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Advanced extraction of the deuteron charge radius from electron-deuteron scattering data
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To extract the charge radius of the proton, rp, from the electron scattering data, the PRad collaboration at
Jefferson Lab has developed a rigorous framework for finding the best functional forms—the fitters—for a robust
extraction of rp from a wide variety of sample functions for the range and uncertainties of the PRad data. In this
paper we utilize and further develop this framework. Herein we discuss methods for searching for the best fitter
candidates as well as a procedure for testing the robustness of extraction of the deuteron charge radius, rd , from
parametrizations based on elastic electron-deuteron scattering data. The ansatz proposed in this paper for the
robust extraction of rd , for the proposed low-Q2 DRad experiment at Jefferson Lab, can be further improved
once there are more data.
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I. INTRODUCTION

Nucleons (protons and neutrons) are the building blocks
of atomic nuclei, the structure of which provides an excellent
laboratory to advance our understanding about how quantum
chromodynamics (QCD)—the theory of strong interaction—
works in the nonperturbative region quantitatively where
currently our knowledge is rather poor. The proton root-mean-
square (rms) charge radius—defined as

rp ≡ rp,rms ≡
√

〈r2〉 =
(

−6
dGp

E (Q2)

dQ2

∣∣∣∣
Q2=0

)1/2

, (1)

with Gp
E being the proton electric form factor and Q2 the

four-momentum transfer squared measured in lepton scatter-
ing experiments—also has a major impact on bound-state
quantum electrodynamics calculations of atomic energy lev-
els. As such the proton charge radius defined in the same
way as in lepton scattering experiments [1] can be deter-
mined from hydrogen spectroscopic measurements. However,
there are distinct discrepancies in the measurement results,
observed among three types of experiments. The discrepan-
cies mostly arose after 2010, when high-precision muonic

*vladimir.khachatryan@duke.edu

hydrogen (μH) spectroscopy experiments reported two values
of rp, being 0.8418 ± 0.0007 fm [2] and 0.8409 ± 0.0004
fm [3]. On the other hand, the world-average value from
CODATA-2014—rp = 0.8751 ± 0.0061 fm [4]—determined
from atomic hydrogen (eH) spectroscopy experiments, and
the results from electron-proton (e-p) scattering experiments
until 2010 mostly agreed with each other. The challenge stem-
ming from such a difference between the rp values, measured
from different types of the experiments, is known as the proton
charge radius puzzle [5–7].

In the last few years, four more rp measurements from eH
spectroscopy have been reported. Within experimental uncer-
tainties, the one from [8] is consistent with the previous eH
spectroscopy results, while the other two from [9,10] support
the μH spectroscopy results. However, the latest result from
[11] reported rp = 0.8482 ± 0.0038 fm, which exceeds the
μH results by ≈1.9σ .

Such an agreement with the μH spectroscopy results is also
observed from the rp measured by the PRad collaboration at
Jefferson Lab [12]—rp = 0.831 ± 0.007stat ± 0.012syst fm—
that used a magnetic-spectrometer-free, calorimeter-based
method in an unpolarized elastic e-p scattering experiment at
very low Q2, down to 2.1×10−4 GeV2/c2 [13,14].

The situation becomes similarly interesting and challeng-
ing if we move on to discuss measurements of the rms
charge radius of the deuteron, rd , in electron-deuteron (e-d)
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scattering experiments as well as in eD and μD spec-
troscopy. In particular, the CREMA collaboration has reported
a deuteron charge radius—rd = 2.125 62 ± 0.000 78 fm—
from a muonic spectroscopy-based measurement of three
2P → 2S transitions in μD atoms [15], which is 2.7 times
more accurate but 7.5-σ smaller than the CODATA-2010
world-average value [16]. The radius from [15] is also 3.5-
σ smaller than the rd value, 2.1415 ± 0.0045 fm, extracted
from an electronic spectroscopy-based measurement [17] of
1S → 2S transitions in eD atoms, after these transitions have
already been measured in [18].

