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We obtained a density-dependent analytical expression of binding energy per nucleon for different neutron-
proton asymmetry of the nuclear matter (NM) with a polynomial fitting, which manifests the results of effective-
field theory motivated relativistic mean-field (E-RMF) model. This expression has the edge over the Brückner
energy density functional [Phys. Rev. 171, 1188 (1968)] since it resolves the Coster-Band problem. The NM
parameters like incompressibility, neutron pressure, symmetry energy, and its derivatives are calculated using
the acquired expression of energy per nucleon. Furthermore, the weight function calculated by E-RMF densities
are folded with calculated NM parameters within coherent density fluctuation model to find the properties of
closed or semiclosed-shell even-even 16O, 40Ca, 48Ca, 56Ni, 90Zr, 116Sn, and 208Pb nuclei. The values obtained
for the neutron pressure PA, symmetry energy SA, and its derivative LA

sym known as the slope parameter lie within a
narrow domain whereas there is a large variation in isoscalar incompressibility KA and surface incompressibility
KA

sym while moving from light to heavy nuclei. The sizable variation in KA and KA
sym for light and heavy nuclei

depicts their structural dependence due to the peculiar density distribution of each nucleus. A comparison of
surface quantities calculated in the present work has also been made with ones obtained via Brückner energy
density functional.

DOI: 10.1103/PhysRevC.103.024305

I. INTRODUCTION

The correlations among the nuclear matter (NM) and finite
nuclei in terms of symmetry energy and its coefficients play
a crucial role not only in nuclear physics but also in astro-
physics. The isospin dependence of symmetry energy imparts
information about the isovector component of the nuclear in-
teraction, which is directly connected with the skin thickness
of the nuclei. Eventually, different studies such as the island
of stability of exotic nuclei, the dynamics of heavy-ion colli-
sions, dipole polarizability, properties of neutron stars (NS),
core-collapse of massive compact stars and the nucleosynthe-
sis process through neutrino convection at high-density region
upon the symmetry energy and its coefficients [1–12]. There-
fore, it is indispensable to determine the symmetry energy
and its coefficients for finite nuclei. Recently, many efforts
have been made on theoretical as well as experimental fronts
to probe the isospin dependence of symmetry energy and its
coefficients, which is an ultimate bridge between finite nuclei
and infinite NM [3,6–12]. Moreover, in some recent works, it
is established that the kink in the symmetry energy of finite
nuclei over the isotopic chain infers the appearance of shell or
subshell closures [8–11].
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In recent works [9,13], the Brückner energy density
functional [14,15] has been used within the coherent density-
fluctuation model (CDFM) to calculate the properties of
nuclei. This functional had been fit to the kinetic and potential-
energy parts to get the analytical expression of binding
energy per particle, E/A, in the local density approxima-
tion (LDA) of the Thomas-Fermi approach. It is relevant to
point out that Brückner energy functional does not respect the
“Coester-Band” i.e., in Thomas-Fermi approach NM saturates
at ρ ≈ 0.2 fm−3 instead of ρ ≈ 0.15 fm−3 [16,17]. To have
some meaningful correlations while extrapolating to higher
densities, the nuclear equation of state (EOS) must satisfy
the nuclear saturation properties. To address this problem,
we have fit the NM saturation plots for different values of
asymmetry parameter, obtained using effective-field theory
motivated relativistic mean-field (E-RMF) model [18,19] with
standard NL3 and recently developed G3 parameter sets for
the first time. The different NM parameters such as incom-
pressibility, symmetry energy, and its derivatives are obtained
employing the derived expression of E-RMF density func-
tional. Subsequently, theses NM parameters are used along
with E-RMF densities within the CDFM to find the corre-
sponding quantities for magic or semimagic 16O, 40Ca, 48Ca,
56Ni, 90Zr, 116Sn, and 208Pb nuclei.

The paper is organized as follows: The E-RMF approach
and the fitting procedure to get the analytical polynomial
expression of E/A is discussed in Sec. II. The CDFM is
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also discussed in this section. Section III is assigned to the
discussion of the results obtained from the calculations. A
brief summary and conclusions are presented in Sec. IV.

