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Comprehensive study of the three- and four-neutron systems at low energies
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This work presents further analysis of the three- and four-neutron systems in the low energy regime using
adiabatic hyperspherical methods. In our previous article [M. D. Higgins et al., Phys. Rev. Lett. 125, 052501
(2020)], the low-energy behavior of these neutron systems was treated in the adiabatic approximation, neglecting
the off-diagonal nonadiabatic couplings. A thorough analysis of the density of states through a multichannel
treatment of the three-and four-neutron scattering near the scattering continuum threshold is performed, showing
no evidence of a 4n resonance at low energy. A detailed analysis of the long-range behavior of the lowest few
adiabatic hyperspherical potentials shows there is an attractive ρ−3 universal behavior which dominates in the
low-energy regime of the multichannel scattering. This long-range behavior leads to a divergent behavior of the
density of state for E → 0 that could account for the low-energy signal observed in the 2016 experiment by
Kisamori et al. [Phys. Rev. Lett. 116, 052501 (2016)].
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I. INTRODUCTION

Few-neutron systems have been the subject of interest over
the past couple of decades due to the possibility of forming
low-energy bound states or temporary bound states through
a long-lived resonance in the scattering continuum. The in-
terest in these systems arose from experimental evidence of
a possible low-energy tetraneutron (4n) state, most notably
from experiments performed by Marqus et al. in 2002 [1] in
the reaction 14

4Be → 10
4Be + 4n and in a more recent exper-

iment by Kisamori et al. in 2016 [2] in the nuclear reaction
4
2He + 8

2He → 8
4Be + 4n. The interpretation of the results in

these experiments sparked numerous theoretical studies into
whether four interacting neutrons can bind or produce a reso-
nance with current nuclear models [3–17].

The experiment by Marqus et al. in 2002 lead to a number
of theoretical investigations into whether a 4n state could
exist [3–7]. These theoretical studies have shown that, with
current nuclear models, a 4n bound state could not exist.
Only with a modification to the nuclear Hamiltonian, either
via an additional four-body interaction [3] or other unre-
alistic enhancement of the nucleon-nucleon (NN) two-body
interactions could a 4n bound state exist. Changes made to the
well established nuclear Hamiltonians, such as the AV18/IL2
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model in [4], results in overbinding in many light nuclei and
even leads to a dineutron bound state.

Most theoretical studies that came out as a result of this
2002 experiment concluded that a 4n bound state or reso-
nance could not exist with current nuclear theory. However,
a more recent experiment by Kisamori et al. in 2016 shows
evidence of a possible 4n resonance measured at an energy of
0.83 ± 0.65(stat.) ± 1.25(sys.) MeV [2] above the four-body
continuum. This most recent experiment sparked a renewed
theoretical interest in this question [8–17]. Some of these
more recent theoretical studies agree with the earlier studies
that a 4n bound or resonant state is unsupported by current
theoretical models [11–17], while other studies confirm the
possible existence of a 4n state as depicted in the 2016 experi-
ment [8–10]. This disagreement over whether a 4n state exists
warrants further study of the low-energy scattering of few
neutrons in the continuum, thus providing motivation for our
most recent work published in Physical Review Letters [18].

In that work, we solve the trineutron (3n) and tetraneutron
(4n) systems using the adiabatic hyperspherical framework,
which has been successful at predicting resonances in few-
body atomic systems in both a qualitative manner through the
structure of the adiabatic potentials and quantitatively through
an analysis of the phase shift [19,20]. These few-neutron sys-
tems were studied primarily in the adiabatic approximation,
neglecting nonadiabatic couplings to the excited states. The
lowest adiabatic potentials in both 3n and 4n systems are
purely repulsive and qualitatively show no features to support
a bound or resonant state above the scattering continuum.
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In addition, an elastic phase shift analysis was performed
for the lowest adiabatic potential with the second-derivative
diagonal nonadiabatic correction that showed no features of a
resonance at low energy, only an enhancement of the density
of states caused largely by an attractive ρ−3 long-range feature
in the potential as it approaches the noninteracting limit. We
attribute the low-energy signal seen in the Kisamori et al.
experiment to this enhancement, and not to a resonant 4n state
[18]. The purpose of this article is to expand on this previous
work to investigate the effects of nonadiabatic couplings to the
excited states on this low-energy behavior in a more compre-
hensive multichannel scattering treatment of these systems.

The rest of this article is organized in the following way.
Section II provides details on the adiabatic hyperspherical
approach, including the numerical techniques used to com-
pute the nonadiabatic couplings. The lowest few adiabatic
hyperspherical potential curves for both 3n and 4n systems
are reported in Sec. III, showing the repulsive nature of few
interacting neutrons, with an emphasis on the lowest potential
in both systems. In Sec. IV, the nonadiabatic couplings are
shown for the lowest few channels to provide qualitative and
some quantitative features of the long-range behavior. Sec-
tion V gives a detailed analysis of the long-range behavior
of the lowest few adiabatic potentials, specifically providing
the scattering length dependence of the ρ−3 coefficient in
these potentials at long range. With knowledge of the long-
range behavior of the adiabatic potentials and nonadiabatic
couplings, a multichannel treatment of the scattering of few-
neutron systems above the continuum is performed in Sec. VI
and compared with the adiabatic treatment. Last, Sec. VII
presents our conclusions.