Thereby, one also observes discrepancies from rd measure-
ments (like in the case of rp) that have given rise to another
challenge, dubbed as the deuteron charge radius puzzle.
The PRad collaboration has proposed a low-Q2 unpolarized
elastic e-d scattering experiment named as DRad—basically
anchored upon PRad’s experimental setup—for a model-
independent extraction of rd with a subpercent (�0.25%)
precision, in order to address this newly developed puzzle
[19].

Thus, given the importance of measuring not only rp but
also rd , our goal is to show how one can robustly extract
rd and control its uncertainties in a fitting procedure, using
four parametrizations of the deuteron charge form factor, Gd

C
[20–25]. In this paper we apply and extend the ansatz used in
[26], in which a comprehensive and systematic method is pre-
sented for choosing mathematical functions that can robustly
extract rp from a broad set of input functions describing the
proton electric form factor, Gp

E .
The rest of the paper is presented as follows. Section II has

a brief discussion on the deuteron form factors and the radius
extraction. In Sec. III we describe the general fitting procedure
on how to extract rd from generated Gd

C pseudo-data in the
DRad kinematics and define some quantities to compare the
properties of different fitters. In Sec. IV we introduce the
pseudo-data generation from the Gd

C parametrizations and dis-
cuss the method for searching for a fitter that will be able to
extract rd by using the available elastic e-d scattering data.
In Sec. V we show a comprehensive way to estimate the
bias for rd extraction. We conclude on our paper and discuss
its prospects at the end. Also, in the Appendices we discuss
the results of testing a few theoretical models and provide
another robust fitter candidate which is analogous to the one
considered in Sec. IV.

II. FORM FACTORS AND CHARGE RADIUS FROM
UNPOLARIZED ELASTIC ELECTRON-DEUTERON

CROSS SECTION

The understanding of the electromagnetic properties of the
deuteron is of fundamental importance in nuclear physics,
given that the deuteron is the only bound two-nucleon system.
It is expected that at the low-Q2 region, where the relativistic
effects and non-nucleonic degrees of freedom are expected to
be negligible, the deuteron form factors are dominated by part
of its wave function for which the two constituent nucleons are
far apart. Theoretical calculations of rd are considered to be
reliable since they are independent of the nucleon-nucleon po-
tential (for a broad class of potentials), and depend mostly on

the binding energy and neutron-proton scattering length [27].
This makes rd a perfect observable for a theory-experiment
comparison.

So far three experiments have been conducted for deter-
mination of rd from unpolarized elastic e-d scattering at low
Q2 [28–30], the cross section of which in the one-photon
exchange approximation is given by

dσ

d�
(E , θ ) = σNS

[
Ad (Q2) + Bd (Q2) tan2

(
θ

2

)]
, (2)

where σNS is the differential cross section for the elastic scat-
tering from a pointlike and spinless particle at a scattering
angle θ and an incident energy E . The four-momentum trans-
fer squared carried by the exchanged virtual photon is defined
in terms of the four-momenta of the incident (k) and scattered
(k′) electrons: Q2 = −(k − k′)2. In this case the deuteron
structure functions in Eq. (2) are related to its charge, Gd

C ,
magnetic dipole, Gd

M , and electric quadrupole, Gd
Q, form fac-

tors via [31–33]

Ad (Q2) = [
Gd

C (Q2)
]2 + 2

3 τ
[
Gd

M (Q2)
]2 + 8

9 τ 2
[
Gd

Q(Q2)
]2

,

Bd (Q2) = 4
3 τ (1 + τ )

[
Gd

M (Q2)
]2

, (3)

with τ = Q2/4M2
d , where Md is the deuteron mass. Also, there

are the following additional relations:

Gd
C (0) = 1,

Gd
Q(0)

μd
Q

= 1,
Gd

M (0)

μd
M

= 1,

with the given deuteron electric quadrupole moment, μd
Q, and

magnetic dipole moment, μd
M .1

At very low but experimentally accessible Q2 such as
≈10−4 (GeV/c)2, the contributions from Gd