II. EFFECTIVE-FIELD THEORY MOTIVATED
RELATIVISTIC MEAN FIELD MODEL

In this section, we briefly describe the formalism of re-
cently developed E-RMF model. The E-RMF Lagrangian
density is constructed by taking the interactions of isoscalar

(scalar σ , vector ω) and isovector (scalar δ, vector ρ)
mesons with nucleons and among themselves. The E-RMF
Lagrangian is discussed in Refs. [18–21]. The E-RMF is con-
sidered to be one of the most successful model to reproduce
the ground-state properties of not only β-stable nuclei but
also predicts quite reasonably the properties of drip lines and
superheavy nuclei [18,19]. During last few decades, the appli-
cation of this formalism to nuclear astrophysics is at forefront.
It predicts the structure of NS and explains the tidal deforma-
bility satisfactorily [22]. The energy density functional for a
nucleon-meson interacting system is given as [18]
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Here, 	, W , R, and D are the redefined fields for σ , ω, ρ,
and δ mesons given as 	 = gsσ0, W = gωω0, R = gρ �ρ0

μ, and
D = gδδ0, respectively. M, mσ , mω, mρ , and mδ are the masses
of nucleon, σ , ω, ρ, and δ mesons, respectively. From Eq. (1),
we obtain the energy density Enucl. [18,19] by considering
that the exchange of mesons create a uniform field, where
the nucleon oscillates in a simple harmonic motion. From
the E-RMF energy density, the equation of motions for the
mesons and the nucleons are derived using the Euler-Lagrange
equation. A set of coupled differential equations are ob-
tained and solved self-consistently [18]. The scalar and vector
densities

ρs(r) =
∑

α

ϕ†
α (r)βϕα, (2)

ρv (r) =
∑

α

ϕ†
α (r)τ3ϕα (3)

are evaluated from the converged solutions within spherical
harmonics. The vector density ρv (r) is further used within
CDFM to find out the weight function |F (x)|2, which is an
important quantity to calculate the incompressibility KA, sym-
metry energy SA, neutron pressure PA, and surface symmetry
coefficient KA

sym for the closed- or semiclosed-shell even-even
nuclei.

The expression for energy density of infinite and isotropic
NM are obtained from the energy-momentum tensor:

Tμν =
∑

i

∂νφi
∂L

∂ (∂μφi )
− gμνL. (4)

The zeroth component of the energy-momentum tensor, T00,
gives the energy density of the system as a function of baryon

density as
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A. Fitting procedure

The important part of the present calculation is to convert
the NM quantities [Eq. (5)] from momentum, space to co-
ordinate space, i.e., the reconstruction of NM quantities at
local density. The results of our calculations are shown in
Fig. 2 for NL3 and G3 parameter sets. The NL3 set gives a
stiff equation of state (EOS) as compared with the G3 force.
This is because the NM incompressibility K at the saturation
for NL3 is 271.76 MeV, and that of G3 is 243.96 MeV. We
consider that the NM is composed of tiny spherical pieces
described by a local density function ρ0(x) = 3A/4πx3. Using
this consideration, the fitted binding-energy function (Fig. 2)
of E-RMF is embedded in the following equation:

E (x) = Ckρ
2/3
0 (x) +

14∑
i=3

(bi + aiα
2)ρ i/3

0 (x), (6)

where Ck is the kinetic-energy coefficient given as Ck =
37.53[(1 + α)5/3 + (1 − α)5/3] within the Thomas-Fermi ap-
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FIG. 1. The numerical fitting of nuclear matter E/A as a function
of baryon number density for NL3 parameter set using Eq. (6) with
a different number of terms. The δ represents the mean deviation
between the RMF and fitted data. Here, 5, 8, and 12 terms in the
fitting stand for the summation of i from 3 to 7, 10, and 14 as given
in Eq. (6). More details can be found in the text.