II. ADIABATIC HYPERSPHERICAL APPROACH

The 3n and 4n nuclear systems are explored in the
framework of the hyperspherical representation. The main
advantage of using this representation to study these few-body
systems is that all of the dynamical features of the interpar-
ticle interactions and reaction pathways at different length
scales can be described both qualitatively and quantitatively
on an equal footing through an adiabatic parameter denoted
the hyperradius. Another key advantage of using the hyper-
spherical representation comes from its success in predicting
resonances in few-body atomic systems. For example, pho-
todetachment resonance in the positronium negative ion above
the n = 2 threshold was predicted by Botero and Greene in
1986 [19] and confirmed by experiment in 2016 [21], and
shape resonances in the e-H system were predicted by Lin
in 1975 [20] and confirmed by experiment in 1977 [22]. In
both of these theoretical studies, the resonance features were
observed both qualitatively in the structure of the adiabatic
potential curves as well as quantitatively through an analysis
of the elastic phase shifts.

A. Theoretical formulation

Within the adiabatic hyperspherical approach the 3n and 4n
systems are solved using both an explicitly correlated Gaus-
sian [23–26] (CGHS) basis and the hyperspherical harmonic

(HH) basis ([24] and references therein). The Hamiltonian
for most systems can separate the center-of-mass coordinates
from the relative coordinates, Ĥ = ĤCM + Ĥrel.. The center-
of-mass Hamiltonian contains the kinetic energy operator of
the center of mass. The Hamiltonian of the relative motion
contains the relative hyperradial and hyperangular kinetic en-
ergy operators, as well as the potential energy.

The hyperangular kinetic energy and potential energy oper-
ators make up the adiabatic Hamiltonian, with the hyperradius
treated initially as an adiabatic parameter. The generalized
N-body adiabatic eigenvalue equation in hyperspherical co-
ordinates to be solved is

Had (ρ,�)�ν (ρ,�) = Uν (ρ)�ν (ρ,�), (1)

where ρ is the hyperradius, � is a set of hyperangles, ν is an
index that labels the eigenstates of Had (ρ,�), and

Had (ρ,�) = h̄2

2μρ2

[
�2 + (3N − 4)(3N − 6)

4

]
+ Vint.(ρ,�),

(2)

where μ is the hyperradial reduced mass, which can be arbi-
trarily defined with an appropriate rescaling of the hyperradius
and taken here to be m/2, where m is the neutron mass. The
operator � represents the hyperangular grand-angular mo-
mentum of the system and Vint.(ρ,�) is the potential operator
between the nucleons, containing two-body and three-body
interaction terms.

The CGHS basis is used to diagonalize the adiabatic
Hamiltonian given by Eq. (2), which includes all particle inter-
actions. The HH basis forms a complete basis that consists of
eigenfunctions of the hyperangular grand-angular momentum
squared operator �2 labeled by an angular-momentum quan-
tum number (see Appendix B of [24] and references therein),
denoted here as K . The state label ν in Eq. (1) corresponds to
an eigenstate of the adiabatic Hamiltonian, as stated above.
In the noninteracting limit, this label ν is equivalent to K
for the HH basis, with ν = 1 corresponding to the lowest
HH compatible with symmetry, spin, and angular momentum
having K = 1 in the 3n case (for Jπ = 3

2
−

) and K = 2 for
the 4n (for Jπ = 0+). In addition, it should be noted that
the noninteracting eigenstates of Had (ρ,�) are in one-to-one
correspondence with the states of a d-dimensional isotropic
harmonic oscillator, which are known to have a very high
degeneracy that increases rapidly with dimensionality (for an
example in the case of noninteracting fermions, see [27]).

The full N-body wave function in the relative coordinates
is expanded in the eigenstates of Eq. (1), giving the ansatz

�E (ρ,�) = ρ− 3N−4
2

∑
ν

FE ,ν (ρ)�ν (ρ,�). (3)

The factor (3N − 4)(3N − 6)/4 in Eq. (2) comes from the
multiplying factor of ρ in Eq. (3), which eliminates the first
derivative in the hyperradial kinetic energy. Applying Ĥrel. to
Eq. (3), projecting from the left with �ν ′ (ρ,�), and integrat-
ing over the hyperanglular coordinates and tracing over spin
degrees of freedom leads to the following coupled hyperradial
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Schrödinger equations:
(

− h̄2

2μ

∂2

∂ρ2
+ Wν (ρ) − E

)
FE,ν (ρ)

− h̄2

2μ

∑
ν ′ �=ν

(
2Pνν ′ (ρ)

∂

∂ρ
+ Qνν ′ (ρ)

)
FE ,ν ′ (ρ) = 0, (4)

where Pνν ′ (ρ) and Qνν ′ (ρ) are first and second derivative
nonadiabatic coupling matrix elements and Wν (ρ) = Uν (ρ) −
h̄2

2μ
Qνν (ρ) is the νth effective adiabatic potential [28–30].
Once Eq. (1) is solved for Uν (ρ) and normalized fixed-ρ

eigenfunction �ν (ρ,�), the next step is to calculate the first-
and second-derivative nonadiabatic coupling matrix elements
defined as [28]

Pμν (ρ) =
〈
�μ

∣∣∣∣∂�ν

∂ρ

〉
, (5)

Qμν (ρ) =
〈
�μ

∣∣∣∣∂
2�ν

∂ρ2

〉
, (6)

where the integrals are over the hyperangles. Symmetry
properties of the P matrix elements can be derived from
manipulating Eq. (5). By differentiating the overlap 〈�μ|�ν〉
with respect to ρ, it can be shown through Eq. (5) that
Pμν (ρ) = −Pνμ(ρ) and Pνν (ρ) = 0. The diagonal second
derivative coupling term added to the lowest adiabatic poten-
tial, W1(ρ), provides an upper bound to the ground state, thus
is important to include.

