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Spin-orbit term in the nuclear shell model
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Quasinuclear systems, representing nuclei with variable size, are studied to investigate the occurrence of the
spin-orbit term in the nuclear mean field in the transition from infinite nuclear matter to finite nuclei. Relativistic
as well as nonrelativistic mean-field calculations based on models for the nucleon-nucleon (NN) interaction,
which fit the NN scattering data, are considered. A very strong correlation between the strength of the spin-orbit
term and radius of the nuclear system is observed. The origin of the spin-orbit term is analyzed by inspecting
the contributions of the different partial waves and various mesons in a one-boson-exchange model of the NN
interaction. Also results for a realistic interaction model based on chiral effective field theory including the
contribution of three-nucleon interactions are discussed. The influence of correlation effects and the enhancement
of the small component of Dirac spinors for nucleons in the nuclear medium are discussed.
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I. INTRODUCTION

The nuclear shell model, which describes the nucleus as
a system of protons and neutrons moving independently in a
mean field generated by the interaction with all other nucle-
ons, is the starting point of essentially all microscopic nuclear
structure studies [1]. A rather strong spin-orbit term is an
important ingredient of the nuclear mean field. Only after
Goeppert Mayer [2] and Haxel, Jensen, and Suess [3] had
suggested to incorporate such a spin-orbit term in the phe-
nomenological Hamiltonian for the nuclear mean field, they
were able to reproduce the empirical magic numbers, which
occur in systematic studies of binding energies and nucleon
separation energies.

This spin-orbit term is not only required to describe bind-
ing energies and separation energies, it is also an important
part of the optical model potential for nucleon-nucleus scatter-
ing [4,5] and is a dominant feature in all microscopic studies
of nuclear spectroscopy. As an example I mention the role of
the spin-orbit term in suppressing the proton-neutron pairing
in nuclei [6,7].

Such a spin-orbit term is a special attribute of many-body
systems of finite size and cannot be extracted, e.g., from stud-
ies of infinite nuclear matter, which is frequently considered as
a benchmark for microscopic nuclear structure studies. There-
fore the spin-orbit term is often added to the nuclear mean
field or a term is added to the phenomenological nucleon-
nucleon (NN) interaction which generates a corresponding
spin-orbit term in Hartree-Fock calculations as it is done, e.g.,
in the Skyrme forces [8].

The spin-orbit term is generated in a natural way in
relativistic mean-field approaches as, e.g., in the so-called
Walecka model [9,10]. A characteristic feature of such
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relativistic models is the self-energy for the nucleons, which
contains a large attractive component Us, which transforms
like a scalar under Lorentz transformation. In the evaluation
of the single-particle energy of the nucleons this attractive
contribution is compensated to a large extent by a repulsive
component U0, which behaves like the zero component of a
Lorentz vector. If one reduces the corresponding Dirac equa-
tion, describing the single-particle properties of nucleons in
a spherical nucleus, to a Schrödinger equation, one obtains
a spin-orbit term, which can reproduce the empirical data of
nuclei (see more detailed discussion below).

But also nonrelativistic studies of nuclei based on realistic
models for the NN interaction, i.e., models which describe
the experimental data of NN scattering, provide reasonable
predictions for the spin-orbit structure of the nuclear mean
field. In this case it is the spin structure of the two-body inter-
action which leads to the spin-orbit term in the single-particle
spectrum of nuclei.

The main aim of the studies presented in this paper is
to investigate and compare the predictions of relativistic and
nonrelativistic approaches for the spin-orbit term in the nu-
clear mean field of light nuclei (A � 56). Special attention will
be paid to the dependence of the spin-orbit term on the size of
the nucleus by investigating spherical quasinuclear systems as
a function of their radius. The studies are based on realistic
one-boson-exchange (OBE) models for the NN interaction
developed by Machleidt [11]. Effects of the different partial
waves of the NN interaction as well as the influence of the dif-
ferent mesons considered in the OBE model on the structure
of closed- and open-shell nuclei will be discussed. For a com-
parison an interaction model based on chiral effective field
theory including terms up to fourth order in the chiral expan-
sion has been considered [12]. Effects of the corresponding
chiral three-nucleon (3N) interaction, expressed in the form
of a density-dependent effective NN interaction [13,14], have
been investigated.
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After this short introduction Sec. II will contain the discus-
sion of approaches which keep track of a relativistic structure
nucleon self-energy, while Sec. III is devoted to nonrelativistic
approaches. A comparison of the various approaches is pre-
sented in Sec. IV, which also contains the conclusion of the
studies.

II. RELATIVISTIC APPROACH

At first sight relativistic effects seem to be negligible in
nuclear structure calculations. The binding energies of the
nucleons are much smaller than the mass of the nucleon and
the typical values for the kinetic energy of nucleons bound
in nuclei indicate that the velocities of the nucleons are well
below the speed of light. The reason for the popularity as
well as the success of the relativistic approaches is the feature
that the resulting self-energy for the nucleon contains a very
attractive term Us, which transforms like a scalar under a
Lorentz transformation, and a term U0 which must be treated
like the zero component of a Dirac vector. Inserting these two
components into a Dirac equation for a nucleus with spherical
symmetry leads to

{�α · �p + γ0[M + Us(r)] + U0(r)}�ν = εν�ν, (1)

where I assume that Us and U0 are local and depend on the
radial coordinate r. The Dirac spinors �ν can be written in
the form

�ν (r) =
(

gν (r)
−i fν (r)σ · r̂

)
Yκνmν

(	)

=
(

gν (r)Yκνmν
(	)

i fν (r)Y−κνmν
(	)

)
. (2)

All quantum numbers of the states are expressed in terms of
the index ν, which represents a radial quantum number nν , the
projection quantum number for the total angular momentum
mν , and the quantum number

κν = (2 jν + 1)(lν − jν ),

representing the angular momenta. Note, that I am suppress-
ing the isospin quantum numbers. As I am considering light
nuclei with equal number of protons and neutrons and ignor-
ing the effects of the Coulomb interaction, results are identical
for protons and neutrons. The upper and lower spinor compo-
nents in Eq. (2) have different orbital angular momenta l and I
introduce the corresponding orbital angular momentum l ′

ν for
the same total angular momentum by

l ′
ν =

{
lν + 1 for lν = jν − 1/2
lν − 1 for lν = jν + 1/2

and κ ′
ν = −κν . The spherical harmonics Ylm(	) and the Pauli

spinors are coupled to form

Yκνmν
=

∑
ml ,ms

C(lνml , 1/2ms| jνmν )Ylνml (	)χ1/2ms .

The Dirac equation (1) is solved by expanding the radial func-
tions gν (r) and fν (r) in a discrete basis of spherical Bessel
functions. The wave numbers for this basis are chosen such
that this discrete basis is a complete orthonormal basis in a

sphere of radius D, which is chosen to be large enough that
the results for the bound single-particle states are independent
of D. With this expansion the Dirac equation is rewritten
in the form of an eigenvalue problem and the eigenvalues
(εν = Eν + M) and eigenvectors are determined by matrix
diagonalization [15–17].