proach. To find out the exact nature of the E/A in position
space, we use a polynomial fitting which consists of several
numbers of terms [Eq. (6)]. The fitted graph using the different
number of terms for NL3 parameter set along with the mean
deviation coefficient δ is depicted in Fig. 1. The mean devia-
tion is calculated using the formula δ = [

∑N
j=1(E/A) j,Fitted −

(E/A) j,RMF]/N . Here, (E/A) j,Fitted is the binding energy ob-
tained from the polynomial fitting, and (E/A) j,RMF is the
binding energy per nucleon from the RMF functional with N
being the number of data points. First, we fit our data using
five terms in the expansion of Eq. (6) (means i runs from 3
to 7) and found that the deviation of the fitted data is around
14 percent from the actual value. Similarly, for 8, 10, and 12
terms, the deviation are 6.5%, 3.5%, and 0.2%, respectively.

FIG. 2. The nuclear matter E/A as a function of baryon number
density for different asymmetry α = ρn−ρp

ρn+ρp
. For symmetric NM α =

0 and α = 1 for pure neutron matter.

TABLE I. The coefficients of the analytical expression for NM
binding energy per particle as a function of density ρ(x) and the
asymmetric factor α = ρn−ρp

ρn+ρp
. The values are given for NL3 and G3

parameter sets.

NL3 G3

b3 −3449.92 −490.15
b4 93386.65 −465.80
b5 −1233527.10 7107.17
b6 9041665.48 −53960.91
b7 −41166214.95 284155.27
b8 123164197.67 −938303.73
b9 −248225071.34 2066363.99
b10 338087637.81 −3133853.65
b11 −305682367.52 3246326.72
b12 174988863.34 −2188895.63
b13 −57095582.73 861872.30
b14 8030800.13 −149719.19
a3 −1098.99 391.87
a4 43110.63 −5565.05
a5 −636205.52 80413.45
a6 5283025.49 −639847.05
a7 −27638744.86 3139872.96
a8 96251325.61 −10022304.90
a9 −228719960.80 21277231.89
a10 372188746.60 −30256280.52
a11 −407653299.90 28503817.38
a12 286972591.80 −17096240.48
a13 −117150348.00 5921783.83
a14 21061682.62 −903228.53

We find that, as we increase the number of terms in the
expansion of Eq. (6), the deviation of the fitting gets reduced
considerably and the fitting converges to more candidness.
We also observe that around 10–12 terms are required in the
expansion for an appropriate fitting of most of the available
RMF parameter sets. For the best fit, we take 12 terms in the
present calculation, and the coefficients are obtained from
the polynomial fitting, whose values are given in Table I.

The NM parameters KNM, SNM, LNM
sym, and KNM

sym are ob-
tained from the following standard relations [18,23]:

KNM = 9ρ2 ∂2
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ρ
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= 3P
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KNM
sym = 9ρ2 ∂2S(ρ)
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which are given as follows using Eq. (6):

KNM = −150.12 ρ
2/3
0 (x) +

14∑
i=4

i (i − 3) bi ρ
i/3
0 (x), (11)

SNM = 41.7 ρ
2/3
0 (x) +

14∑
i=3

ai ρ
i/3
0 (x), (12)

024305-3



KUMAR, DAS, KAUR, BHUYAN, AND PATRA PHYSICAL REVIEW C 103, 024305 (2021)

LNM
sym = 83.4 ρ

2/3
0 (x) +

14∑
i=3

i ai ρ
i/3
0 (x), (13)

KNM
sym = −83.4 ρ

2/3
0 (x) +

14∑
i=4

i (i − 3) ai ρ
i/3
0 (x). (14)

The densities of closed- or semiclosed-shell spherical nu-
clei 16O, 40,48Ca, 56Ni, 90Zr, 116Sn, and 208Pb are calculated
using the E-RMF formalism. These densities are used as input
in the CDFM (described in the following section) to calculate
the weight function, which is a key quantity acting as a bridge
between NM parameters in x space and finite nuclei in r
space (using LDA). To match with the r and x space together,
we construct the total density of the nucleus with the superpo-
sition of an infinite number of fluctons, following the approach
of CDFM discussed below.

