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Accurate nuclear symmetry energy at finite temperature within
a Brueckner-Hartree-Fock approach
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We compute the free energy of asymmetric nuclear matter in a Brueckner-Hartree-Fock approach at finite
temperature, paying particular attention to the dependence on isospin asymmetry. The first- and second-order
symmetry energies are determined as functions of density and temperature and useful parametrizations are pro-
vided. We find small deviations from the quadratic isospin-asymmetry dependence and very small corresponding
effects on (proto)neutron star structure.
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I. INTRODUCTION

The nuclear symmetry energy, i.e., the energy difference
between removing a neutron or a proton from nuclear mat-
ter [1], is an important topic of experimental and theoretical
nuclear (astro)physics, as it affects a large number of phe-
nomena in nuclear structure physics [2], heavy-ion collisions
[3–5], and astrophysics like neutron star (NS) structure [6–9]
or recently NS mergers [10–14]. In heavy-ion collisions at
intermediate and high energy induced by radioactive beams,
rare isotopes with extreme proton-to-neutron ratios are cre-
ated, and their existence and structure such as the neutron
skin thickness are intimately related to the nuclear symmetry
energy. In the interior of NSs the composition and pressure are
dominantly determined by the symmetry energy and its slope
parameters. Consequently, the overall structure of NSs includ-
ing the radius, momentum of inertia, and crust-core transition
density depends sensitively on the symmetry energy. More-
over, in binary NS mergers the symmetry energy also plays
an essential role for understanding the dynamical properties
of rotating neutron stars and the associated gravitational-wave
signatures.

In all the above scenarios, the nuclear system might be at
non-negligible finite temperature of the order of several tens of
MeV. This requires to consider the free energy as a fundamen-
tal thermodynamical quantity. Therefore in recent years some
phenomenological methods, such as a momentum-dependent
effective interaction [15] and the nuclear energy-density func-
tional theory [16], were applied to the study of the behavior
of the free energy of nuclear matter as a function of the
baryon density and temperature. More recently, microscopic
calculations based on the self-consistent Green’s function
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method with nuclear forces derived from chiral effective field
theory were performed [17]. Further microscopic calculations
have also been carried out in the framework of the correlated
basis function theory [18] and applied to the simulations
of the evolution of a protoneutron star [19]. Moreover, we
have computed the free energy up to large nucleon den-
sities ρ � 0.8 fm−3 and temperatures T � 50 MeV within
the theoretical Brueckner-Hartree-Fock (BHF) method,
and provided convenient parametrizations for practical
use [20].

Under these circumstances, the nuclear free (symmetry)
energy depends on the partial densities ρn and ρp, and tem-
perature T . An important feature is the dependence on isospin
asymmetry β ≡ (ρn − ρp)/(ρn + ρp) for fixed nucleon den-
sity ρ = ρn + ρp, and for cold matter it has been demonstrated
that a quadratic dependence ∼β2 is rather accurate [21–26].
However, at finite temperature this approximation becomes
less reliable [27–30] and one should seek to go beyond this
lowest-order parametrization. This is the focus of the present
article, where we study in detail the dependence of the finite-
temperature free energy on isospin asymmetry and provide
parametrizations that go beyond the quadratic law. We will
also give a simple application to NS structure in order to
estimate the magnitude of the effect in practical applications.

We consider in this work two microscopic equations of
state (EOSs) that have been derived within the BHF formalism
[2,31–34] based on realistic two-nucleon (NN) and com-
patible three-nucleon forces (TBFs) [35–39], namely, those
employing the Argonne V18 [40] or the Bonn B [41,42] NN
potentials, respectively. They all feature reasonable properties
at (sub)nuclear densities in agreement with nuclear-structure
phenomenology [39,43–45], and are also fully compatible
with recent constraints obtained from the analysis of the
GW170817 NS merger event [46–48], as well as from NS
cooling [49–51].
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Recently first numerical simulations of NS merger events
were performed with the BHF V18 finite-temperature EOS
[52] and it was found that during the postmerger phase
maximum temperatures T ≈ 70 MeV can be reached in
small domains of spacetime with this EOS, whereas the
average temperature during the first milliseconds of life is
about 20 MeV. In simulations of protoneutron star evolution
[19,53], the maximum temperatures are somewhat lower, T �
50 MeV. This sets the scale for typical temperatures to be
addressed in the theoretical approach.