Instead of solving the Dirac equation one can also de-
termine the solutions of positive energy by rewriting the
two coupled equations of the Dirac equation (1) to form a
Schrödinger equation:[

− ∇2

2M
+ Vcent + Vls(r)�σ · �Ł + VDarwin(r)

]
ϕν (r)

= Eνϕν (r), (3)

where Vcent, Vls, and VDarwin represent the Schrödinger equiv-
alent central, spin-orbit, and Darwin potentials, respectively.
The potentials in Eq. (3) are obtained from the scalar Us and
vector U0 potentials as

Vcent = Us + ε

M
U0 + 1

2M

[
U 2

s − U 2
0

]
,

Vls = − 1

2MrD(r)

dD(r)

dr
,

VDarwin = 3

8MD(r)

[
dD(r)

dr

]2

− 1

2MrD(r)

dD

dr

− 1

4MD(r)

d2D(r)

d2r
, (4)

where D is defined as

D(r) = M + ε + Us(r) − U0(r). (5)

The radial wave functions ϕν (r) resulting from the
Schrödinger equation (3) are related to the corresponding
upper component of the Dirac spinors �ν (r) in (2) by

ϕν (r) ∼ gν (r)

D(r)
.

One of the aims of the present paper is to investigate the
occurrence of the spin-orbit term in the transition from nuclear
matter to finite nuclei. For that purpose a set of “quasinuclear
systems” has been constructed to exhibit this transition, e.g.,
for quasinuclear 16O [7]. In this case a sequence of Woods-
Saxon potentials

VWS(r) = V0

1 + e(r−r0 )/a
. (6)

Assuming a value of a = 0.5 fm for the surface width, the
parameter for the depth of the potential V0 has been adjusted
in such a way that for different values of r0 the energy of
the first excited single-particle state with l = 0 occurred at
zero energy. Occupying the corresponding 0s and 0p states
with protons and neutrons one obtains a nuclear density dis-
tribution with root-mean-square radii 〈r〉(r0). These density
distributions

ρ〈r〉(r), (7)
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as well as the corresponding single-particle wave functions,
have been used to explore the occurrence of the spin-orbit
term due to the localization of the quasinuclear system 16O.

In an analogous way quasinuclear systems for 40Ca have
been constructed. In this case the depth parameter V0 in Eq. (6)
has been adjusted to localize the 1p single-particle state at
zero energy and 0s, 0p, 0d , and 1s states have been occupied
to obtain nuclear density distributions for 40Ca with various
radii.

As a first attempt the spin-orbit term has been evaluated us-
ing the improved local-density approximation (ILDA), which
has recently been proposed by Sun et al. [18]. The ILDA
is based on Dirac–Brueckner–Hartree-Fock (DBHF) calcula-
tions [19], which determine the relativistic components of the
nucleon self-energy in nuclear matter

U NM
s (ρ, β, E ) and U NM

0 (ρ, β, E ) (8)

depending on the density ρ, the proton-neutron asymmetry
β, and the nucleon energy E relative to the corresponding
Fermi energy. Since only isospin symmetric systems will be
considered here, the differences of the self-energy terms for
protons and neutrons have been dropped and the limit of
symmetric nuclear matter (β = 0) will be considered. The
DBHF calculations are based on the Bonn potential [11]
and use the subtracted T -matrix approach [19] to extract the
relativistic components. A convenient parametrization of the
self-energies of Eq. (8) has been presented in [18].

Using, e.g., the density profiles defined in Eq. (7) one can
evaluate local self-energy components:

U LDA
s(0) (r, E ) = U NM

s(0) (ρ(r), E ). (9)

The studies of Sun et al. [18] showed that this simple local-
density approximation misses an important surface effect,
which is due to the finite range of the interaction. Therefore
they used an ILDA [20,21]:

U ILDA
s(0) (r, E ) = 1

(t
√

π )

∫
U LDA

s(0) (r′, E )

{
exp

[
− (r − r′)2

t2

]

− exp

[
− (r + r′)2

t2

]}
r′

r
dr′, (10)

where t is an effective range parameter, which has been fitted
to take values

t = 1.3528–0.1322A1/3 [fm], (11)

depending on the mass number A of the nucleus under consid-
eration.

Using the density distributions of Eq. (7) the corresponding
U ILDA

s and U ILDA
0 can easily be calculated and inserted into

the Dirac equation (1) to obtain the resulting single-particle
energies Eν = εν − M. Note that this must be done in an
iterative way to obtain self-consistent solutions, for which the
energy variable E in the self-energies U ILDA

s(0) corresponds to
the solutions Eν of the Dirac equation. This energy depen-
dence reflects the treatment of the NN correlations in the
DBHF calculations, the basis of the ILDA approach.

Results for the spin-orbit splitting in quasinuclear systems
with proton number Z = 8 and neutron number N = 8, i.e.,

quasinuclear 16O, are presented in Fig. 1 as a function of the
radius 〈r〉 of the nucleon density distribution ρ〈r〉(r) of Eq. (7).
The differences in the single-particle energies

�Erel = E0p1/2 − E0p3/2, (12)

obtained from the solution of the Dirac equation, are repre-
sented by the black solid curve in the left panel of this figure,
while corresponding results for the difference between the
energies of the d3/2 and d5/2 shells are given in the right panel
of Fig. 1.

The results displayed in this figure show a very strong
dependence of the spin-orbit splitting on the radius of the
underlying nucleon distribution. The spin-orbit splitting dis-
appears for larger radii, which means it occurs only for
sufficient localization of the nuclear structure. This effect is
larger for the p shell than for the d shell, which represents
states above the Fermi energy of 16O.

In a complete self-consistent ILDA calculation [18] the
nucleon density profile to determine the Dirac self-energies is
determined from the resulting Dirac spinors. It is worth noting
that the spin-orbit terms and radius of such a self-consistent
calculation of 16O, indicated by the blue triangles, denoted by
“Dirac” in Fig. 1, are in line with the ILDA calculations using
the various nuclear distributions derived from Woods-Saxon
potentials. This supports the idea that the family of density
distributions discussed above is a reasonable choice to explore
the dependence of the spin-orbit term on the size of the nuclear
system. One may also conclude, however, that the values of
the spin-orbit splitting are not very sensitive to details of the
density profile.

The experimental data for radius and spin-orbit splitting are
represented by the black diamonds in Fig. 1. The calculations
are in reasonable agreement with the experimental data. The
calculated values for the spin-orbit splitting and/or the radius
of nucleon distribution are slightly smaller than the experi-
mental data. It is a well-known feature of DBHF calculations
for finite nuclei that they tend to yield density profiles with
too small radii [22]. This feature may be a bit enhanced in the
present paper as the effects of the Coulomb repulsion between
protons have been ignored.