B. Nondiabatic coupling: Numerical approach

The diagonal second-derivative couplings can be re-written
as Qνν (ρ) = −〈 ∂�ν

∂ρ
| ∂�ν

∂ρ
〉, thus one needs to only compute

∂�ν

∂ρ
. One standard way to compute this derivative is to use

finite-difference methods, however, we use a different ap-
proach that involves solving a matrix equation. The idea is
to multiply Eq. (1) by ρ2 then differentiate with respect to ρ.
This leads to the following matrix equation [28,31]:

ρ2[Uν (ρ) − Had (ρ,�)]χν (ρ,�)

=
[

∂

∂ρ
[ρ2Had (ρ,�)] − ∂

∂ρ
[ρ2Uν (ρ)]

]
�ν (ρ,�), (7)

where

χν (ρ,�) = ∂

∂ρ
�ν (ρ,�) + c�ν (ρ,�) (8)

and c is solved for in an iterative process until the deriva-
tive only changes by a small amount, using the fact that
Pνν (ρ) = 0.

Once the derivative of the channel functions are deter-
mined, the first-derivative coupling elements can be computed
easily from Eq. (5). In general, the second derivatives of
the channel functions are required to compute the second-
derivative matrix elements, as indicated by Eq. (6). To avoid
computing the second derivative of the channel functions, the
second-derivative couplings can be expressed in terms of the
derivatives of the first-derivative matrix elements and channel

functions through the relation [28]

Qμν (ρ) = ∂

∂ρ
Pμν (ρ) −

〈
∂�μ

∂ρ

∣∣∣∣∂�ν

∂ρ

〉
. (9)

However, it has been shown that, when solving the coupled
hyperradial equations in Eq. (4) by R-matrix propagation with
the slow-variable discretization (SVD) method, only the com-
ponent −〈 ∂�μ

∂ρ
| ∂�ν

∂ρ
〉 of Qμν (ρ) is needed (see Appendix B

of [28]). Therefore, throughout the rest of this article, any
further mention of second-derivative couplings refer to this
component.

III. ADIABATIC POTENTIALS

The adiabatic hyperspherical potentials were obtained us-
ing two different basis expansions, the HH basis and the
CGHS basis, along with different nuclear models for the two-
body interactions. The primary calculations were performed
using the AV18 and AV8′ [23,32] two-body nuclear potentials.
Other nuclear interaction models are used with the HH basis
to show a comparison of the adiabatic potentials among the
various theories. The other NN interactions include the local
NN potential model NVIa for the 3n system and models NVIa
and NVIb for the 4n system, derived within the chiral effective
field theory approach [33,34]. The potentials were obtained
for symmetries Jπ = 0+ and 3

2
−

for the 4n and 3n systems, re-
spectively, providing the most attraction between the neutrons.
The lowest few potentials, including the second-derivative
nonadiabatic coupling term, for both 3n and 4n systems are
shown in Fig. 1 using the AV8′ interaction.

The lowest potentials in both systems exhibit important
features that aid in our understanding of the interaction be-
tween multiple neutrons. It is most evident from the potentials
shown in Fig. 1 that no bound or resonant states are supported
for either the 3n or 4n system. There is no potential minimum
or potential barrier that can support a bound or even temporar-
ily bound resonant state that would indicate the existence of a
trineutron or tetraneutron state. In fact, over the entire range
of hyperradii, the potentials are purely repulsive due in part to
the large Pauli repulsion in these fermionic systems. However,
there is still significant attraction in these systems, which can
be seen from a comparison with the noninteracting potential
(dashed curves) in Fig. 1. The lowest few adiabatic potentials
lie well below the noninteracting potentials over a large range
in the hyperradius, with the greatest attraction evident in the
lowest potentials for both systems.

The long-range behavior of the adiabatic potentials plays
an important role in determining the low-energy behavior
of the scattering phase shift. From Fig. 1, the lowest few
adiabatic potentials in both neutron systems approach the non-
interacting potentials as ρ−3. It is found that the asymptotic
form of the lowest few potentials take the form

Wν (ρ) → h̄2

2μ

(
leff (leff + 1)

ρ2
+ C3,ν

ρ3

)
, (10)

where leff is the effective angular momentum quantum num-
ber, and where C3,ν = Cνa, with a being the s-wave scattering
length, and Cν is a dimensionless constant that depends on
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FIG. 1. The lowest few adiabatic potentials for the 3n (a) and
4n (b) systems using the AV8′ two-body interaction are presented
with the ordering of states from bottom to top, with the lowest curve
representing ν = 1. The diagonal second-derivative nonadiabatic
couplings are included. The noninteracting potentials (dashed lines)
are shown to provide a qualitative picture of the amount of attraction
in these systems. Also, the adiabatic potentials are compared to a
single-Gaussian model (open circles) with L = 0 and L = 1 natural
parity states for the 4n and 3n systems, respectively.

