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We present a comprehensive analysis of the deuteron charge and quadrupole form factors based on the latest
two-nucleon potentials and charge-density operators derived in chiral effective field theory. The single- and
two-nucleon contributions to the charge density are expressed in terms of the proton and neutron form factors,
for which the most up to date empirical parametrizations are employed. By adjusting the fifth-order short-range
terms in the two-nucleon charge-density operator to reproduce the world data on the momentum-transfer
dependence of the deuteron charge and quadrupole form factors, we predict the values of the structure radius
and the quadrupole moment of the deuteron: rstr = 1.9729+0.0015

−0.0012 fm, Qd = 0.2854+0.0038
−0.0017 fm2. A comprehensive

and systematic analysis of various sources of uncertainty in our predictions is performed. Following the strategy
advocated in our recent publication [Filin, Baru, Epelbaum, Krebs, Möller, and Reinert, Phys. Rev. Lett.
124, 082501 (2020)], we employ the extracted structure radius together with the accurate atomic data for the
deuteron-proton mean-square charge radii difference to update the determination of the neutron charge radius,
for which we find r2

n = −0.105+0.005
−0.006 fm2. Given the observed rapid convergence of the deuteron form factors in

the momentum-transfer range of Q � 1–2.5 fm−1, we argue that this intermediate energy domain is particularly
sensitive to the details of the nucleon form factors and can be used to test different parametrizations.

DOI: 10.1103/PhysRevC.103.024313

I. INTRODUCTION

Chiral effective field theory (EFT) is becoming a preci-
sion tool for analyzing low-energy few-nucleon reactions and
nuclear structure [1–4]. The chiral expansion of the nucleon-
nucleon (NN) force has been recently pushed to fifth order
(N4LO) [5] and even beyond [6]. The last-generation chiral
EFT NN potentials of Ref. [7] provide an excellent descrip-
tion of the neutron-proton and proton-proton scattering data,
which, at the highest considered order, is even better than the
one achieved using so-called high-precision phenomenolog-
ical potentials such as the CD Bonn [8], Nijm I and II and
Reid93 [9], and AV18 [10] models. The essential feature of
these chiral NN forces is the usage of a semilocal momentum
space (SMS) regulator [11,12] (see also Refs. [13,14]), which
allows one to significantly reduce the amount of finite-cutoff
artifacts in the long-range part of the interaction. For an al-
ternative regularization approach using a nonlocal cutoff see
Ref. [15]. The chiral NN potentials of Ref. [7] also provide a
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clear evidence of the two-pion exchange, which is determined
in a parameter-free way by the chiral symmetry of QCD along
with the empirical information on pion-nucleon scattering
from the recent analysis in the framework of the Roy-Steiner
equations [16,17]. In the most recent work of Ref. [18], the
potential of Ref. [7] was updated to include also the charge-
independence-breaking and charge-symmetry-breaking NN
interactions up through N4LO.

In parallel with these studies, a simple and universal algo-
rithm for quantifying truncation errors in chiral EFT without
reliance on cutoff variation was formulated in Ref. [11] and
validated in Ref. [12]. This approach has been successfully
applied to a variety of low-energy hadronic observables (see,
e.g., Refs. [19–28]). In Refs. [29–32], it was reinterpreted and
further scrutinized within a Bayesian approach.

These developments provide a solid basis for applications
beyond the two-nucleon (2N) system and offer highly nontriv-
ial possibilities to test chiral EFT by pushing the expansion
to high orders. In this paper, we focus on the charge and
quadrupole elastic form factors (FFs) of the deuteron.

The electromagnetic FFs of the deuteron certainly belong
to the most extensively studied observables in nuclear physics
(see Refs. [33–35] for review articles). A large variety of
theoretical approaches ranging from nonrelativistic quantum
mechanics to fully covariant models has been applied to this
problem since the 1960s (see Ref. [36] for an overview).
The electromagnetic structure of the deuteron has also been
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investigated in the framework of pionless [37] and chiral
[38–44] EFT.

In spite of the extensive existing theoretical work, there
is a strong motivation to take a fresh look at the deuteron
FFs in the framework of chiral EFT. First of all, the calcula-
tion of the deuteron charge FF with unprecedented accuracy,
by employing consistent NN interactions and charge-density
operators up to the fifth order in the chiral expansion, pro-
vides direct access to the structure radius of the deuteron
and through that to the neutron charge radius, as elaborated
in Ref. [45]. Similarly, the quantitative description of the
quadrupole FF, supplemented with the comprehensive error
analysis, opens the possibility to extract the quadrupole mo-
ment of the deuteron that is known very accurately and thus
probes our understanding of the nuclear forces and currents.
In this context, it is worth mentioning the tendency of modern
nuclear interactions derived in chiral EFT to significantly un-
derpredict the radii of medium-mass and heavy nuclei (see,
e.g., Ref. [46]). The existing calculations for A � 16 sys-
tems do, however, not take into account contributions to the
three-nucleon force beyond third order of the chiral expansion
(N2LO), exchange currents, and relativistic corrections and
also suffer from uncertainties intrinsic to truncations of the
many-body Hilbert space. It is, therefore, of great importance
to test the role of these effects in consistent calculations of
electromagnetic few-nucleon processes at high orders in chiral
EFT along with a careful error analysis. Focusing on the
few-nucleon sector has an advantage of avoiding potential
uncertainties associated with many-body methods. In partic-
ular, no additional softening of the interactions by using,
e.g., similarity renormalization-group transformation [47] is
necessary for the light nuclei like 2H, 3H, 3He, and 4He. It
is also interesting and important to test the performance and
applicability range of the newest high-precision chiral NN
potentials of Refs. [7,18] and the charge-density operators
by studying the momentum-transfer (Q) dependence of the
deuteron FFs and their convergence with respect to the chiral
expansion. This provides a rather nontrivial test of the appli-
cability range of chiral EFT since the deuteron FFs decrease
by several orders of magnitude with increasing values of Q.
Therefore, a correction to the charge operator that is small
at Q2 = 0 may, potentially, have a large impact at higher-Q2

values.
In this paper, we perform a detailed analysis of the deuteron

charge and quadrupole FFs in chiral EFT. We include all
contributions to the charge-density operator at fourth order
(N3LO) relative to the leading single-nucleon operator and
take into account the short-range operators at N4LO. The
strength of the N4LO short-range operators is adjusted to
obtain the best fits to the experimental data for the deuteron
charge and quadrupole FFs. We demonstrate that both the
single- and two-nucleon charge-density operators can be ex-
pressed in terms of the nucleon FFs and exploit this fact
in the calculation of the deuteron FFs. This allows us to
avoid reliance on the strict chiral expansion for the nucleon
FFs by employing the corresponding empirical parametriza-
tions. Since the errors related to the truncation of the chiral

expansion are still very small in the momentum range of
Q � 1–2.5 fm−1, this intermediate energy domain appears
to be particularly sensitive to the nucleon FFs and thus can
be used to test the consistency of the employed up-to-date
nucleon FFs with the deuteron FFs.

Once the two NN contact terms in the charge-density op-
erator are determined from a fit to the world data on the
deuteron FFs, we arrive at a parameter-free prediction for
the quantities at Q = 0, namely, the structure radius and the
quadrupole moment of the deuteron. It is worth mention-
ing that the nucleon FFs do not contribute to the extracted
deuteron observables at Q = 0. We perform various consis-
tency checks of our theoretical approach and demonstrate that
(i) our results show only a mild residual cutoff dependence
and (ii) the results for the deuteron FFs, the structure radius,
and the quadrupole moment are basically insensitive to the
choice of off-shell parameters entering the NN potentials and
the charge-density operator. However, this is only true as long
as the NN potentials and the charge density are calculated con-
sistently, which implies that the nucleon FFs must be included
both in the one- and two-body charge-density operators, as
advocated below. Finally, we perform a detailed error anal-
ysis of the obtained results by addressing various sources of
uncertainties.

In Ref. [45], we already employed this approach to extract
the structure radius from the charge deuteron FF. Here, we
provide additional details of the calculation and update the
analysis of Ref. [45] in the following aspects: (i) we employ
the latest version of the NN potential from Ref. [18] that in-
cludes the relevant isospin breaking corrections; (ii) we carry
out a combined analysis of both the charge and quadrupole
deuteron FFs; (iii) relying on our Bayesian estimate of the
truncation error from the chiral expansion, in the fits to the
FF data we extend the momentum range to Q = 6 fm−1 as
compared to Q = 4 fm−1 used in Ref. [45].

Our paper is organized as follows. In Sec. II, we dis-
cuss a general formalism to calculate the form factors of the
deuteron. Sections III and IV are devoted to the chiral ex-
pansion and regularization of the charge-density operator. In
Sec. III we also give a short overview of the nucleon FFs used
as input in our calculations. Section V deals with the treatment
of the relativistic corrections. Next, the notation for various
contributions to the form factors, their chiral order, and rela-
tions to the structure radius and the quadrupole moment are
specified in Sec. VI. Our results for the momentum-transfer
dependence of the charge and quadrupole FFs are presented in
Sec. VII. After fixing the short-range charge-density operator
from the best fit to the experimental data we extract the values
of the deuteron structure radius, the neutron charge radius,
and the deuteron quadrupole moment and analyze various
sources of uncertainties. Also, we discuss the convergence
of the chiral expansion for both the deuteron FFs and the
extracted quantities at Q = 0. The main results of our paper
are summarized in Sec. VIII, where we also discuss their
impact on the determination of the neutron charge radius us-
ing high-accuracy atomic data on the deuteron-proton charge
radius difference.
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FIG. 1. Diagrams representing elastic electron-deuteron scat-
tering. Diagram (a) shows a general contribution to the elastic
electron-deuteron scattering process and the corresponding kinemat-
ics. Diagram (b) visualizes the one-photon-exchange contribution,
while the ellipses refer to multi-photon-exchange processes sup-
pressed by powers of the fine-structure constant. Single, double,
and wiggly lines correspond to electrons, deuterons, and photons,
respectively.

II. FORMALISM

A. Elastic electron-deuteron scattering

The kinematics of elastic electron-deuteron scattering is
visualized in Fig. 1(a) and can be defined as

d (P, λd ) + e−(pe, ν) → d (P′, λ′
d ) + e−(p′

e, ν
′), (1)

where variables in brackets denote the momentum and spin
projection of the corresponding particle. Throughout this
paper, we focus on the one-photon-exchange mechanism
[see Fig. 1(b)], which provides a direct relation between
the electron-deuteron scattering observables and the deuteron
form factors. Each additional photon exchange is suppressed
by one power of the fine-structure constant. Thus, in line
with the conclusions of Ref. [48], these corrections will
be neglected below—see Sec. II E for a more detailed
discussion. The one-photon-exchange amplitude of elastic
electron-deuteron scattering [see Fig. 1(b)] can be factorized
into leptonic and hadronic parts [49]:

M = eū(p′
e, ν

′)γμu(pe, ν)
1

k2
〈P′, λ′

d | Jμ | P, λd〉, (2)

where e is the magnitude of the electron charge, u and ū are
the spinors of the initial and final electrons normalized as
ū(p, ν)u(p, ν) = 2me with me being the electron mass, γμ are
the Dirac matrices, and k = P′ − P is the four-momentum of
the exchanged photon. For convenience, we define a quantity
Q2, which is positive in the spacelike region, and the corre-
sponding dimensionless variable η via

Q2 := −kμkμ = −k2 = −(P′ − P)2 � 0,

η := Q2

4m2
d

, (3)

where md = 1.875 612 942 57(57) GeV stands for the
deuteron mass [50]. Using Lorentz invariance, time-reversal
invariance, as well as parity and current conservation, the
most general form of the matrix element of the deuteron
electromagnetic current 〈P′, λ′

d | Jμ | P, λd〉 can be expressed

as [33,51]

〈P′, λ′
d | Jμ | P, λd〉

= −e G1(Q2)(ξ ∗(P′, λ′
d ) · ξ (P, λd ))(P′ + P)μ

− e G2(Q2)(ξμ(P, λd )(ξ ∗(P′, λ′
d ) · k)

− ξ ∗μ(P′, λ′
d )(ξ (P, λd ) · k))

+ e G3(Q2)
(ξ (P, λd ) · k)(ξ ∗(P′, λ′

d ) · k)(P′ + P)μ

2m2
d

, (4)

where dimensionless, real, Lorentz-scalar functions G1(Q2),
G2(Q2), and G3(Q2) parametrize the photon-deuteron interac-
tion, and the deuteron polarization four-vectors, ξ (P, λd ) and
ξ (P′, λ′

d ), satisfy the following constraints:
ξ (P, λd ) · P = 0, ξ (P′, λ′

d ) · P′ = 0. (5)

B. The electromagnetic form factors of the deuteron

In practice, instead of the scalar functions Gi(Q2) from
Eq. (4), one usually introduces the deuteron charge, magnetic,
and quadrupole form factors GC(Q2), GM(Q2), and GQ(Q2),
respectively, which are related to Gi(Q2) via the following
equations:

GC(Q2) = G1(Q2) + 2
3η GQ(Q2),

GM(Q2) = G2(Q2), (6)

GQ(Q2) = G1(Q2) − G2(Q2) + (1 + η)G3(Q2).
At Q2 = 0, these form factors are normalized according to
[33]

GC(0) = 1,

GM(0) = md

mp
μd � 1.714, (7)

GQ(0) = m2
d Qd � 25.83,

where GC(0) = 1 corresponds to the electric charge conser-
vation, Qd = (0.2859 ± 0.0003) fm2 [52,53] is the deuteron
quadrupole moment, μd = 0.857 438 231 1(48) [54] is the
deuteron magnetic moment in the units of nuclear magnetons,
and mp stands for the proton mass. The derivative of GC(Q2)
with respect to Q2 taken at Q2 = 0 is related to the deuteron
charge radius, as discussed in Sec. VI.

C. From observables to form factors

Using the one-photon exchange approximation, the unpo-
larized elastic electron-deuteron differential cross section in
the laboratory frame reads

dσ

d�
(Q2, θ ) = dσ

d�

∣∣∣∣
NS

[A(Q2) + B(Q2) tan2(θ/2)], (8)

where a no-structure pointlike cross section, dσ
d�

|NS, is defined
as the product of the Mott differential cross section, σMott,
multiplied with the recoil factor:

dσ

d�

∣∣∣∣
NS

= σMott
1(

1 + 2E
md

sin2(θ/2)
) ,

σMott =
(

α

2E

)2 cos2(θ/2)

sin4(θ/2)
.
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Here E is the energy of the incoming electron, θ is the scatter-
ing angle of the electron in the laboratory frame, and α is the
fine-structure constant. The elastic structure functions A and
B are related to the deuteron form factors given in Eq. (6) via

A(Q2) = G2
C(Q2) + 2

3ηG2
M(Q2) + 8

9η2G2
Q(Q2),

B(Q2) = 4
3η(1 + η)G2

M(Q2). (9)

While the unpolarized electron-deuteron scattering cross sec-
tion in Eq. (8) provides access to the magnetic FF via its
relation to the structure function B(Q2), it does not allow one
to extract the charge and quadrupole FFs individually as they
contribute to A(Q2) in a linear combination. A complementary
information on these form factors can be extracted from po-
larization data. In particular, the experimentally measurable
tensor analyzing power T20(Q2, θ ) gives an additional rela-
tion:

−
√

2[A(Q2) + B(Q2) tan2(θ/2)]T20(Q2, θ )

= 8
3ηGC(Q2)GQ(Q2) + 8

9η2G2
Q(Q2)

+ 1
3η(1 + 2(1 + η) tan2(θ/2))G2

M(Q2). (10)

Therefore, all three deuteron FFs can be extracted individually
from a combined analysis of the structure functions A(Q2) and
B(Q2) together with the polarization observable T20.