Our paper is organized as follows. In Sec. II we briefly
review the computation of the free energy in the finite-
temperature BHF approach and give some details of the fitting
procedure. In Sec. III we present the numerical results for
the free energy with particular regard to the dependence on
isospin asymmetry, and some model calculations of hot NS
structure. Conclusions are drawn in Sec. IV.

II. FORMALISM

The calculations for hot asymmetric nuclear matter are
based on the Brueckner-Bethe-Goldstone (BBG) theory
[21,23,31–34] and its extension to finite temperature [27,54–
59]. Here we simply give a brief review for completeness.

We employ the BHF approach for asymmetric nuclear mat-
ter at finite temperature to calculate the free energy density in
the “frozen-correlations” approximation,

f = ρ
F

A
=

∑
i=n,p

[
2

∑
k

ni(k)

(
k2

2mi
+ 1

2
Ui(k)

)
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]
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is the entropy density for the component i treated as a free
Fermi gas with spectrum ei(k). At finite temperature,

ni(k) =
[

exp
(ei(k) − μ̃i

T

)
+ 1

]−1

(3)

is a Fermi distribution, where the auxiliary chemical potentials
μ̃n,p are fixed by the condition ρi = 2

∑
k ni(k). The single-

particle energy

e1 = k2
1

2m1
+ U1, (4)

U1(ρ, xp) =
∑

2

n2〈12|K (ρ, xp; e1 + e2)|12〉a, (5)

is obtained from the interaction matrix K , which satisfies the
Bethe-Goldstone integral equation

K (ρ, xp; E ) = V

+V Re
∑
1,2

|12〉(1−n1)(1−n2)〈12|
E−e1−e2+i0

K (ρ, xp; E ).

(6)

Here E is the starting energy and xp = ρp/ρ is the proton
fraction. The multi-indices 1,2 denote in general momentum,

FIG. 1. Free energy per nucleon as a function of asymmetry for
different densities at T = 0 (top panels), 50 MeV (middle panels)
for the V18 (left panels) or BOB (right panels) EOS. Dashed straight
lines in those panels show the parabolic approximation, Eq. (11). The
bottom panels show the deviation between numerical results and the
linear [Eq. (11), solid curves] or quadratic [Eq. (12), dashed curves]
β2 fits.

isospin, and spin. At given baryon density and proton fraction,
Eqs. (3)–(6) are solved self-consistently until the K matrix
reaches convergence. Then the free energy density and en-
tropy density are calculated according to Eqs. (1) and (2).

The frozen-correlations approximation consists in using in
the latter step the single-particle energy in Eq. (4) computed
at zero temperature instead of finite temperature. It has been
shown that at not too high temperature (T � 30 MeV) this
produces a negligible effect on thermodynamic properties of
nuclear matter [34,58–61]. Even in the most extreme situation
of low density ρ ≈ 0.1 fm−3 (the BHF approach is not used
for inhomogeneous clustered nuclear matter below that value)
and high temperature T = 50 MeV, the accuracy of that
approximation is about 5 MeV (5%) for F/A, but much better
for higher density and lower temperature [61]. In comparison,
the quadratic isospin law analyzed later is violated by a few
MeV (� 4 MeV, see Fig. 1) throughout most of the parameter
space.

Two choices for the realistic NN interaction V are adopted
in the present calculations [39]: the Argonne V18 (V18)
[40] and the Bonn B (BOB) [41,42] potential. They are
supplemented with microscopic TBF employing the same
meson-exchange parameters as the two-body potentials. The
TBF is reduced to an effective two-body force and added to
the bare potential in the BHF calculation (see Refs. [37–39,62]
for details).

The knowledge of the free energy allows to derive all
necessary thermodynamical quantities in a consistent way;
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namely, one defines the “true” chemical potentials μi, pres-
sure p, and internal energy density ε as

μi = ∂ f

∂ρi
, (7)

p = ρ2 ∂ ( f /ρ)

∂ρ
=

∑
i

μiρi − f , (8)

ε = f + T s , s = − ∂ f

∂T
. (9)

For the case of asymmetric nuclear matter, one might ex-
pand the free energy for fixed total density and temperature in
terms of the asymmetry parameter δ = β2 = (1 − 2xp)2,

f (δ) ≈ f (0) + δ fsym,2 + δ2 fsym,4. (10)