In order to study the origin of the spin-orbit splitting in the
framework of relativistic mean-field calculations, the trans-
formation of the Dirac equation to the Schrödinger equation
(3) has been considered and the expectation values of the
spin-orbit potential (4),

〈ϕν |Vls|ϕν〉, (13)

have been calculated. The results obtained from these expec-
tation values are plotted as red dashed lines, identified as
〈Vls〉 in Fig. 1. These results derived from the expectation
values are very close to the results extracted from the Dirac
single-particle energies (�Erel in this figure). Therefore one
may conclude that it is simply this spin-orbit term which
determines the final spin-orbit splitting with high accuracy.

In detail, however, the situation is a bit more involved: If
one determines the eigenstates of the single-particle Hamil-
tonian using the ILDA for the different nuclear distributions
one obtains different radial wave functions for the states with
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FIG. 1. Results for the spin-orbit splitting in quasinuclear 16O are displayed as a function of the radius of the nucleon density distribution
〈r〉. The left panel presents results for the splitting in the p shell [see Eq. (12)] whereas the right panel shows corresponding results for the d
shell. Further explanations are given in the text.

j = l + 1/2 and l − 1/2. The j = l + 1/2 state has a larger
binding energy than the one with j = l − 1/2 and therefore
is more localized, which leads to larger kinetic energy. This
means that the difference of the corresponding expectation
values for the kinetic energies,

〈�T 〉 = 〈T 〉 j=l−1/2 − 〈T 〉 j=l+1/2, (14)

is negative. The corresponding results are represented by
green dash-dotted lines with label 〈�T 〉 in Fig. 1. It turns
out that the absolute values of these differences are almost
of the same size as the spin-orbit splitting due to Eq. (13).
It is interesting to note that this effect in the kinetic energy
is compensated with high accuracy by the difference in the
expectation values for the central term and the Darwin term of
the Hamiltonian, which leads to

�Erel ≈ 〈Vls〉, (15)

observed in Fig. 1.
The blue dotted lines in this figure, labeled as 〈Vls〉WS

in the legend of the figure, represent the expectation value
of the spin-orbit potential (4) using the wave functions of
the Woods-Saxon potential (6), which has been used to gen-
erate the corresponding density distribution with radius 〈r〉.
Note that the potential (6) is a pure central potential, which
implies that the radial wave functions for the two spin-orbit
states are identical. The results for 〈Vls〉WS are close to the
corresponding expectation values 〈Vls〉 which were calculated
using the eigenfunction of the single-particle Hamiltonian.

This indicates that expectation value 〈Vls〉 is not very sensitive
to details of the wave functions.

Figure 1 also shows results from two self-consistent calcu-
lations of 16O, which are based on DBHF results of nuclear
matter using two different local-density approximations. The
ILDA approach [18] has been introduced above and the results
for radius and spin-orbit splitting represented by a triangle
with upward orientation have been mentioned above. The
second approach has been defined in [16] extracting density-
dependent coupling constants of a mean-field model with
a scalar (σ ) and vector meson (ω) to reproduce the Dirac
components of the nuclear self-energy derived from DBHF
calculations [23] of nuclear matter. The radius resulting from
this σ − ω model (represented by a downward oriented trian-
gle) is slightly larger than the ILDA prediction but also too
small compared with experiment.

The spin-orbit potentials of Eq. (4) derived from these two
self-consistent Dirac calculations are displayed in Fig. 2. One
finds substantial differences for small r, which are not relevant
in calculating expectation values for orbits with l = 1 and
2. The differences at the surface of the nucleus reflect the
different radii and the fact that the σ − ω model yields a value
for the spin-orbit splitting in the d shell, which is slightly
larger as compared to the result evaluated within ILDA.

Results for the nucleus 40Ca are displayed in Fig. 3 for the
hole states of the 0d shell and the particle states of 1p and
0 f shells. The conclusion drawn from the discussion of the
results for 16O, displayed in Fig. 1, is confirmed by inspecting
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FIG. 2. Radial shape of the spin-orbit potential Vls of Eq. (4). Re-
sults for 16O are presented using the self-consistent ILDA approach
(solid line) and the σ − ω model with density-dependent coupling
constants derived from DBHF calculations [16].

the results for 40Ca. The experimental data for spin-orbit split-
ting of the hole states are larger than the spin-orbit splitting for
the particle states. This is nontrivial keeping in mind that l ṡ is
larger for the f shell than for the d shell. This trend of the
experimental data is nicely reproduced by the self-consistent
ILDA and σ − ω calculations and is also visible in study of
density distributions of different radii.

The results for spin-orbit splittings in 16O and 40Ca de-
rived from the self-consistent ILDA calculations as well as
the σ − ω model using density-dependent coupling constants
are also displayed in Table I. These results are complemented
by results for nuclei with N = Z and closed subshells: 12C,
28Si, and 56Ni. Also these calculations have been performed
assuming spherical symmetry. It should be noticed that the
spin-orbit splitting derived from such calculations tends to
predict larger values than derived from experimental data.

III. NONRELATIVISTIC STUDIES

The aim of this section is to discuss the spin-orbit term of
the nuclear shell model within the framework of nonrelativis-
tic many-body calculations based on realistic NN interactions.
In this case the origin of the spin-orbit term should be related
to the spin structure of the NN interaction, reflected in the
spin dependence of the NN scattering phase shifts. Traditional
models of realistic NN interactions like the local interactions
of the Argonne group [24] or the various one-boson-exchange
potentials (OBEPs) of the Bonn (Idaho) group [11,25,26] con-
tain strong short-range and tensor components, which make it
inevitable to employ nonperturbative approximation schemes
for the solution of the many-nucleon system.

One way to get rid of the short-range or high-momentum
components of such interactions is to use renormalization
techniques [27–31] to separate low-momentum and high-
momentum components of the NN interaction. For that
purpose I consider the two-nucleon problem using the Bonn
A interaction defined in [11] and define projection operators
P and Q projecting on the subspace of two-nucleon states
with momenta below a cutoff � and the complement, respec-
tively. Using the unitary-model-operator approach [32] one
can define a unitary transformation U in such a way that
the transformed Hamiltonian does not couple the P and Q
subspaces, which means

QU −1 H U P = 0, (16)

with the original Hamiltonian H = T + V containing the term
for the kinetic energy T and the OBEP V . This leads to an
effective Hamiltonian:

Heff = T + Vlow k, (17)

with

Vlow k = U −1(T + V )U − T . (18)

The eigenvalues, which are obtained by diagonalizing the
effective Hamiltonian of (17) in the P space, are identical
to those which are obtained in the diagonalization of the
original Hamiltonian H = T + V in the complete space. This
implies that Vlow k yields the same NN phase shifts for nucle-
ons with momenta below the cutoff � as the original OBE
interaction V .