system size, symmetry, and eigenstate. For the lowest adia-
batic potential, the ρ−3 behavior is emphasised through a plot,
shown in Fig. 2, of C(ρ) = (ρ/a)[(2μ/h̄2)W1(ρ) − leff.(leff. +
1)] with leff. = 5 for the lowest potential of the 4n system
and leff. = 5/2 for the lowest 3n potential. These have been
rescaled by the spin-singlet s-wave scattering length. Figure 2
shows a comparison of C(ρ) for both neutron systems ob-
tained for different nuclear interaction models and basis sets.
In particular, these figures show the slow convergence of the
HH basis at large values of the hyperradius compared to calcu-
lations performed using the CGHS basis, which provides the
best converged results beyond 30–50 fm. At small hyperradii,
both basis sets are well converged and the potential curves
computed with different nuclear interaction models are nearly
indistinguishable. Only at large hyperradii is there a clear

(a)

(b)

FIG. 2. Plots of the dimensionless function Cν (ρ ) ≡
(ρ/a)[ρ2Wν (ρ )2μ/h̄2 − leff (leff + 1)] for the 3n (a) and 4n
(b) systems with ν = 1. According to Eq. (10), we should obtain
Cν (ρ → ∞) = Cν , where Cν is the coefficient listed in Table II. We
observe the slow convergence for large ρ of the adiabatic potentials
calculated using the HH basis, with increasing values of Kmax

indicated as higher curves for each nuclear model that tends towards
the most converged CGHS calculation. However, it has to be noted
that where the convergence is achieved, the functions Cν (ρ ) obtained
for the different interactions used in this work almost collapse onto a
single curve. Noticeably, this happens already for fairly small values
of rho, showing that the adiabatic potentials are already universal at
moderate values of the hyperradius. In fact, the limit Cν (ρ ) = Cν is
reached only for ρ > 500 fm.

difference in the lowest potential, which is largely due to the
slow convergence of the HH basis.

Universal behavior is observed in these few-neutron sys-
tems, as shown by the remarkable agreement between the
adiabatic potentials in Fig. 1 using both the accurate and well
established AV8′ nuclear interaction and a single Gaussian po-
tential, whose parameters are given in Table I. This agreement
resulting from two qualitatively different interactions demon-
strates that interacting neutrons exhibit long-range universal
physics, further supported by similarities in the elastic phase
shifts [18]. This can be understood due to the large ratio of the
singlet s-wave scattering length to the range of the nuclear
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TABLE I. Single-Gaussian parameters used for singlet and triplet
two-body interactions. The parameters were extracted from fits to
the central component of the AV8′ potential. The parameter Vu is the
strength at unitarity.

State V0(MeV) Vu(MeV) r0(fm)

1S −31.7674 −35.1265 1.7801
3P 95.7280 −646.625 0.8809

interaction, which is approximately |as/r0| ≈ 10. The con-
nection between short-range interactions with large scattering
lengths to universal physics has been extensively studied in
various contexts relating to not only the Efimov effect in
atomic and nuclear three-body systems [24,35–44], but also
in connection to BCS-BEC crossover in few-fermion atomic
systems [24,45,46]. Furthermore, the 3n and 4n adiabatic po-
tentials using different and well established nucleon-nucleon
interactions are universal at moderately small hyperradii
(from 5–30 fm), with qualitative differences in the range
0 < ρ < 5 fm, as seen in Fig. 2. This universal behavior in
these neutron few-body systems is explored further in Sec. V,
analyzing the long-range behavior of these adiabatic poten-
tials at different scattering lengths up to unitarity.

One key interest concerning the neutron-neutron interac-
tion is the role of tensor and spin-orbit interactions for systems
of few neutrons. In nucleon-nucleon interactions, the tensor
and spin-orbit interactions are important for binding the neu-
tron and proton in the spin-triplet and isospin-singlet state
[32]. For neutron systems, on the other hand, the tensor and
spin-orbit interactions do not lead to binding of two neutrons.
However, these interactions do provide extra attraction at
short-range (0 < ρ < 4 fm). This is best illustrated in Fig. 3
for the 4n system, showing the difference in the lowest few
adiabatic potentials for L = 0 states with and without the
tensor and spin-orbit interactions using the AV8′ nuclear in-
teraction model.

FIG. 3. Difference in the lowest few 4n hyperradial potentials for
L = 0 states (ν = 1–4) with and without the spin-orbit and tensor
interactions. The differences suggest that the tensor and spin-orbit
interactions provide attraction to the system at hyperradii around
0 < ρ < 5 fm.

(a)

(b)

FIG. 4. A comparison of the lowest adiabatic potential using the
AV18 two-body interaction with and without the IL7 3N force for the
3n (a) and 4n (b) systems. There is only a significant difference for
ρ < 5 fm.