Limiting to the second term, one obtains the symmetry energy
as the difference between pure neutron matter (PNM) and
symmetric nuclear matter (SNM),

fsym,2 = f (1) − f (0), (11a)

fsym,4 = 0, (11b)

which is usually a good approximation at zero temperature
[21,23,61], and also used at finite temperature [19,27]. It has,
however, been pointed out [28–30,63–70] that at least the
kinetic part of the free energy density [first term in Eq. (1)]
violates the parabolic law, in particular at high temperature.
We therefore extend the expansion to second order and com-
pute fsym,4 in the following way: Inverting the system of
equations for f (0), f (α), and f (1), where α is an arbitrarily
chosen value (we use α = 0.62, which corresponds to a typical
xp = 0.2 in NS matter), one obtains

fsym,2 = α2[ f (1) − f (0)] − [ f (α) − f (0)]

α2 − α
, (12a)

fsym,4 = α[ f (1) − f (0)] − [ f (α) − f (0)]

α − α2
, (12b)

in which f (0), f (α), and f (1) depend on total density and
temperature. Following Ref. [20], we provide analytical fits
for these dependencies of the numerical results in the required
ranges of density (0.05 � ρ � 1 fm−3) and temperature (5 �
T � 50 MeV) in the following functional form for the free
energy per nucleon:

F

A
(ρ, T ) = aρ + bρc + d

+ ãt2ρ + b̃t2 ln(ρ) + (c̃t2 + d̃t ẽ)/ρ, (13)

where t = T/(100 MeV) and F/A and ρ are given in MeV
and fm−3, respectively. The parameters of the fits are listed
in Table I for SNM, asymmetric nuclear matter with xp =
0.2 (ANM), and PNM, for the different EOSs we are using.
The rms deviations of fits and data are better than 0.3 MeV
for all EOSs and also given in the table. We stress that the
main purpose of the chosen functional form is a good fit of
the numerical data in an economical way, valid only in the
stated ranges of density and temperature. Thus theoretical
interpretations should be taken with care, also in view of
strong compensations between the individual terms. Differ-
ent functional forms of such fits have been proposed in the

TABLE I. Parameters of the fit for the free energy per nucleon,
F/A, Eq. (13), for symmetric nuclear matter (SNM), asymmetric
(β = 0.6) nuclear matter (ANM), and pure neutron matter (PNM)
with the V18 and BOB EOSs. The accuracies 〈�F/A〉rms (in MeV)
are also listed.

a b c d ã b̃ c̃ d̃ ẽ 〈�F/A〉
V18 SNM −54 363 2.68 −8 −149 211 −58 81 2.40 0.21

ANM −23 473 2.72 −3 −140 200 −61 82 2.36 0.17
PNM 38 668 2.78 6 −91 153 −26 38 2.64 0.18

BOB SNM −60 495 2.69 −9 −124 203 −60 80 2.38 0.29
ANM −21 624 2.78 −4 −119 193 −59 78 2.36 0.22
PNM 52 860 2.89 4 −82 149 −25 36 2.67 0.20

literature, taking into account only the interaction part of the
free energy [19], and we have verified that the accuracies of
the fits for SNM, ANM, and PNM, as reported in Table I, are
much better than the effect of using different parametrizations
for the isospin dependence that we are investigating here.

III. RESULTS

A. Free energy per nucleon

Figure 1 shows the free energy per nucleon as a function of
the asymmetry parameter δ = β2 for different densities and
at temperatures T = 0 (upper row) and T = 50 MeV (middle
row), for both EOSs. The linear approximation [Eqs. (10) and
(11)] is indicated by dashed straight lines in those panels, and
the deviations from the linear [Eq. (11)] or quadratic [Eq. (12)]
laws at T = 50 MeV are indicated in the lower row. One
observes that in general even the linear law provides a very
good fit, even at low density and high temperature, where the
deviations might reach a few percent. With the quadratic law,
the deviations remain below 2 MeV over the whole parameter
space [ρ, T, β]. In this case the overall variances are 0.47 and
0.54 MeV for the V18 and BOB EOSs, respectively.