If the cutoff � is appropriately chosen, i.e., around � =
2 fm−1, the resulting low-momentum interaction Vlow k will
describe the experimental data up to the pion threshold. More-
over, a very attractive aspect is that this Vlow k interaction turns
out to be independent of the underlying realistic interaction
V [29]. Uncertainties due to the different models of the high-
momentum components of traditional realistic NN interaction
have been removed by the renormalization procedure leading
to Vlow k .

With respect to the present paper it is a major advantage
that Vlow k yields rather stable results in lowest-order many-
body calculations. As will also be demonstrated below the
results obtained in mean-field approximation are not very
much modified including effects of correlations.

A major drawback in using Vlow k is the fact that it does not
provide realistic saturation properties. Using Vlow k , e.g., in a
calculation of nuclear matter, one obtains a binding energy
per nucleon increasing with density in a monotonic way [33].
Therefore three-nucleon forces have to be added to provide
good results for the saturation of nuclear matter [28] and bulk
properties of finite nuclei [34].

This is in line with the use of interaction models based
on chiral perturbation theory [35,36]. Also these chiral in-
teractions are limited to nucleons with low momenta and
three-nucleon forces are required to reproduce the saturation
properties of nuclear systems (see, e.g., the review [37] and
references there). This point will be further discussed below.

The first approach to be discussed in this section is based
on the Woods-Saxon wave functions generated to describe
quasinuclear systems of varying size representing 16O and
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FIG. 3. Results for the spin-orbit splitting in quasinuclear 40Ca are displayed as a function of the radius of the nucleon density distribution
〈r〉. The left, the middle, and the right panel present results for the splitting in the 1p shell, the 0d shell, and the 0 f shell, respectively. The
various approximations are discussed in the text (see also Fig. 1).

40Ca [see Eq. (6)]. Denoting the eigenstates of the Woods-
Saxon potential by |μ〉 and |ν〉 corresponding mean fields and
single-particle energies

εWS
μ = 〈μ|T |μ〉 +

∑
ν<F

〈μν|Vlow k|μν〉 (19)

can be calculated with the restriction of the summation on the
right-hand side of this equation to states ν below the Fermi
surface of the nucleus considered.

TABLE I. Spin-orbit splitting for various nuclei with closed
shells or subshells calculated in various approximations (see first
column and discussion in the text) assuming spherical symmetry. The
shells under consideration are indicated in the second line. Experi-
mental data for nuclei with closed subshells (numbers in brackets)
have been derived from the spectrum of nuclei with one additional
neutron. All entries are given in MeV.

12C 16O 28Si 40Ca 56Ni

0p 0p 0d 0d 0 f 1p 0 f

Expt. (2.83) 6.30 5.08 (0.80) 5.64 1.67 (2.23)
ILDA 4.18 5.44 4.85 5.85 6.83 1.96 6.79
σ − ω 6.46 5.21 5.60 7.19 6.66 1.85 7.45
HF +3N −2.34 3.91 4.57 −0.69 4.96 1.30 0.11
m∗ 0.25 5.48 6.11 1.74 6.66 1.59 2.30

It is worth noting that the Woods-Saxon wave functions
are expanded in the same discrete basis of spherical Bessel
functions, which has also been used for the solution of the
Dirac equation discussed in the previous section. Since the
effective interaction is evaluated in a basis of momentum
eigenstates in partial waves of the relative basis one has to
transform the matrix elements to the plane-wave states in the
laboratory system using the vector brackets as described in
[38,39]. This transformation is a bit more involved than the
corresponding Talmi-Moshinsky transformation [40,41] to be
used for a basis system of oscillator eigenstates.

Results for the spin-orbit splitting in the 0p, 0d , and 0 f
shell calculated from the energies of (19) are displayed in
the various panels of Fig. 4 as a function of the radius of
the quasinuclear system 16O. The ls splittings using the wave
functions of the corresponding Woods-Saxon potentials are
represented by the solid black line using the label “WS Vlow k .”
The results for the spin-orbit splitting depend very strongly
on the radius of the quasinuclear system. This is very similar
to the results obtained within the relativistic mean-field calcu-
lations discussed in the preceding section (see Fig. 1). For a
given radius of the nucleon distribution, however, the results
derived from relativistic mean-field calculations are typically
around 30% smaller than the corresponding results evaluated
from the NN interaction.

The results are rather insensitive to the details of the single-
particle wave functions leading to the same radius for the
nuclear system. If one replaces, e.g., the Woods-Saxon wave
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FIG. 4. Results for the spin-orbit splitting in quasinuclear 16O are displayed as a function of the radius of the nucleon density distribution
〈r〉. The left, the middle, and the right panel present results for the splitting in the 0p shell, the 0d shell, and the 0 f shell, respectively. The
various approximations are discussed in the text.

functions in Eq. (19) by corresponding eigenfunctions of the
harmonic oscillator with varying oscillator length, one obtains
the results which are represented by the blue dotted lines
(label “Oscil Vlow k”), which, in the case of the 0p and 0d
shell, are rather close to the results using Woods-Saxon wave
functions. Differences occur in the case of the 0 f shell. In
this case the Woods-Saxon potential yields continuum states
whereas the oscillator model generates bound states, which
are not very realistic.

In order to test the sensitivity of the spin-orbit energy
differences on details of the single-particle wave functions one
may also consider the single-particle Hamiltonian

〈κ|h|ν〉 = 〈κ|T |μ〉 +
∑
ν<F

〈κν|Vlow k|μν〉, (20)

and derive the single-particle splitting from the eigenvalues of
〈κ|h|ν〉. The results are shown in Fig. 4 as red lines with long
dashes (label “diag”). In contrast to wave functions derived
from the Woods-Saxon or oscillator model, these eigenstates
yield different expectation values for the kinetic energies of
the states of a spin-orbit doublet. In fact, the differences are
non-negligible and provide negative contributions to the en-
ergy differences (see green dash-dotted lines in Fig. 4, label
“�T ”). This difference is counterbalanced by more attractive
contributions of the central field in the case of j = l + 1/2 as
compared to j = l − 1/2. Therefore the resulting spin-orbit
splittings almost coincide with corresponding results using
Woods-Saxon or oscillator states. This is very similar to the
phenomenon displayed in Fig. 1 discussed above.

Figure 4 also displays results for spin-orbit splitting and
nuclear radius obtained in a self-consistent Hartree-Fock (HF)
calculation using Vlow k . As it has already been mentioned
above such Hartree-Fock calculations do not show saturation
in infinite nuclear matter and predict finite nuclei with very
small radii. Therefore the Vlow k interaction has been supple-
mented in [34] by a 3N force of zero range. leading to results
for the saturation point of nuclear matter as well as radii and
binding energies of light nuclei, which are in good agreement
with the experimental data. Results for radius and spin-orbit
splitting in 16O from HF calculations using Vlow k supple-
mented by such a 3N force are represented by red triangles
in Fig. 4. The results are rather close to the corresponding
values using Woods-Saxon or oscillator functions leading to
the same radius for the mass distribution.