Q and Gd
M to the

scattering process are negligible. By choosing different Gd
M

and Gd
Q form factors [20–25] from four data-driven models

discussed in Appendix A (and throughout the paper) for ex-
tracting Gd

C from the cross section, the effects of the choice
of the form-factor models on the deuteron radius are found to
be 0.03 and 0.009%, respectively. Thereby, in order to extract
the deuteron rms charge radius from e-d scattering data, one
should fit Gd

C to the experimental data as a function of Q2, and
calculate the slope of this function at Q2 = 0, according to

rd ≡ rd,rms ≡
√

〈r2〉 =
(

−6
dGd

C (Q2)

dQ2

∣∣∣∣
Q2=0

)1/2

, (4)

in analogy to how rp is obtained.

III. THE FITTING PROCEDURE AND ROBUSTNESS

A. The general procedure

References [26,35,51] give a general framework with input
form-factor functions and various fitting functions, for finding
functional forms (fitters) that allow for a robust extraction of
an input proton radius. Analogously, we can find robust fitters

1Throughout the text we use dimensionless μd
M ≡ (μd

M/μN ) =
0.8574 and μd

Q ≡ (μd
Q/fm2) = 0.2859 [34].
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to extract rd by testing all combinations of available input
functions and fitting functions.

From a developed routine2 we generate many sets of Gd
C

pseudo-data values with user-defined fluctuations at given Q2

bins by using some Gd
C charge form-factor models as input.

Then we use various fitting functions to fit the pseudo-data and
extrapolate them to Q2 = 0, in order to obtain the rd values
according to Eq. (4).

When the program library generates bin-by-bin type fluc-
tuations added to the pseudo-data, it occurs according to the
user-defined random Gaussian distribution at each bin. Stated
otherwise, in order to mimic the bin-by-bin fluctuations (Q2

independent) of the data, the pseudo-data should be smeared
by shifting the Gd

C central value at each Q2 bin with a random
number following the Gaussian distribution, N (μ, σ 2

g ), given
by

N (
μ, σ 2

g

) = 1√
2πσ 2

g

e−(Gd
C−μ)2

/(2σ 2
g ). (5)

In this paper we take μ = 0 and σg = δGd
C , where δGd

C comes
from the estimated statistical and/or systematic uncertainties
in the e-d (DRad) experiment. The produced tables of Gd

C vs
Q2 with fluctuations are fitted with a number of fitters for
extracting rd (see Fig. 1).

B. The robustness and goodness of fitters

In this paper, the robustness of a fit function is determined
by its ability to extract rd from a variety of pseudo-data
generated from plausible form-factor parametrizations. Our
conviction is that the true and unknown form-factor function is
reasonably approximated by the trial functions. As discussed
in [39], descriptive functions (such as high-order polynomi-
als), which precisely match onto the data over a limited Q2

range, are often not the same as predictive functions (such as
low-order rational functions), which are able to extrapolate.
Unsurprisingly, the predictive functions are often found to be
the most robust functions for rp extractions.

In order to determine the robustness of a fitter based upon
the general procedure already discussed, one can compare the
size of the bias (bias ≡ δrd = rd [mean] − rd [input]) with the
variance σ (the rms value of the radius distribution). The bias
comes from the mismatch of the fitting function and the un-
derlying generation function, which leads to a misprediction
of the slope at Q2 = 0. The variance reflects the influence of
the Gd

C bin-by-bin uncertainties on the radius. If δrd < σstat

(statistical variance) for most of the input form-factor models,
the given fitter will be considered as sufficiently robust. In
the case of an experiment, the goal of which is to minimize
the overall uncertainty, we should also consider the bias and

2A C++ coded program library has been created for generat-
ing, adding fluctuations to, and fitting the pseudo-data [26,36] (see
Sec. IV). The bin-by-bin and overall type fluctuations are assumed
to imitate the binning and random uncertainties of a given set of real
data. For fitting purposes the library uses the MINUIT package of CERN

ROOT [37,38].

