F would present themselves for
the evaluation of those operator kernels that remain nonzero
at those angles.

The definitions (114) and (116) of the discretized projec-
tion operators respect these requirements as long as the values

25We note that although states of opposite signature are orthogonal,
they have in general nonzero angular-momentum projected matrix
elements if their parity is the same.
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of Mα , Mβ , and Mγ are chosen to be of the form

Mα = 4i,

Mβ = 2 j, i, j, k ∈ N,

Mγ = 2k,

(134)

because we reduced by a factor of 4, 2, and again 2 the three
intervals on which we carry out the rotations over α, β, and γ ,
respectively.

C. Mixing of K components

As discussed in Sec. II on the general principles of sym-
metry projection, linear dependences among the rotated states
as discussed in the previous subsection result in a reduction
of the dimensionality of the subspace they span. While for
some intrinsic symmetries this eliminates specific values of J
and/or K directly from the spectrum of components a given
quasiparticle vacuum can be decomposed into, working with
eigenstates of the x signature introduces a symmetry in the
norm and operator kernels that has to be specifically taken
care of.

Indeed, considering a quasiparticle state |�a〉 that is an
irrep of 〈P̂, R̂x, ŜT

y 〉, a rotation by an angle π around the x
axis transforms its projected component K into its projected
component −K :

R̂x

∣∣�JK
aε

〉 = e−iπJ
∣∣�J−K

aε

〉
, (135)

which can be easily shown inserting Eq. (85a) into Eq. (89)
and then using the special values of the Wigner function
DJ

MK (0, π, π ) [122] for given J , M, and K . This relation
implies that the coefficients cJ±K

aε in the decomposition (99)
are related through

cJ−K
aε = ηa e+iπJ cJK

aε . (136)

This relation among the weights of the components that can be
projected out from a state with given signature translates into a
symmetry relation among elements (97) of the projected norm
matrix NJ :

NJ
KK ′ = ηa e+iπJ NJ

K−K ′ , (137a)

= η∗
a e−iπJ NJ

−KK ′ , (137b)

= NJ
−K−K ′ , (137c)

These relations imply that the norm matrix has null eigen-
values whenever decomposing a state with good x signature.
More precisely, there are dnull = 2J+1

2 of them for half-integer
angular momenta, and dnull = 2J+1

2 ± 1
2 of them for integer

angular momenta (the sign for ±1/2 depends on whether or
not NJ

00 is null for reason of other intrinsic symmetries). Notice
that this does not necessarily exhaust the number of zero norm
eigenvalues of these matrices as others can be null as well,
for example, for reason of additional intrinsic symmetries that
are not imposed by the numerical representation, but that are
self-consistently taken by the state.

As the Hamiltonian is rotationally invariant, it commutes
with R̂x and we find analogous symmetry relations for the
elements (96) of the Hamiltonian matrix HJ :

HJ
KK ′ = ηa e+iπJ HJ

K−K ′ , (138a)

= η∗
a e−iπJ HJ

−KK ′ , (138b)

= HJ
−K−K ′ . (138c)

To solve the GEP (95) numerically, we have to first remove all
the null eigenvalues of the norm matrix that arise because of
the intrinsic x signature symmetry. In order to do so, we extend
on an idea proposed by Enami et al. [144], that is, we realize
a similarity transformation that partitions the norm, Hamil-
tonian, and other operator matrices into a dnull × dnull block
that acts in the null space arising from the intrinsic x-signature
symmetry, and a (2J + 1 − dnull ) × (2J + 1 − dnull ) block in
the remaining space of vectors that are not connected by a
signature transformation. For the simplest case of states |�a〉
with even number parity of protons and neutrons and positive
x signature ηa = +1, a possible choice for W has been given
in Ref. [144]. The generalization to arbitrary number parities
and eigenvalues of signature is straightforward.

For a Bogoliubov quasiparticle vacuum |�a〉 with even
number parity and x signature ηa = ±1, which implies pro-
jection onto integer angular momentum J , the transformation
W can be taken as the (2J + 1) × (2J + 1) orthogonal matrix

W J
ηa

≡

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1√
2

0 ηa(−)J√
2

. . . . .
.

1√
2

ηa (−)J√
2

0 1 0
ηa (−)J+1√

2
1√
2

. .
. . . .

ηa(−)J+1√
2

0 1√
2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(139)
Using relations (137) along the way, the norm matrix resulting
from a similarity transformation with this matrix takes the
structure(

W J
ηa

)−1
NJ W J

ηa

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0

0 NJ
00

√
2NJ

01 · · ·√2NJ
0J

0

√
2NJ

10
...√

2NJ
J0

2NJ
11 · · · 2NJ

1J
...

. . .
...

2NJ
J1 · · · 2NJ

JJ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

≡
(

0 0
0 Ñ

J

)
, (140)

and similarly for the transformed Hamiltonian matrix and the
matrices representing other operators.

For a Bogoliubov quasiparticle vacuum |�a〉 with odd
number parity and x signature ηa = ±i, which implies projec-
tion onto half-integer angular momentum J , W J

ηa
can be taken
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as the (2J + 1) × (2J + 1) orthogonal matrix

W J
ηa

≡

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1√
2

0 ηae+iπJ√
2

. . . . .
.

1√
2

ηae+iπJ√
2

0 0
ηae−iπJ√

2
1√
2

. .
. . . .

