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Spherical-deformed mixing in 94Zr
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I have applied a simple two-state mixing model to E2 strengths from a recent 94Zr(n, n′γ ) experiment in order
to obtain the mixing amplitudes between spherical and deformed basis states in 94Zr. The fits also provide the
transition matrix elements connecting the basis states.
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I. INTRODUCTION

Recently, Chakraborty et al. [1] used the 94Zr(n, n′γ )
reaction to measure lifetimes, and hence E2 strengths, for
low-lying levels in 94Zr. They discussed their results in terms
of subshell effects in shape coexistence. A recent review
discussed coexistence in many different nuclei [2]. Shape
coexistence has been suggested in 96Zr [3,4], 98Zr [2], and
100Zr [5]. I examined mixing in 96Zr [6]. Chakraborty et al.
stressed the importance of direct evidence in terms of E2 tran-
sition strengths, rather than indirect evidence involving energy
patterns and/or E0 transition strengths. With their work, all
four of the 0 ↔ 2 strengths are now known in 94Zr [1,7], and
can be used in a simple mixing model. Earlier reports that
B(E2; 22 → 01) is significantly larger than B(E2; 21 → 01)
[8,9] turned out to be erroneous [1,10–13]. All four strengths
are listed in Table I. These are suggested to involve mixing
between spherical and deformed basis states. In the present
work, I examine that idea quantitatively with a simple two-
state mixing model [14,15] that has been successful in other
nuclei, including 96Zr [6].

II. CALCULATIONS AND RESULTS

For the first two 0+ and 2+ states of 94Zr, I write

�(01) = a�(0g) + b�(0e), �(02) = −b�(0g) + a�(0e),

�(21) = A�(2g) + B�(2e), �(22) = −B�(2g) + A�(2e);

and

Mg = 〈0g ‖ M(E2) ‖ 2g〉, Me = 〈0e ‖ M(E2) ‖ 2e〉.
It is convenient to think of basis states g and e as spherical

and deformed, respectively, but nothing about their structure
is assumed at the outset, except that I assume that the E2
operator does not connect g and e. Other properties of the basis
states emerge from the mixing.

It is then a simple matter to construct equations for the E2
transition matrix elements, for example, M0 = aAMg + bBMe,
and likewise for the others. Some sign ambiguities can arise

when taking square roots of B(E2) to get M(E2). In my phase
convention, M0 and M3 are positive, whereas M1 and M2 can
have either sign, because they involve destructive interference.
However, if Me is significantly larger than Mg, all four matrix
elements will be positive.

Whenever all four of the relevant matrix elements are avail-
able, the four parameters (0+ mixing, 2+ mixing, Mg, and Me)
can be uniquely determined. Results of the procedure for 94Zr
are listed in Table II.

As expected, the E2 strength is much larger in the excited
basis band than in the ground basis band. I note that the
ratio Mg/Me = 0.249(34) is remarkably close to the value of
Msph/Mdef = 0.231 that was successful earlier in 96Zr [6]. The
absolute values indicate that g and e are both slightly less
collective in 94Zr than in 96Zr.

The analysis of E2 strengths in 96Zr obtained a 0+ mixing
amplitude of 0.128(18) [6]. With a generalized coexistence
model, analysis of 2n transfer strengths determined 0+ mixing
amplitudes for four even Zr nuclei in terms of a dimension-
less parameter R [16]. From that analysis, an amplitude of
0.128(18) in 96Zr corresponds (Fig. 5 of [16]) to an amplitude
of 0.477(14) in 94Zr, only a 1.4σ difference from the value of
0.519(26) obtained above.

I turn now to the 2 ↔ 4 transitions. As above, I write

�(41) = C�(4g) + D�(4e), �(42) = − D�(4g) +C�(4e),

and

M ′
g = 〈4g ‖ M(E2) ‖ 2g〉, M ′

e = 〈4e ‖ M(E2) ‖ 2e〉.
Here, only three of the four relevant matrix elements are

known (Table III), but with the 2+ mixing already established,
there are only three parameters (4+ mixing, M ′

g, and M ′
e) to

be determined. It turns out that the uncertainties in M ′
2 and

M ′
3 are so large that a range of solutions exists, covering the

range 0 < M ′
g/M ′

e < 0.16, with D in the range 0.33 > D > 0.
Of special interest is the solution with D ∼ 0, because it has
M ′

e = 1.6Me, which is the condition expected for a K = 0
rotational band. Coincidently, this solution corresponds to
M ′

g ∼ Mg. This solution is listed in Table IV. Calculated val-
ues of the relevant matrix elements are listed in the last column
of Table III. Note that the prediction from this solution is that
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TABLE I. E2 strengths of 0 ↔ 2 transitions in 94Zr.