The main conclusions resulting from this discussion of
results for 16O displayed in Fig. 4 are confirmed by corre-
sponding results for 40Ca presented in Fig. 5.

Results of HF calculations for spin-orbit splittings for var-
ious nuclei with closed shells or subshells are also listed in
Table I in line with the label “HF + 3N.” Comparing the
results with those obtained in self-consistent relativistic mean-
field calculations also listed in this table (ILDA and σ − ω;
see discussion above) one finds that the results for 16O and
40Ca, the nuclei with closed major shells, are rather similar.
For nuclei with closed subshells, 12C, 28Si, and 56Ni, however,
the situation is quite different. While the relativistic mean-
field calculations for 12C and 28Si yield positive values for
the spin-orbit splitting of the states close to the Fermi energy,
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FIG. 5. Results for the spin-orbit splitting in quasinuclear 40Ca are displayed as a function of the radius of the nucleon density distribution
〈r〉. The left, the middle, and the right panel present results for the splitting in the 0p shell, the 0d shell, and the 0 f shell, respectively.

the corresponding results of the nonrelativistic HF + 3N ap-
proach yield negative values for the spin-orbit splitting of the
p and d shells, respectively. This implies that the assumption
of spherical symmetry does not lead to consistent solutions
since, e.g., in the case of 28Si, the energy of the unoccupied
d3/2 shell is below the energy of d5/2, which is assumed to be
occupied. This implies that deformed solutions or configura-
tion mixing has to be considered to obtain consistent solutions
for these nuclei using realistic NN interactions.

The remaining part of this section is devoted to the discus-
sion of the sources within realistic NN interactions causing the
spin-orbit splitting in the mean field of nuclei. For that purpose
Fig. 6 presents results for the quasinuclear systems of 16O us-
ing modifications of the underlying NN interaction. As a ref-
erence the black solid lines in this figure correspond to the re-
sults obtained for the Vlow k interaction using the Woods-Saxon
wave functions of the nuclear system representing 16O with
variable size and are identical to the corresponding results in
the left and middle panel of Fig. 4. Now, ignoring the contribu-
tions of Vlow k , which originates from partial waves with L = 1
for the relative motion and total spin S = 1 for the interacting
nucleons, i.e., the partial waves 3P0, 3P1, and 3P2, one obtains
moderate modifications in the potential energy of the single-
particle states, which are around 10% of the total contribution.
These partial waves, however, are completely dominating the
energy differences, which lead to the spin-orbit splittings.
Therefore the results obtained for Vlow k without the con-
tributions of the 3PJ partial waves, represented by the red
dash-dotted lines in Fig. 6, show results very close to zero.

This result may be used to conclude that the spin-orbit term
in the nonrelativistic shell model of the nucleus originates
from the spin-orbit structure in the two-nucleon interaction.
This spin-orbit structure occurs in partial waves with orbital
angular momentum L � 1 and spin S = 1. The dominant
contribution should occur in the 3PJ partial waves while the
effects in higher partial waves should be smaller due to the
finite range of the NN interaction (see also [42]). In fact,
this argument has been used, e.g., to justify the origin of the
spin-orbit term in simple phenomenological models for the
effective NN interaction like the Skyrme force [8], leading to
the well-known expression

V Skyrme
ls (r) = W

3

2

1

r

d

dr
ρ(r), (21)

for the leading contribution to the spin-orbit term in the mean-
field model for spherical nuclei with a density distribution
ρ(r). This analytical form suggests that the strength of the
spin-orbit splitting should scale with the size of the nuclear
system 〈r〉 like 〈r〉−5. Indeed the dependence of the spin-orbit
term evaluated from realistic NN interactions, displayed in
Figs. 4 and 5, shows this scaling behavior over a wide range
of 〈r〉. It is worth noting that the same scaling behavior is also
observed in Figs. 1 and 3, although the results presented in
these figures are derived from the relativistic structure of the
mean field in nuclear matter.

One of the most important results of relativistic mod-
els describing nuclear systems is the feature that a strong
scalar component in the mean field of nuclei leads to an
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FIG. 6. Results for the spin-orbit splitting in quasinuclear 16O are displayed as a function of the radius of the nucleon density distribution
〈r〉. The left and the right panel present results for the splitting in the 0p shell and the 0d shell, respectively. Results obtained for the full Vlow k

are compared to those, where contributions from 3PJ partial waves are ignored. The lines with label m∗ = 600 MeV are obtained evaluating
the underlying OBEP with Dirac spinors for the nucleon with enhanced small components.

enhancement of the small component of the Dirac spinor
representing the nucleon in the nuclear medium. This feature
is represented by an effective Dirac mass m∗ for the nucleon,
which is smaller than the nucleon mass M in the vacuum.
This implies that the matrix elements of a meson-exchange
interaction of two nucleons in the nuclear medium should be
evaluated for Dirac spinors with a reduced effective mass. In
fact, Dirac–Brueckner–Hartree-Fock calculation based on re-
alistic OBE models for the NN interaction have demonstrated
that this effect is non-negligible and improves the results of
calculations for bulk properties of nuclear matter and finite
nuclei considerably [11,23,37,43].

Assuming a realistic value for the Dirac mass in the
medium, like, e.g., m∗c2 = 600 MeV, one can calculate the
matrix elements of the OBEP A for such Dirac spinors and
evaluate a corresponding Vlow k to represent the effective NN
interaction in the nuclear medium [31]. Evaluating the spin-
orbit splitting for this effective interaction one obtains the
results represented by the blue dashed lines in Fig. 6. Using
the same Woods-Saxon wave functions, i.e., the same radius
〈r〉, an enhancement of the spin-orbit splitting around 30%
can be observed (see also [44]).

Rather similar results for this enhancement of the spin-
orbit splitting due to the modification of the Dirac spinors as
well as the dominance of the 3PJ partial waves have also been
observed for 40Ca (see Fig. 5).

Since it has been demonstrated above that the results for
the spin-orbit term are rather insensitive to the details of the
nucleon wave functions, which yield the same radius for the

nucleon distribution, the remaining part of this section will
consider oscillator functions, which are easily transformed
from the partial waves for relative coordinates, which are used
to evaluate the matrix elements for the NN interaction, to
oscillator functions in the coordinate system of the nucleus
used to determine the properties of the nucleus.

Matrix elements for the oscillator functions with radial
quantum number n = 0 are displayed in Fig. 7 as a function
of the oscillator length:

b =
√

h̄

Mω
, (22)

with M the mass of the nucleon and ω the oscillator fre-
quency. The various panels show the results for the partial
waves 3PJ , which are relevant for the spin-orbit term in the
nuclear shell model, as discussed above. For a comparison
also matrix elements in the 1S0 channel are given. The matrix
elements of the bare OBEP, represented by the black solid
line, are rather different from the corresponding results using
Vlow k (red dashed lines) in the 1S0 partial wave with orbital
angular momentum L = 0; the effects of the renormalization
leading to Vlow k are much weaker in the 3PJ partial waves.
This demonstrates that the renormalization accounts for high-
momentum or short-range components of the underlying bare
NN interaction, which are strong in the S channel and much
weaker in partial waves with L > 0.