D. Experimental database

In Ref. [55], a rigorous extraction of the charge,
quadrupole, and magnetic deuteron form factors from the
available world data for elastic electron-deuteron scatter-
ing was performed in the four-momentum-transfer range of
Q = 0–7 fm−1. This analysis also includes polarization data
of Ref. [56] from JLab. In addition, there is one more
recent measurement of tensor polarization observables in elas-
tic electron-deuteron scattering from Nikolenko et al. [57].
Therefore, in what follows, we employ the world data for the
deuteron form factors extracted in Refs. [55,57] as experimen-
tal input except for the data point for GQ at Q = 2.788 fm−1

given in Table 1 of Ref. [55], for which we believe the un-
certainty has been misprinted. Indeed, unlike the data point at
Q = 2.788 fm−1 shown in Fig. 1 in Ref. [55] (see the square
with the strongly asymmetric uncertainty), the uncertainty
quoted in Table 1 of Ref. [55] is symmetric and an order of
magnitude smaller than the one shown in the plot. The error
for GQ at this energy is also significantly smaller than those
for the other energies within the same experiment.

In a recent review article [35], a parametrization of the
world data on the deuteron form factors was provided that has
much smaller uncertainties than in the previous extractions.
While we do not use this parametrization in our fits, we will
use it for the sake of comparison.

E. A comment on the two-photon exchange corrections

Unlike the extensive investigations of the two-photon ex-
change (TPhE) contributions to electron-proton scattering,
there are very few works focusing on the study of the TPhE
corrections for the deuteron electromagnetic FFs. Specifically,
in Ref. [48] a gauge invariant set of diagrams for the TPhE

corrections to electron-deuteron scattering was identified and
estimated under certain assumptions for the photon momen-
tum in the loops. As a result, the effect of the TPhE on the
charge and quadrupole form factors was found to be very
small (less than 1%). Meanwhile, in their previous investi-
gation [58], the authors found an order of magnitude larger
effect from TPhE on the deuteron FFs when only one subset
of diagrams was included. A significant suppression of the
TPhE corrections in Ref. [48] is therefore presumably related
to the restoration of gauge invariance once the complete set
of diagrams is included. The enhanced role of TPhE effects
was also claimed in Ref. [59], which might again be related
to the incomplete set of diagrams considered in that work.
In the current paper we, therefore, rely on the conclusions
of Ref. [48] and neglect the TPhE contributions. It would be
interesting to have a fresh look at this in future studies.

F. Deuteron form factors in the Breit frame

Deuteron form factors are Lorentz scalars and can be
calculated in any frame, but for practical calculations it is
convenient to choose the Breit frame. In the Breit frame, the
kinematic variables take the simple form

k = (0, k), P =
(

P0,−k
2

)
, P′ =

(
P0,+k

2

)
,

P0 =
√

m2
d + k2

4
= md

√
1 + η, k2 = Q2, (11)

where the direction of the photon momentum k is chosen
along the positive z axis. The polarization vectors of the
incoming and outgoing deuterons in the Breit frame can be
derived by boosting the corresponding rest-frame polarization
vectors. For the incoming deuteron, one obtains

ξμ(P,±1) =
(

0,
∓1√

2
,

−i√
2
, 0

)
,

ξμ(P, 0) = (−√
η, 0, 0,

√
1 + η), (12)

where the second argument of ξμ denotes the spin projection
of the deuteron onto the z axis. Similarly, the polarization
vector of the outgoing deuteron in the Breit frame reads

ξ ∗μ(P′,±1) =
(

0,
∓1√

2
,

+i√
2
, 0

)
,

ξ ∗μ(P′, 0) = (
√

η, 0, 0,
√

1 + η), (13)

where the sign of the zeroth component of the polarization
vector is opposite from that of the incoming deuteron. As ex-
pected, these definitions of ξ explicitly satisfy the constraints
in Eq. (5).

To calculate the deuteron FFs, we express them in terms
of the matrix elements 〈P′, λ′

d | Jμ | P, λd〉 defined in Eq. (4).
First, we simplify Eq. (4) using the relations

ξ ∗(P′, λ′
d ) · ξ (P, λd ) = (−1)

(
δλ′

d ,λd + 2η δλ′
d ,0δλd ,0

)
,

ξ (P, λd ) · k = (−2md )
√

η
√

1 + η δλd ,0, (14)

ξ ∗(P′, λ′
d ) · k = (−2md )

√
η
√

1 + η δλ′
d ,0,
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(a) (b)

++=

(c)

P, λd P , λd

k

FIG. 2. The matrix element 〈P′, λ′
d | Jμ | P, λd〉 written as a sum of single-nucleon contributions (a) and (b) and the two-nucleon contribution

(c). Single, double, and wiggly lines refer to nucleons, deuteron particles, and photons, respectively. Black dots and the gray rectangle denote
the full photon-nucleon interaction vertex and the two-nucleon current operator.

which can be derived using the explicit form of the deuteron
polarization vectors in the Breit frame given in Eqs. (12) and
(13). Simplifying the zeroth and three-vector components in
Eq. (4) one obtains

〈P′, λ′
d | J0 | P, λd〉 = 2P0

{
G1(Q2)δλd ,λ′

d

+ 2ηδλd ,0δλ′
d ,0(G1(Q2)

− G2(Q2) + (1 + η)G3(Q2))
}
,

〈P′, λ′
d | Ji | P, λd〉 = 2P0

√
η G2(Q2)

(
ξ i(P, λd )δλ′

d ,0

− ξ ∗i(P′, λ′
d )δλd ,0

)
. (15)

Using Eqs. (6), (12), and (13), we finally obtain

GC(Q2) = 1

3e

1

2P0

( 〈P′, 1|J0
B|P, 1〉

+ 〈P′, 0|J0
B|P, 0〉 + 〈P′,−1|J0

B|P,−1〉 )
, (16)

GQ(Q2) = 1

2eη

1

2P0

(〈P′, 0|J0
B|P, 0〉 − 〈P′, 1|J0

B|P, 1〉), (17)

GM(Q2) = 1√
ηe

1

2P0
〈P′, 1 | Jx

B + iJy
B√

2
| P, 0〉, (18)

where Jμ
B = (J0

B, Jx
B, Jy

B, Jz
B) are contravariant components of

the four-vector current in the Breit frame.

G. Matrix elements of the electromagnetic current

In the Breit frame, the deuteron form factors are expressed
in terms of the matrix elements of the electromagnetic cur-
rent convolved with the deuteron wave functions (DWFs),
〈P′, λ′

d | Jμ | P, λd〉, according to Eqs. (16)–(18). The matrix
elements read

1

2P0
〈P′, λ′

d | Jμ
B | P, λd〉 =

∫
d3l1

(2π )3

d3l2
(2π )3 ψ

†
λ′

d

(
l2 + k

4
, vB

)

× Jμ
B ψλd

(
l1 − k

4
,−vB

)
, (19)

where Jμ
B is the four-vector current calculated in the Breit

frame, ψλ is the deuteron wave function with the polariza-
tion λ and the deuteron in the final (initial) state moves

with the velocity vB (−vB) with vB = k/(2
√

k2/4 + m2
d ) =

k̂
√

η/(1 + η), and the momenta are defined in Eq. (11). This
matrix element is visualized in Fig. 2, where diagrams (a)

and (b) involve the single-nucleon electromagnetic current
while diagram (c) corresponds to the matrix element of the
two-nucleon current.

In this paper, we calculate the deuteron FFs in the
framework of chiral EFT utilizing an expansion around the
nonrelativistic limit1 and taking into account relativistic cor-
rections as required by power counting. Specifically, we start
with the expressions for the single- and two-nucleon charge-
density operators, the chiral expansion of which will be
summarized in the next section. Using the deuteron wave
functions at the corresponding order in the chiral expansion
and employing consistently regularized expressions for the
charge-density operators in the partial wave basis, we calcu-
late numerically the corresponding convolution integrals.

III. CHIRAL EXPANSION
OF THE CHARGE-DENSITY OPERATOR

The nuclear electromagnetic charge and current opera-
tors have been recently worked out to N3LO in chiral EFT
by our group using the method of unitary transformation
[61–63] and by the JLab-Pisa group employing time-ordered
perturbation theory [64–66] (see also Ref. [67] for a pio-
neering study along this line). Following our works on the
derivation of the electromagnetic currents [61–63] and nuclear
forces [7,11,12,68–72], in this paper we employ the Weinberg
power counting for the operators constructed in chiral EFT.
The hierarchy of the operators is based on the expansion
parameter q ∈ {p/�b, Mπ/�b} with p being a typical soft
scale and �2

b = O(mN Mπ ) (with Mπ for the pion mass) re-
ferring to the breakdown scale of the chiral expansion. This
implies that the contributions to the charge and current op-
erators appear at orders q−3 (LO), q−1 (NLO), q0 (N2LO),
q1 (N3LO), and q2 (N4LO). Notice that the JLab-Pisa group
employed the counting scheme with mN = O(�b) used in the
single-nucleon sector, so that their NLO corrections appear
already at order q−2. We further emphasize that the expres-
sions for the two-nucleon charge and current densities in
Refs. [61–63] and [64–66] do not completely agree with each
other. The differences are, however, irrelevant for the calcula-
tion of the deuteron charge and quadrupole form factors. For a
comprehensive review of the electroweak currents and a

1See Refs. [35,49,60] for related studies using manifestly covariant
approaches.
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detailed comparison between the two sets of calculations see
Ref. [73].

A. Single-nucleon contributions to the charge-density operator

At the chiral order in which we are working, the single-
nucleon contributions to the charge-density operator in the
kinematics N (p) + γ (k) → N (p′) take a well-known form
(see Refs. [63,74] and references therein):

ρ1N = e

(
1 − k2

8m2
N

)
GE(k2)

+ ie
2GM(k2) − GE(k2)

4m2
N

(σ · k × p). (20)

Here, GE(k2) and GM(k2) are the electric and magnetic form
factors of the nucleon, respectively, and e is the absolute value
of the electron charge. The single-nucleon form factors can be
written in terms of the isospin projectors and the correspond-
ing form factors of the proton and neutron:

GE(k2) = Gp
E(k2)

1 + τ3

2
+ Gn

E(k2)
1 − τ3

2
,

GM(k2) = Gp
M(k2)

1 + τ3

2
+ Gn

M(k2)
1 − τ3

2
. (21)

For convenience, we also introduce the isoscalar nucleon form
factors which are relevant for electron-deuteron scattering:

GS
E(k2) := Gp

E(k2) + Gn
E(k2),

GS
M(k2) := Gp

M(k2) + Gn
M(k2). (22)

In order to facilitate the comparison with phenomenological
studies, it is also convenient to decompose the single-nucleon
charge density from Eq. (20) into

ρ1N = ρMain
1N + ρDF

1N + ρSO
1N , (23)

with

ρMain
1N = eGE(k2),

ρDF
1N = e

(
− k2

8m2
N

)
GE(k2), (24)

ρSO
1N = ie

2GM(k2) − GE(k2)

4m2
N

σ · k × p,

where, apart from the main contribution, DF and SO stand for
the Darwin-Foldy and spin-orbit contributions, respectively.
Terms involving order-O(m−4

N ) corrections to the charge den-
sity are beyond the accuracy of our paper.

The chiral expansion of the electromagnetic FFs of the
nucleon is well known to converge slowly as they turn out
to be dominated by contributions of vector mesons [75,76],
which are not included as explicit degrees of freedom (DOF)
in chiral EFT. To minimize the impact of the slow convergence
of the EFT expansion of the nucleon FFs on two-nucleon
observables, the following two approaches can be employed.

(1) Instead of looking at the individual FFs of the deuteron
GC and GQ, one calculates the ratio GC/GQ as done,
e.g., in Refs. [40,41]. This is advantageous if one can
neglect the contribution of the magnetic form factor

GM(k2) in Eq. (20). However, in addition to this, one
also needs to assume either that the contributions from
two-nucleon charge densities can be neglected alto-
gether or that they scale with GE(k2) in the same way
as the one-body densities. Then, the quantity GE(k2)
drops out in the ratio GC/GQ. In this paper, we show
that two-nucleon charge-density operators should in-
deed be proportional to GE(k2); see Sec. III C for
details. We also note that due to the numerical small-
ness of the SO contribution, which is the only term
proportional to GM(k2), considering this ratio may, in
practice, indeed provide quite accurate results. On the
other hand, formally, this approximation is not valid at
the accuracy level of our analysis.

(2) Instead of relying on the strict chiral expansion of the
nucleon FFs one can employ empirical parametriza-
tions extracted from experimental data, as done, e.g.,
in Ref. [42].

In this paper, we utilize the second approach and use up-to-
date parametrizations extracted from experimental data as will
be described in the next section. The uncertainty of our results
associated with the single-nucleon FFs will be addressed in
Sec. VII E 2.

B. Input for nucleon form factors

The electromagnetic form factors of the proton and neutron
probe the charge and magnetization distributions of the nucle-
ons via the interaction of electromagnetic currents and have
been investigated experimentally for more than 70 years using
electron scattering—see, e.g., Refs. [77–80,85] for selected
review articles.

The most recent extraction of the proton form factors was
carried out in Refs. [82,83], where a global analysis of all
existing data was done including the corrections for different
normalization of various data, and effects from TPE. The
results of Ref. [82] are shown in Figs. 3(a) and 3(c) by red
bands confined by solid lines. These fits were constrained at
low Q2 by the latest CODATA-2018 values for the proton
charge radii2 [91] and by the magnetic radii from the Particle
Data Group (PDG) [50] while at high Q2 a power-law falloff
was enforced. Another global analysis of the proton data was
carried out by the A1 collaboration in Refs. [81,92], where
a specific functional form for the form factors was assumed
to fit the world data and no constraints on the proton radii

2The difference between the nucleon form-factor parametrizations
presented in the original work of Ref. [83] and its update Ref. [82]
lies in the value for the proton charge radius used as input. Reference
[82] employs the more recent (CODATA-2018) value consistent with
the measurements from muonic hydrogen Lamb shift [88] as well
as with the latest atomic hydrogen measurements of the Rydberg
constant [89] and the Lamb shift [90], while Ref. [83] relies on the
larger value for the proton charge radii taken from CODATA-2014
[54]. The effect of the proton charge radius on the shape of the proton
FFs is relevant only at very low Q (lower than 1 fm−1). At larger Q,
the shape of the proton form factor is strongly constrained by other
experimental data.
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FIG. 3. The proton (a), (c) and neutron (b), (d) form factors normalized to the dipole form factor GD(Q2) = (1 + Q2/�2
D )−2 with �2

D =
0.71 GeV2. The gray bands between the dotted lines correspond to the proton form factors extracted in Ref. [81] from a combined fit to all
data including polarized ratio measurements. The uncertainty corresponds to the combined statistical and systematic uncertainties taken in
quadrature, among which the sensitivity to the functional form of the spline used in the fits is the largest. The red bands between the solid
lines represent the results of the global analysis of the world proton observables and the neutron FFs from Ref. [82]; see also Ref. [83] for the
published version and text for the details. The blue bands between the dashed lines show the results of the SC approach of Ref. [84] from a
simultaneous dispersive analysis of all four FFs (data are also shown as dots—see Refs. [83–85] for more details) in both the spacelike and
timelike regions. The dashed lines show an update of the analysis of Ref. [84] which is based on the fit to the MAMI data for electron-proton
scattering and simultaneously to the world data for the neutron form factors [86]. The dot-dashed lines represent the results for the proton FFs
extracted using the dispersive approach of Ref. [87] from a global analysis of the world data for electron-proton scattering. No errors for the
nucleon FFs were given in Refs. [86,87].

were imposed. Apart from some differences3 in Gp
M at low

Q2 and very large differences in the estimated uncertainties,
the extracted electric and magnetic form factors of the proton
in Refs. [82,83] and [81] are essentially consistent with each
other (see red and gray bands in Fig. 3).