ηae−iπJ√
2

0 1√
2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (141)

In that case, the similarity-transformed norm matrix takes the
form

(
W J

ηa

)−1
NJ W J

ηa
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 0

0

2NJ
1
2

1
2

· · · 2NJ
1
2 J

...
. . .

...

2NJ
J 1

2
· · · 2NJ

JJ

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

≡
(

0 0
0 Ñ

J

)
. (142)

We remark that, in the general case, the transformation matrix
W J

ηa
depends not only on the angular momentum onto which

one projects, but also on the x signature ηa of the state |�a〉.
The advantage of performing such transformation is that

it replaces the GEP (95) that has dnull zero eigenvalues for
symmetry reasons by a GEP that is reduced to the (2J + 1 −
dnull ) × (2J + 1 − dnull ) nontrivial blocks Ñ

J
and H̃

J
of the

transformed norm and Hamiltonian matrices

H̃
J

f̃
J
ε = eJ

ε Ñ
J

f̃
J
ε . (143)

The transformed generalized eigenvectors f̃
J
ε are related to the

original ones through (
0
f̃

J
ε

)
= W −1

ηa
f J

ε (144)

and are a linear combination of projected components with K
and −K components induced by the x-signature symmetry.
The possibility to eliminate the redundant components this
way is what has motivated us to choose the x signature in
the angular momentum projection over the z signature used
in single-reference calculations.

The new GEP of Eq. (143) obtained after similarity trans-
formation gives the same generalized eigenvalues eJ

ε as the
ones of the original GEP. As for projected states, they can
be shown to be equivalent to the original ones. Therefore we
obtain the same results by solving the transformed problem.

The definition of the transformation W J
ηa

is not unique;
there are possible alternative forms that differ by global phases
or that result in a different placement of the nontrivial block
in the transformed matrix. But all of these lead to the same
projected states after solution of the GEP.

The above relations can be easily generalized to the trans-
formation of the norm and energy kernels between two
different states as they enter the a GCM calculation based

on angular-momentum projected states, and which are simply
obtained as (W J

ηa
)
−1

NaJbJ W J
ηb

, and similarly for the energy
kernel. The same relation can also be used to transform the
matrices representing the matrix elements of any other scalar
operator to the reduced space.

For higher-rank tensor operators that connect different ir-
reps, the transformation of the initial and final state will in
general be different as their angular momenta and signatures
can be different. For a set of tensor operators T̂ λ

μ , and defining
the reduced matrix elements before K mixing as26

T aJ ′bJ
K ′K ≡ √

2J ′ + 1
λ∑

μ=−λ

J∑
M=−J

(JMλμ|J ′K ′)〈�a|T̂ λ
μ P̂J

MK |�b〉,

(145)

one then has to compute in the general case the transformed
matrix (

T̃
aJ ′bJ

)
≡ (W J ′

ηa

)−1
T aJ ′bJ W J

ηb
, (146)

where T̃
aJ ′bJ

is now a (2J ′ + 1 − d ′
null ) × (2J + 1 − dnull )

rectangular matrix.

D. Time-reversed partners

Let us consider a state |�a〉 and its time-reversed partner
|�a〉 as defined in Eq. (130). Using the symmetry relation
(131), one can derive [103] that their components cJK

aε and
c̄JK

aε , respectively, in the decomposition on the basis states of
span[SU (2)|�a〉] are related through the equation

c̄JK
aε = pa ηa e+iπK cJK

aε . (147)

As a consequence, the elements of the norm matrix N̄
J

for
the time-reversed state |�a〉 are directly related to those of NJ

through the relation

N̄J
KK ′ = (−)K−K ′

NJ
KK ′ . (148)

As the Hamiltonian commutes with T̂ , we also have an
equivalent relation for the Hamiltonian matrix H̄

J
of the time-

reversed state |�a〉:
H̄J

KK ′ = (−)K−K ′
HJ

KK ′ . (149)

Equations (148) and (149) can be seen as a similarity trans-
formation through the (2J + 1) × (2J + 1) diagonal unitary
matrix S whose matrix elements are

SKK ′ = e−iπK δKK ′ . (150)

With the same rationale as the one used in the previous
section, it is then straightforward to understand that a pair
of time-reversed states gives the same projected states after

26We recall that K and K ′ are mere labels of components that have
to be mixed by the GEP (95) in order to obtain the projected states.
They should not be confused with the labels M and M ′ of components
within the irreps of the angular-momentum projected states after K
mixing.
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K mixing, up to a phase factor. As example, we mention
the case of two one-quasiparticle states built by blocking
in a Bogoliubov even-even vacuum the two time-reversed
single-particle states of opposite signatures. Even if they are
orthogonal, those two one-quasiparticle states will give, up
to linear dependence, the same projected states. As a result,
when building projected states, it is sufficient to consider only
one out of the two states |�a〉 and |�a〉, but not both of them.

E. Reduction to a real symmetric GEP

Another relation can be obtained by noticing that, within
basis states of an irrep of SU (2), the time-reversal operation
links a state with K and a state with −K . With our choice of
representation for the rotation and time-reversal operators, we
obtain

c̄JK
aε = (−)J+K

(
cJ−K

aε

)∗
. (151)

Combining this relation with Eqs. (136) and (147), we identify
that

cJK
aε = pa (−)2J

(
cJK

aε

)∗
. (152)

As a result, depending on the parity of the state |�a〉 and on
the value of J , the weights cJK

aε are either real or purely imag-
inary numbers. Therefore, any product of the form (cJK ′

aε )
∗
cJK

aε

is real, and consequently so are the norm matrix NJ and the
Hamiltonian matrix HJ . The final consequence is that our
problem reduces to a real symmetric GEP.