B. Coherent density-fluctuation model

In the CDFM, we use the NM quantities KNM, SNM, LNM
sym,

and KNM
sym from Eqs. (11)–(14) to extract their values for finite

nuclei [24–27]. Within CDFM, the one-body density matrix
(OBDM) ρ(r, r′) of a finite nucleus is written as the coherent
superposition of OBDM ρx(r, r′) for spherical pieces of NM
termed as fluctons [9,28],

ρx(r) = ρ0(x) �(x − |r|), (15)

with ρo(x) = 3A
4πx3 . The generator coordinate x is the radius

of a sphere consisting of Fermi gas having all the A nucleons
distributed uniformly within it. It is suitable to apply for such
a system the OBDM expressed as below [9,25,28,29],

ρ(r, r′) =
∫ ∞

0
dx|F (x)|2ρx(r, r′), (16)

where |F (x)|2 is the weight function (WF). The coherent
superposition of OBDM ρx(r, r′) is given as

ρx(r, r′) = 3ρ0(x)
J1(k f (x)|r − r′|)
(k f (x)|r − r′|)

×�

(
x − |r + r′|

2

)
, (17)

where J1 is the first-order spherical Bessel function and k f is
the Fermi momentum of nucleons inside the flucton having ra-
dius x and k f (x) = [3π2/2ρ0(x)]1/3 = γ /x, (γ ≈ 1.52A1/3).
The Wigner distribution function of the OBDM of Eq. (17) is
given by

W (r, k) =
∫ ∞

0
dx |F (x)|2 Wx(r, k). (18)

Here, Wx(r, k) = 4
8π3 �(x − |r|)�(kF (x) − |k|). The density

ρ(r) in terms of the WF within the CDFM approach is

ρ(r) =
∫

dkW (r, k)

=
∫ ∞

0
dx |F (x)|2 3A

4πx3
�(x − |r|), (19)

which is normalized to A, i.e.,
∫

ρ(r)dr = A. In the δ-function
limit, the Hill-Wheeler integral equation, that is the differ-
ential equation for the WF in the generator coordinate, is
obtained [24]. The |F (x)|2 for a given density ρ(r) is ex-
pressed as

|F (x)|2 = −
(

1

ρ0(x)

dρ(r)

dr

)
r=x

, (20)

with
∫ ∞

0 dx|F (x)|2 = 1. We refer to Refs. [9,24,25,28,29] for
a detailed analytical derivation. The CDFM allows us to make
a transition from the properties of NM to those of finite nuclei.
The finite nuclear incompressibility KA, symmetry energy SA,
neutron pressure PA and surface incompressibility KA

sym for a
finite nucleus are calculated by weighting the corresponding
quantities for infinite NM within the CDFM, as given below
[27–31]:

KA =
∫ ∞

0
dx |F (x)|2 KNM(ρ(x)). (21)

PA =
∫ ∞

0
dx |F (x)|2 PNM(ρ(x)), (22)

SA =
∫ ∞

0
dx |F (x)|2 SNM(ρ(x)), (23)

LA
sym = a

∫ ∞

0
dx |F (x)|2 LNM

sym(ρ(x)), (24)

KA
sym =

∫ ∞

0
dx |F (x)|2 KNM

sym (ρ(x)). (25)

The KA, PA, SA, LA
sym, and KA

sym in Eqs. (21)–(25) are the
surface-weighted average of the corresponding NM quantities
in the LDA limit for finite nuclei.