A determination of the neutron form factors is much
more complicated than for the proton, since there are no
free-neutron targets and it is, therefore, necessary to analyze
experimental data on nuclear targets like 2H or 3He. A reliable
extraction of the neutron form factors from such data requires
a detailed understanding of the nuclear corrections (involv-
ing nuclear wave functions, final-state interaction, meson

3The difference in Gp
M might be at least partly related to the fact

that the world average value for the magnetic radii of the proton [50]
used as input in Ref. [83] has some tension with the value extracted
by the A1 collaboration in Ref. [92].

exchange currents, etc.). The results of the most up-to-date
parametrization of the neutron FFs carried out in Ref. [82] are
presented in Fig. 3 [see red bands between solid lines in panels
(b) and (d)].

Already in Refs. [93,94], it was pointed out that analyticity
and unitarity put strong constraints on the nucleon FFs. Using
the spectral-function-based dispersive approach, the nucleon
FFs were obtained in Ref. [84] from a simultaneous fit to the
data for all four FFs in both spacelike and timelike regions
including the constraints from meson-nucleon scattering data,
unitarity, and perturbative QCD. The results of this analysis
for the so-called superconvergence (SC) approach are shown
as blue bands confined by the dashed lines in Fig. 3. An
update of the analysis of Ref. [84] based on the fit to the
most recent MAMI data for electron-proton scattering and
simultaneously to the world data for the neutron form fac-
tors was made in Ref. [86] and shown in Fig. 3 by black
long-dashed lines. Another strategy was used in the latest
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FIG. 4. Isoscalar nucleon electric (a) and magnetic (b) form factors normalized to the dipole form factor GD(Q2). For remaining notation
see Fig. 3.

dispersive analysis of Ref. [87]. First, the world experi-
mental data on electron proton scattering were corrected in
Ref. [87] for the TPE contributions, which were calculated
including the nucleon and �(1232)-resonance intermediate
states. Then, the corrected data were fitted using the pro-
ton FFs evaluated in the dispersive approach. No updates of
the neutron FFs were made. The comparison of the results
of the dispersive approach with those from the analysis in
Refs. [82,83] reveals that the electric and magnetic proton FFs
from Ref. [87] are compatible with the band from Ref. [82] at
small and intermediate Q, although they visibly deviate from
each other at Q larger than 4 fm−1 (see the dot-dashed curve
with the red band). A closer look at the small momentum
range, which is particularly sensitive to the proton charge
radius, shows a very good agreement between the results of
these analyses [see the zoomed plot for Gp

E in Fig. 3(a)]. This
is not surprising given that the value for the proton charge
radius predicted in Ref. [87] is consistent with the latest
CODATA-2018 update employed in Ref. [82] as input (see
also Ref. [95] for a mini-review on the status of the proton
radius puzzle).

Last but not least, the lattice QCD simulations for the
nucleon FFs are already approaching the accuracy compatible
with the experimental precision. For example, in Ref. [96], the
electromagnetic FFs of the nucleon are computed including
both the connected and disconnected contributions for the
pion masses basically at the physical point. The resulting
isoscalar and isovector nucleon FFs were found to overshoot
the experimental data by about one standard deviation which,
as proposed in Ref. [96], could be due to small residual
excited-state contamination. Further simulations should help
in resolving this issue.

In this paper, we will employ a set of different parametriza-
tions for the proton and neutron FFs as input to calculate the
deuteron FFs and, in this way, to make a complementary non-
trivial test of our understanding of the nucleon FFs. Indeed,
since our current paper is aimed at a high-accuracy system-
atic investigation of the nuclear effects up to N4LO in chiral
EFT, the comparison of the calculated deuteron form factors
with data should provide useful insights into the consistency
of the single-nucleon input with the elastic-scattering data

on the deuteron. Since the up-to-date dispersive results from
Refs. [86,87] are given without uncertainties, we will use the
results of Ref. [82,83] as our central input, while the FFs from
Ref. [84] will be employed as a consistency check.

Finally, since the deuteron FFs involve only the isoscalar
combinations of the nucleon FFs [see Eq. (22)], we plot these
combinations in Fig. 4. Notice further that the charge and
quadrupole FFs of the deuteron are sensitive predominantly
to the isoscalar electric FF of the nucleon, while the isoscalar
magnetic FF contributes only through the numerically small
spin-orbit correction. For the isoscalar electric form factor, the
dispersive results of Refs. [84,86] are essentially consistent
with each other as well as with those from the analysis [82] at
least for Q � 3.5 fm−1.

C. Two-nucleon contributions to the charge-density operator

The charge-density operator is dominated by the LO
single-nucleon contribution, while the first 2N terms appear
only at N3LO [61,62]. The dominant contributions to the 2N
charge-density operator stem from one-loop diagrams of the
one-pion exchange (OPE), two-pion exchange, and contact
types, the explicit expressions of which are parameter free
and can be found in Refs. [61,62]. All these terms are of
isovector type and, therefore, do not contribute to the deuteron
form factors. In addition to the already mentioned static, i.e.,
order-(1/mN )0, contributions, one also has to consider tree-
level one-pion exchange diagrams with a single insertion of
the kinetic energy or 1/mN corrections to the leading pion-
nucleon vertex. In the two-nucleon kinematics

N (p1) + N (p2) + γ (k) → N (p′
1) + N (p′

2) (25)

with auxiliary three-momenta defined as q1 = p ′
1 − p1 and

q2 = p ′
2 − p2, the isoscalar one-pion exchange charge density

can be written as [62]

ρ1π
2N = (1 − 2β̄9)

eg2
A

16F 2
π mN

(τ1 · τ2)
(σ1 · k)(σ2 · q2)

q2
2 + M2

π

+ (2β̄8 − 1)
eg2

A

16F 2
π mN

(τ1 · τ2)
(σ1 · q2)(σ2 · q2)(q2 · k)(

q2
2 + M2

π

)2

+ (1 ↔ 2), (26)
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where the dimensionless quantities β̄8 and β̄9 parametrize
the unitary ambiguity of the long-range contributions to the
nuclear forces and currents at N3LO. The explicit form of the
corresponding unitary transformations is given in Eq. (4.23) of
Ref. [62]. Further, gA is the axial-vector coupling constant of
the nucleon, Fπ is the pion decay constant, and (1 ↔ 2) stands
for a contribution resulting from interchanging the nucleon
labels. Notice that the OPE contribution has also been taken
into account in phenomenological studies, where it represents
a part of the so-called meson-exchange currents (see, e.g.,
Ref. [97]).

It is important to emphasize that all terms of the OPE
charge density in Eq. (26) are proportional to unobservable
unitary-transformation parameters β̄8 and β̄9. The same pa-
rameters also appear in the 1/m2

N and 1/mN contributions
to the two- [98] and three-nucleon forces at N3LO [69] (see
also Ref. [99] for a related discussion). This unitary ambigu-
ity reflects the fact that nuclear forces and currents are not
directly measurable and, in general, scheme dependent. In
contrast, observable quantities such as, e.g., the form factors
must, of course, be independent of the choice of β̄8, β̄9, and
other off-shell parameters. This can only be achieved by us-
ing off-shell consistent expressions for the nuclear forces and
currents. In particular, to be consistent with the new semilocal
momentum-space regularized NN potentials of Refs. [7,18]
which we employ to calculate the DWF for our analysis, the
so-called minimal nonlocality choice with

β̄8 = 1/4, β̄9 = −1/4 (27)

has to be made. Note that the employed calculational approach
relies on a numerically exact solution of the 2N Schrödinger
equation with a potential truncated at a given order. This way
one unavoidably includes certain higher-order contributions
to the scattering amplitude so that the calculated observables
are only expected to be approximately independent of β̄8 and
β̄9. The residual dependence on these parameters should be of
a higher order, which provides a useful tool to check consis-
tency of the calculations. In Sec. VII E 5, we will demonstrate
that the deuteron FFs calculated with different sets of β̄8 and
β̄9 yield consistent results.

An important consequence of the unitary ambiguity associ-
ated with β̄8 and β̄9 is that one can use unitary transformations
to reshuffle the contributions to observables between the
charge density and DWF. One can even completely elimi-
nate the isoscalar 2N charge-density operator at N3LO. As
will be shown below, this also holds true for the short-range
corrections at N4LO.4 The expression in Eq. (26) is thus to
be understood as the contribution induced by acting with the
unitary operator specified in Eq. (4.23) of Ref. [62] on the
isoscalar part of the leading single-nucleon charge-density op-
erator ρ

Main, LO
1N = e, where the electric nucleon FF at leading

order (labeled by the superscript LO) was set to unity. Since
we do not rely on the chiral expansion of the nucleon FFs in

4Notice, however, that the leading isovector contributions to the 2N
charge density at N3LO cannot be eliminated by means of unitary
transformations [61,100].

our analysis, it is more consistent and appropriate to define the
isoscalar OPE contribution as the one induced by ρMain

1N rather
than ρ

Main, LO
1N , which generalizes the expression in Eq. (26) to

ρ1π
2N = (1 − 2β̄9)GS

E(Q2)
eg2

A

16F 2
π mN

(τ1 · τ2)
(σ1 · k)(σ2 · q2)

q2
2 + M2

π

+(2β̄8 − 1)GS
E(Q2)

eg2
A

16F 2
π mN

(τ1 · τ2)

× (σ1 · q2)(σ2 · q2)(q2 · k)(
q2

2 + M2
π

)2 + (1 ↔ 2). (28)

While this expression is equivalent to Eq. (26) up to terms
of a higher order, using Eq. (28) ensures that our results for
the deuteron FFs are independent of the parameters β̄8 and β̄9

to a very high degree, as will be explicitly demonstrated in
Sec. VII E 5.

Although the pionic contributions to the isoscalar charge
density at N4LO have not been worked out yet, the complete
expression for the contact operators at N4LO is derived and
given in Appendix B. The expression for the antisymmetrized
isoscalar contact operators at N4LO reads

ρCont = 2e

(
A + B + C

3

)
σ1 · σ2 + 3

4

1 − τ1 · τ2

4
k2

+ 2eC
1 − τ1 · τ2

4

(
(k · σ1)(k · σ2) − 1

3
k2(σ1 · σ2)

)

+ 2e (A − 3B − C)
1 − σ1 · σ2

4

τ1 · τ2 + 3

4
k2,

(29)

where the first two (third) line in Eq. (29) contributes
to the isospin-zero-to-isospin-zero (isospin-1-to-isospin-1)
channel and A, B, and C denote the corresponding
low-energy constants (LECs). These LECs contribute to
the deuteron FFs in two linear combinations A + B +
C/3 and C. The expression in Eq. (29) agrees with
the isoscalar part of the result published in Ref. [101],
while the corresponding isovector terms are different (see
Appendix B). Notice further that the contact operator relevant
for the quadrupole moment of the deuteron [the term propor-
tional to C in Eq. (29)] was first derived in Ref. [37].

As already pointed out above, the short-range opera-
tors Eq. (29) can, in principle, also be eliminated via a
suitable unitary transformation at the cost of changing the
off-shell behavior of the NN potential. The corresponding
unitary transformation acting on two-nucleon states is given
in Ref. [7] and can be written as

U = eAT1+BT2+CT3 , (30)

where the anti-Hermitian generators read

T1 = (
p′2

1 + p′2
2 − p2

1 − p2
2

)
,

T2 = (
p′2

1 + p′2
2 − p2

1 − p2
2

)
(σ1 · σ2),

T3 = σ1 · (p1 − p2 + p′
1 − p′

2) σ2 · (p′
1 − p′

2 − p1 + p2)

+ σ1 · (p′
1 − p′

2 − p1 + p2) σ2 · (p1 − p2 + p′
1 − p′

2).

(31)
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Here, pi (p′
i) denote the initial and final momenta of the

nucleons. However, in Refs. [7,18], the freedom to perform
such unitary transformations has already been exploited to
eliminate the redundant contact interactions contributing to
the 1S0 and 3S1 partial waves and the mixing angle ε1 at
N3LO.5 Therefore, to be consistent with the choice of the
off-shell behavior adopted in the NN potentials of Ref. [18],
the short-range contributions to the charge density in Eq. (29)
have to be taken into account explicitly. Here, we follow the
same procedure as in the case of the OPE charge density and
employ the short-range charge-density operator induced by
applying the unitary transformation in Eq. (30) to the charge-
density operator ρMain

1N from Eq. (24):

δρ̂ = Û †ρ̂Main
1N Û − ρ̂Main

1N � [
ρ̂Main

1N , AT̂1 + BT̂2 + CT̂3
]
,

(32)
where square brackets denote a commutator and X̂ indicates
that the quantity X is to be regarded as an operator rather than
a matrix element with respect to momenta of the nucleons.
Evaluating the commutator in the given kinematics yields the
generalization of Eq. (29) for the contact isoscalar charge
density:

ρCont = 2eGS
E(k2)

[(
A + B + C

3

)
σ1 · σ2 + 3

4

1 − τ1 · τ2

4
k2

+C
1 − τ1 · τ2

4

(
(k · σ1)(k · σ2) − 1

3
k2(σ1 · σ2)

)

+ (A − 3B − C)
1 − σ1 · σ2

4

τ1 · τ2 + 3

4
k2

]
,

(33)

where the nucleon FF GS
E(k2) coming from ρMain

1N accounts
for a nonpointlike nature of the NNγ vertex. The linear
combinations of the LECs (A + B + C/3) and C will be de-
termined from the deuteron data as discussed in Sec. VI C.
The combination (A − 3B − C) corresponds to the isospin-1-
to-isospin-1 transition and should be determined from other
processes. For the complete expression including isovector
terms the reader is referred to Appendix B.

Finally, we emphasize that the above expressions do not
provide the complete contribution to the 2N charge-density
operator at N4LO. It is, however, conceivable that most (if
not all) of the corrections of the one- and two-pion exchange
range, which still have to be worked out, are of isovector
type and, therefore, do not contribute to the deuteron FFs.
We expect that isoscalar long-range contributions at N4LO
not considered in our paper are, to some extent, effectively
taken into account by the short-range operators for not too
high values of the momentum transfer. For the sake of brevity,
we will refer to all results based on the short-range part of the
2N charge-density operator in Eq. (33) as being N4LO.