In many nuclear systems, the 3N force play a significant
role in determining the correct binding energy of light nuclei
[47–51]. Thus, a logical question would be whether or not the
3N force plays a significant role in binding of few-neutron
systems. To address this question, the 3n and 4n systems were
studied using the AV18 two-body potential with the Illinois 7
(IL7) model of the three-body force. A comparison between
the lowest potential in both 3n and 4n systems with and with-
out the IL7 3N term is shown in Fig. 4. As shown in Fig. 4, the
lowest rescaled potentials for these systems is represented by
the quantity, (2μ/h̄2)ρ2U (ρ), which approaches 30 at large
ρ for the 4n system and 8.75 for the 3n system. From the
comparison of this potential with and without the IL7 3N
force, there is only a significant difference for ρ < 5 fm, with
the 3N force adding slight attraction to the 4n system and
slight repulsion in the 3n system. At large values of ρ, which
governs the low-energy scattering of the system, the potentials
are nearly identical. Thus, it is concluded the 3N force plays
little role in the low-energy regime for 3n and 4n scattering
with providing not enough attraction to lead to a bound or
even resonant bound state.
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FIG. 5. The first-derivative coupling matrix elements P1ν (ρ ) in
the lowest channel for the 3n (a) and 4n (b) systems with ν = 2–6
[from Eq. (5) P11(ρ ) = 0].

IV. NONADIABATIC COUPLING MATRIX ELEMENTS

Before considering the full treatment of the coupled hyper-
radial Schrödinger equation, the first- and second-derivative
nonadiabatic coupling matrix elements need to be computed
at each hyperradius. The nonadiabatic matrices, defined in
Eqs. (5) and (6), are computed using the methods described in
Sec. II B. The long-range behaviors of these matrix elements
are analyzed with an emphasis on the nonadiabatic couplings
for the 3n system, noting the asymptotic behavior is equivalent
in the 4n system. Through this study, it is determined that the
second-derivative coupling matrix elements fall off faster than
ρ−3, and do not contribute to the long-range potential given
in Eq. (10). The nonadiabatic couplings between the lowest
channel and lowest six channels are shown in Figs. 5 and 6
for the first- and second-derivative elements, respectively.

The first- and second-derivative couplings for the 3n and
4n systems only have a significant impact on the adiabatic
potentials over a range of the hyperradius of 0 � ρ � 5 fm,
beyond which they rapidly decrease to zero. The long-range
behavior of these nonadiabatic matrix elements can be seen
by multiplying Pμν (ρ) by ρ2 and Qμν (ρ) by ρ4, which is

FIG. 6. The second-derivative coupling matrix elements Q1ν in
the lowest channel for the 3n (a) and 4n (b) systems with ν = 1–6.
The coupling matrix elements are scaled by h̄2/2μ.

shown in Figs. 7 and 8 for the first- and second-derivative
matrix elements for the 3n system, respectively. From these
figures, it is evident the second-derivative matrix elements are

FIG. 7. The first-derivative nonadiabatic matrix elements for the
lowest few 3n channels are shown multiplied by ρ2 to emphasize
the long-range behavior. The solid lines are the coupling matrices to
the first channel and the dashed lines are coupling matrices to the
second channel (i.e., P1ν and P2ν with ν = 1, . . . , 6).
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FIG. 8. The second-derivative nonadiabatic matrix elements for
the lowest few 3n channels are shown multiplied by ρ4 to emphasize
the long-range behavior. The solid lines are the coupling matri-
ces to the first channel and the dashed lines are coupling matrices
to the second channel (i.e., Q1ν and Q2ν with ν = 1, . . . , 6).

short range, falling off faster than ρ−3, in fact falling off as
ρ−4. The first-derivative matrix elements exhibit long-range
behavior, falling off like ρ−2 at large hyperradii. Likewise,
this long-range behavior in the nonadiabatic couplings is also
observed in the 4n system.

This analysis of the long-range behavior of the nonadi-
abatic matrix elements indicates that the diagonal second-
derivative matrix elements do not impact the long-range
behavior of the adiabatic potentials, although the short-range
behavior is affected. As a result, when solving the coupled
hyperradial equation, the couplings only have significant in-
fluence on the collision eigenphaseshifts at high scattering
energies, while the low-energy behavior is only slightly mod-
ified due to the long-range behavior of the first-derivative
couplings. Section VI discusses the affect of the nonadiabatic
coupling terms on the energy-dependent eigenphase shifts.

V. LONG-RANGE BEHAVIOR OF THE ADIABATIC
POTENTIALS

In these few-neutron systems, it is observed that the lowest
few adiabatic potentials take the form of Eq. (10), in which
the potentials deviate from the noninteracting limit by a ρ−3

dependence that scales linearly in the two-body s-wave scat-
tering length. This dependence of the asymptotic form on
the two-body s-wave scattering length has been shown for
hyperspherical potentials associated with the many particle
continuum, for systems with short-range interactions having
a two-body scattering length larger than the range of the
interaction [52,53]. The asymptotic form is valid with and
without the diagonal second derivative coupling term since the
coupling terms fall off as ρ−4, as was shown in Sec. IV.

To study the long-range behavior of the potentials, a single
Gaussian model for the two-body interaction is used, of the
form

V (r) = V0exp

(
− r2

r2
0

)
. (11)

FIG. 9. The lowest 7 adiabatic potentials (ν = 1–7) for the 3n
system for the Jπ = 3

2

−
symmetry with L = 1 using a single-

Gaussian potential with r0 = 1.78 fm. The strength V0 is tuned to give
different scattering lengths from 0 to infinity with no two-body bound
state. Each set of potentials represent a different s-wave scattering
length in this range with limits shown by the horizontal dashed lines
representing the noninteracting limit (upper dashed) and unitarity
limit (lower dashed). The unitarity limits are given in Table II. The
set of potentials labeled by ν = 1, 2, 3, and 5 represent the potentials
with the ρ−3 behavior as they approach the noninteracting limit and
the curves labeled by ν = 4, 6, and 7 represent those that fall off
faster than ρ−3.