III. RESULTS AND DISCUSSION

In the present work, we have derived the relativistic
density-functional expression from the NM calculations for
different neutron-proton asymmetry α using the NL3 and the
recently developed G3 parameter sets. It is quite important to
note that the Brückner density functional [14] used within a
CDFM to calculate symmetry energy and related observables
in previous studies [8,9,13] is inadequate. The underlying rea-
son is that the NM saturation curves fit by the Brückner energy
density functional could not reproduce the empirical values
of saturation density (ρ ≈ 0.15 fm−3) and binding energy per
nucleon (E ≈ 16 MeV) of NM (see Fig. 1 of Ref. [14]). In
other words, Brückner energy density functional could not
sort out the Coster-Band problem [16]. This issue was rectified
partially by the inclusion of three-body force in the nucleon-
nucleon potential [32,33]. To address this issue, we emphasize
to obtain relativistic energy density functional since the RMF
Lagrangian with nonlinear terms mimics the three-body effect
in the nuclear potential and resolves the Coster-Band problem.
The NM binding energy per particle for variable α within
the RMF models (NL3 and G3 parameter sets) are shown in
Fig. 2. These curves for different values of α are fit with a
polynomial [Eq. (6)] where the first term is the kinetic energy
taken from the Thomas-Fermi approximation and the second
term presents the potential energy. In the potential-energy
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FIG. 3. The densities (dotted lines) and weight functions (solid
lines) of 16O and 208Pb for NL3 (upper panel) and G3 (lower panel)
parameter sets.

terms, the obtained coefficients ai and bi are shown in Table I.
It is important to note that the expression E/A of NM in
Eq. (5) is obtained as a function of the density of spherical
pieces of NM ρ0(x), called fluctons, as the expansion variable.
Equation (6) is, in fact, an equivalent energy expression of
Eq. (5) and therefore the subsequent expressions of sym-
metry energy and other quantities [Eqs. (21)–(25)] obtained
from Eq. (6) also encompass the relativistic characteristics.
Furthermore, within CDFM, NM parameters together with
weight functions will be used to evaluate the corresponding
quantities of finite closed- or semiclosed-shell 16O, 40,48Ca,
56Ni, 90Zr, 116Sn and 208Pb nuclei [see Eqs. (21)–(25)]. The
self-consistently calculated RMF densities are the crucial in-
gredient to find weight function of nuclei and both the density
and weight function for 16O and 208Pb nuclei are shown in
Fig. 3 as representative cases. The dashed lines present the
density of nuclei, and the solid lines depict the variation
of weight function. It is evident that, although the density
at the center of 16O and 208Pb nuclei is high, the value of
weight function in that region is very small. Moreover, the
weight function exhibits a bell shape with a maxima, which
corresponds to the surface region where the density is signif-
icantly reduced compared with the central region. Hence, in
the surface region, the weight function makes a substantial
contribution to the calculation of symmetry energy and other
quantities. Due to this reason, the symmetry energy, neutron
pressure, etc. are labeled as surface properties. It is also im-
portant to note that the total symmetry energy S can be made
a partition into volume SV and surface SS components with an
analogy of two connected capacitors. A detailed discussion
can be obtained in Refs. [10,36–41].

FIG. 4. The proton (circle) and neutron (square) surface diffu-
sion parameter for the considered nuclei in Table II for NL3 (open
symbol) and G3 (solid symbol) parameter sets along with the exper-
imental charge (open triangle) diffuseness estimates [34,35]. See the
text for more details.

To determine the surface effect on the symmetry energy of
finite nuclei, we calculate the surface diffuseness parameters
for all the nuclei by using the nucleon density distributions.
The equivalent nuclear surface diffuseness parameter can be
obtained using the relation ai ≈ −ρi/

dρi

dr , where i stands for
proton-(ap), neutron-(an) and charge-density (ach) density dis-
tributions (see Ref. [42] and references therein). The results
for the surface diffuseness parameter are obtained for proton
(circle) and neutron (square) by using the respective densities
from the RMF approach for NL3 (open symbol) and G3 (solid
symbol) parameter sets. The experimental diffuseness param-
eter (open triangle) are estimated from the charge-density
distribution [34,35]. All the results along with the experimen-
tal estimates are given in Fig. 4. From the figure, one can
observe that there is a constant difference in the calculated
diffuseness parameter for proton and the experimental data

TABLE II. The properties such as nuclear incompressibility KA,
symmetric energy SA, neutron pressure PA = ρ0 LA

sym/3, slope LA
sym,

and curvature KA
sym of nuclei, with RMF density functional, for NL3

and G3 parameter sets. The dimension of all the parameters are in
MeV.