Label Initial Final B(E2) (W.u.)a M(E2)(W.u.)1/2b

M0 21 01 4.9(11) 4.95(56)
M1 02 21 9.3(4) ±3.05(7)
M2 22 01 3.9(3) ±4.42(17)
M3 22 02 19(2) 9.75(51)

aReferences [1,7].
bM2(E2) = (2Ji + 1)B(E2; i → f ).

TABLE II. Results of mixing for 0 ↔ 2 transitions in 94Zr.

Quantity Value

b 0.519(26)
B 0.438(7)
Mg 2.94(38)(W.u.)1/2

Me 11.8(5)(W.u.)1/2

TABLE III. E2 strengths of 4 ↔ 2 transitions in 94Zr.

M(E2)(W.u.)1/2

Label Initial Final Expt. B(E2) (W.u.)a Expt. Fit

M ′
0 4+

1 2+
1 0.880(23) 2.81(4) 2.81

M ′
1 2+

2 4+
1 Unknown −0.87

M ′
2 4+

2 2+
1 13+4

−7 10.8+1.7
−2.9 8.4

M ′
3 4+

2 2+
2 34+10

−17 17.5+2.6
−4.4 17.5

aReference [1].

TABLE IV. Results of one solution for 4 ↔ 2 transitions in 94Zr.

Quantity Value

D 0.023a

B 0.438
M ′

g 2.91(W.u.)1/2

Me 19.4(W.u.)1/2

aSee text.

TABLE V. Mixing matrix elements in 94,96Zr.

V (keV)

J 94Zr 96Zr

0 576(52) 199(28)
2 296(10) 85(14)
4 0–270a

aLarge uncertainties in two of the 2 ↔ 4 strengths cause large un-
certainty in 4+ mixing. Any value of D in the range 0 < D < 0.33
reproduces the data.
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FIG. 1. Plotted vs M ′
g/M ′

e are values of M ′
1 (solid curve) and

M ′
e/10 (dashed curve) over most of the allowed range of solutions.

the unknown M ′
1 is small and negative. Plotted in Fig. 1

are values of M ′
1 (solid) and M ′

e (dashed) over most of the
continuous range of solutions. For this entire range, the com-
puted values of M ′

2 and M ′
3 agree with experimental results

within their uncertainties. Note that M ′
1 changes considerably

over this range, but M ′
e changes very little. If M ′

1 could ever
be measured, the range of solutions would be considerably
narrowed.

With a knowledge of the mixing amplitudes and the en-
ergies of the various states, the potential matrix elements
responsible for the mixing can be determined, as, for example
V0 = ab�E0. These are listed in Table V. They are seen to
decrease rapidly as J increases. Combining the 0+ mixing
in 96Zr [6] with the 2n transfer analysis for four Zr nu-
clei [16] produces V0 = 545(25) keV in 94Zr, consistent with
the present value. By comparison, V was found to be about
560 keV for all of J = 0, 2, and 4 in 76Se [17]. In a sim-
ple model, Heyde et al. concluded that the matrix element
that is most important for mixing the first two 0+ states in
90−96Zr, namely 〈(p1/2)2 ‖ V ‖ (g9/2)2〉 in the proton space,
is approximately constant in those nuclei at about 800 keV
[18]. Gloeckner and Serduke [19] found this matrix element
to be 853 keV. Of course, these two 0+ states contain other
components, and that configuration mixing will tend to reduce
the value of V.

Previous results for 96Zr [16] are also listed in Table V.
There is no expectation that V will be the same for different
J when the mixing is between spherical and deformed basis
states. Both the E2 and 2n-transfer analyses demonstrated
that the mixing in 94Zr is significantly larger than in 96Zr.
However, the change from J = 0 to 2 is about the same in
the two nuclei: the ratio V2/V0 is 0.43(9) in 96Zr and 0.51(5)
in 94Zr.

Whenever the mixing is between members of two de-
formed rotational bands, it is more likely that V will be
approximately independent of J. That is the case, for example,
for 76Se mentioned above and for 152Sm—where V is about
310 [20] or 325 [21] keV for J = 0, 2, and 4.
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III. SUMMARY

Using E2 strengths from a recent 94Zr(n, n′γ ) experiment,
I have applied a simple two-state mixing model in order to
obtain the mixing amplitudes between spherical and deformed

basis states. The fits also provide the transition matrix ele-
ments connecting the basis states. The 0+ mixing obtained
here is remarkably close to that obtained by combining an E2
analysis in 96Zr with an analysis of 2n transfer among the even
Zr nuclei.
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