F. Representative applications

1. Examples of decomposition

Let us first study the decompositions in terms of J and
K components of some quasiparticle vacua that have the in-
trinsic symmetries of the group 〈P̂, R̂x, ŜT

y 〉. For a product
state having such point-group symmetry all local densities and
currents have three plane symmetries [62,63,142]. Examples
of the decomposition of time-reversal-invariant quasiparticle
vacua with even number parities for protons and neutrons that
have this symmetry, which implies p = η = +1, have been
discussed earlier in Refs. [37,38]. We consider here instead
four different one-quasiparticle states of 25Mg constructed by
(self-consistently) blocking different selected single-particle
states and imposing constraints on their average quadrupole
deformation during the minimization procedure. These states
are taken from the set of reference states entering the projected
GCM calculation presented in Ref. [42] and have been se-
lected because they are representative examples for the effects
of projection. The states were generated using the Cartesian
3d coordinate-space HFB code CR8 that is based on the prin-
ciples outlined in Ref. [142] and which has been updated to
handle the Skyrme Hamiltonian SLyMR0 of Ref. [146] in
connection with exact Coulomb exchange and Coulomb pair-
ing, and which was used for the calculation described below.
The HFB and the projection code [147] use the same accurate
Lagrange-mesh technique for derivatives [148], which can
also be used to define rotation operators. While the projection
code assumes a 〈P̂, R̂x, ŜT

y 〉 point-group symmetry, the mean-
field code imposes a 〈P̂, R̂z, ŜT

y 〉 symmetry instead, which is

TABLE III. Characteristics of the quasiparticle vacua discussed
in Fig. 13, where β2 and γ defined as in Ref. [37] characterize the
absolute size and nonaxiality of quadrupole deformation, while η is
the eigenvalue of z signature R̂z, p the eigenvalue of parity, and 〈d̂z〉
the z component of the decoupling vector as defined in [145] that for
states with 〈P̂, R̂x, ŜT

y 〉 plays the role of measuring the z component
of total angular momentum in the nonprojected state (see text). We
also give the value of the decoupling vector 〈d̂z〉axial of the equivalent
single-particle state when considering a pure axial deformation. All
states are constructed as blocked one-quasiparticle excitations of
25Mg and therefore are odd under time reversal.

Label 〈Ẑ〉 〈N̂〉 (β2, γ ) η p 〈d̂z〉 〈d̂z〉axial

spherical 12 13 (0.0, 0◦) −i 1 0.50 0.50
axial 12 13 (0.52, 0◦) −i 1 0.50 0.50
triaxial 1 12 13 (0.60, 14◦) −i 1 0.65 0.50
triaxial 2 12 13 (0.77, 30◦) −i 1 1.19 2.50

of advantage when generating cranked HFB states such as
those that will be discussed in Sec. V F 3. The transformation
between both representations is achieved with an axis permu-
tation operator as defined in Ref. [143]; see Ref. [103] for
details. The main characteristics of the states can be found in
Table III. For the sake of simplicity we label the four states as
“spherical,” “axial,” and “triaxial,” which refers to the shape
of their matter density distribution. In all cases, the shape has
been constrained with quadrupole constraints that lead to the
values for the quadrupole moments β2 and γ . However, this
does not mean that the “spherical” state truly takes spher-
ical symmetry. While it has zero quadrupole moments, the
distributions of spin and current cannot be spherically sym-
metric for a state with odd-number parity that in general has a
nonzero expectation value of angular momentum. Similarly,
the “axial” state has been constrained to an axial shape of
its matter density distribution, which does not automatically
mean that currents and spin densities are axially symmetric.

Working with eigenstates of the x signature implies that
only the component of their angular momentum vector point-
ing in the x direction is measurable; hence, it can have a
non-zero expectation value.27 This has direct consequences
for the decomposition of such states into eigenstates of Ĵz by
applying the projection operator P̂J

KK . As has been worked out
in detail in Ref. [145], eigenstates of a signature with respect
to some Cartesian coordinate axis can always be expressed as
a superposition of an eigenstate of a signature with respect
to a different Cartesian coordinate axis and its time-reversed
state, where both have equal weight and some relative phase.
As they are eigenstates of Ĵz, the K components projected
out with P̂J

KK are by construction also eigenstates of the z
signature. From this it follows that a quasiparticle vacuum
that is an eigenstate of the x signature will always decompose
into pairs of components ±K with equal weight, which is the

27This does not mean that the angular-momentum vector of these
states is aligned with the x axis. An eigenstate of Ĵx that automatically
is an eigenstate of the x signature still can have an expectation value
of Ĵ2 that is larger than Jx (Jx + 1).
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foundation of Eq. (136) derived earlier. The transformation
W J

η as defined in Eq. (139) or (141) then recombines each
pair of components ±K into a single state whose measurable
angular momentum points again in the x direction. This choice
of the x axis for the direction of measurable angular momenta
might not be the most intuitive, but has the advantage that
redundant states in the decomposition can be eliminated with
symmetry arguments based on conserved signature of the
reference state.28 We also recall that the physical states are
those obtained from K mixing when solving the GEP (143),
such that the decomposition into K components is merely a
diagnostic tool. The following analysis of decomposition ad-
dresses J and K components as obtained from the application
of P̂J

KK before applying the similarity transformation W J
η.