FIG. 1. The upper plot shows an example of one fit using the
Abbott1 model (see Sec. IV A) as input and Rational (1,1) (see
Sec. III C) as the fitting function. The lower plot shows an example
of rd [fit] distribution obtained by following the above-mentioned
pseudo-data and fitting procedure. A Gaussian function, similar to
that in Eq. (5), is used to fit the distribution.

variance together, using the root-mean-square error (RMSE)
[40]:3

RMSE =
√

δrd
2 + σtotal

2, (6)

where σtotal includes both bin-by-bin statistical and systematic
uncertainties. The RMSE is a standard way of quantifying
goodness of fitters. The smaller the RMSE is, the better the
corresponding fitter is. Eventually, we need to find a fitter(s)
that can extract the deuteron radius precisely, from pseudo-
data generated from a range of plausible form factors, which
should be reasonable approximations to the unknown true
function to allow for the best possible determination of the
radius when the fitter is applied to e-d experimental data.

3The RMSE discussed throughout this paper is somewhat different
from that discussed in [26], where the authors have considered σstat

in the formula of RMSE.
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FIG. 2. Five fitters from [26], which give the best RMSE values for extraction of rd , when they are fitted with pseudo-data generated by
the four Gd

C parametrizations that we refer to as Abbott1 and Abbott2 [20,22], as well as Parker [23] and SOG [24,25] models. The error bars
show the statistical uncertainty of the deuteron radius.

The key point here is that the fitters are determined prior to
obtaining the experimental results from the planned Q2 range
and precision of the DRad experiment.

C. Initial studies and motivation

Reference [26] takes into account different reasonable ap-
proximations to the unknown true function by using nine
different Gp

E form-factor parametrizations to generate pseudo-
data in the PRad Q2 range. The studies show that the
two-parameter rational function, Rational (1,1), is robust and
the best fitter for extraction of rp for the range and uncertain-
ties of the PRad data, represented by

fRational (1,1)(Q
2) ≡ Rational (1, 1)

= p0 Gp
E (Q2) = p0

1 + p(a)
1 Q2

1 + p(b)
1 Q2

, (7)

where p0 is a floating normalization parameter, and p(a)
1 and

p(b)
1 are two free fitting parameters. The radius is determined

by rp =
√

6(p(b)
1 − p(a)

1 ). The other two robust fitters are the
two-parameter continued fraction and the second-order poly-
nomial expansion of the so-called Z transformation [26,41],
which can extract the input proton radius regardless of the
input electric form-factor functions.

Equation (7) is actually a special case from the class of the
multiparameter rational function of Q2 given by

fRational (N,M)(Q
2) ≡ Rational (N, M)

= p0 Gp
E (Q2) = p0

1 + ∑N
i=1 p(a)

i Q2i

1 + ∑M
j=1 p(b)

j Q2 j
, (8)

where the orders N and M are defined by the user.
All the fitters studied in [26] have been tested here by fitting

pseudo-data generated using the four Gd
C parametrizations

from [20,22–25] (see Sec. IV A). For this test we took the
DRad kinematic range of 2 × 10−4 < Q2 < 0.05 (GeV/c)2,
using bin-by-bin statistical uncertainties from 0.02 to 0.07%
and systematic uncertainties from 0.06 to 0.16%. The bias

and σstat values of the five best fitters are shown in Fig. 2.4

Although the four-parameter Polynomial Z gives the smallest
bias, it also gives the largest variance and RMSE amongst
them. The RMSE value of Rational (1,1) is the smallest one,
though it gives larger bias compared to the others.

However, given the limited number of Gd
C parametriza-

tions, the robustness of the fitters cannot be convincingly
determined from these results. In this case, we cannot mimic
different kinds of approximations to the unknown true func-
tion as comprehensively as it can be done for the proton
Gp

E models. We have also studied some theory-based mod-
els (discussed in Appendix B), and found that those models
have large discrepancies with the experimental data, which
show that the testing method of robustness applied to PRad
is no longer suitable for the deuteron radius extraction. Based
on our studies, the bias is a non-negligible source of the
rd systematic uncertainty estimated for the DRad experi-
ment. This observation was our motivation for looking into
other potentially better fitters for DRad, which might give
similar variance but smaller bias as compared to those of
Rational (1,1). At the same time, by having limited Gd

C
parametrizations at our disposal, we also need to develop a
more comprehensive method to estimate the bias when using
various fitters.