The results displayed in Fig. 6 also show the effect of the
reduced Dirac mass for the nucleons interacting in the nuclear
medium by comparing matrix elements of Vlow k calculated
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FIG. 7. Results for diagonal matrix elements of the NN interac-
tion, 〈n = 0|V |n = 0〉, calculated in an oscillator basis as a function
of the oscillator length. The four panels show results in different
partial waves for the bare OBEP and the resulting Vlow k interaction.
The dash-dotted line (blue) represents results for the low-momentum
interactions derived from the OBE potential for Dirac spinors with
an effective Dirac mass m∗ of 600 MeV/c2 with c representing the
speed of light.

for nucleon spinors of the vacuum to the low-momentum
interaction derived from the OBE interaction of nucleons with
a Dirac mass m∗c2 of 600 MeV.

One can see from this figure that the matrix elements are
attractive in 3P0 and 3P2 partial waves, whereas repulsive ma-
trix elements are obtained in the 3P1 partial wave. Therefore
it is obvious that the interaction in the various 3PJ channels
cannot simply be described in terms of a simple central plus
a two-nucleon spin-orbit term. Other nonlocal components,
like, e.g., tensor or quadratic spin-orbit terms, are a very
important part of a realistic NN interaction.

Assuming oscillator functions the matrix elements dis-
played in Fig. 6 contribute to the spin-orbit splitting of the
0p shell in the nuclear mean field of 16O:

δεp = 1.125〈V 〉3P0
+ 1.6875〈V 〉3P1

− 2.8125〈V 〉3P2
, (23)

where 〈V 〉3PJ
represents the relative oscillator Extracting ma-

trix elements from the corresponding partial wave 3PJ with
radial quantum number n = 0. Extracting matrix elements
from the corresponding panels of Fig. 6 for an oscillator
length, which is appropriate for 16O (b ≈ 1.7 fm), and apply-
ing Eq. (23), one finds that the negative contribution of the 3P0

partial wave is more than compensated by the positive contri-
butions originating from the 3P1 and the 3P2 partial waves,
leading to a total value around of 4 MeV, which is very close
to the final result.

The individual contributions originating from partial waves
with L = 2 are non-negligible. The corresponding matrix el-

TABLE II. Spin-orbit splitting for various nuclei with closed
shells or subshells calculated within an oscillator model with appro-
priate oscillator energies h̄ω as listed in the first row. For the results
displayed in the upper half of this table the OBEP A of [11] has been
used, while the results displayed in the lower part are based on the
N3LO interaction defined in [12]. All entries are given in MeV.

12C 16O 28Si 40Ca 56Ni
16.41 14.02 11.95 10.15 9.27

h̄ω 0p 0p 0d 0d 0 f 1p 0 f

Vlow k −2.92 4.28 6.20 −0.41 4.31 5.26 0.52
BHF −2.70 4.22 6.13 −0.18 4.24 5.19 0.70
OBEP A −1.82 4.61 6.79 0.44 5.64 2.54 1.14
T = 0 −2.79 −0.02 −0.02 −1.71 0.06 0.03 −1.20
0.5*(σ, ω) −3.89 2.69 4.23 −1.31 3.68 1.78 −0.38
0.5*π 2.29 4.61 6.51 1.27 5.18 2.18 2.75

N3LO, V −3.01 4.26 6.16 −0.64 5.19 2.29 0.30
N3LO + 3N, V −2.37 5.72 7.98 0.21 6.77 2.90 1.17
N3LO, G −2.81 4.07 5.93 −0.41 4.99 2.20 0.46
N3LO + 3N, G −2.08 5.34 7.51 0.45 6.34 2.72 1.31

ement of the 3D1 partial wave yields a contribution to δεp

of around 0.8 MeV. This energy shift, however, is compen-
sated by the contributions from the other 3DJ channels, which
implies that the value of the spin-orbit splittings in 16O is
dominated by the contributions from 3PJ partial waves (see
also Fig. 6).

The contributions of the 3DJ partial waves become a bit
more important in heavier nuclei with closed major shells,
but also in 40Ca the 3PJ contributions are still dominant (see
Fig. 5). The situation is rather different in nuclei with closed
subshells like 12C, 28Si, or 56Ni. The spin-orbit splittings in
these nuclei obtain contributions also from other partial waves
like 1P1 or the tensor channel 3S1 - 3D1 (see discussion below).

Results for selected spin-orbit splittings in various nu-
clei are listed in Table II comparing various approximation
schemes for the NN interaction. Since the spin-orbit term is
very sensitive to the radius of the nuclear system, the shell-
model wave functions have been fixed to oscillator functions,
which yield a realistic value for the radius of the nucleus un-
der consideration. The corresponding values for the oscillator
frequency, h̄ω, are listed in the second line of this table.

The lines denoted as Vlow k , BHF, and OBEP in the first
column of Table II present results of Hartree-Fock calcu-
lations assuming Vlow k interaction, Brueckner–Hartree-Fock
calculations, and Hartree-Fock calculations assuming the bare
OBEP A interaction defined in [11]. Note that these different
approaches yield results for the spin-orbit splitting, which are
very close to each other, although individual single-particle
energies and the total binding energies are rather different
in these different approximation schemes. This confirms the
finding above: The renormalization effects in Vlow k and BHF
to account for effects of short-range correlations have only
little influence on the spin-orbit splitting, as the ls term in
the nuclear shell model arises from the NN interaction in
partial waves with l=1 and larger, which are not very sensitive
to the treatment of short-range correlations. Therefore the
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subsequent discussion will consider modifications of the bare
OBEP.

It is remarkable that all three approaches yield large posi-
tive values for the spin-orbit splitting in the closed-shell nuclei
16O and 40Ca, whereas small or negative values are obtained
in nuclei with closed subshells. As discussed before, this
indicates that the spherical shell model is not applicable in
these cases. To explore the origin of this feature, the line in
Table II denoted as “T = 0” shows the contribution of the
NN interaction for pairs of nucleons with isospin T = 0. It is
evident that the T = 0 interaction leads to negligible contri-
butions for the spin-orbit splitting of the closed-shell systems,
but provides negative contributions for the spin-orbit splitting
of the nuclei with closed subshells. This supports the finding
that the deformation of open-shell nuclei mainly originates
from the proton-neutron interaction.

Finally, the influence of the various mesons in the OBEP
shall be discussed. The line in Table II marked as “0.5*(σ, ω)”
represents the results obtained with the OBEP quenching the
contribution of the scalar σ and the vector ω meson by a factor
1/2. Compared to the results using the full OBEP one finds a
substantial reduction of the spin-orbit splittings.