The same arguments apply to the characterization of angu-
lar momenta of the quasiparticle vacua that serve as reference
states. The shape of the states is oriented such that pro-
late states (γ = 0◦) are symmetric around the z axis in the
projection code. The size of the angular momentum of a
single-particle state along the symmetry axis of the “axial”
state is obtained as the length of the “decoupling vector”29

dz ≡ 〈 ĵz T̂ 〉 as defined in Ref. [145]. The same orientation has
been chosen also for the “spherical” state.

In Fig. 13, we plot the two sums of components,

�J ≡
J∑

K=−J

〈�|P̂J
KK P̂Z P̂N |�〉, (153)

�K ≡
∑

J

〈�|P̂J
KK P̂Z P̂N |�〉, (154)

for the four quasiparticle vacua as specified in Table III. In
addition to angular-momentum restoration, all states were
also projected on proton number Z = 12 and neutron number
N = 13.

As can be observed, the decompositions of the four states
are very different one from another, but they all respect
the symmetry �K = �−K , which is a consequence of the
conserved x signature of the reference state. This is to be
contrasted with the more general asymmetric decomposition
of state (b) discussed in Sec. IV E, whose expectation value of
angular momentum is not constrained by symmetry to point
into a specific direction.

For the “spherical” state, we can see that it has an almost
pure J = 1/2 and |K| = 1/2 character, the values being a
fingerprint of the blocked 2s1/2 single-particle state in the
canonical basis of the quasiparticle vacuum [15]. Because of
the constraint on vanishing quadrupole moments, polarization

28Note that what is discussed in the literature as the signature of
eigenstates of angular momentum usually has a different meaning:
it is the signature with respect to a rotation by π around the axis
into which points angular momentum. This property is, for exam-
ple, used to characterize experimentally observed rotational bands
[14,15,149,150]. We will come back to that in Sec. V F 3.

29Throughout this subsection, we use lower-case symbols when
referring to operators acting in the single-particle space and their
matrix elements in order to distinguish them from the upper-case
symbols that refer to operators in Fock space.

FIG. 13. Top: quantity �J for the selected quasiparticle states
discussed in the text. Bottom: same for the quantity �J .

effects are tiny, as components with different J and K are
barely visible on the scale of Fig. 13. It is also remarkable that,
although the numerical representation on a three-dimensional
Cartesian mesh is not closed under rotations, an almost pure
eigenstate of angular momentum J state can be created simply
through a constraint on its average deformation.

The state labeled “axial” in Table III that was built by
blocking a single-particle state that has a decoupling vector
dz = 1/2. We see from the decomposition that the many-body
state is also of almost pure |K| = 1/2 character. Because of
its finite quadrupole moment, however, this state is a superpo-
sition of components with different values of J that are spread
to values larger than 17/2.

Finally, looking at the two triaxial cases in Fig. 13, one
observes that the states are now superpositions of components
with different values of both J and K . In general one finds
that the spread of the K components increases with the de-
gree of nonaxiality as measured by the angle γ of Bohr’s
(β, γ ) parametrization of the quadrupole moment. Also,
with increasing quadrupole deformation β, the distribution
of J components is more evenly spread and pushed towards
larger values of the angular momentum [37,38]. While the
state “triaxial 1” still conserves a certain fingerprint of the
blocked single-particle state in its distribution with a dominant
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FIG. 14. Energy spectrum built from the expectation values EJNZ
iK

for different values of K obtained in the decomposition of the “axial
state” as defined in Table III.

|K| = 1/2 component, the state “triaxial 2” built at nonaxial-
ity angle γ = 30◦ does not.

We recall that the K components projected out from a given
state |�〉 generally cannot be interpreted as physical states.
The two major reasons are that the K components with given J
generally are not orthogonal, and that the spectrum of K com-
ponents depends on the orientation of the reference state; see
the examples for even-even nuclei discussed in Refs. [37,38].
The only exception is therefore the decomposition of a state
that is axial with the z axis as symmetry axis and that in
addition is an eigenstate of Ĵz, such that projection yields at
most only one K component per irrep. With the choice of
conserved x signature as assumed throughout this section, this
special case is even limited to states that only have K = 0
components.

2. Examples of K mixing

Whenever a state |�〉 can be decomposed into several K
components with given J , there is a necessary second step
in the restoration of angular momentum that consists of the
mixing of the projected wave functions with the same M
but different K , i.e., the states {P̂J

MK |�〉, K ∈ �−J, J�}. It is
only after this mixing that one obtains an orthogonal set of
correlated states of given J in the vector space span(G|�〉)
that diagonalize the Hamiltonian and that are independent on
the orientation of the reference state |�〉. The effect of K
mixing sensitively depends on the properties of the state |�〉
that is projected. It may be very mild or change drastically the
energy spectrum at hand. In Figs. 14 and 15 we display the
spectrum built based on the projected energies

EJNZ
iK = 〈�i|Ĥ P̂J

KK P̂Z P̂N |�i〉
〈�i|P̂J

KK P̂Z P̂N |�i〉
, (155)

for three different states, considering only positive values of
K , as the components with ±K are degenerate because of the
x signature imposed on all states |�i〉 considered throughout

FIG. 15. Same as Fig. 14 for the decomposition states of the
states |�a〉 [panel (a)] and |�b〉 [panel (b)] as defined in Tab. IV.
The colors of the levels indicate the value of K , whereas the labels
next to the levels indicate the value of J .

this section. As explained in Sec. V C, these pairs of states
will contribute with weights of equal absolute value to the
K-mixed states.