IV. SEARCHING FOR A ROBUST FITTER CANDIDATE

A. Pseudo-data generation

Here we give some specific details on the pseudo-data gen-
eration and fitting procedure described in the previous section.

(A) Generating pseudo-data:
(i) Four Gd

C parametrizations based on available experi-
mental data (named as Abbott1, Abbott2, Parker, and SOG)
are used to generate Gd

C values at given Q2 bins. The details
of these parametrizations are discussed in Appendix A.

(ii) Thirty Gd
C pseudo-data points at 1.1 GeV and 37 Gd

C
points at 2.2 GeV are generated from each of the four deuteron

4The three-parameter continued fraction [CF (3)] and Poly-
nomial Z (4) are from the classes of the CF expansion and
multiparameter polynomial expansion of Z , respectively. For their
explicit expressions we refer the reader to [26]. The CF (3) has the
same functional form as Rational (1,2).
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models in step i. Our binning choice for DRad is based on
the binning of PRad. There are 30 bins from 0.8◦ to 6.0◦ at
1.1-GeV beam energy, and 37 bins from 0.7◦ to 6.0◦ at 2.2
GeV [42].

(B) Adding fluctuations to the pseudo-data and fitting: The
following steps are repeated 10 000 times, which is sufficient
to obtain stable results of the mean value and rms of the rd [fit]
distribution to the precision of 10−4 fm.

(i) To add statistical fluctuations, the total 67 pseudo-data
points generated in step A are smeared by 67 different random
numbers according to Eq. (5).

(ii) In this step a set of pseudo-data is fitted by a specific
fitter fd (Q2). The data points at 1.1 and 2.2 GeV are combined
and fitted by that fitter with two different floating normaliza-
tion parameters corresponding to these two beam energies.
The other fitting parameters in the fitter are required to be the
same for the two energies.

(iii) Then the fitted radius is calculated from the fitted
function in (ii), with

rd [fit] =
(

−6
dfd (Q2)

dQ2

∣∣∣∣
Q2=0

)1/2

. (9)

B. Data-driven method

As described in Sec. III C, our studies have shown that
the bias is an important source of systematic uncertainty in
the extraction of rd . Hence, to better control and/or minimize
the bias in the rd extraction, such as that obtained by the
Rational (1,1) fitter, we propose a data-driven approach to
search for a new robust fitter candidate.

The Rational (1,3) is a function with four free parameters
that has been used in [43] to fit Gp

E . Compared to the Ratio-
nal (1,1), it has good asymptotic behaviors satisfying not only
Gd

C = 1 at Q2 = 0 but also Gd
C → 0 at Q2 → ∞. This fitter

function is given by

fRational (1,3)(Q
2) ≡ Rational (1, 3)

= p01 Gd
C (Q2)

= p01
1 + a1Q2

1 + b1Q2 + b2Q4 + b3Q6
, (10)

where a1, b1, b2, b3 are free parameters, and p01 is a floating
normalization parameter.

In order to control the variance of rd [fit], we fit this func-
tion to the existing experimental data sets in Table 1 of [20],
which provides Gd

C and δGd
C at fixed Q2 values that are typi-

cally higher than the values of the Q2 range of the proposed
DRad experiment. With χ2/NDF � 1.25, we determine b2 =
0.0416 ± 0.0152 and b3 = 0.004 74 ± 0.000 892. Then fixing
these values for fitting the pseudo-data in the (low-Q2) DRad
range will render a fitter, which we refer to as fixed Ratio-
nal (1,3) or fRational (1,3):

ffixed Rational (1,3)(Q
2) ≡ fRational (1, 3)