5To eliminate the redundant terms in the NN potential, the param-
eters A, B, and C have to be taken formally of the order O(mN/�b)
rather than O[(mN/�b)0]. This is the reason for the apparent mis-
match in the chiral order of the off-shell contact terms in the NN
potential (N3LO) and the corresponding short-range charge-density
operators (N4LO).

IV. REGULARIZATION
OF THE CHARGE-DENSITY OPERATOR

We now discuss regularization of the charge-density oper-
ators introduced in the previous section. The single-nucleon
charge-density operator requires no regularization. However,
two-nucleon contributions (both OPE and contact) have to
be regularized, because of the divergent loop integrals ap-
pearing in the convolution with deuteron wave function. We
specifically focus here on the consistency with the regular-
ization of chiral NN potential [7,18]. The new generation of
chiral NN potentials of Ref. [7,18] employed in our analysis
makes use of the local momentum-space regulator for pion
exchange contributions, which, by construction, maintains the
long-range structure of the nuclear force. The short-range part
of the nuclear forces developed in Refs. [11,12] is regular-
ized with an angular-independent Gaussian momentum-space
regulator. The meaning of consistency of the regularization
procedure for nuclear forces and currents is discussed in
Refs. [102,103], where it is shown that the usage of dimen-
sionally regularized loop contributions to the three-nucleon
forces and 2N currents leads, in general, to incorrect results
for observables. In order to avoid this problem, loop contri-
butions to the current operators need to be rederived using a
regulator compatible with that employed in the NN potentials.
The complications related to the loop operators are, however,
irrelevant for our analysis: thanks to the deuteron acting as
an isospin filter, none of the terms in the 2N charge density
stemming from loop diagrams at N3LO contribute to the
deuteron FFs. Still, it is important for our analysis to employ
a proper regulator chosen in a way compatible with the NN
potentials of Refs. [7,18]. In particular, since the contribution
of the single-nucleon charge density to the deuteron FFs drops
off rapidly with increasing values of the momentum transfer,
the calculated FFs at larger Q values become sensitive to the
two-nucleon charge-density operator which depends on the
regulator.

We start with the OPE operators given by Eq. (28). These
operators contain single and squared pion propagators. The
regularization of the contributions with the single pion propa-
gator is defined in Ref. [7] and can be effectively written as a
substitution:

1

p2 + M2
π

→ 1

p2 + M2
π

exp

(
− p2 + M2

π

�2

)
, (34)

where � is a fixed cutoff chosen consistently with the em-
ployed NN potential in the range of 400–550 MeV.6

Apart from the single pion propagator, the OPE charge
density, Eq. (28), also contains the pion propagator squared.
The prescription for regularizing the squared pion propagator
can be obtained from Eq. (34) by taking a derivative with

6In Ref. [7], also the results for � = 350 MeV are given. However,
for such a soft cutoff one already observes a substantial amount of
finite-regulator artifacts, and the description of NN data deteriorates
noticeably. For this reason we do not use this cutoff value in our
analysis.
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respect to M2
π , as done in Ref. [7], which yields

1(
p2 + M2

π

)2 →
(

1(
p2 + M2

π

)2 + 1

�2
(
p2 + M2

π

)
)

exp

(
− p2 + M2

π

�2

)
. (35)

Using the regularization procedure specified above, the regularized expression for the isoscalar part of the OPE charge density
takes the form

ρ
1π, reg
2N = (1 − 2β̄9)GS

E(Q2)
eg2

A

16F 2
π mN

(τ1 · τ2)
(σ1 · k)(σ2 · q2)

q2
2 + M2

π

exp

(
−q2

2 + M2
π

�2

)

+ (2β̄8 − 1)GS
E(Q2)

eg2
A

16F 2
π mN

(τ1 · τ2)(σ1 · q2)(σ2 · q2)(q2 · k)

(
1(

q2
2 + M2

π

)2 + 1

�2
(
q2

2 + M2
π

)
)

exp

(
−q2

2 + M2
π

�2

)

+ (1 ↔ 2). (36)
As a next step, we consider the regularization of the contact charge density given by Eq. (33). To ensure consistency between

regularizations of potential and charge density and avoid ambiguity due to the dependence of the charge-density operator on the
photon momentum, we exploit the fact that both the off-shell contact NN potential and the short-range charge-density operators
can be generated by the same unitary transformation acting on the kinetic-energy term and the single-nucleon charge density,
respectively. The contact part of the NN potential is regularized in Ref. [7] via a nonlocal Gaussian cutoff:

V reg
Cont = VCont exp

(
− (p′

1 − p′
2)2 + (p1 − p2)2

4�2

)
. (37)

The regularized off-shell contact NN interactions can be obtained by applying the unitary transformation given by Eq. (30) to
the kinetic-energy term with the regularized generators Ti:

T reg
i = Ti exp

(
− (p′

1 − p′
2)2 + (p1 − p2)2

4�2

)
, i = 1, 2, 3. (38)

Then, by acting with this unitary transformation on the single-nucleon charge density ρMain
1N from Eq. (24), we obtain the

consistently regularized 2N short-range charge-density operator:

ρ
reg
Cont = 2eGS

E(k2)

(
(A + B (σ1 · σ2))F1

(
p1 − p2

2
,

p′
1 − p′

2

2
, k

)
+ CF2

(
p1 − p2

2
,

p′
1 − p′

2

2
, k

))
, (39)

where the functions F1 and F2 are defined as

Fi(p, p′, k) = Ei

(
p − k

2
, p′

)
+ Ei

(
p + k

2
, p′

)
+ Ei

(
p′ − k

2
, p

)
+ Ei

(
p′ + k

2
, p

)
, (40)

with

E1(p, p′) = (p2 − p′2) exp

(
− p2 + p′2

�2

)
,

E2(p, p′) = [(σ1 · p)(σ2 · p) − (σ1 · p′)(σ2 · p′)] exp

(
− p2 + p′2

�2

)
. (41)

Note that, similarly to the procedure used for obtaining the
contact interactions, the regularized OPE contribution to the
2N charge density [as given in Eq. (36)] can also be derived by
regularizing the long-range unitary transformation [as given
in Eq. (4.23) of Ref. [62]] and acting with it on the single-
nucleon charge density ρMain

1N from Eq. (24).
Equations (36) and (39) provide the final expressions for

the 2N charge-density operator at N3LO and N4LO used in
the calculation of the deuteron FFs.

V. RELATIVISTIC CORRECTIONS

Although the deuteron FFs are Lorentz invariant, the in-
dividual ingredients (charge-density operators and deuteron
wave functions) do depend on the reference frame. At N2LO

and below, all frame-dependent corrections are irrelevant, but
starting from N3LO, the relativistic corrections to each in-
gredient have to be systematically taken into account. Frame
dependence of the charge-density operator is automatically
accounted for by the kinematics, because the operator is cal-
culated explicitly including all relevant 1/mN corrections. In
this section, we will focus on the relativistic corrections to
the deuteron wave functions stemming from the motion of the
initial and final deuterons.

The DWF is typically calculated for the deuteron at rest.
However, a calculation of the deuteron FFs always involves
at least one moving deuteron. Our calculation is carried out
in the Breit frame, where the initial and final deuterons are
moving in opposite directions. To account for this motion, the
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rest-frame DWF needs to be boosted. To the chiral order in
which we are working (N4LO), the DWF boost corrections
have to be considered only when calculating the convolution
integrals of the DWF with the leading single-nucleon charge
density ρMain

1N from Eq. (24).
Since subleading corrections to the single-nucleon charge

density as well as the first contributions to the two-nucleon
charge density appear only at N3LO (see Secs. III and VI C),
the corresponding DWF-boost corrections are beyond the
scope of our paper.7

Different approaches have been considered in the literature
to include the DWF boost corrections and found to yield
basically the same results. In Ref. [49], a covariant relativistic
calculation of the deuteron form factor was performed, and
the final result was expanded in powers of 1/mN (see also
Ref. [34] for a review). Alternatively, the boosted DWF was
calculated in Refs. [105–109] utilizing the 1/mN expansion
of the generators of the Poincaré group. This is the approach
we follow in our analysis. For a deuteron moving with the
velocity v, the boosted DWF operator has the form [109]

ψ (p, v) �
(

1 − v2

4

)[
1 − 1

2
(v · p)(v · ∇p)

− i

4mN
v · (σ1 − σ2) × p

]
ψ (p, 0), (42)

where p is the relative momentum of two nucleons, and
ψ (p, 0) is the rest-frame DWF which is normalized as∫

d3 p

(2π )3
|ψ (p, 0)|2 =

∫
d3 p

(2π )3
|ψ (p, v)|2 = 1. (43)

Then, to the order in which we are working, the boost-
corrected matrix element (19) evaluated with the leading
density ρMain

1N reads

1

2P0
〈P′, λ′

d | ρMain
1N | P, λd〉

= e GS
E(k2)

∫
d3 p

(2π )3 ψ
†
λ′

d

(
p + kboosted

4
, 0

)

×ψλd

(
p − kboosted

4
, 0

)
, (44)

where

kboosted = k
√

1 − v2
B = k√

1 + η
, (45)

and we used the fact that the spin dependent term in
Eq. (42) vanishes for spin-1-to-spin-1 transitions relevant for
the deuteron FFs.

The term on the right-hand side of Eq. (44) is related to the
length contraction of that part of the relative nucleon momen-
tum in the deuteron which is parallel to k. As a consequence
of this contraction, the matrix element must be evaluated with

7It is reassuring that the relativistic corrections to the OPE charge-
density operator considered in Ref. [104] were found to have a tiny
effect on the deuteron charge radius and quadrupole moment.

the deuteron wave function taken in its rest frame but with the
Breit momentum k replaced by kboosted.

Finally, we remind the reader of the ambiguity of the rel-
ativistic corrections to the NN potential associated with the
employed form of the Schrödinger equation. The corrections
to the kinetic energy of relative motion of the nucleons are
most easily taken into account by replacing the nonrelativistic

expression p2/mN with 2
√

p2 + m2
N − 2mN instead of using

the Taylor expansion, since otherwise the spectrum of the
2N Hamiltonian is unbounded from below. Instead of solv-
ing the corresponding relativistic Schrödinger equation, it is
more convenient to rewrite it in the equivalent nonrelativistic
form as explained in Ref. [99]. This choice was adopted in
the Nijmegen partial wave analysis [110] and is made in the
chiral NN potentials of Refs. [7,11,12,18]. While rewriting the
Schrödinger equation does affect the m−1

N and m−2
N contribu-

tions to the NN potential, the deuteron wave function remains
unchanged so that we can directly employ the DWF from
Refs. [7,18].

VI. ANATOMY OF THE CALCULATION

In this section, we summarize the analytic expressions for
the deuteron charge and quadrupole form factors, as well as
for the charge radius and the quadrupole moment. We discuss
the individual contributions to these quantities from differ-
ent types of the charge density introduced in the previous
sections. We define the structure radius of the deuteron and
argue, following Ref. [45], that a high-accuracy calculation
of this quantity along with high-precision atomic data for the
1S-2S hydrogen-deuterium isotope shift provide access to the
neutron charge radius.

A. The charge form factor and structure radius of the deuteron

The deuteron charge form factor GC can, up to N4LO, be
written as

GC(Q2) = GMain
C (Q2) + GDF

C (Q2) + GSO
C (Q2)

+ GBoost
C (Q2) + G1π

C (Q2) + GCont
C (Q2), (46)

where GMain
C (Q2), GDF

C (Q2), and GSO
C (Q2) arise from charge

densities defined in Eq. (24), GBoost
C (Q2) is a relativistic cor-

rection due to initial and final deuteron motion, G1π
C (Q2)

stems from the one-pion-exchange charge density in Eq. (36),
and GCont

C (Q2) is generated by the contact charge density in
Eq. (39). The main contribution GMain

C (Q2) can be factorized
as

GMain
C (Q2) = (

Gp
E(Q2) + Gn

E(Q2)
)
Gmatter

C (Q2), (47)

where Gp
E(Q2) and Gn

E(Q2) are the electric FFs of the proton
and neutron, while Gmatter

C (Q2) is a functional of the deuteron
wave function.

Charge conservation restricts the behavior of the charge
form factor at Q2 = 0. In particular, GC(0) = GMain

C (0) =
Gmatter

C (0) = Gp
E(0) = 1, while all other contributions to GC

vanish at Q2 = 0.
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The deuteron charge radius can be expressed as a derivative
of the charge form factor with respect to Q2 at Q2 = 0:

r2
d = −6

∂GC(Q2)

∂Q2

∣∣∣∣
Q2=0

. (48)

Taking derivatives of all terms in Eq. (46), we get the complete
set of contributions to the deuteron charge radius up to N4LO:

r2
d = r2

m + r2
p + r2

n + r2
DF + r2

SO + r2
Boost + r2

1π + r2
Cont, (49)

where the deuteron matter radius rm, the proton charge radius
rp, and the neutron charge radius rn are defined as

r2
m = −6

∂Gmatter
C (Q2)

∂Q2

∣∣∣∣
Q2=0

,

r2
p = −6

∂Gp
E(Q2)

∂Q2

∣∣∣∣
Q2=0

, (50)

r2
n = −6

∂Gn
E(Q2)

∂Q2

∣∣∣∣
Q2=0

,

and the remaining corrections to the deuteron charge radius
are calculated as

r2
i = −6

∂Gi
C(Q2)

∂Q2

∣∣∣∣
Q2=0

, i = {DF, SO, Boost, 1π, Cont}.
(51)

Since the rDF term and the charge radii of the individ-
ual nucleons are not related to the two-body dynamics of
the deuteron, they can be conveniently subtracted from the
deuteron charge radius. The resulting quantity is referred to
as the deuteron structure radius and is defined as (see, e.g.,
Ref. [111])

r2
str = r2

d − (
r2

p + r2
n + r2

DF

)
. (52)

The deuteron-proton mean-square charge radii difference
r2

d − r2
p in Eq. (52) can be extracted experimentally with an

extremely high precision from spectroscopic measurements of
the 1S-2S hydrogen-deuterium isotope shift [111]. In particu-
lar, a series of very precise measurements of the 1S-2S isotope
shift, accompanied with an accurate theoretical QED analysis
[see Ref. [112] for the latest update up through O(α2)], re-
sulted in the extraction of the deuteron-proton mean-square
charge radii difference [111]:

r2
d − r2

p = 3.820 07(65) fm2. (53)

Due to its high accuracy, this difference provides a tight link
between rd and rp and thus is important in connection with
the light nuclear charge radius puzzle. For many years, the
values for rp extracted from electron and muon experiments
showed more than a 5σ discrepancy [113]. The very recent
atomic hydrogen measurements [89,90], however, claim con-
sistency with the analogous muonic hydrogen experiments.
The recommended value for the proton root-mean-square
charge radius has been changed to rp = 0.8414(19) fm in the
latest CODATA-2018 update [91], and the deuteron charge
radius was updated accordingly, by virtue of the difference
in Eq. (53). The updated CODATA deuteron charge radius
is only 1.9σ larger than the spectroscopic measurement on

the muonic deuterium [114] but still 2.9σ smaller than the rd

value from electronic deuterium spectroscopy [115].
As follows from Eq. (52), the deuteron-proton charge radii

difference from Eq. (53) allows one to extract the differ-
ence r2

str − r2
n to a very high accuracy. The neutron charge

radius can be deduced from measurements of the coherent
neutron-electron scattering length extracted from data on neu-
tron scattering off 208Pb, 209Bi, and other heavy atoms. The
value for the neutron charge radius quoted by the PDG is r2

n =
−0.1161(22)fm2, where the estimated error was increased by
a scaling factor of 1.3 [50]. This value is based on averaging
the results of four different experiments from years 1973 to
1997. In Ref. [111], the value of r2

n = −0.114(3)fm2, which
is consistent with the PDG result, was employed based on the
measurement on 208Pb from Ref. [116]. Using this neutron
radius and Eq. (53) for the deuteron-proton charge radii dif-
ference, the value of rstr = 1.97507(78) fm for the structure
radius was extracted [111]. On the other hand, as advocated
in Ref. [117], the uncertainty for the neutron radius given
above might suffer from the underestimation of systematic
errors. For example, the central values on 208Pb and 209Bi
quoted in the most recent investigation of Ref. [116] differ
from each other by 0.0090 fm2, which is much larger than
even the increased uncertainty given by the PDG. Therefore, a
different logical chain was adopted in Ref. [45], namely, (a) by
employing the nuclear forces and currents derived up through
fifth order in chiral EFT, a very accurate determination of rstr

is becoming possible based on the analysis of the deuteron
charge form factor; (b) by using the predicted value for the
deuteron structure radius together with the atomic data for the
deuteron-proton charge radii difference, the charge radius of
the neutron was for the first time extracted from light nuclei.
In this investigation, we follow the same logic to update the
analysis of Ref. [45]. In particular, we employ the updated
NN potentials which include isospin breaking corrections up
through N4LO and provide a statistically perfect description
of neutron-proton and proton-proton scattering data up to
the pion production threshold [18] to extract the structure
radius from a combined analysis of the charge and quadrupole
deuteron FFs in the range of momentum transfer up to Q =
6 fm−1. Then, we update the value for the neutron charge
radius (see Sec.VII C for the results).