NL3 16O 40Ca 48Ca 56Ni 90Zr 116Sn 208Pb

KA 618.05 584.11 564.86 627.33 450.87 476.46 411.03
PA 9.70 8.30 7.84 8.68 6.90 7.24 6.68
SA 40.30 39.40 38.83 41.66 36.97 38.38 37.28
LA

sym 118.89 119.79 120.54 130.30 117.01 121.20 117.95
KA

sym 32.42 −10.92 −3.18 −4.37 33.30 31.34 47.99
G3 16O 40Ca 48Ca 56Ni 90Zr 116Sn 208Pb
KA 258.87 262.09 270.26 279.33 253.87 249.74 238.85
PA 3.39 3.07 3.08 3.12 2.75 2.68 2.52
SA 30.12 30.43 31.15 31.98 30.88 30.87 30.53
LA

sym 51.98 51.92 52.71 53.57 51.40 51.18 50.28
KA

sym −103.23 −89.43 −89.52 −90.00 −91.55 −93.07 −96.39
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FIG. 5. (left panel) The energy density E vs density ρ. (right panel) The density distribution of 16O and 208Pb for NL3 and G3 parameter
sets.

for the charge. This is due to the charge effect in the proton
density in the experiment, whereas we use proton number
density in which the charge effect is absent. Comparing Fig. 4
and Table II, one can find a linear correlation among the
neutron diffuseness parameter and symmetry energy. In other
words, the trend appearing for the symmetry energy exactly
reflects in the neutron surface diffuseness parameter. In con-
trast, the diffuseness parameter for proton follows the linear
fall, which is consistent with the experimental data. Hence, the
similar trends in the symmetry energy and surface diffuseness
parameter for neutron show the implication of surface effects
in terms of weight function for the study of NM quantities for
finite nuclei.

The surface properties such as symmetry energy, neu-
tron pressure, slope and curvature of symmetry energy,
incompressibility of NM Eqs. (11)–(14) are computed us-
ing relativistic density functional Eqs. (6). These are further
folded with weight function to calculate the corresponding
quantities of closed- or semiclosed-shell even-even nuclei,
which are shown in Table II. From the table, one can notice a
wide range of finite nuclear incompressibility KA = 618.05 to
411.03 MeV and KA = 258.87 to 238.85 MeV for 16O - 208Pb
with NL3 and G3 parameter set, respectively. To understand
this nature, we have given the density distribution of nucleons
for both NL3 and G3 in Fig. 5 for 16O and 208Pb as two
representative cases. The energy density functional E for both
NL3 and G3 sets are also displayed in the left panel of the
same figure. It is very much clear that the densities are sig-
nificantly different for both the forces, mostly in the central
region. In the case of G3, a comparatively flat distribution of
nucleons appears as compared with NL3, predicting a small
variation in the weight function for both the sets. However, if
one analyzes the variation in the energy density E (or E/A)
with density ρ for both NL3 and G3 sets, a huge difference
between these two sets are visible. For the NL3 case, the
variation in energy density E with ρ is substantially larger
than G3. As a result, we get a small KA for G3 than NL3,
although the NM incompressibility at the saturation is almost
comparable for the two force parameters. From Eq. (7), we
know that the incompressibility is the second derivative of
EOS (E/A) for the density. Therefore, the incompressibility
predicted by NL3 is more than the G3 for all nuclei. The
variation in other quantities can also be explained taking into

the behavior of E/A for various force parameters. From these
results, we cannot conclude about the mass dependence of the
finite nuclear incompressibility, for example, KA = 618, 627,
and 411 MeV for 16O, 56Ni and 208Pb, respectively for NL3
case. Similar uncertainty in KA for different nuclei is also seen
in the G3 case. However, for PA, SA and LA

sym, the variation
is in a narrow range from 16O to 208Pb, i.e., minimum PA

is 2.52 MeV for 208Pb and maximum is 3.39 MeV for 16O
with G3. Furthermore, KA

sym varies a lot depending on both
the force parameter as well as the mass of the nucleus. The
very different values of KA and KA

sym for light and heavy nuclei
indicate the structural dependence of the finite nuclei since the
density distribution varies from the nucleus to nucleus.