The matrix elements of the OBEP are most conveniently
calculated in momentum space using q and q′ to denote
relative momenta for the pair of incoming and outgoing nucle-
ons, respectively. After transforming these expressions using
momentum variables of an average relative momentum p =
1/2(q + q′) and momentum transfer k = (q′ − q), one may
expand the expressions in terms of k2 and q2. This leads to
expressions for the NN interaction with a two-body spin-orbit
term, which has the same sign for the σ exchange and the
ω exchange (see [11,45] for details). It is remarkable that
the σ and ω mesons, which lead to contributions of opposite
sign for the total energy, provide coherent contributions to the
spin-orbit term. This is rather similar to the result obtained in
the relativistic mean field [see Eq. (4)].

Table II also shows results using the OBEP, in which the
contribution of the π exchange is quenched by a factor 1/2
(see line with label 0.5 ∗ π ). One can see that the π exchange
has a negligible influence on the spin-orbit term in the case
of the closed-shell nuclei. It yields an attractive contribution
in the case of open-shell nuclei, in which the shell with
j = l + 1/2 is occupied whereas the one with j = l − 1/2 is
unoccupied. Note that the relativistic mean-field calculations
discussed in the first part of this section (see Table I) do not
include pion exchange in the NN interaction and yield positive
spin-orbit splittings also for open-shell nuclei.

This suppression of the spin-orbit term in open-shell nuclei
by the T = 0 tensor interaction of a realistic NN interaction
has already been observed by Stancu et al. [46] in the attempt
to include tensor components in the effective Skyrme inter-
action model. As the inclusion of these tensor components
did not improve the results of mean-field calculations they
have been ignored for a long time. More recently, T = 0 and
1 tensor components in the Skyrme interaction have been
adjusted to describe spin-orbit effects in chains of isotopes of
spin unsaturated nuclei (see, e.g., [47,48]). Note, however, that
the parameters for these effective tensor terms are not deduced
from a realistic NN interaction.
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FIG. 8. Results for diagonal matrix elements of the NN interac-
tion, 〈n = 0|V |n = 0〉, calculated in an oscillator basis as a function
of the oscillator length. The four panels show results in different
partial waves for the bare N3LO interaction (red dashed line), the
corresponding G matrix (green dash-dotted line), and the N3LO
interaction including effects of a chiral 3N force expressed in the
form of a density-dependent effective NN interaction (blue dotted
line). For a comparison also the results of Vlow k (black solid line)
have been copied from Fig. 7.

All calculations discussed so far are based on the meson-
exchange model for the NN interaction. For a comparison a
realistic NN interaction shall be considered, which has been
developed within the framework of chiral effective field theory
by Entem et al. [12]. They included terms up to fifth order
(N4LO) and adjusted the parameter to provide very accurate
fits for the NN phase shifts and the data of the deuteron. Here,
the model including terms up to fourth order (N3LO) will be
considered using a cutoff parameter � of 450 MeV, which has
also been defined in [12].

In analogy to Fig. 7, Fig. 8 displays oscillator matrix ele-
ments in various partial waves. The difference between the the
bare N3LO potential (red dashed line) and the corresponding
matrix elements of G (green dash-dotted line) is very small
even in the 1S0 partial wave, indicating that the interaction
is much softer than the OBEP. The agreement between the
matrix elements of the bare N3LO interaction and the corre-
sponding G matrix elements is of course even better in the 3PJ

partial waves, which makes it difficult to distinguish between
the various lines. This is also reflected by the results for the
spin-orbit splitting presented in the lower part of Table II.
Results obtained in the Hartree-Fock approach (denoted by
N3LO, V ) and the Brueckner–Hartree-Fock approach (N3LO,
G) are almost identical.

For a comparison Fig. 8 also includes matrix elements of
the Vlow k interaction already displayed in Fig. 7. The agree-
ment between the matrix elements derived from N3LO and
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Vlow k is good with small deviations in the 3P0 partial wave.
The same is true also for the calculated spin-orbit splittings
presented in Table II. This demonstrates that nuclear structure
calculations using NN interactions, which give a very accurate
fit of the NN scattering phase shifts, lead to very similar
results for the spin-orbit splitting, if the calculated nuclear
radius is the same.

The chiral perturbation expansion also provides a consis-
tent approach for NN and many-nucleon interactions. In fact,
3N interactions are essential to provide a realistic result for the
saturation point calculated for infinite nuclear matter. Without
such a 3N interaction the chiral NN interactions predict a
saturation point of nuclear matter at very high density and very
large binding energy, which is typical for soft NN interactions,
or no saturation at all. The chiral 3N interaction is usually
represented in terms of a density-dependent NN interaction
[13,14], taking into account that it originates from a 3N
interaction, when the Hartree-Fock mean field is calculated
[49,50].

This representation of the chiral 3N interaction in terms
of a density-dependent NN interaction has also been used in
the present paper to investigate the influence of the chiral 3N
interaction on the evaluation of the spin-orbit splitting in finite
nuclei. Results for the relevant oscillator matrix elements are
also displayed in Fig. 8 (blue dotted lines). Note that the den-
sity parameter in the representation of the 3N force has been
adjusted to the mean value of the nucleon density distribution
in the oscillator model for 16O, using the oscillator length b
displayed on the horizontal axis in this figure. This density
parameter decreases with increasing b and provides a reason
for the fact that the difference between the matrix elements
evaluated for N3LO without and with inclusion of the 3N term
vanishes with increasing b.

The effect of the 3N interaction is repulsive in all partial
waves displayed in Fig. 8. It is large in the 1S0 partial wave,
which is irrelevant for the spin-orbit term, and the 3P1 channel.
Note that additional repulsion in the 3P1 partial wave enhances
the spin-orbit splitting in closed-shell nuclei [see discussion of
Eq. (23) above].

Indeed, the results displayed in Table II show a significant
enhancement of the spin-orbit splitting for the closed-shell
nuclei. In the case of 16O this enhancement improves the
agreement with the experimental splitting of 6.3 MeV for
the hole states p1/2 and p3/2. On the other hand, how-
ever, the enhancement of the spin-orbit splitting for the
particle states (d3/2 and d5/2) due to the 3N makes the
agreement with experiment (5.08 MeV) even worse, as al-
ready the results from just NN interaction overestimate this
datum.

Here one must notice that the density parameter used in
the evaluation of the effective NN interaction has been fixed
to a value which corresponds to the mean value of the nu-
clear density for the nucleus under consideration. This may
be appropriate for the spin-orbit splittings of the hole states,
but will overestimate the effect for the particle states. For
the spin-orbit splitting of the particle states a smaller value
for the density parameter would be appropriate or one may
even take the limit ρ = 0, which means to ignore the effect
of the 3N interaction. Also one should keep in mind that

results displayed in Table II approximate the single-particle
wave functions by oscillator functions. This is reasonable for
the hole states but tends to overestimate the splitting for the
particle states (see discussion above).