= p01
1 + a1Q2

1 + b1Q2 + b2,fixedQ4 + b3,fixedQ6
,

(11)

FIG. 3. The upper plot shows the fRational (1,3), Rational (1,1),
Rational (1,2), Rational (2,1), CF (3), and Polynomial Z (4) obtained
from fitting the pseudo-data generated by the Abbott1 model [20],
which for comparison are overlaid with the black colored data points
listed in Table 1 of [20]. The color coding is displayed in the legends,
where the CF (3) and Rational (1,2) are the same and described by the
two asymptotic green dotted lines. The lower plot shows the residual
points for the fRational (1,3), Rational (1,1), and Rational (2,1),
where “the residual” means the difference between Gd

C[fit] described
by the fitters and Gd

C[data] from the data.

where the uncertainties in the fixed parameters are taken into
account when we calculate the bias. In principle, if some fitter
functions have fitting uncertainties in their fixed parameters,
those parameters should be smeared using a Gaussian dis-
tribution, with σg to be the fitting uncertainty [see Eq. (5)].
We repeat this step in the fitting procedure 10 000 times as
discussed in Sec. IV A.

To compare the differences between Rational (1,1),
fRational (1,3) and other fitters shown in Fig. 2, all the
functions are plotted in the Abbott1/Abbott2 model range
[from Q2 = 3 × 10−2 to 1.5 (GeV/c)2]. The parameters in
these fitters are determined by fitting pseudo-data generated
from the Abbott1 model in the DRad Q2 range. The results
from the Abbott2, Parker, and SOG models are very similar,
therefore we do not show them here. As shown in Fig. 3, all
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the fitters describe the data quite well in the low-Q2 range
[Q2 < 0.15 (GeV/c)2], while Polynomial Z (4) and CF (3)
diverge. At high-Q2 range, the fRational (1,3) describes the
data much better than the other fitters, which means that the
fRational (1,3) has a better asymptotic behavior at high Q2.
Based on this observation, the fRational (1,3) may also have a
potential to describe the data in the low-Q2 range better than
the Rational (1,1). Other than the fRational (1,3) functional
form, we have also studied another fitter, which has similar
properties and is capable of extracting rd robustly. The details
on our studies for this fitter are presented in Appendix C.

V. A COMPREHENSIVE WAY TO ESTIMATE THE BIAS
IN DEUTERON CHARGE RADIUS EXTRACTION

A. Smearing procedure

After the candidate fitter is found, the robustness for the
deuteron radius extraction needs to be tested. Being limited by
the number of Gd

C parametrizations, in order to reflect various
reasonable approximations to the unknown true function, the
parameters in the two Abbott as well as in the Parker and
SOG models should be smeared. Once they are smeared, the
functional forms describing the models are different, and are
used to perform a variety of extrapolations at low Q2. Overall,
this test is a χ2 test, which consists of the following steps.

(A) Smearing of the parameters and calculation of χ2:
First, we smear all the parameters for ±10%, following a
uniform distribution in a model. Then we use the smeared
model to generate the corresponding Gd ′

C with respect to its
value at the same Q2 bin in the (Q2, Gd

C , δGd
C) data set from

Table 1 of [20]. Afterwards, we calculate χ2 by

χ2 =
∑ (

Gd
C − Gd ′

C

)2

δGd
C

. (12)

(B) Checking of the acceptable region: The definition of an
acceptable χ2 region is that the probability of the calculated
χ2 (after the parameters are smeared) with a specific degree of
freedom is “acceptable” when it is larger than 99.7% in the χ2

probability distribution. This requirement restricts the value
of χ2, which means that the smeared model should not be far
away from the real experimental data. With the specific degree
of freedom ν2, the χ2 probability distribution is defined as

f (χ2) = 1

2ν/2
(ν/2)
e(−χ2/2)(χ2)(ν/2)−1. (13)

Integrating the function in Eq. (13), from zero to χ2
0 , will

result in the probability for χ2
0 . The number of degrees of

freedom (NDF) and the critical χ2
0 value for each of the four

smeared data-based models are shown in Table I.
If the calculated χ2 is smaller than the above numbers

for each smeared model, then we keep the given smeared
model and go to the next step. For each smeared model there
is a new rd [input], which is calculated by Eq. (4) with the
slope of a smeared model at Q2 = 0. If χ2 is unacceptable,
the parameters of the model are resmeared and the whole
procedure is repeated.