For a fixed range r0, the strength V0 is tuned to give a different
s-wave scattering length, while maintaining the condition that
there is no two-body bound state. The values of V0 are chosen
to give scattering lengths ranging from zero to infinity, co-
inciding with the noninteracting case to the unitarity regime.
To represent the nn interaction, the values of V0 and r0 are
chosen to reproduce the dominant low energy s-wave and
p-wave properties produced by the spin-singlet and triplet
components of the central term in the AV8′ interaction. The
parameters used in the single-Gaussian calculations in Sec. III
are given in Table I, along with the strength associated with
the unitarity limit for the spin-singlet state denoted by Vu.
To extract the expected value of C3,ν for the few-neutron
systems, the strength of the spin-singlet state is tuned in
the range 0 < V0 < Vu with r0 fixed to the value given in
the first row of Table I. The lowest few adiabatic potentials
for this study are shown in Figs. 9 and 10 for the 3n and
4n systems, respectively. These figures show the lowest few
potentials for 20 scattering lengths ranging from 0 to unitarity
for r0 = 1.7801 fm, plotted as (2μ/h̄2)ρ2U (ρ) versus ρ. Each
curve approaches the value leff (leff + 1) at large ρ where, in
the noninteracting limit, leff = 5/2 for the ground state of the
3n Jπ = 3

2
−

system and leff = 5 for the ground state of the
4n Jπ = 0+ system. The lowest of each set of curves is the
unitarity potential where the strength of the interaction is
tuned to give an infinite scattering length. The unitarity values
for leff describing the long-range potential are given in Table II
and labeled as leff,u. One general and universal property of
every N-particle system with finite range interactions is that
the long-range hyperradial potential curves associated with
the N-body continuum can often (but not necessarily always)
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FIG. 10. The lowest five adiabatic potentials (ν=1–5) for the
4n system for the Jπ = 0+ symmetry with L = 0 using a single-
Gaussian potential with r0 = 1.78 fm. The strength V0 is tuned to give
different scattering lengths from 0 to infinity with no two-body bound
state. Each set of potentials represent a different s-wave scattering
length in this range.

converge to a different asymptotic coefficient of 1/ρ2 at uni-
tarity (a → ∞) than for finite or vanishing scattering length.
This can be viewed as a generalized consequence of Efimov
physics [24,35–37]. It is apparent from these figures that the
lowest few potentials in each system asymptotically approach

TABLE II. Long-range (ρ → ∞) Cν coefficients of the lowest
few adiabatic potential for the 3n and 4n systems [see Eq. (10)].
Also provided is the effective angular momentum leff,u at unitarity.
Unitarity values from other references are presented as l (ref )

eff,u for
comparison. The error estimates in Cν and leff,u are obtained from
fitting the potentials over different ranges in the hyperradius.

N (LS)Jπ ν leff Cν leff,u l (ref)
eff,u

3 (1 1
2 ) 3

2

−
1 5/2 15.1(3) 1.275(5) 1.2727(1),a 1.2727c

2 9/2 15.2(3) 3.861(5) 3.868,b 3.8582c

3 13/2 77.7(3) 5.219(5) 5.229,b 5.2164c

5 17/2 108(3) 7.555(5) 7.553c

4 (00)0+ 1 5 86.7(3) 2.017(5) 2.0091(4)a

2 7 156(3) 4.455(5) 4.444(3)d

3 7 61.1(3) 5.071(5) 5.029(3)d

4 9 209(3) 6.974(5) 6.863(3)d

5 9 87.8(3) 7.258(5) 7.121(3)d

aValues extracted from Table III of [54]. The ground-state energies
of two-component Fermi gases at unitarity are extracted in the zero-
range limit.
bValues extracted from Table I of [55]. Energies of a trapped two-
component Fermi gas are computed using hyperspherical techniques
and given for a Gaussian interaction with a range of 0.05 oscillator
units.
cValue extracted from the transcendental equation represented by
Eq. (7) in [56] for equal-mass fermions.
dValues extracted from Table II of [57]. Long-range coefficients
extracted from hyperspherical potential curves for a four-fermion
system using a Gaussian two-body interaction at unitarity.

(a)

(b)
s

s

FIG. 11. The scattering length dependence of the three-body and
four-body C3,ν coefficients scaled by the range of the potential, r0,
for the lowest few potentials. In (a), the re-scaled C3,ν coefficient
is shown for the three-body case for the (1 1

2 ) 3
2

−
symmetry. The

circle, square, diamond, and triangle symbols represent the channels
v = 1, 2, 3, and 5, respectively. The data for ν = 2 are multiplied by
a factor of 2, denoted by the label (×2), in order to differentiate
between the data for ν = 1 and ν = 2. In (b), the re-scaled C3,ν

coefficient is shown for the four-body case for the (00)0+ symmetry.
The circle, square, diamond, upright triangle, and downward triangle
symbols represent the channels v = 1, 2, 3, 4, and 5, respectively.
The dashed lines are linear fits performed over the range −36 <

as/r0 < −10.

the corresponding noninteracting potentials as ρ−3, where a is
finite.