B. The quadrupole form factor and quadrupole
moment of the deuteron

The deuteron quadrupole form factor can be decomposed
in the same way as the charge form factor, namely,

GQ(Q2) = GMain
Q (Q2) + GDF

Q (Q2) + GSO
Q (Q2)

+ GBoost
Q (Q2) + G1π

Q (Q2) + GCont
Q (Q2), (54)

where the individual terms originate from different charge-
density contributions in full analogy with Eq. (46). The
deuteron quadrupole moment is defined as the value of the
quadrupole form factor at Q2 = 0, namely,

Qd = 1

m2
d

GQ(0). (55)
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Taking the Q2 = 0 limit in Eq. (54) yields the individual
contributions to the deuteron quadrupole moment, which read

Qd = Q0 + QSO + QBoost + Q1π + QCont, (56)

where we used the fact that GDF
Q (0) = 0 and defined the indi-

vidual terms as

Q0 = 1

m2
d

GMain
Q (0),

Qi = 1

m2
d

Gi
Q(0), (57)

i = {SO, Boost, 1π, Cont}.
The analytic expressions for various contributions to the
deuteron charge and quadrupole form factors as well as to the
structure radius and the quadrupole moment are collected in
Appendix A.

C. Calculational setup

The deuteron FFs at different chiral orders are calculated
as follows.

(1) LO: The main contribution to the single-nucleon
charge density ρMain

1N in Eq. (24) is convoluted with the
LO deuteron wave function.

(2) NLO: This is the same as LO but using the NLO
deuteron wave function.

(3) N2LO: This is the same as LO but using the N2LO
deuteron wave function.

(4) N3LO: The contributions ρMain
1N , ρDF

1N , and ρSO
1N from

Eq. (24) to the single-nucleon charge density and the
OPE contribution in Eq. (36) are convoluted with the
N3LO deuteron wave functions; the relativistic boost
corrections to the single-nucleon contributions are cal-
culated as explained in Sec. V.

(5) N4LO: This is the same as N3LO but using the N4LO+

deuteron wave function and including the 2N short-
range charge-density operators from Eq. (39).

Unless specified otherwise, all results presented below are
based on the semilocal momentum-space NN potentials of
Ref. [7], updated to incorporate a more complete treatment of
isospin-breaking corrections [18]. In particular, the updated
potentials take into account the charge dependence of the
pion-nucleon coupling constants. The determination of the
pion-nucleon coupling constants from NN data in Ref. [18]
leads to the average value of gπN , which is about 1% larger
than the one employed in Ref. [7], and the resulting change
in the deuteron wave function leads to a visible effect on the
quadrupole FF of the deuteron at higher Q values. Clearly,
in all cases, the same cutoff value chosen from the set � =
{400, 450, 500, 550} MeV is used in the regularized NN
potential and in the 2N charge density. For single-nucleon
FFs, we employ the most up-to-date parametrization by Ye
et al. [82] for our central results. We propagate the uncertainty
in the determination of these FFs to estimate its impact on
the deuteron FFs in Sec. VII E 2. In the same section we
also consider the impact of using different single-nucleon FFs
parametrizations.

It remains to specify the values of the various parameters
used in the expressions for the 2N charge-density operator
in Eqs. (36) and (39). Following Refs. [7,18], we employ
the value of gA = 1.29 for the effective axial-vector coupling
constant, which accounts for the Goldberger-Treiman discrep-
ancy, Fπ = 92.4 MeV for the pion decay constant, mN =
2mpmn/(mp + mn) = 938.918 MeV for the nucleon mass, and
Mπ = (2Mπ ± + Mπ 0)/3 = 138.03 MeV for the pion mass.
Notice that the expressions for the 2N charge density are taken
in the isospin limit as the corresponding isospin-breaking
corrections start to contribute at N5LO, which is beyond the
accuracy of our analysis. Finally, the two linear combinations
of LECs entering the short-range part of the 2N charge-density
operator at N4LO are determined from the best combined fit to
the experimental data on the momentum-transfer dependence
of the charge and quadrupole deuteron FFs as described in
Sec. VII. This then allows us to make a parameter-free predic-
tion for the structure radius and the quadrupole moment of the
deuteron.

VII. RESULTS FOR CHARGE AND QUADRUPOLE
DEUTERON FORM FACTORS

In this section, we present our results for the deuteron
charge and quadrupole form factors. We fix two LECs ap-
pearing in the N4LO contact charge density by fitting the
calculated FFs, Gth

C (Q) and Gth
Q (Q), to the corresponding

world experimental data for Q < 6 fm−1. Using the LECs
extracted from the best fit, we predict the structure radius and
the quadrupole moment of the deuteron. Following Ref. [45],
we use the predicted structure radius to extract the neutron
charge radius from the precisely measured deuteron-proton
charge-radii difference. We provide a detailed analysis of
various uncertainties, discuss several important consistency
checks, and discuss the role of the individual contributions to
the charge and quadrupole deuteron form factors.

A. Fitting procedure

The values of the LECs appearing in the N4LO contact
charge density of Eq. (39) are determined from a χ2 fit of
our theoretical predictions for Gth

C (Q) and Gth
Q (Q) to the ex-

perimental data. The analytic expressions for the individual
contributions to Gth

C (Q) and Gth
Q (Q) are given in Appendix A,

and the experimental data set used in the fit is described in
Sec. II D. In the infinite cutoff limit, Gth

C (Q) depends only on
one combination of the LECs, namely, A + B + C/3, while
Gth

Q (Q) depends only on the LEC C. Once the regularization is
applied, both Gth

C (Q) and Gth
Q (Q) in general depend on the two

mentioned linear combinations of the LECs [see Eqs. (A28)
and (A32) in Appendix A]. The function χ2(A + B + C/3;C)
to be minimized is defined as follows:

χ2 =
∑

i

(
Gth

C

(
Q2

i ; A + B + C/3;C
) − Gexp

C

(
Q2

i

))2

�GC
(
Q2

i

)2

+
∑

i

(
Gth

Q

(
Q2

i ; A + B + C/3;C
) − Gexp

Q

(
Q2

i

))2

�GQ
(
Q2

i

)2 , (58)
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where {Qi} is the set of momenta, for which experimental data
are available, and the summations are performed for Qi below
Qmax = 6 fm−1. The intrinsic systematic uncertainty related
to the choice of Qmax will be discussed below. Following
Refs. [31,118], the uncertainties �GC(Q2

i ) and �GQ(Q2
i ) in

χ2 include, apart from the experimental errors, also theoretical
uncertainties added in quadrature:

�GX
(
Q2

i

)2 = �Gexp
X

(
Q2

i

)2 + �Gth,trunc
X

(
Q2

i

)2

+�Gth,nuclFF
X

(
Q2

i

)2
, (X = C and Q). (59)

In this way, we take into account uncertainties from the trun-
cation of the chiral expansion and from the parametrization of
the nucleon form factors. As the expansion parameter in chiral
EFT increases with the momentum transfer, the truncation
errors also grow with Q, as discussed in Sec. VII E 1. Thus
the inclusion of the truncation errors directly in the objective
function allows us to use the deuteron data in a larger range
of Q, namely, up to Qmax = 6 fm−1 and even higher. The
uncertainty related to the parametrization of the nucleon FFs
is yet another source of the theoretical uncertainty which we
include directly in the fit (see Sec. VII E 2 for details). Other
kinds of uncertainties such as the ones associated with the
choice of Qmax and with the πN and 2N LECs used in the
NN potential are estimated separately and discussed below.

Our central fit is performed for the cutoff � = 500 MeV
and Qmax = 6 fm−1. Assuming that the experimental data
points are independent,8 the resulting χ2 and χ2/DOF values
are

χ2
min = 15.24, χ2

min/DOF = 0.34. (60)

The low value of χ2
min/DOF may signal an overestimation of

the truncation errors, but it can also be caused by neglect-
ing correlations when estimating truncation errors at similar
values of the momentum transfer. The value of χ2

min/DOF,
therefore, does not allow for a straightforward statistical in-
terpretation. The obtained values of the two relevant linear
combinations of the LECs read

A + B + C

3
= (−281 ± 64) GeV−5 � (−0.66 ± 0.15)

1

F 2
π �3

b

,

C = (−58 ± 35) GeV−5 � (−0.14 ± 0.08)
1

F 2
π �3

b

,

(61)

where the error corresponds to the 1σ deviation of the χ2 and
�b = 650 MeV refers to the breakdown scale of the chiral
expansion (see Sec.VII E 1 for a discussion). Notice that both
linear combinations of the LECs come out of a natural size
[see the second equalities in Eq. (61)]. This is an important
consistency check of our calculations, which is also fulfilled
for the contact interactions entering the employed NN poten-
tials (see Fig. 7 of Ref. [3]). Finally, the correlation matrix for

8Note that for the number of degrees of freedom we take just
the number of data points minus the number of free parameters.
Correlations between data points are neglected.

A + B + C/3 and C reads

ρ =
(

1 −0.4
−0.4 1

)
. (62)

B. Results for the deuteron form factors

The results for the deuteron charge and quadrupole FFs
from the best fit to data up to Q = 6 fm−1, evaluated for the
cutoff � = 500 MeV, are visualized in Fig. 5 together with
the N4LO truncation errors and statistical uncertainty of the
LECs in ρ

reg
Cont from Eq. (39). The plot contains two theoret-

ical uncertainty bands: the light-shaded band stands for the
estimated truncation error corresponding to the 68% degree-
of-belief (DOB) interval, while the band between long-dashed
(red) lines corresponds to a 1σ error in the determination
of the two short-range contributions at N4LO. In principle,
these two uncertainty bands are not fully independent since
the truncation error is also included in the estimate of the 1σ

error for the LECs in the charge-density operator as discussed
in the previous section. In this way, however, the truncation
error is estimated more conservatively.

Since the variation of the FFs at small Q values is difficult
to see on the logarithmic scale, we also plot the rescaled FFs
using a linear scale in panels (b) and (d) of Fig. 5. Specifi-
cally, following Ref. [35], we define the rescaled charge and
quadrupole FFs via

Gscaled
C (Q) = GC(Q)

(
3∑

i=0

ai exp(−biQ
2)

)−1

, (63)

with a1 = 0.295, a2 = 0.637, a3 = 0.010, b0 = 3.149 fm2,
b1 = 1.183 fm2, b2 = 0.346 fm2, b3 = 0.036 fm2, and a0 =
1 − a1 − a2 − a3 and

Gscaled
Q (Q) = GQ(Q)

m2
d Qd

(
3∑

i=0

ai exp(−biQ
2)

)−1

, (64)

with Qd = 0.2859 fm2, a1 = 0.344, a2 = 0.275, a3 = 0.035,
b0 = 1.483 fm2, b1 = 0.475 fm2, b2 = 0.222 fm2, b3 =
0.085 fm2, and a0 = 1 − a1 − a2 − a3. In these plots, along
with the comparison of our theoretical results with the experi-
mental data, we also show the results of the parametrization of
the deuteron FFs provided in Refs. [35,119]. While the results
for Gth

C (Q) and Gth
Q (Q) are generally quite consistent with this

parametrization within errors, a closer look at Gscaled
C (Q) re-

veals a discrepancy in the range of intermediate Q’s from 1 to
2 fm−1, where the uncertainty from the chiral expansion is still
very small. Meanwhile, as will be discussed in Sec. VII E 2,
this range of the transferred momentum is especially sensitive
to the choice of a parametrization of the nucleon FFs. In par-
ticular, the inclusion of the uncertainty for the parametrization
from Ref. [82] results in the reduction of the discrepancy with
Refs. [35,119]. Nevertheless, the shape of Gth

C (Q) in the range
of Q’s from 1 to 3.5 fm−1 appears to change more rapidly as
compared to the parametrization by Sick et al. [119].
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FIG. 5. The deuteron charge (a) and quadrupole (c) form factors calculated at N4LO for the cutoff choice of � = 500 MeV (solid red lines)
along with the estimated truncation error (68% degree of belief) shown by the light-shaded band. Bands between dashed (red) lines correspond
to a 1σ error in the determination of the two short-range contributions at N4LO. Panels (b) and (d) show the same form factors divided by
the scaling functions as defined in Eqs. (63) and (64). Open violet circles and green triangles are experimental data from Refs. [57] and [55],
respectively. Black solid circles correspond to the parametrization of the deuteron FFs from Refs. [35,119].

C. Prediction for structure radius and quadrupole moment and
extraction of neutron charge radius

Using the fitted values of the LECs from Eq. (61) and
the theoretical expressions for rstr and Qd collected in
Appendix A, we make a parameter-free prediction for the
deuteron structure radius and the quadrupole moment, which
read

rstr = 1.9729+0.0015
−0.0012 fm, Qd = 0.2854+0.0038

−0.0017 fm2, (65)

where the uncertainties are obtained as a sum of all individ-
ual uncertainties given in Table I taken in quadrature (see
Sec. VII E for discussion). As advocated in Ref. [45], the
knowledge of the deuteron structure radius provides access
to the neutron charge radius, which measures the charge dis-
tribution inside the neutron. Using Eqs. (52), (53), and (65),
we find

r2
n = −0.105+0.005

−0.006 fm2, (66)

which is consistent with our previous determination in
Ref. [45]. In Sec. VII D we discuss some differences between
the current result and the result of Ref. [45].