Figure 14 shows the energy spectrum for the “axial state”
as defined in Table III that only has K = ±1/2 compo-
nents. Applying the suitable transformation W J

η as defined
in Eq. (141) accomplishes the necessary K mixing without
the need to solve the GEP (143), and without changing the
energy spectrum. In fact, this example illustrates a case that
can also be described with the phenomenological Unified
Model, as defined in Refs. [12–15], that is widely used to
interpret rotational bands of odd-mass nuclei in terms of sim-
ple intrinsic configurations relying on the schematic picture
of a single-particle state coupled to a deformed core. In the
Unified Model, the treatment of the special case of rotational
bands built on k = 1/2 orbits requires the introduction of
an additional �J = 1 Coriolis interaction with a so-called
“decoupling parameter,” that in some cases pairwise switches
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TABLE IV. Characteristics of the quasiparticle vacua used to
prepare Figs. 15 and 16.

Label 〈Ẑ〉 〈N̂〉 (β2, γ ) η p 〈d̂z〉 〈d̂z〉axial

a 12 13 (0.60, 14◦) −i 1 0.65 0.50
b 12 13 (0.47, 24◦) −i 1 1.82 2.50

the relative order of the energy levels compared to their usual
scaling with J (J + 1) − K2; see also Ref. [151]. In an angular-
momentum projected approach this effect is automatically
described with a size that is entirely determined by the proper-
ties of the reference state, and the state used to prepare Fig. 14
is an example where the order of the states is indeed changed.

For two other triaxial quasiparticle vacua, whose charac-
teristics are given in Table IV, we plot in Fig. 15 the spectra
of (J, K ) components up to K = 9/2. Their respective decom-
positions in energy are quite different from the one of Fig. 14
and also among each other. These two states have nonvanish-
ing components for each possible value of |K| for given J .
Without K mixing, the levels of same K but different J do not
necessarily form the usual pattern of a rotational band, which
is again most obvious for K = 1/2 components for which the
order of levels is again pairwise switched, as for the state
discussed in Fig. 14. At low J , the decomposition of state |�a〉
in general energetically favors the band based on K = 1/2
components and gives an excited band based on K = 5/2.
For state |�b〉 one finds the opposite. This dominance is a
fingerprint of the single-particle configuration that has been
self-consistently blocked. Although the final many-body state
is not pure, i.e., many bands appear in its decomposition,
the dominant component is usually energetically favored. The
other bands based on higher K components are rather similar.

Both states have the peculiarity that one finds near-
degenerate J = 9/2 components with different K in their
decomposition. In Fig. 16, we compare the energies of these K
components with the eigenvalues of the projected states after
K mixing. In the case of state |�a〉, we see that K mixing has
the effect of lifting the degeneracy of the three lowest states
with K = 1/2, 5/2, and 9/2, with one state visibly being
lowered, another one being pushed up, and the third staying
in between, as can be expected from the general principles of
configuration mixing. The K = 3/2 and K = 7/2 components
are also clearly mixed with the others. The fourth state in
the spectrum is actually more shifted energetically than the
first three states despite the K = 3/2 component being more
isolated. For the state |�b〉, the values of the diagonal ma-
trix elements before mixing are more spread out, such that
the diagonalization does not change the global aspect of the
spectrum. Nevertheless, the K mixing still has an effect on
the energies and even the highest energy state, well above the
others, is changed. All other observables are also obviously
affected by the K mixing, which we will not discuss. In both
cases, there are no redundant components in the decompo-
sition after the transformation W J

η, as defined in Eq. (141),
has been applied, such that one obtains five different J = 9/2
states after K mixing.

|Φa Φb

FIG. 16. Spectrum of J = 9/2 states before and after K mixing
for the states |�a〉 and |�b〉 as defined in Table IV. The energies
EJNZ

iK (155) of K components are drawn in the same color code as
used in Fig. 15, whereas energy levels after K mixing are drawn in
black. Note that the three lowest K components of state |�a〉 are
quasidegenerate, such that their levels fall on top of each other on the
scale of the plot.

3. Projection of cranked states

The self-consistent cranking approach has been used for a
long time to construct collective rotational bands in single-
reference valence-space [151] and EDF calculations [142].
It can be motivated either as a self-consistent state in a
rotating frame subject to Coriolis forces [120], or as the
first-order approximation to a VAP on angular momentum
[28,91,116,117,119]; see also Sec. IV A. The PAV on angular
momentum of cranked Slater determinants and Bogoliubov
quasiparticle vacua has been used in exploratory studies using
valence-space Hamiltonians [99], the BKN EDF [141], the
Gogny force [43,45,47], and the Skyrme EDF [152,153], in
some cases combined with further configuration mixing of
states with different deformation and/or of states at different
expectation values of angular momentum [45].

Practically speaking, assuming a good x signature,30 for
states that are nearly axial around the z axis, the self-consistent
cranking approximation usually consists of adding an auxil-
iary condition on the expectation value of the form

〈Ĵx〉a(Jc ) ≡ 〈�a(Jc )|Ĵx|�a(Jc )〉 =
√

Jc(Jc + 1) − K2
c , (156)

during the minimization procedure of the state |�a(Jc )〉
[116,150,151,154], where Jc is the targeted angular momen-
tum and Kc is the assumed length of the component of angular
momentum in the z direction, which depends on the charac-
teristics of the blocked quasiparticles of the state |�a(Jc )〉. We

30We recall that the minimization is actually made with a code in
which the roles of the x and z axes are exchanged; see Sec. V F 1.
For consistency with the rest of the discussion, Eq. (156) uses the
orientation of the state as it is projected.
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recall that when imposing 〈P̂, R̂x, ŜT
y 〉 symmetry, only the an-

gular momentum operator in the x direction can have nonzero
expectation value, and Kc is related to the z component of the
decoupling vector as defined above.