The scattering length dependence of C3,ν is extracted from
fitting the lowest adiabatic potentials to an inverse power-law
expansion to O(1/ρ8) for each scattering length in the range
10 < ρ < 1500 fm. The results of C3,ν for the 3n and 4n
systems are shown in Fig. 11. The figures show the scattering
length dependence of C3,ν , rescaled by r0, for the few lowest
potentials using a single-Gaussian model for the two-body
interactions with r0 = 1.78 fm. There is clear evidence that
the C3,ν coefficient depends linearly on the s-wave scattering
length for values of the rescaled s-wave scattering length
|as/r0| > 10, demonstrating universal physics at these scatter-
ing lengths. The rescaled s-wave scattering length for the nn
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interaction is approximately, |as/r0| ≈ 10.63. The numerical
values of C3,ν are given in Table II. The deviations from
the linear fits (near as/r0 of −30) are due to errors in the
extraction on the C3,ν coefficient, which were estimated by
performing the fits over varying ranges of |as/r0|. As the scat-
tering length increases, the ρ−3 behavior begins to dominate at
larger and larger hyperradii, as seen in Figs. 9 and 10. In order
to improve the accuracy of the value of C3,ν , the potentials
would need to be computed out to larger values of ρ and better
converged. Substituting the s-wave scattering length for the nn
two-body interaction in the spin-singlet state (as = −18.92 fm
for the AV8′ interaction) into the C3,ν coefficients in Table II
yields the expected long-range behavior for the lowest few
adiabatic potentials that are relevant to understanding the low-
energy behavior of the eigenphase shifts, discussed in Sec. VI.

VI. WIGNER-SMITH TIME DELAY

Starting from this understanding of the long-range be-
havior of the adiabatic potentials demonstrated in Sec. V,
a full treatment of the energy-dependence scattering above
the three-body and four-body continuum is now developed.
To understand the 2016 experimental observation of a low-
energy 4n signal by Kisamori et al., a detailed analysis of the
low-energy density of states is carried out. A simple way of
quantifying the density of states is through a calculation of the
Wigner-Smith time delay matrix, which for a single-channel
calculation represents the amount of time incoming probabil-
ity flux remains confined by the presence of a potential before
escaping [58]. The Hermitian time delay matrix is defined
in terms of the scattering matrix and its energy derivative as
Q(E ) = ih̄SdS†/dE , which reduces to Q(E ) = 2h̄dδ(E )/dE
for a single-channel calculation. It has been shown there is a
direct relation between the total Wigner-Smith time delay and
the density of states [59,60]. A peak in the time delay results
from a rapid increase in the phase shift, usually over a small
energy range. This occurs when the probability flux gets tem-
porarily trapped for an extended period of time, interpreted
usually as a resonance if there is an increase in phase of more
than 2 radians.

In studying the elastic phase shift of the 3n and 4n systems,
a comparison can be made between the phase shift with and
without the inclusion of the second-derivative coupling term.
Since the lowest adiabatic potential with the inclusion of the
nonadiabatic diagonal second-derivative term provides a rig-
orous upper limit to the actual lowest potential, it would be
intuitive to study how important this term is to the low-energy
behavior. Also, a direct comparison will shed some light on
the accuracy of treating the problem in the adiabatic approx-
imation, without including any nonadiabatic couplings. This
comparison for both 3n and 4n systems is shown in Fig. 12.

The single-channel elastic phase shift is shown for the 3n
(lower curve) and 4n (upper curve) systems. These calcula-
tions were performed with and without the second derivative
nonadiabatic coupling, being represented by the dashed and
solid curves, respectively. There is surprising little change
in the energy-dependence of the elastic phase shift in the
energy range shown of 0 < E < 9 MeV, with a noticeable
difference starting around 2 MeV. There is a smooth rise in

FIG. 12. The elastic phase shift (inset) and rescaled Wigner-
Smith time delay in the lowest adiabatic potential for the 3n and
4n systems with and without the diagonal second-derivative coupling
term, shown as dashed and solid lines, respectively. The upper curves
are for the 4n system and the lower curves are for the 3n system.

the elastic phase shift for both the 3n and 4n systems with
no peak in the energy derivative as one would expect for a
true resonance. Instead, there is a low-energy enhancement of
the density of states due to the divergent 1/

√
E behavior. The

enhancement by 1/
√

E is a result of the long-range ρ−3 term
in the potential. In accordance with the Wigner threshold law,
the phase shift scales proportionally to the wave number k,
leading to the enhancement in the energy derivative. In fact, it
can be shown from the Born approximation that a potential of
the form C/ρ3 leads to a phase shift in the lth partial wave of
δl (k) ≈ −kC/[2l (l + 1)].