D. Comparison to Ref. [45]

While the calculation in this paper is performed along the
lines of Ref. [45], there are several updates incorporated in the
current analysis. These updates can be summarized as follows:
(i) the updated SMS potentials of Ref. [18] that include isospin
breaking corrections are employed to calculate the deuteron
wave functions; (ii) we now simultaneously fit two linear
combinations of the LECs and use data for both the charge
and quadrupole FFs; (iii) our central result is based on the fit to
data up to Qmax = 6 fm−1; (iv) statistical uncertainty of the 2N
LECs in the NN potential is propagated in a more reliable way.

The small difference in the predicted value for the deuteron
structure radius and, consequently, also for the neutron charge
radius as compared to Ref. [45] is largely caused by increasing
the fitting range up to Qmax = 6 fm−1. For such value of Qmax,
both r2

str and Qd are basically saturated with Qmax, that is, they
do not show any significant deviations in their magnitudes
when Qmax is increased further. To estimate the error related
with the Qmax dependence conservatively, we vary Qmax from
3 to 7 fm−1. The resulting uncertainties are shown in Table I.
The “saturation” of r2

str and Qd above Qmax = 6 fm−1 also
explains the asymmetry of the Qmax related uncertainties.
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TABLE I. Deuteron structure radius squared and deuteron quadrupole moment predicted at N4LO in χEFT (second column) and the
individual contributions to the corresponding uncertainties from the truncation of the chiral expansion (third column), the statistical error in
the short-range charge-density operator extracted from GC(Q2) and GQ(Q2) (fourth column), the statistical uncertainty in πN LECs from the
Roy-Steiner analysis (RSA) of Refs. [16,17] propagated through the variation of the deuteron wave functions (fifth column), the statistical
uncertainty in 2N LECs and πN coupling constants f 2

i from the analysis of the 2N data of Refs. [7,18] (sixth column), and the choice of the
maximal energy in the fit (seventh column). The total uncertainties evaluated as a sum of presented uncertainties in quadrature are quoted in
the eighth column.

Central Truncation ρ
reg
Cont πN LECs RSA 2N LECs and f 2

i Q range Total

r2
str (fm2) 3.8925 ±0.0030 ±0.0024 ±0.0003 ±0.0025

+0.0035
−0.0005

+0.0058
−0.0046

Qd (fm2) 0.2854 ±0.0005 ±0.0007 ±0.0003 ±0.0016
+0.0035
−0.0005

+0.0038
−0.0017

In addition, we want to make a remark about a finite-cutoff
effect, which was neglected in Ref. [45]. In the infinite cutoff
limit, Gth

C (Q) at N4LO depends only on one linear combina-
tion of the LECs, namely, A + B + C/3. On the other hand, for
a finite cutoff, both combinations of the LECs A + B + C/3
and C contribute to both Gth

C and Gth
Q, which, therefore, can be

written schematically as

Gth
C (Q2) = Gth

C,1(Q2) + (A + B + C/3)Gth
C,2(Q2)

+C Gth
C,3(Q2), (67)

Gth
Q (Q2) = Gth

Q,1(Q2) + (A + B + C/3)Gth
Q,2(Q2)

+C Gth
Q,3(Q2). (68)

While the expressions for Gth
X,2(Q2) and Gth

X,3(Q2) with X =
C, Q are very different a priori, as can be seen from
Appendix A, in the actual calculations it occurs numeri-
cally that the momentum-transfer dependence of Gth

C,2(Q2)
and Gth

C,3(Q2) [and similarly of Gth
Q,2(Q2) and Gth

Q,3(Q2)] is
basically identical. In practice, this means that even for a finite
cutoff the FFs in Eqs. (67) and (68), that depend on both linear
combinations of the LECs, largely decouple, so that one can
study GC independently from GQ. For this reason, in Ref. [45],
only the charge FF was considered, in which the very last term
in Eq. (67) was not included as being redundant. However,
because this decoupling is only approximate, in this paper
we make a combined analysis of both Gth

C (Q2) and Gth
Q (Q2).

By comparing the structure radius extracted in this paper
with that of Ref. [45], we conclude that they are completely
consistent and that the effect of considering both GC and GQ

simultaneously is negligible. On the other hand, since the
LECs A + B + C/3 and C contribute also to other reactions,
it is important to extract them individually. This goal can only
be achieved if a combined analysis of Gth

C (Q2) and Gth
Q (Q2)

is performed, which allows one to fix A + B + C/3 and C
separately.

E. Error analysis

1. Truncation error

We start from the discussion of the chiral expansion for the
deuteron form factors which is important for the truncation
error estimate. The convergence pattern of the chiral expan-
sion for the charge and quadrupole deuteron form factors is

shown in Fig. 6 for the cutoff � = 500 MeV. Up to and
including N3LO, the calculation does not involve any free
parameters, while at N4LO two linear combinations of the
LECs are adjusted to achieve an overall best description of
the deuteron FFs in the range of Q values up to 6 fm−1. As
a general pattern, the chiral expansion of both form factors
converges quite well.

For a given value of the cutoff �, truncation errors can
be estimated from the convergence pattern of the chiral ex-
pansion using the algorithm formulated in Ref. [11]. This
simple approach has, however, a disadvantage of not directly
providing a statistical interpretation of the estimated errors.
We therefore follow here the Bayesian approach developed in
Refs. [29–31,120], which allows one to estimate truncation
errors for a given DOB interval. Throughout this analysis, we
employ the Bayesian model C̄650

0.5−10 specified in Ref. [32] and
assume the characteristic momentum scale p that determines
the expansion parameter

q = max

(
p

�b
,

Meff
π

�b

)
(69)

to be given by |k|/2 [41]. In the impulse approximation valid
up to and including N2LO, it is easy to see that the deuteron
wave function is being probed at the momentum |k|/2 rather
than |k| (see Ref. [41] for a discussion). The quantity Meff

π

in Eq. (69) serves to model the expansion of few-nucleon
observables around the chiral limit, while �b denotes the
breakdown scale of chiral EFT.

In Fig. 5, we show the charge and quadrupole FFs cal-
culated at N4LO for the cutoff � = 500 MeV along with
the truncation error corresponding to the 68% DOB inter-
val estimated using Eq. (21) from Ref. [32] with h = 10,
c< = 0.5, and c> = 10 and assuming �b = 650 MeV and
Meff

π = 200 MeV [121].
The truncation errors for the structure radius and the

quadrupole moment given in Table I are estimated in exactly
the same way. To make this uncertainty estimate conserva-
tively the truncation error in these quantities is, like in the
deuteron FFs, included twice: (i) by performing the Bayesian
analysis for r2

str and Qd explicitly and (ii) through the statis-
tical uncertainty in the short-range charge density extracted
from the fit to Gexp

C (Q2) and Gexp
Q (Q2) using Eqs. (58) and (59).

We also provide in Table II the results for the deuteron struc-
ture radius and the quadrupole moment at different orders of

024313-17



A. A. FILIN et al. PHYSICAL REVIEW C 103, 024313 (2021)

FIG. 6. Convergence of the chiral expansion for the charge (a), (b) and quadrupole (c), (d) deuteron FFs for the cutoff � = 500 MeV. The
curves correspond to different chiral orders, namely, black dotted (LO), yellow dashed (NLO), green dot-dashed (N2LO), blue long-dashed
(N3LO), and red solid (N4LO). For remaining notation see Fig. 5.

the chiral expansion along with the corresponding truncation
errors, which show a rather natural pattern of convergence for
the considered cutoff value of � = 500 MeV.

2. Uncertainty from parametrizations of the nucleon form factors

In Fig. 7, we demonstrate the effect of the uncertainties
from the nucleon FFs on the deuteron charge and quadrupole
FFs. Our central results, as given by red bands (between solid
lines) in Fig. 7, rely on the nucleon FFs extracted from a
recent global analysis of electron scattering data on H, 2H,
and 3He targets carried out in Refs. [82,83] using the proton
charge radius from CODATA-2018 as input (see Sec. III B
for details). The uncertainty from the nucleon FFs, as given

in Ref. [82], is included in the statistical uncertainty of our
calculation [see Eq. (59)].

To investigate the sensitivity of the results to parametriza-
tions of the nucleon FFs, we refitted GC(Q2) and GQ(Q2)
using the nucleon FFs from the dispersive analysis of Ref. [84]
(the SC approach), where constraints from unitarity and ana-
lyticity were included. The results are shown as blue bands
between dashed lines in Fig. 7. On the one hand, the results
obtained using the parametrizations of Refs. [82,84] are gen-
erally consistent with each other as one may already expect
from the comparison of the isoscalar nucleon FFs in Fig. 4. On
the other hand, the range where the calculated deuteron FFs
appear to be especially sensitive to the details of the nucleon

TABLE II. Convergence pattern of the chiral expansion and the truncation errors for the deuteron structure radius and the quadrupole
moment. All results are obtained for the cutoff � = 500 MeV and Qmax = 6 fm−1. Truncation errors for rstr are recalculated from errors
estimated for r2

str using the Bayesian approach as described in this section.

LO NLO N2LO N3LO N4LO

r2
str (fm2) 3.8 ± 1.4 3.86 ± 0.13 3.873 ± 0.029 3.877 ± 0.008 3.8925 ± 0.0030
rstr (fm) 1.9 ± 0.4 1.96 ± 0.03 1.968 ± 0.007 1.9689 ± 0.0019 1.9729 ± 0.0008
Qd (fm2) 0.24 ± 0.10 0.26 ± 0.01 0.282 ± 0.006 0.2854 ± 0.0017 0.2854 ± 0.0005
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FIG. 7. Effect of the uncertainty from various parametrizations of the nucleon form factors (see Fig. 4) on the deuteron charge (a), (b) and
quadrupole (c), (d) form factors. Red bands (between two solid lines) correspond to the nucleon form factors extracted from the analysis of
Ref. [82]; blue bands (between the dashed line) are based on the nucleon form factors from Ref. [84]. For remaining notation see Fig. 5.

FFs corresponds to the intermediate momentum transfers of
Q � 1–2.5 fm−1. In this range, the errors related to the trun-
cation of the chiral expansion are still very small, which can
be used to test the consistency of the employed up-to-date
nucleon FFs with the deuteron FFs. In the regime of interme-
diate momenta, GC(Q2) based on the one-nucleon input from
Ref. [84] is systematically lower than that for the nucleon FFs
from Ref. [82]. This can be seen from Fig. 7 especially if
one compares the theoretical results with the parametrization
from Refs. [35,119]: red bands based on the nucleon FFs from
Ref. [82] are essentially consistent with this parametrization
while the blue bands between dashed lines lie systematically
lower. This might be related to the fact that the analysis
of Ref. [84] was done before the new high-precision data
from Mainz [81,92] had become available. Meanwhile, the
updated versions of the dispersive approach [86,87] including
the MAMI data produce larger values for the proton electric
and magnetic FFs at small and intermediate momenta and, as
shown in Fig. 3, are in a good agreement with the analysis of
Ref. [82]. Since the results of Refs. [86,87] are given without
errors and no update for a combined dispersive analysis of the
proton and neutron FFs was provided in Ref. [87], we refrain
from using these results in the current paper.

It is important to emphasize that our results for the structure
radius and, therefore, also for the neutron charge radius are

only very weakly sensitive to the details of the nucleon FFs
used in the fits. This can be understood as follows. The quality
of the fits to the world data for the deuteron charge form factor
(at least for Qmax = 4 fm−1 and higher) increases significantly
if the momentum-transfer range around Q ≈ 4 fm−1, where
GC becomes small and changes its sign, is well reproduced.
Therefore, the contact interaction in the charge density at
N4LO is adjusted predominantly to reproduce this area. Mean-
while, the comparison of Figs. 5 and 7 reveals that by far the
largest source of the uncertainty at Q ≈ 4 fm−1 stems from
the truncation of the chiral expansion while the nucleon FFs
in this Q range have only a minor impact on the statistical
uncertainty. Therefore, the structure radius is insensitive to the
choice of the parametrization of the nucleon FFs.

3. Statistical uncertainty of the LECs determined
from πN and NN data

The chiral SMS NN potential involves two groups of
LECs: (i) the πN LECs from the Roy-Steiner analysis of
Refs. [16,17], and (ii) the 2N LECs and πN coupling con-
stants, which are adjusted to achieve the best fit of the
neutron-proton and proton-proton scattering data in Ref. [18].
We consider uncertainties coming from each group.
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FIG. 8. Residual cutoff dependence vs the truncation error for the deuteron charge (a), (b) and quadrupole (c), (d) form factors at N4LO.
Light-shaded blue bands between two solid lines correspond to the cutoff variation in the range of � = 400–550 MeV. For remaining notation
see Fig. 5.

To account for the statistical uncertainty of the πN LECs
from the Roy-Steiner analysis, we generated a sample of 50
N4LO+ NN potentials with normally distributed πN LECs.
Then, the propagation of this uncertainty is performed through
the variation in the deuteron wave functions. By refitting
the deuteron FF data we, therefore, extracted the impact of
this uncertainty on r2

str and Qd , as shown in Table I. The
resulting uncertainty from these πN LECs appears to be very
small.

The errors from the statistical uncertainty in the 2N LECs
and πN coupling constants extracted in Ref. [18] were also
propagated to r2

str and Qd and the corresponding results are
given in Table I. These errors correspond to the maximum
deviations from the central values of rm and Q0, which
are compatible with the variation of the χ2 in the range
[χ2

min, χ
2
min + 1] for the description of the neutron-proton and

proton-proton data as done in Ref. [18]. This approach is
similar to what was used to estimate the uncertainties of the
asymptotic deuteron wave-function normalization AS and the
1S0 NN scattering length in Ref. [7]. Note also that in the
present paper the method of error propagation from 2N LECs
is different from what was done in Ref. [45], where a covari-
ance matrix was used. We found that the covariance-matrix

approach overestimates the corresponding uncertainties for
r2

str. For the deuteron quadrupole moment, however, both ap-
proaches give very similar error estimates.

4. Q-range dependence

As long as the truncation error is included in the uncer-
tainty employed in the fitting procedure, as done in Eq. (59),
all data available can, in principle, be included in the fits. This
procedure allows us to utilize the deuteron data in the range of
Q up to Qmax = 6 fm−1 and even higher. The effective weight
of the data points at higher transferred momenta is reduced
as compared to data points with similar experimental errors at
lower Q because the truncation error increases with growing
values of Q. To estimate (conservatively) the error for the
extracted deuteron quantities related with the truncation of the
Q range in the fits, we consider the variation of Qmax from 3
to 7 fm−1 and include this error in the uncertainty budget, as
shown in Table I. The results for both r2

str and Qd appear to be
quite stable to this variation.

5. Consistency checks

We are now in the position to perform several consistency
checks of our calculations.
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FIG. 9. Convergence of the chiral expansion for the deuteron structure radius squared (a) and the quadrupole moment (b). Error bars
correspond to the truncation errors in a given chiral order. Green circles stand for the results for � = 400 MeV, orange squares stand for
� = 450 MeV, red diamonds stand for � = 500 MeV, and purple triangles stand for � = 550 MeV. The band bounded by solid horizontal
gray lines in panel (b) corresponds to the quadrupole moment extracted in Refs. [52,53]. The bands bounded by the dashed horizontal red lines
in both panels correspond to the total uncertainties of our central results as given in Table I.