Because angular momentum changes sign under time
reversal, the cranking constraint necessarily breaks the time-
reversal invariance of the self-consistent procedure. The
constraint (156) introduces a Coriolis interaction that in
general acts differently on two nucleons in time-reversed
single-particle states and thereby splits Kramers degeneracy.
The reason is that one out of the two single-particle states
has a component of angular momentum that is aligned with
the cranking constrained, whereas the angular momentum of
its time-reversed partner state is antialigned. If the cranking
constraint is the only source of time-reversal breaking, which
implies K = 0 in Eq. (156), then cranking a state to −〈Ĵx〉a(Jc )

generates the time reverse of the state that is obtained when
cranking to +〈Ĵx〉a(Jc ), meaning that both states are equivalent,
as discussed in Sec. V D.

When cranking blocked quasiparticle vacua, however, we
can always construct two nonequivalent solutions: one for
which we block a quasiparticle whose measurable x com-
ponent of angular-momentum is aligned with the direction
of the cranking constraint, and one for which we block its
time-reversed partner that is antialigned. The resulting many-
body states cannot be transformed from one into the other
by time reversal and will in general have slightly differ-
ent total energy and other observables [154]. For reasons
elaborated for example in Ref. [28,151,154] and recalled
in what follows, it is customary to construct states cranked
to Jc = 1/2, 5/2, 9/2, 13/2, . . . by blocking a single-particle
level with x signature ηa = −i, whereas states cranked to
Jc = 3/2, 7/2, 11/2, 15/2, . . . are constructed by blocking a
single-particle level with ηa = +i. These states are usually
grouped into two different signature-partner bands, for which
one often finds experimentally that the levels in one band do
not fall exactly in between those in the other, but are slightly
shifted [149,150], an effect that is in general also found in
cranked HFB calculations.

In order to illustrate this effect, we display in Fig. 17 the
summed weight of the components with given J ,

�J =
J∑

K=−J

NJ
KK , (157)

obtained when projecting two one-quasiparticle states of
25Mg obtained by blocking quasiparticles in (originally time-
reversed) partner orbits of opposite x signatures ηa = +i and
η̄a = −i, and which are cranked to different values of Jc as
defined in Eq. (156). These states are constructed in the same
way as those discussed above.

As can be seen, in the absence of cranking constraint [panel
(a)] the two distributions of the weights �J are equal, up
to numerical accuracy, which follows from the discussion in
Sec. V D. With increasing value of the constrained angular
momentum Jc [panels (b) and (c)], the two distributions be-
come different, with every second component becoming much
smaller. In the limit of high collective angular momentum
Jc � Kc the two blocked states have a very different decom-

Ξ
J

J

ηa = +i

η̄a = −i

Ξ
J

J

ηa = +i

η̄a = −i

Jc = 9/2 , Kc = 5/2

Ξ
J

J

ηa = +i

η̄a = −i

Jc = 21/2 , Kc = 5/2

FIG. 17. Summed weight �J as defined in Eq. (157) of com-
ponents with given J projected out from one-quasiparticle states
for 25Mg obtained by blocking single particles in originally time-
reversed partner states of opposite x signatures η, and cranked to
different values of Jc.

position, and one then finds a distribution of components
that mirrors the rules for the selection of the blocked single-
particle levels mentioned above: cranked one-quasiparticle
states |�a(Jc )〉 with x signature ηa(Jc ) = +i are dominated by
components with J = 3/2, 7/2, 11/2, 15/2, etc., whereas
one-quasiparticle states with x signature ηa(Jc ) = −i are
dominated by components with J = 1/2, 5/2, 9/2, 13/2, etc.
We remark that this selection rule can also be understood
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FIG. 18. Projected energies, as defined in Eq. (158), of yrast
states projected from two one-quasiparticle states for 25Mg obtained
from blocking two originally time-reversed partners of opposite x
signatures ηa cranked to different values of Jc as indicated.

using the Kamlah expansion [91] at large spin (see Ref. [103]
for more details).

Finally, we notice that as we increase the value of the con-
straint, the distribution of components move to larger values
of J , and becomes wider. For the two cranked states, the distri-
bution of the components is peaked near the cranked angular
momentum, which is not always the case [119,141,152,153].

The effect of cranking on blocked one-quasiparticle states
can also be seen on the energies of the symmetry-restored
states,

EJNZ
aε(Jc ) = 〈�JMNZ

aε(Jc )

∣∣Ĥ ∣∣�JMNZ
aε(Jc )

〉
, (158)

displayed in Fig. 18 for yrast states obtained when crank-
ing the one-quasiparticle states to different values of Jc. The
cranked states used to prepare this figure have the same
slightly triaxial shape as the states used to prepare Fig. 17,
but cover also intermediate values of the cranked angular mo-
mentum Jc. First, we observe that in the absence of a cranking
constraint the energies of the projected states built from the
states of opposite signatures are strictly equal for a given J ,
which is expected as the two states are in that case connected
by time reversal. By contrast, when a cranking constraint
is added during the minimization, the projected energies for
given J split. Their difference varies greatly depending on J
and Jc. For all values of J the cranked states always give lower
projected energies than the noncranked ones, with the gain
in energy usually increasing with J , as already found earlier
[43,45,47,152,153]. This confirms that self-consistent crank-
ing optimizes the states for subsequent projection on high
angular momentum, as should be expected from an approx-
imation to a VAP calculation. But for the values of cranked
and projected angular momenta covered by Fig. 18, we do not

observe any clear pattern indicating which x signature will be
favored energetically.