In order to compare the magnitude of violation of the
linear or quadratic β2 laws with those of other frequently used
finite-temperature nuclear EOSs, we performed the previous
analysis also for the SFHo [71] and the HShen [72,73] EOSs
and report the values of the variance 〈�F/A〉rms for both the
linear and quadratic law in Table II. We observe that in all
cases the quadratic law is an important improvement by at
least a factor of 3, but also the linear law is a very reasonable
approximation. In the table we report also the results obtained
with two other values of α = 0.42 and 0.82 (xp = 0.3 and 0.1)

TABLE II. Quality 〈�F/A〉rms (in MeV) of the linear or quadratic
β2 laws for the free energy per nucleon, F/A, obtained with different
EOSs and different choices of α in Eq. (12).

EOS V18 BOB SFHo Shen

Linear 1.51 1.77 1.12 1.53
Quadratic (α = 0.42) 0.57 0.67 0.35 0.50
Quadratic (α = 0.62) 0.47 0.54 0.23 0.39
Quadratic (α = 0.82) 0.42 0.48 0.30 0.34
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FIG. 2. Free symmetry energies per nucleon, Fsym,2/A (upper row; in linear [Eq. (11), solid curves] or quadratic [Eq. (12), dashed curves]
approximation) and Fsym,4/A (lower row) as functions of nucleon density or temperature for fixed temperatures and densities, respectively. For
comparison, the T = 0 FSUGold and IU-FSU results of Ref. [74] and those of Ref. [75] are plotted in the lower row.

in Eq. (12) in order to demonstrate the invariance of the main
conclusions with respect to this choice.

Figure 2 shows the derived free symmetry energies
per nucleon, Fsym,2/A [Eqs. (11a) and (12a)] and Fsym,4/A
[Eq. (12b)], as functions of density and temperature. One
notes that the dependence on density is more pronounced for
Fsym,2/A than for Fsym,4/A, while the opposite is the case for
the temperature dependence. The Fsym,2/A results in quadratic
approximation (dashed curves in upper row) are somewhat
smaller than in linear approximation (solid curves) in order
to compensate for the finite Fsym,4/A, in particular at finite
temperature. For comparison, the T = 0 results for Fsym,4/A
obtained by Relativistic Mean Field (RMF) theory with FSU
interactions [74] and those of the schematic chiral model [75]
are shown as dotted, dash-dotted, and dash-dot-dotted curves
in the lower row. The former are comparable with our BHF
results, especially the BOB model.

B. Results at normal density

The density dependence of the symmetry energies can be
expanded around normal density ρ0 = 0.17 fm−3 in terms of
normal values J2 and J4 and slope parameters L2 and L4:

Fsym,2/A(ρ, T ) ≈ J2(T ) + L2(T )x, (14)

Fsym,4/A(ρ, T ) ≈ J4(T ) + L4(T )x, (15)

where x ≡ (ρ − ρ0)/3ρ0 and Ji(T ) = Jsym,i(ρ0, T ), Li(T ) =
3∂Jsym,i(ρ0, T )/∂ρ. These quantities are shown in Fig. 3.
The T = 0 values are J2(0) = 31.0 (32.7) MeV and L2(0) =
58.5 (64.2) MeV for V18 (BOB), which should be con-
fronted with recent constraints J2 = 31.7 ± 2.7 MeV and

L2 = 58.7 ± 28.1 MeV [7,76]. In the same figure we report
also the results for the SFHo and Shen EOSs according to our
analysis (see also Table II). Reasonable values are obtained in
the first case, but too large ones in the latter.

The second-order symmetry energy J4(0) is theoretically
more controversial than the first-order one, J2(0). Our re-
sults are J4(0) = 0.41, 0.93, 1.17, and 1.17 MeV for the
V18, BOB, SFHo, and Shen EOSs, respectively. Within
energy-density functionals with mean-field approximation,

FIG. 3. Symmetry energies J2 and J4 (upper panels) and slope
parameters L2 and L4 (lower panels) at empirical saturation density
ρ0 = 0.17 fm−3 as a function of temperature for different EOSs. The
N3LO414 and N3LO450 results of Ref. [30] are plotted as dashed
curves.
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for example, Skyrme-Hartree-Fock and Gogny-Hartree-Fock
models, the values of J4 reported in the literature are around
1.0 MeV [66], and around 0.66 MeV within RMF models
[74], while values extracted from quantum molecular dy-
namics models could be larger depending on the specific
interaction [64]. A recent analysis in second-order chiral per-
turbation theory [75] obtains J4 ≈ 1.5 MeV and proposes to
modify the expansion Eq. (10) by a δ2 ln δ term. (See also
Ref. [77], where even negative J4 values were extracted.)