As already pointed out in Sec. III C, the two-body charge
density from OPE is proportional to unobservable unitary-
transformation parameters β̄8 and β̄9. The observables must
be independent of these parameters at least approximately,
i.e., up to higher-order effects. The results presented above are
based on the minimal nonlocality choice, Eq. (27), which is
consistent with the employed chiral NN potentials of Ref. [18]
and also with their predecessors from Ref. [7]. To check the
sensitivity of the deuteron FFs to β̄8 and β̄9, we developed an
approximately phase-equivalent version of the 2N potential
using a different choice of the unobservable phases, namely,
β̄8 = β̄9 = 1/2, by redoing the fit of NN data using exactly
the same protocol as in Ref. [18]. For this particular choice of
β̄8 and β̄9, the OPE contribution to the charge density vanishes
exactly: ρ1π

2N = 0. Repeating the fits of the calculated deuteron
FFs to the world data, we find for the central values

r2
str = 3.8926 fm2, Qd = 0.2849 fm2, (70)

which should be compared with the values in Table I. As
expected, the dependence on β̄8 and β̄9 for r2

str turns out to
be very small, that is much smaller than the truncation error

of the chiral expansion at N4LO. For the quadrupole moment,
the dependence on these parameters is also consistent with
the truncation error. Note that to achieve the independence of
β̄8 and β̄9 to such a high degree, we found it to be crucial
for the nucleon FFs to be included not only in the one-body
but also in the two-nucleon OPE charge density. This can be
understood as follows: as discussed in Sec. III C, the deriva-
tion of the two-nucleon charge-density operators relies on
taking the commutator of the leading one-body charge density
with the generators of the unitary transformation. Because the
one-body density is proportional to the nucleon FF, the same
should also hold for the two-body densities. If one neglects the
nucleon FFs in the OPE charge density, a sizable violation of
the β̄8 and β̄9 independence would immediately reveal itself
in the deuteron quantities. Specifically, in this case one gets
r2

str = 3.8825 fm2 and Qd = 0.2804 fm2, and one sees that
the difference with the values given in Table I exceeds the
truncation error significantly. The effect on these quantities
of neglecting the nucleon FFs in the short-range two-body
charge-density operator at N4LO is of basically the same size.
Also, we would like to emphasize that to observe β̄8 and β̄9

TABLE III. Impact of the individual contributions to the charge-density operator on the charge form factor of the deuteron GC(Q2) at
N4LO for the cutoff � = 500 MeV.

Q (fm−1) Main SO Darwin Boost 1π CT Full

0.0 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000
0.5 0.8416 0.0001 −0.0012 0.0001 −0.0004 −0.0005 0.8397
1.0 0.5556 0.0002 −0.0031 0.0006 −0.0015 −0.0017 0.5501
2.0 0.1795 0.0004 −0.0040 0.0018 −0.0034 −0.0047 0.1696
3.0 0.0460 0.0003 −0.0023 0.0019 −0.0034 −0.0062 0.0363
4.0 0.0087 0.0002 −0.0008 0.0012 −0.0023 −0.0056 0.0014
5.0 0.0004 0.0001 −0.0001 0.0005 −0.0011 −0.0041 −0.0043
6.0 −0.0007 0.0000 0.0001 0.0001 −0.0004 −0.0026 −0.0034
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TABLE IV. Impact of the individual contributions to the charge-density operator on the quadrupole form factor of the deuteron
[GQ(Q2)/m2

d ] at N4LO for the cutoff � = 500 MeV. The values are given in fm2.

Q (fm−1) Main SO Darwin Boost 1π CT Full

0.0 0.2788 −0.0018 0.0000 0.0000 0.0063 0.0022 0.2854
0.5 0.2340 −0.0017 −0.0003 −0.0001 0.0059 0.0021 0.2399
1.0 0.1537 −0.0013 −0.0008 −0.0003 0.0050 0.0019 0.1582
2.0 0.0509 −0.0006 −0.0011 −0.0001 0.0027 0.0013 0.0531
3.0 0.0151 −0.0002 −0.0008 0.0001 0.0011 0.0007 0.0161
4.0 0.0043 −0.0001 −0.0004 0.0001 0.0004 0.0004 0.0048
5.0 0.0012 0.0000 −0.0002 0.0001 0.0001 0.0002 0.0014
6.0 0.0003 0.0000 −0.0001 0.0001 0.0000 0.0001 0.0004

independence in a large range of momentum transfers it is
important to follow the procedure, as described above: first,
construct the phase-equivalent NN potentials for some choice
of β̄8 and β̄9 by fitting NN data and then calculate corre-
sponding deuteron wave functions. If one applies the unitary
transformation to the existing wave function, then the unitary
equivalence will hold only at small momentum transfers, as
shown in Ref. [122].

Since the chiral expansion for the deuteron FFs is expected
to converge more rapidly for not too soft values of the cutoffs,
our central results are obtained for the cutoff � = 500 MeV,
for which we also carried out a detailed error analysis as
described in the previous sections. In Fig. 8, as a consis-
tency check, we confront the cutoff dependence of GC(Q) and
GQ(Q) from the variation of the cutoff from 400 to 550 MeV
with the truncation error. We conclude that for GC(Q) the
cutoff dependence lies well within the truncation error, while
for the quadrupole FF they are essentially compatible with
each other except for the region of small Q where the cutoff
dependence is a little larger. We remind the reader that the
truncation error corresponds to the 68% DOB interval. In
Fig. 9, we show the convergence pattern of the chiral expan-
sion for r2

str and Qd along with the truncation errors and the
cutoff dependence. While the results for r2

str converge quite
rapidly for any cutoff value, the quadrupole moment, in line
with the discussion above, shows a lower rate of convergence.
We further emphasize that the uncertainty of our result for
the quadrupole moment at the highest considered order is
dominated by the statistical errors in the NN LECs and by the
uncertainty associated with the choice of the Q range in the
fit. Both of these error sources are considerably larger than
the truncation uncertainty.

F. Role of the individual contributions at N4LO

The role of the individual charge-density contributions to
the deuteron charge and quadrupole form factors calculated
at N4LO can be seen in Tables III and IV. Unlike the results
in Fig. 6, which illustrate the convergence of the chiral ex-
pansion, all contributions in Tables III and IV were evaluated
using the deuteron wave function at N4LO+. The results for
the one-pion-exchange charge density were obtained using
the minimal nonlocality choice for the parameters β̄8 and
β̄9 from Eq. (27). For the charge FF, the most important

correction beyond the main one stems from the contact term
(CT) contribution which dominates in the whole domain of
momenta Q considered apart from the region of small Q (�1
fm−1), where the Darwin term is equally important. Next in
importance are the 1π and boost corrections which, however,
cancel each other to a large extent. The contribution from the
SO is basically negligible. For the quadrupole FF at low Q (�1
fm−1), the dominant corrections beyond the main term orig-
inate from the 1π , CT, and SO contributions, in the order of
their importance, where the first two interfere constructively
while the SO is destructive. While the boost correction is
negligible for all Q values, the Darwin term, being negligible
at small momentum transfers, provides a sizable contribution
for Q > 1 fm.

VIII. SUMMARY AND CONCLUSIONS

In spite of the extensive progress in the understanding of
the deuteron structure that has been achieved since more than
50 years ago, there is still strong motivation to reanalyze
the deuteron form factors in the framework of chiral EFT.
Being largely governed by the leading-order single-nucleon
charge density, the charge and quadrupole deuteron FFs are
qualitatively described in most of the calculations reported
in the literature (at least in some range of the momentum
transfer). However, as long as higher-order corrections are
concerned, the existing calculations show lack of systematics,
consistency, and controlled error estimate.

In this paper, the deuteron charge and quadrupole form
factors are calculated using consistently regularized two-
nucleon potentials and the charge density in chiral effective
field theory. This allowed us to extract the important static
properties of the deuteron, namely, the structure radius and
the quadrupole moment, with unprecedented accuracy and to
reliably estimate various sources of uncertainty. Our analysis
provides a first step towards the understanding of radii of
medium-mass and heavy nuclei, which are currently known
to be significantly underpredicted.

The novel aspects of our paper include the following.

(1) For the first time, the calculation of the deuteron FFs
is pushed beyond N3LO, which allows one to reduce
the uncertainty from the truncation of chiral expansion
and thus to extend the range of momenta considered.
To achieve this goal we (i) employed the most re-
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cent two-nucleon potentials up through N4LO+ [18],
which utilize a complete treatment of isospin-breaking
effects and provide a statistically perfect description
of NN data below pion production threshold, and (ii)
implemented the charge-density operator at N3LO,
supplemented with the 2N short-range operators at
N4LO.

(2) Regularization of the charge-density operators is
carried out consistently with the two-nucleon po-
tential using the same unitarity transformations for
the charge-density operators and the nuclear forces.
Specifically, the two-nucleon charge-density operators
are generated by taking the commutator of the leading
one-body charge density with the generators of the
unitary transformation that incorporate the regulator
as discussed in Sec. III C. As a consistency check, we
have demonstrated that the residual cutoff dependence
of the deuteron charge FF and the extracted structure
radius is much weaker than the error estimated from
the truncation of the chiral expansion at N4LO. The
cutoff dependence of the quadrupole moment (and in
general of the quadrupole FF at low Q) at the highest
considered order is somewhat larger than the estimated
truncation error, but still of the same size as the total
uncertainty of our result. Furthermore, the short-range
charge-density operators contributing to the charge
and quadrupole FFs of the deuteron come out of a
natural size.

(3) Instead of relying on the strict chiral expansion of the
nucleon FFs known to converge slowly, we employed
the most up-to-date phenomenological parametriza-
tions of experimental data from the global analysis
of Refs. [82,83]. The nucleon form factors from the
dispersive approach of Ref. [84] have also been used
as a consistency check. We emphasize that making a
reliable calculation of the deuteron FFs requires the
inclusion of the nucleon FFs both in the one- and
two-nucleon charge-density operators, a feature that
becomes obvious in the way we generate the two-body
charge density by means of the unitary transformation.
We have verified this conclusion by explicitly checking
the insensitivity of our results for the FFs to the choice
of unobservable unitary phases β̄8 and β̄9, which holds
true to a very high degree of accuracy when keeping
the nucleon FFs in the OPE charge density. The same
conclusion applies when the nucleon FFs are neglected
in the contact two-nucleon charge density at N4LO.

(4) A comprehensive and systematic analysis of various
sources of uncertainties in the calculated deuteron FFs
is performed. Specifically, we estimated the uncer-
tainty from (i) propagating the statistical errors of the
πN and NN LECs entering the two-nucleon potentials,
(ii) truncation of the chiral expansion evaluated using
Bayesian methods, (iii) statistical uncertainties in the
N4LO short-range charge-density operators, (iv) em-
ployed parametrizations of the nucleon FFs, and (v)
fixing the maximum value of the momentum transfers
Qmax in the fits of the short-range charge operators.

Pushing the calculation to N4LO and using the consistently
regularized charge-density operators together with the phe-
nomenological nucleon form factors is found to result in a
very good description of the deuteron form factors at least
up to Q � 6 fm−1. Having adjusted the two short-range op-
erators to achieve the best fit of the world data on the charge
and quadrupole FFs of the deuteron, we predict the deuteron
structure radius and quadrupole moment to have the values of

rstr = 1.9729+0.0015
−0.0012 fm, Qd = 0.2854+0.0038

−0.0017 fm2. (71)

Equipped with this prediction for the structure radius, we
employ the high-accuracy data for the hydrogen-deuterium
isotope shift in Eq. (53) to extract the mean-square neutron
charge radius, for which we obtain

r2
n = −0.105+0.005

−0.006 fm2. (72)

This result is consistent with our previous determination in
Ref. [45] but deviates by about 1.9σ from the current value
r2

n = −0.1161(22) fm2 given by the Particle Data Group [50]
and deviates by about 1.4σ from the very recent determination
r2

n = −0.122 ± 0.004(stat.) ± 0.010(syst.) fm2 from the collec-
tive analysis of the nucleon form factors of Ref. [123].
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APPENDIX A: ANALYTIC EXPRESSIONS FOR THE
CONTRIBUTIONS TO GC, GQ, r2

str, AND Qd

In this Appendix we list the analytic expressions for in-
dividual contributions to the deuteron charge form factor GC

[Eq. (46)], quadrupole form factor GQ [Eq. (54)], structure
radius squared r2

str [Eqs. (52) and (49)], and quadrupole mo-
ment Qd [Eq. (56)]. Results are given in momentum space
or in coordinate space depending on which form is sim-
pler for practical calculations. All contributions are grouped
according to the charge-density operator which they are ob-
tained from. Specifically, we distinguish the following types
of contributions: main (LO) contributions, Darwin-Foldy-
type contributions, spin-orbit corrections, deuteron boost
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corrections, pion-exchange current contributions, and contact
contributions. Results are expressed in terms of deuteron wave
functions and single-nucleon form factors. The deuteron WFs
are normalized according to∫ ∞

0
p2(u(p)2 + w(p)2)d p =

∫ ∞

0
(u(r)2 + w(r)2)dr = 1,

(A1)
and the deuteron D-state probability is

PD =
∫ ∞

0
p2w(p)2d p =

∫ ∞

0
w(r)2dr. (A2)

We also introduce the following common combinations of the
deuteron wave functions:

C(r) ≡ u2(r) + w2(r), Q(r) ≡ u(r)w(r) − w2(r)√
8

. (A3)

Note that all momenta in this section are three dimensional.
For a vector x, we use x to denote x ≡ |x|.

1. Main (LO) contributions

Main contributions stem from the LO charge-density oper-
ator in Eq. (24),

GMain
C (k2) = GS

E(k2)Gmatter
C (k2),

GMain
Q (k2) = GS

E(k2)G(0)
Q (k2), (A4)

where we introduced the following auxiliary functions:

Gmatter
C (k2) ≡

∫ ∞

0
C(r) j0

(
kr

2

)
dr,

G(0)
Q (k2) ≡ 6

√
2m2

d

k2

∫ ∞

0
Q(r) j2

(
kr

2

)
dr. (A5)

The LO contribution to the deuteron structure radius (so-
called deuteron matter radius) reads

r2
m = r2

0 = 1

4

∫ ∞

0
{p2[u′(p)2 + w′(p)2] + 6w(p)2}d p

= 1

4

∫ ∞

0
[u(r)2 + w(r)2]r2dr. (A6)

The LO contribution to the deuteron quadrupole moment
reads

Q0 =
∫ ∞

0

(
p2u′(p)w′(p)

5
√

2
− 1

20
p2w′(p)2

+ 3pw(p)u′(p)

5
√

2
− 3w(p)2

10

)
d p

=
√

2

10

∫ ∞

0
Q(r)r2dr. (A7)

2. Darwin-Foldy-type contributions

The DF-type contributions stem from the charge-density
operator ρDF

1N in Eq. (24). Since the DF charge-density operator
differs from the LO operator only by a prefactor, the resulting
DF contributions to the form factors are trivially related to the

LO ones. Specifically, the DF contributions to the deuteron
charge and quadrupole form factors read

GDF
C (k2) = GS

E(k2)

(
− k2

8m2
N

)
Gmatter

C (k2),

GDF
Q (k2) = GS

E(k2)

(
− k2

8m2
N

)
G(0)

Q (k2). (A8)

Deuteron structure radius does, by definition, exclude the
Darwin-Foldy contribution, but the deuteron charge radius
receives a constant correction r2

DF = 3/(4m2
p) = 0.03317 fm2,

where mp is a proton mass. Finally, the Darwin-Foldy term
does not contribute to the deuteron quadrupole moment since
it is proportional to the photon momentum k, while the
quadrupole moment is defined at k = 0.