VI. SUMMARY AND CONCLUSIONS

The quantum-number projection technique is a powerful
tool that permits one to build symmetry-adapted wave func-
tions starting from any arbitrary many-body reference state.31

In addition, when defined as the diagonalization of the nu-
clear Hamiltonian in the subspace spanned by the set of
all rotated states (built by rotating the initial reference state
in all possible ways) as elaborated in Sec. II, the method
provides a procedure to grasp correlation energy that is ab-
sent in a symmetry-breaking calculation The eigenstates thus
obtained represent variationally optimal wave functions (in
this subspace) that respect the symmetries of the problem
and therefore can be used to compute unambiguously the
expectation values of observables of interest. In particular, the
projection restores selection rules for the matrix elements of
tensor operators.

In Secs. III and IV, we illustrated the method in the case of
particle-number and angular-momentum projections. In each
case, we presented the general principles of the projection as
well as the practical aspects of its numerical implementation.
While the group U (1) associated with a good number of
particles is Abelian, the group SU (2) associated with a good
angular momentum is not, which makes the latter projection
much more involved. Nevertheless, it is possible in both cases
to use efficient numerical discretizations of the integrals over
group elements. When a sufficiently large number of dis-
cretization points is used, the integration is performed exactly
up to the numerical noise.

We have limited our discussion to these two continuous
symmetries. Another case of interest not addressed here is the
breaking and restoration of parity [155], which from a formal
and practical point of view is much simpler and straightfor-
ward: as it is a discrete Abelian symmetry, parity projection
of a reflection-symmetry-breaking state always corresponds
to the mixing of exactly two states, the original one and its
parity-inverted image. Their superposition span a vector space
of dimension 2 that is the direct sum of two one-dimensional
subspaces corresponding to the irreps with parity ±1. As a
consequence, there are no questions about the discretization of
the numerical representation of the parity projection operator
in order to achieve optimal convergence.

Finally, in Sec. V, we gave formal results that permit a great
deal of simplifications when dealing with reference states that
have the symmetry properties of the subgroup 〈P̂, R̂x, ŜT

y 〉
of the group DT D

2h , often employed in nuclear physics to de-
scribe collective phenomena in axially and triaxially deformed

31However, this has to be complemented by an efficient technique
to evaluate the operator kernels, a question we have not addressed
here as it depends on the nature of the states to be projected and
their numerical representation. For an overview over the various
techniques to evaluate such kernels for multireference energy density
functionals, see [49].
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nuclei. For this class of states, we derived the most gen-
eral expressions that can be applied to any reference state,
regardless of its number parity or the angular momentum
considered.

Up to now, the projection method has been used ex-
tensively within multireference formalisms based on Slater
determinants and Bogoliubov quasiparticle vacua, either us-
ing valence-space Hamiltonians or energy density functionals,
to tackle a large variety of phenomena [24,46,74,77]. But
there are also new ongoing developments to design ab ini-
tio schemes that integrate symmetry restoration as one of
their fundamental principles [54,56–59,84]. For that reason,
we have to specify that although we illustrated our discus-
sion making use of Bogoliubov quasiparticle reference states,
most of the results presented here can be directly carried
over to more general types of symmetry-breaking reference
states.
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APPENDIX: DISCRETIZATIONS FOR
PARTICLE-NUMBER PROJECTION

In Sec. III, we introduced a discretized projection operator
for particle-number projection based on the original idea by
Fomenko [110]. Actually, there exist other choices that behave
similarly but differ by the position of the quadrature points in
the interval [0, π ]. Indeed, choosing α ∈ [0, 1] one defines the
general discretized projection operator

P̂ N0
α,Mϕ

≡ 1

Mϕ

Mϕ∑
m=1

e−iπ m−α
Mϕ

(N̂−N0 )
. (A1)

All the operators corresponding to different values of α have
in common that two consecutive angles are always separated
by a step of π/Mϕ , with the main difference being the position
of the first angle. In this section we will analyze their action on
a given wave function, focusing in particular on four specific
values of α. For the sake of keeping the discussion simple, we
will consider only one generic particle species N without any
loss of generality.

The four possible choices for the discretized projection
operator we will focus on are

P̂ N0
1,Mϕ

≡ 1

Mϕ

Mϕ∑
n=1

e−iπ n−1
Mϕ

(N̂−N0 )
, (A2)

P̂ N0
1/2,Mϕ

≡ 1

Mϕ

Mϕ∑
n=1

e−iπ
n− 1

2
Mϕ

(N̂−N0 )
, (A3)

P̂ N0
1/4,Mϕ

≡ 1

Mϕ

Mϕ∑
n=1

e−iπ
n− 1

4
Mϕ

(N̂−N0 )
, (A4)

P̂ N0
3/4,Mϕ

≡ 1

Mϕ

Mϕ∑
n=1

e−iπ
n− 3

4
Mϕ

(N̂−N0 )
, (A5)

where P̂ N0
1,Mϕ

is the standard one used in the core of the text.
Although they are otherwise very similar, the first of these

discretized operators (A2) has the practical advantage that it
reduces to the identity operator when taking Mϕ = 1. By con-
trast, the third and fourth discretized operators never require
the evaluation of the angle π