From the viewpoint of finite nuclei, J4 can be related to
the second-order symmetry energy asym,4(A) in a semiempir-
ical mass formula, which can be inferred from the double
differences of experimental binding energies by analyzing a
large number of measured nuclei [78,79]. In this case, the
estimates are J4 = 20.0 ± 4.6 MeV [78] and two possible
J4 = 8.5 ± 0.5 MeV or J4 = 3.3 ± 0.5 MeV [79], which are
significantly different and much larger than those deduced
from nuclear matter. This points to a great model dependence
and to the importance of finite-size effects in nuclei.

Regarding the temperature dependence, from Fig. 3 one
can see that J2(T ) and J4(T ) are increasing monotonically
with temperature for all models, whereas L2(T ) decreases and
L4(T ) exhibits nonmonotonic behavior. It is remarkable that
the J4(T ) results are nearly universal for all EOSs. Note that
in our approach the temperature dependence of all these quan-
tities is constrained to be a linear combination of T 2 and T ẽ

terms according to Eq. (13). We compare our results with the
ones of the chiral effective field theory calculation [30]. Con-
sidering also the cutoff dependence of the chiral potentials,
we observe that both results are in quantitative agreement in
particular in the low-temperature region, but the latter predicts
a more linear temperature dependence. (At low temperature
such behavior is excluded by the condition of vanishing en-
tropy in the T → 0 limit.) The temperature dependence of the
free symmetry energy is also discussed in Refs. [80,81], where
an isospin- and momentum-dependent interaction constrained
by heavy-ion collisions and the Skyrme SLy4 parameters have
been employed, respectively. Those investigations show very
similar behavior and numerical magnitudes as the present
calculations of the free symmetry energy.

C. Hot neutron stars

To assess the relevance of the previous results for practi-
cal applications, we perform some model calculations of NS
structure employing the different approximations for the sym-
metry energy. Figure 4 shows the proton fractions of β-stable
and charge-neutral nuclear matter in the upper panel and the
mass-radius relations of NSs in the lower panel at the temper-
atures T = 0 and T = 50 MeV (For this plot, a cold crust is
attached to the isothermal NS interior at ρ = 0.08 fm−3 for
simplicity.) Results using the linear [Eq. (11), thin curves] or
the quadratic [Eq. (12), thick curves] δ laws are compared
with both BOB and V18 interactions. One can see that the
inclusion of Fsym,4 in the latter case causes a slight decrease
of the proton fraction in particular at high temperature, cor-
responding to a slight reduction of F/A as seen in Fig. 1.
The effect on the mass-radius relations is nearly invisible,
even at large finite temperature, which means that the linear

FIG. 4. Proton fraction of β-stable matter (upper plot) and NS
mass-radius relation (lower plot) at T = 0 (solid curves) and 50 MeV
(dashed curves), employing linear (thin curves) or quadratic (thick
curves) β2 fits, Eq. (11) or (12).

law in Eq. (11) is already a very good approximation for the
determination of the stellar structure.

For the interested reader we note that a peculiarity of the
finite-temperature BHF approach is the prediction of rather
temperature-independent (or slightly decreasing) maximum
NS masses. This is due to a strong compensation between the
nucleonic and leptonic contributions to the thermal pressure,
which was carefully analyzed in Refs. [20,52].

IV. SUMMARY

We studied the isospin-asymmetry dependence of the free
energy of nuclear matter at zero and finite temperature within
the framework of the Brueckner-Hartree-Fock approach at
finite temperature with different potentials and compatible
nuclear three-body forces. We compared our results with
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phenomenological models, i.e., SFHo and Shen EOSs, which
are widely used in numerical simulations of astrophysical
processes.

We determined the first- and second-order terms in an
expansion with respect to isospin asymmetry and provided
convenient parametrizations for practical applications. We
did not find anomalously large second-order terms, and a
model study of neutron star structure at finite temperature
demonstrated that the often used parabolic law is an excellent
approximation even at high temperature and the second-order
modifications are very small.

Our results will be used in simulations of protoneutron
stars and neutron star mergers, where accounting for finite
temperature is an essential requirement. We plan to refine our
calculations by going beyond the frozen-correlations approx-

imation, which is less accurate at large values of temperature,
especially in the low-density regime, where thermal effects
play a major role. In the high-density range, which is more
important for neutron star structure and their maximum mass,
we do not expect important changes. This will be subject of
investigation in a future paper.
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