For the sake of comparison, the values of symmetry energy
and other quantities of nuclei obtained using Brückner density
functional within CDFM are shown in Table III for NL3
and G3 densities. The values of symmetry energy SA linearly
increases with the mass number and the lies in the range 25–29
MeV. Similar conclusions can be drawn for PA and KA

sym for
these considered nuclei. We get PA is negative for 16O for
both parameter sets, which can be correlated with the charge
effect of proton for an N = Z nucleus. We also get negative PA

for 48Ca for the NL3 case, which may be connected with the
reduced charge radius of 48Ca in comparison to 40Ca, mainly
an unsolved issue in the theoretical models. In comparison, the
results using relativistic density functional along with mean-
field densities for both the parameter sets give positive PA

TABLE III. The properties such as symmetric energy SA, neutron
pressure PA, and curvature KA

sym of nuclei for NL3 and G3 parameter
sets using Brückner’s density functional within CDFM. The dimen-
sion of all the parameters are in MeV.

NL3 16O 40Ca 48Ca 56Ni 90Zr 116Sn 208Pb

SA 25.33 27.28 28.36 29.91 29.13 29.38 29.28
PA −0.66 0.05 −0.05 0.02 0.95 1.25 1.57
KA

sym −281.34−275.28−296.82−324.29−267.48−257.88−236.89
G3 16O 40Ca 48Ca 56Ni 90Zr 116Sn 208Pb
SA 25.39 27.28 28.42 29.40 29.05 29.19 29.12
PA −0.41 0.31 0.32 0.53 1.23 1.48 1.61
KA

sym −262.45−261.99−227.39−288.89−251.25−241.56−229.63
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value for all the nuclei (see Table II). We get a large difference
and/or a wide range of values for symmetry energy curvature
KA

sym in Table III. This difference is due to the small difference
in the resultant energy density for relativistic and Brückner
energy density functional (see Table II).

IV. SUMMARY AND CONCLUSION

In brief, we have fit the NM saturation curves for different
values of asymmetry parameter, employing the E-RMF den-
sity functional with two well-known G3 and NL3 parameter
sets, in the wake of the solution of the Coster-Band problem
by relativistic approach. The newly fitted expression of E/A
is used to find NM parameters such as incompressibility,
neutron pressure, symmetry energy. These NM parameters,
together with E-RMF densities, are used in the calculations
of surface properties of magic nuclei ranging from the light-
to heavy-mass region, within the coherent density-fluctuation
model. The values of symmetry energy, neutron pressure, L
coefficient show small variation for different mass nuclei. On
the other hand, the incompressibility and surface incompress-
ibility show large variation while moving from light 16O to
heavy 208Pb nuclei for NL3 compared with the G3 case. This
is due to the variation of E/A with density or EOS is stiff for
NL3 than in the G3 case and as a result, the incompressibility
(second derivative of E/A with respect to density) predicted

by NL3 is more than G3 for all nuclei. Besides, the correlation
between the diffuseness parameter and symmetry energy is
discussed in the context of surface effects. The results using
relativistic energy density functions are also compared with
ones obtained using Brückner energy density functional.

In other words, we discuss here that the direct use of Brück-
ner energy functional to evaluate the effective nuclear surface
properties is not adequate in the context of the Coster-Band
issue. The present work provides the way to estimate the
properties of β-stable and β-unstable nuclei more accurately
by employing relativistic density functional within CDFM.
These quantities are quite significant to probe the structural
aspects of finite nuclei and can also facilitate to constrain the
EOS of NM. Furthermore, we also compare the RMF results
with Brückner density functional, which reflects the model
dependant on the results. A more systematic study using the
present functional for the nuclei throughout the nuclear chart
in this direction is highly welcomed.
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