2 that might become numerically
problematic in pure particle-number projection [23]; see also
Sec. III F. However, this problem can be avoided anyway
by taking an odd number of points Mϕ for (A2) or an even
value of Mϕ for (A3). In addition, when combined with other
projections or a configuration mixing calculation the problem
might appear at any gauge angle, not just π

2 .
We will now analyze the action of operator P̂ N0

α,Mϕ
acting

on a reference state |�〉 that is an eigenstate of number par-
ity with an eigenvalue compatible with N0, i.e., πn = (−)N0 .
Using the decomposition (56) of |�〉, we obtain that

P̂ N0
α,Mϕ

|�〉 =
∑
N1�0

cN1

(
1

Mϕ

Mϕ∑
m=1

e−iπ m−α
Mϕ

(N1−N0 )

)
|�N1〉. (A6)

The factor

1

Mϕ

Mϕ∑
m=1

e−iπ m−α
Mϕ

(N1−N0 )

on the r.h.s. of Eq. (A6) is a geometric progression, i.e., a sum
of the type

∑ j
k=i a rk , with r being the common ratio and a

the scale factor. Depending on the value of r, the result of a
geometric progression can be expressed in a closed form as

j∑
k=i

a rk =
{

a ( j − i + 1) if r = 1,

a ri−r j+1

1−r if r �= 1.

For the discretized projection operator P̂ N0
α,Mϕ

, we have

i = 1, j = Mϕ, r = e−iπ 1
Mϕ

(N1−N0 )
, a = e+iπ α

Mϕ
(N1−N0 )

Mϕ

.

The case r = 1 is realized if and only if N1 = N0 + 2lMϕ with
l ∈ Z. For those values of N1, one thus obtains

P̂ N0
α,Mϕ

|�N1〉 = e+i2παl

Mϕ

(Mϕ − 1 + 1) |�N1〉

= e+i2παl |�N1〉. (A7)

For any other value of N1, one obtains instead

P̂ N0
α,Mϕ

|�N1〉 = a
1 − e−iπ (N1−N0 )

1 − e−iπ 1
Mϕ

(N1−N0 )
|�N1〉 = 0, (A8)

where we have used that |�〉 is an eigenstate of number
parity, such that we always have the relation N1 = N0 +
2n, n ∈ Z, for the components in (56), which implies that
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1 − e−iπ (N1−N0 ) = 0. But note that this is true if and only if
the state |�〉 has a number parity equal to (−)N0 , hence the
assumption made earlier.

To summarize, by applying P̂ N0
α,Mϕ

on |�〉, we remove all
components with N1 �= N0 + 2lMϕ, l ∈ Z:

P̂ N0
α,Mϕ

|�〉 =
∑
l∈Z

e+i2παl cN0+2lMϕ |�N0+2lMϕ 〉

≡
∑
l∈Z

∑
N1�0

e+i2παl cN1 |�N1〉 δN1N0+2lMϕ
. (A9)

We can notice in particular that the discretized projection
operator exhibits a periodicity of 2Mϕ , i.e.,

∀ l1 ∈ Z, P̂
N0+2l1Mϕ

α,Mϕ
|�〉 = e−i2παl1 P̂ N0

α,Mϕ
|�〉. (A10)

As a consequence, the projection on any particle number N2

that is such that N2 = N0 + 2l1Mϕ , l1 ∈ Z, will yield the same
result, up to a phase, as the projection on N0, even if the com-
ponent with N2 particles is not present in the wave function
that is projected. In particular, if αl1 ∈ Z, the projected wave
functions are strictly equal.

Replacing the value of α, we directly obtain the action of
the four discretization operators of interest:

P̂ N0
1,Mϕ

|�〉 =
∑
l∈Z

cN0+2lMϕ |�N0+2lMϕ 〉, (A11)

P̂ N0
1/2,Mϕ

|�〉 =
∑
l∈Z

(−)l cN0+2lMϕ |�N0+2lMϕ 〉, (A12)

P̂ N0
1/4,Mϕ

|�〉 =
∑
l∈Z

(i)l cN0+2lMϕ |�N0+2lMϕ 〉, (A13)

P̂ N0
3/4,Mϕ

|�〉 =
∑
l∈Z

(−i)l cN0+2lMϕ |�N0+2lMϕ 〉. (A14)

As previously discussed, such discretized projection operators
can only be used for states with a number parity equal to
(−)N0 . It is straightforward to define more general discretized
projection operators that can be used regardless of the number
parity of the state to be projected by simply replacing the
factor π in the exponential of any of these operators by a
factor 2π . Indeed, in that case we can lift the number parity
condition for Eq. (A8) as, for any values of N0 and N1, we
always have in the numerator 1 − e−i2π (N1−N0 ) = 0. But, using
the same rationale as above, it is straightforward to derive that
such a discretized operators select out of the reference state all
the components with N1 = N0 + lMϕ, l ∈ Z. Consequently,
from a convergence point of view, these operators are less
effective than the ones defined with a factor π . More precisely,
the periodicity of the generalized operators being twice as
small as the one of the operators defined in Eqs. (A2)–(A5),
this would require a number of points Mϕ , i.e., a number of
rotations over gauge angles to be performed, twice as large
to remove the same number of undesired components in the
superposition (56).
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