3. Spin-orbit contributions

The spin-orbit contributions to the deuteron form factors
stemming from the charge-density operator ρSO

1N of Eq. (24)
read

GSO
C (k2) = [

GS
E(k2) − 2GS

M(k2)
]
Gang

C (k2),

GSO
Q (k2) = [

GS
E(k2) − 2GS

M(k2)
]
Gang

Q (k2), (A9)

where

Gang
C (k2) ≡ 3

2m2
N

∫ ∞

0

w(r)2

r

∂

∂r

[
j0

(
kr

2

)]
dr

= − 3k

4m2
N

∫ ∞

0

w(r)2

r
j1

(
kr

2

)
dr, (A10)

Gang
Q (k2) ≡ (−1)

6√
2k2

3m2
d

m2
N

∫ ∞

0
w(r)

[
∂

∂r

(
u(r)

r

)

− 1√
2

1

r

∂w(r)

∂r

]
j2

(
kr

2

)
dr. (A11)

The corresponding contributions to the deuteron structure ra-
dius and quadrupole moment read

r2
SO = − 3

4m2
N

(2μn + 2μp − 1)PD,

QSO = (1 − 2μn − 2μp)Qangular, (A12)

where μp and μn are the magnetic moments of the proton and
the neutron, respectively, in units of nuclear magnetons, and

Qangular ≡ (−1)
6√
2

3

m2
N

∫ ∞

0
w(r)

×
[

∂

∂r

(
u(r)

r

)
− 1√

2

1

r

∂w(r)

∂r

]
r2

60
dr. (A13)

4. Boost corrections

Corrections to the deuteron form factors which appear due
to the motion of initial and final deuterons are discussed in
Sec. V. The final expressions for the boost corrections to the
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charge and quadrupole form factors have the form

GBoost
C (k2) = GS

E(k2)
[
Gmatter

C

(
k2

boosted

) − Gmatter
C (k2)

]
, (A14)

GBoost
Q (k2) = GS

E(k2)
[
G(0)Boosted

Q (k2) − G(0)
Q (k2)

]
, (A15)

where the boosted momentum kboosted is defined by Eq. (45) and the boosted version of G(0)
Q is

G(0)Boosted
Q (k2) ≡ 6

√
2m2

d

k2

∫ ∞

0
w(r)

(
u(r) − w(r)

2
√

2

)
j2

(
kboostedr

2

)
dr. (A16)

Boost corrections do not contribute to the deuteron structure radius and quadrupole moment.

5. One-pion-exchange contributions

OPE contributions to the deuteron form factors originate from the charge-density operator given by Eq. (36). In momentum
space, the expressions for the OPE contributions involve six-dimensional integration and are somewhat cumbersome. The Fourier
transform to coordinate space makes these expressions much shorter and the number of integrations reduces to 1. Below we
give the OPE contributions in coordinate space. For the sake of compactness, we introduce the functions h̄1(x) and h̄2(x) that
correspond to the Fourier transforms of the regularized single and squared pion propagators, respectively:

h̄1(r) ≡
∫

d3l

(2π )3

F1(l2,�)eil ·r

l2 + M2
π

, h̄2(r) ≡
∫

d3l

(2π )3

F2(l2,�)eil ·r(
l2 + M2

π

)2 , (A17)

where F1(l2,�) and F2(l2,�) are the corresponding momentum-space regulators. Without regularization [i.e., when F1(l2,�) =
F2(l2,�) = 1], the functions h̄1(r) and h̄2(r) take a simple form:

h̄unreg
1 (r) = e−Mπ r

4πr
, h̄unreg

2 (r) = e−Mπ r

8πMπ

. (A18)

For the regulator employed in the SMS NN potentials of Ref. [7] with

F SMS
1 (l2,�) ≡ exp

(
l2 + M2

π

�2

)
, F SMS

2 (l2,�) ≡ exp

(
l2 + M2

π

�2

)[
1 + l2 + M2

π

�2

]
(A19)

we get the following closed form of the function h̄1(r):

h̄SMS
1 (r) = exp(−Mπ r) erfc

(Mπ

�
− �r

2

)− exp(Mπ r) erfc
(Mπ

�
+ �r

2

)
8πr

. (A20)

The function h̄2 enters the final result only under a derivative operator. To simplify the expressions even further we rewrite h̄′
2(r)

in terms of h̄1(r). We employ the relation

l(
l2 + M2

π

)2 F2(l2,�) = −1

2
∇l

(
1

l2 + M2
π

F1(l2,�)

)
, (A21)

which is fulfilled by both the unregularized and SMS-regularized pion propagators. Substituting the relation in Eq. (A21) in the
definition of h̄2, taking the derivative, and integrating by parts leads to the following relation in coordinate space:

h̄′
2(r) =

(
− r

2

)
h̄1(r). (A22)

Using the simplifications above, the OPE contribution to the deuteron charge form factor can be written as

G1π
C (k2) = GS

E(k2)
g2

A

16F 2
π mN

∫ ∞

0
dr

(
(2β̄8 − 1)k j1

(
kr

2

)
{C(r)[rh̄′′

1 (r) + 4h̄′
1(r)] + 4

√
2Q(r)[rh̄′′

1 (r) + h̄′
1(r)]}

+ 2(1 − 2β̄9)k j1

(
kr

2

)
[C(r) + 4

√
2Q(r)]h̄′

1(r)

)
, (A23)
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where jn(x) are the spherical Bessel functions. The OPE contribution to the deuteron quadrupole form factor reads

G1π
Q (k2) = GS

E(k2)
g2

Am2
d

16F 2
π mN

∫ ∞

0
dr

{
(2β̄8 − 1)

(
36

k2r
j2

(
kr

2

)(−2C(r)(h̄′
1(r)−rh̄′′

1 (r))+
√

2Q(r)(4h̄′
1(r) − rh̄′′

1 (r)) + 9w(r)2h̄′
1(r)

)

−6

k
j1

(
kr

2

)
(2C(r)[rh̄′′

1 (r) + h̄′
1(r)] +

√
2Q(r)(2h̄′

1(r) − rh̄′′
1 (r)))

)

+(1 − 2β̄9)

(
324

k2r
j2

(
kr

2

)
w(r)2h̄′

1(r) − 24

k
j1

(
kr

2

)(
C(r) − Q(r)√

2

)
h̄′

1(r)

)}
. (A24)

Finally, the OPE contributions to the deuteron structure radius and quadrupole moment have the form

r2
1π = − g2

A

16F 2
π mN

∫ ∞

0
dr r((2β̄8 − 1)(C(r)[rh̄′′

1 (r) + 4h̄′
1(r)] + 4

√
2Q(r)[rh̄′′

1 (r) + h̄′
1(r)])

+(1 − 2β̄9)[C(r) + 4
√

2Q(r)]h̄′
1(r)), (A25)

Q1π = g2
A

16F 2
π mN

1

5

∫ ∞

0
dr r((2β̄8 − 1)(−4C(r)[rh̄′′

1 (r) + 4h̄′
1(r)] + 2

√
2Q(r)[rh̄′′

1 (r) + h̄′
1(r)] + 27w(r)2h̄′

1(r))

− (1 − 2β̄9)h̄′
1(r)(20C(r) − 10

√
2Q(r) − 27w(r)2)). (A26)

Our analytic expressions for OPE contributions agree with the ones of Ref. [97] after the following notational changes are
performed:

h̄1 → Mπ

4π
h,

g2
AM2

π

16πF 2
π

→ f 2
0 , β̄9 → μ − 1

4
β̄8 → ν

2
. (A27)

6. Contact charge-density contributions

Contact N4LO contributions to the deuteron form factors stem from the corresponding short-range charge-density operators
in Eq. (39). The contact contribution to the deuteron charge form factor is given by

GCont
C (k2) = 1

π2
GS

E(k2)
∫ ∞

0
p2d p

∫ ∞

0
p′2d p′F�

(
p − k

2
, p′

)

×[
F uu

GC
(p, p′, k)u(p)u(p′) + F uw

GC
(p, p′, k)w(p)u(p′)

] + (k → −k), (A28)

where

F�(p, p′) = exp

(
− p2 + p′2

�2

)
, (A29)

F uu
GC

(p, p′, k) =
(

A + B + C

3

)
2

kp

(
�4 + �2

((
p − k

2

)2

− p′2
))

, (A30)

F uw
GC

(p, p′, k) =
√

2C

(
�6

kp3
+ �4(4p − 3k)

3kp2
+ �2(k − 4p)

3p

)
, (A31)

and (k → −k) means that the same contribution, but with opposite sign of k, should be added. The contact contribution to the
deuteron quadrupole form factor reads

GCont
Q (k2) = m2

d

π2
GS

E(k2)
∫ ∞

0
p2d p

∫ ∞

0
p′2d p′F�

(
p − k

2
, p′

)[
F uu

GQ
(p, p′, k)u(p)u(p′)

+ F uw
GQ

(p, p′, k)w(p)u(p′) + Fww
GQ

(p, p′, k)w(p)w(p′)
] + (k → −k), (A32)
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where

F uu
GQ

(p, p′, k) = (−1)C
�2

2k5 p

(
k2

(
p − k

2

)2

+ k(k − 3p)�2 + 3�4

)
,

F uw
GQ

(p, p′, k) = (A + B)
(−3)√
2k5 p3

(k2 p2((k − 2p)2 − 4p′2)�2 − kp(3k2 − 16kp + 12(p2 − p′2))�4

+3(k2 − 12kp + 4(p2 − p′2))�6 + 36�8)

+ C√
2k5 p3

(k2 p2((k − 2p)2 + 4p′2)�2 − kp(3k2 − 4kp + 12(p2 + p′2))�4 + 3(k2 + 4(p2 + p′2))�6),

Fww
GQ

(p, p′, k) = C
8p′2(k2 p2�2 − 3kp�4 + 3�6)

k5 p3
. (A33)

Next, the contact charge-density contribution to the deuteron structure radius has the form

r2
Cont = 1

π2

∫ ∞

0
p2d p

∫ ∞

0
p′2d p′F�(p, p′)

[
F uu

r2 (p, p′)u(p)u(p′) + F uw
r2 (p, p′)w(p)u(p′)

]
, (A34)

where

F uu
r2 (p, p′) ≡ −2

(
A + B + C

3

)(
3 − 2(p2 + p′2)

�2
+ (p2 − p′2)2

�4

)
, (A35)

F uw
r2 (p, p′) ≡ 8

√
2

3
C

(
2p2

�2
+ p2(p′2 − p2)

�4

)
. (A36)

Finally, the contact contribution to the quadrupole moment reads

QCont = 1

π2

∫ ∞

0
p2d p

∫ ∞

0
p′2d p′F�(p, p′)

[
F uu

Q (p, p′)u(p)u(p′) + F uw
Q (p, p′)w(p)u(p′) + Fww

Q (p, p′)w(p)w(p′)
]
, (A37)

where

F uu
Q (p, p′) ≡ (−4C)

(
1 − 2(p2 + p′2)

3�2
+ 2(p4 + p′4)

15�4

)
, Fww

Q (p, p′) ≡ 16

15
C

p2 p′2

�4
, (A38)

F uw
Q (p, p′) ≡ 4

√
2

15
p2

(
(A + B)

(
6

�2
+ 3(p′2 − p2)

�4

)
+ C

(
− 5

�2
+ p2 + p′2

�4

))
. (A39)

APPENDIX B: COMPLETE EXPRESSIONS FOR THE CONTACT CHARGE DENSITY
AT N4LO INCLUDING ISOVECTOR TERMS

In this Appendix we present the N4LO contact charge-density operators including isovector contributions. The isovector
components do not contribute to the deuteron observables in the single-photon approximation, but have to be taken into account
when calculating the FFs and charge radii of heavier nuclei. Charge-density operators presented here are derived using the
same procedure as used for derivation of Eq. (33), but keeping the isovector terms. After calculating and antisymmetrizing the
commutators of the LO charge density with the generators of the unitary transformation Eq. (31) we obtain the following result
for the N4LO contact charge density:

ρ
(A+B+C/3)
Cont,AS = 2e

(
A + B + C

3

)σ1 · σ2 + 3

4

[
GS

E(k2)
1 − τ1 · τ2

4
k2

+ GV
E (k2)

(
(τ1 − τ2)3

2
k · (p − p′) − i(τ1 × τ2)3

2
k · (p + p′)

)]
, (B1)

ρ
(A−3B−C)
Cont,AS = 2e (A − 3B − C)

1 − σ1 · σ2

4

[(
GS

E(k2)
τ1 · τ2 + 3

4
+ GV

E (k2)
(τ1 + τ2)3

2

)
k2

+ GV
E (k2)

(
(τ1 − τ2)3

2
k · (p − p′) + i(τ1 × τ2)3

2
k · (p + p′)

)]
, (B2)
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ρ
(C)
Cont,AS = 2eC

[
GS

E(k2)
1 − τ1 · τ2

4

(
(k · σ1)(k · σ2) − 1

3
k2(σ1 · σ2)

)

+ GV
E (k2)

(τ1 − τ2)3

2

1

2

(
(k · σ1)σ2 · (p − p′) + (k · σ2)σ1 · (p − p′) − 2

3
k · (p − p′)(σ1 · σ2)

)

− GV
E (k2)

i(τ1 × τ2)3

2

1

2

(
(k · σ1)σ2 · (p + p′) + (k · σ2)σ1 · (p + p′) − 2

3
k · (p + p′)(σ1 · σ2)

)]
. (B3)

Notice that all isoscalar operators are proportional to GS
E(k2), while all isovector ones are proportional to GV

E (k2).
Finally we would like to make a remark about the 1S0 → 1S0 contact operator in the first line of Eq. (B2), which involves

the isospin operator (τ1 + τ2)3. This structure is remarkable in several ways. First, from all presented isovector terms, this is the
only one which is allowed by the Pauli principle in S-to-S-wave transitions. Second, this structure ensures that correct nucleon
form factors appear in all isospin-1-to-isospin-1 channels, namely,

GS
E(k2)

τ1 · τ2 + 3

4
+ GV

E (k2)
(τ1 + τ2)3

2
=

⎧⎪⎨
⎪⎩

2Gp
E for pp → pp

Gp
E + Gn

E for pn → pn

2Gn
E for nn → nn

. (B4)

Our derivation of the contact charge-density operator demonstrates that the isovector structure in Eq. (B2) should be proportional
to the same linear combinations of LECs as the corresponding isoscalar part. This is in contrast to Ref. [101], where an extra
LEC associated with the isovector terms was introduced.
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