From Fig. 12, there is little change in the energy behavior
of the elastic phase shift and time delay for these few-neutron
systems when excluding the nonadiabatic couplings, treating
the problem in a purely adiabatic sense. In fact, only at large
scattering energies (E > 1.5 MeV) is there any noticeable
deviation in the energy dependence. The difference is due to
the fact that the nonadiabatic second derivative couplings for

FIG. 13. The largest 3n eigenphase shift (left) and time delay
(right) with the inclusion of 1 and 2 channels from a multichannel
calculation to show the effects on the low-energy behavior from
nonadiabatic coupling. These results use a single Gaussian model
for the nn two-body interaction with the HH basis.
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FIG. 14. The 4n phase shift in the lowest adiabatic potential with
the inclusion of multiple channels an a multichannel calculation to
show the effects on the low-energy behavior from channel coupling.
These results use a single Gaussian model for the nn two-body
interaction with the HH basis.

both systems are only appreciable at small ρ, corresponding to
large energy, as seen in the previous section. A more thorough
investigation into the affects of the nonadiabatic couplings
is done by performing a multichannel calculation, includ-
ing a few excited channels in solving Eq. (4) for scattering
solutions.

Multichannel scattering calculations were performed for
both neutron systems. Equation (4) was solved for the in-
clusion of a few coupled channels to compare the largest
eigenphase shifts, which are shown in Figs. 13 and 14 for up
to two and six channels for the 3n and 4n systems, respectively
using the HH basis and a single Gaussian nuclear interac-
tion. It is clear from these figures that the largest eigenphase

FIG. 15. Largest eigenphase shift for the 3n and 4n systems for
the inclusion of up to three channels using the AV8′ interaction
with the CGHS basis. The lowest curve is the single-channel re-
sults while the second lowest and highest curves are the resultant
eigenphase shifts from a mutichannel calculation for two and three
channels, respectively. The eigenphase shift is only slightly modified
for energies less than 1 MeV, providing further support the adiabatic
approximation is sufficient in describing the low-energy behavior.

shift shows little to no change in energy dependence at low-
energies with increased number of included channels. The
largest eigenphase shift using the AV8′ nuclear interaction and
the CGHS basis is shown for up to 3 channels in Fig. 15.
From these calculations with the realistic AV8′ interaction,
the largest eigenphase shift does not change significantly
at low energies with the inclusion of more channels. This
negligible change is a result of the relatively weak and short-
range behavior of the nonadiabatic coupling terms. From
Sec. IV, it is shown the first-derivative couplings fall off as
ρ−2 and second-derivative couplings fall off as ρ−4 at large
hyperradii.

VII. CONCLUSIONS

This article addresses a fundamental problem in few-body
neutron interactions: whether a bound or resonant 4n state
exists. The answer to this question is crucial for addressing
the interpretation of a recent experiment by Kisamori et al. in
2016, which suggested evidence of a 4n resonance observed
in the nuclear reaction 4He + 8He → 4n + 8Be at an energy
of 1.25 MeV above the four-neutron continuum [2]. This
problem has been treated here using the adiabatic hyperspher-
ical approach with realistic NN and 3N interactions with an
emphasis on the AV8′ nuclear interaction with a CGHS basis
and the AV18 interaction with a HH basis.

The 3n and 4n adiabatic hyperspherical potential curves
were computed for the Jπ states that provide the most attrac-
tion in each system, 3

2
−

for the 3n system and 0+ for the 4n
system. A comparison was made between the adiabatic poten-
tials computed in both basis sets, which show that the CGHS
basis yields better converged potentials at large hyperradii.
The lowest hyperspherical potential in each of these systems
shows no qualitative feature that indicates the possible exis-
tence of a resonance. In fact, while these few neutron systems
exhibit significant attraction, the potentials are still repulsive
at all hyperradii due to strong Pauli repulsion.

The nonresonant behavior of these few neutron systems is
further substantiated by a multichannel scattering treatment in
the three-body and four-body continua with an analysis of the
eigenphase shifts and Wigner-Smith time delay or density of
states. It has been shown that the long-range behavior of the
adiabatic potentials deviates from the noninteracting ρ−2 by
an attractive ρ−3 behavior proportional to the s-wave scatter-
ing length. This attractive long-range term greatly influences
the low-energy behavior of the eigenphase shifts, in turn lead-
ing to a 1/

√
E enhancement of dependence of the density of

states at low energy. This enhancement of the density of states
could suggest an explanation for the low-energy signature
observed in the Kisamori et al. experiment in 2016 [2], despite
the fact that there is no peak in the density of states and no
rapid increase in the eigenphase shift of the type associated
with a resonance. A multichannel treatment of few-neutron
scattering was performed to include nonadiabatic coupling
to excited states. This treatment showed little change in the
energy-dependent phase shift in the energy region of inter-
est, which demonstrates that these systems can be accurately
treated in a nonadiabatic picture.
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Universal physics has also been studied and shown to be
relevant for understanding these few neutrons systems due
to the large size of the s-wave scattering length relative to
the range of the nn interaction. The fact that the adiabatic
potentials computed using a simple Gaussian interaction agree
accurately with those using the full AV8′ potential provides
strong evidence that these systems exhibit universal physics.
Furthermore, the 3n and 4n systems have also been treated
with different realistic nucleon-nucleon interactions from chi-
ral effective field theory using the HH basis. The potentials
using these interaction models all show qualitative agreement
in the region of hyperradii where the HH basis is well con-
verged. The universal behavior in these systems has been
elucidated by studying the scattering length dependence of
the long-range behavior of the lowest few adiabatic poten-

tials using a Gaussian two-body interaction. At large ratios
of the s-wave scattering length to the range of the potential
(|as/r0| � 10), the long-range ρ−3 coefficient depends lin-
early on the scattering length, consistent with what is expected
with a delta-function contact potential.
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