Note that this density dependence of the NN interaction
resulting from a 3N interaction has been used by Nakada and
Inakura [51] to motivate a density-dependent spin-orbit term
leading to a better description of isotope shifts in Pb nuclei.

In this context it is worth mentioning that also the effects of
effective Dirac mass m∗, discussed above, can be considered
as a density dependence of the NN interaction or as a 3N force
described by the Z diagram with intermediate hole states in
the Dirac sea. In the present paper, which aims to explore
the qualitative features leading to the spin-orbit splitting, the
structure of the Dirac spinors in the nuclear medium has been
represented by a global mass parameter. This may be appro-
priate for the spin-orbit splitting of the hole states and leads to
agreement with experiment (see right panel of Fig. 6) whereas
for the particle states the assumption m∗ = m is preferable and
leads to agreement with experiment for the d states (left panel
of Fig. 6) [44].

IV. SUMMARY

The aim of this paper has been to explore the occurrence
of the spin-orbit term in the mean field of finite nuclei in
the transition from infinite nuclear matter to finite nuclei. For
that purpose sets of quasinuclear systems have been consid-
ered, describing nuclei with closed shells and variable size.
Relativistic mean-field calculations as well as nonrelativistic
approaches based on realistic models for the NN interaction
have been used to determine the spin-orbit splitting in the
single-particle spectrum.

One finds a very strong sensitivity of the results on the
radius of the nuclear mass distribution. This means that results
for the single-particle spectrum of nuclear systems should
always be discussed together with the predicted radius. The
details of the underlying wave functions are not so impor-
tant. Eigenfunctions of a Woods-Saxon or oscillator potential
as well as self-consistent Hartree-Fock wave functions yield
almost identical results if they describe the nucleus with the
same radius.

In the framework of relativistic, local mean-field calcula-
tions this strong dependence on the size of the system can
easily be understood. It is well known that a strong spin-orbit
term is obtained from the radial derivative of the difference
between the scalar field Us and the vector field U0. Since Us

is attractive while U0 is repulsive they cancel each other to a
large extent in calculating binding energies. As the spin-orbit
term results from the slope of the difference of Us and U0 the
potentials add up coherently.

In nonrelativistic mean-field calculations, which are based
on NN interactions fitting the NN scattering data, the origin
of the spin-orbit term in the nuclear mean field of closed-shell
nuclei can be found in the spin dependence of the NN interac-
tion or scattering data. The studies show that the spin-orbit
term mainly originates from the NN interaction in partial
waves with an orbital angular momentum L = 1 for the rel-
ative motion and total spin S = 1 of the interacting nucleons.
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The rules of antisymmetrization require that the nucleons in
these 3PJ partial waves have a total isospin of T = 1.

Effects of renormalization of the NN interaction to account
for the effects of short-range or high-momentum components
are not so important in the partial waves with L � 1 as in
those with L = 0. This means that calculated single-particle
energies are rather different using a bare OBEP or a renormal-
ized interaction as Vlow k or the Brueckner G matrix, whereas
the differences of the energies of spin-orbit doublets are al-
most identical calculated in terms of OBE, Vlow k , or G in the
Brueckner–Hartree-Fock approximation.

The dominance of the partial waves with L = 1 and spin
of the interacting nucleons S = 1 has been used to derive the
spin-orbit term in a simple phenomenological model for the
effective NN interaction like the Skyrme force [8], leading to
an expression which suggests that the strength of the spin-
orbit splitting should scale with the size of the nuclear system
〈r〉 like 〈r〉−5. Indeed, the dependence of the spin-orbit term
evaluated from realistic NN interactions or derived from rel-
ativistic mean-field calculations shows this scaling behavior
over a wide range of 〈r〉.

Using the meson-exchange model to describe the NN inter-
action, one can identify the mesons which are responsible for
the spin-orbit term. The spin-orbit term of closed-shell nuclei
mainly originates from the exchange of the scalar-isoscalar σ

meson and the vector-isoscalar ω meson. The contributions of
these two mesons, which provide contributions to the binding
energy with opposite sign, add up coherently in the spin-orbit
term. This is in line with the observations of the relativistic
mean-field approach. It is also in agreement with the analysis
of Machleidt [11], who pointed out that an expansion of the
OBE amplitudes for σ and ω exchange yields a spin-orbit
term in the two-body interaction. This spin-orbit term in the
NN interaction could be thought to cause the ls in the nuclear
mean field. This line of argumentation is valid only in a rather
qualitative way. Matrix elements of realistic NN interactions
and phase shifts in the 3PJ partial waves cannot simply be
described in terms of a central and a two-body spin-orbit term.

The analysis of the spin-orbit term is more complicated for
nuclear systems with open shells. If a shell with j = l + 1/2
is occupied whereas the corresponding one with j = l − 1/2
is unoccupied in the spherical shell model, the effects of
the interaction in the 3PJ channels get reduced and counter-
balanced by effects of the interaction in the T = 0 channel
originating to a large extent from pion-exchange amplitudes.
Within the spherical mean-field approach this can even lead to
negative values for the energy differences between the states

with j = l − 1/2 and those with j = l + 1/2. This means that
the strong proton-neutron interaction favors deformed nuclei
in this case.

The results on the spin-orbit term of nuclei discussed so
far are not limited to realistic meson-exchange potentials. It
turns out that, e.g., a realistic NN interaction derived from
chiral perturbation expansion (N3LO defined in [12]) yields
almost identical results and one may conclude that nuclear
structure calculations using NN interactions, which give a
very accurate fit of the NN scattering phase shifts, lead to
very similar results for the spin-orbit splitting, if the calculated
nuclear radius is the same.

The chiral perturbation theory also provides a consistent
description of three-nucleon forces, which are frequently
represented in terms of effective density-dependent NN inter-
actions. The spin structure of this effective density-dependent
interaction enhances the spin-orbit term considerably. Assum-
ing that the relevant density is smaller for the evaluation of the
spin-orbit term for the valence states above the Fermi surface
than for the hole states, which are occupied, this can help to
improve a simultaneous description of the spin-orbit term for
particle and hole states.

The same is true also for the change of the Dirac spinors
of the nucleons in the medium described in the framework of
the Dirac–Brueckner–Hartree-Fock approach in terms of an
effective Dirac mass m∗. This effect can also be understood
as an effective three-nucleon interaction described in terms of
a medium dependent two-nucleon interaction which enhances
the spin-orbit term.

The study of the spin-orbit term of the nuclear mean field
presented in this paper has been limited to the case of light
nuclei with identical numbers for protons and neutrons (Z =
N). It may be of interest to extend these studies to heavier
nuclear systems to explore the isovector structure of the spin-
orbit term more in detail.
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