(C) Generating pseudo-data: If the smeared models pass
step B, in this case these models can be utilized to generate

TABLE I. The number of degrees of freedom and the critical χ2
0

value for each of the four smeared data-based models.

Model NDF χ2
0

Abbott1 16 35.9
Abbott2 7 21.6
Parker 16 35.9
SOG 11 28.2

sets of pseudo-data in the DRad Q2 range using the binning
discussed in Sec. IV.

(D) Fitting and calculating the bias: After the pseudo-data
are generated, we use the selected fitter to fit and obtain the
quantity rd [fit].

(E) Repeating and obtaining the relative bias: In this step
the above procedure for each model is repeated 10 000 times
for obtaining 10 000 values of relative bias, which is defined
as δrd/rd [input].

(F) Finalization: From each relative bias distribution of
the smeared Abbott1, Abbott2, Parker, and SOG models, we
select the rms value to calculate δrd in Eq. (6).

B. Proof of the robustness test using the proton
form-factor models

The parameter smearing approach for deuteron form-factor
models helps us better calculate the bias, by imitating a variety
of reasonable approximations to the unknown true function,
when the number of models is limited. In order to verify that
this approach is valid and applicable, several proton electric
form-factor Gp

E models can be tested in turn. Namely, we
consider such parametrization models, including Kelly [43],
Arrington1 [44], Arrington2 [45], Arrington-Sick [46], Ye
[47], Alarcon, and Bernauer-2014. The Alarcon model is our
refit based upon [48–50], and the Bernauer-2014 model is our
refit of data from [51]. By smearing the parameters in the
proton Gp

E models, we determine whether or not the smearing
method can mimic the low-Q2 extrapolation behavior of those
models.

Following the same steps shown in the previous section,
the bias values obtained from fitting the Rational (1,1) with
pseudo-data generated by the Gp

E models, before and after
smearing, have been found and are displayed in Table II.

TABLE II. The relative bias obtained from fitting the Ratio-
nal (1,1) with pseudo-data generated by nonsmeared and smeared
seven proton Gp

E models.

Model Nonsmeared bias (%) Smeared bias (%)

Kelly 0.002 0.0007
Arrington1 0.005 0.003
Arrington2 0.009 0.002
Arrington-Sick 0.001 0.0007
Alarcon 0.166 0.174
Ye 0.476 0.081
Bernauer-2014 0.271 0.062
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FIG. 4. Seven proton electric form-factor models in which Gp
E is plotted as a function of Q2. The gray bands are the bands generated by

each smeared model. The superimposed red points are the PRad 1.1-GeV data; the blue points are the 2.2-GeV data [12].

The nonsmeared bias in the table is the relative bias obtained
by fitting pseudo-data generated from the original models.
The smeared bias is the relative bias obtained by fitting
pseudo-data generated from the smeared models following the
procedure in the previous section.

In Fig. 4 we show a band of each model by smearing all the
parameters (again in each model) for ±10%, and restricting
the values of χ2 with respect to their degrees of freedom based
on available data. One can also see that all the models and the

superimposed PRad data are covered by most of the bands
except for the band from the Arrington-Sick model, which
means that the smearing method generates the pseudo-data in
a reasonable range.

By looking at Table II we find that the smeared bias is
smaller than the nonsmeared bias for most of the models. This
result is expected as the bias calculated from the smearing
method gives the most probable value in the 1σ range based
on the data. By looking at both Table II and Fig. 4, we con-
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FIG. 5. This figure shows the rms values of the bias for the shown fitters, derived from fitting pseudo-data generated by the four smeared
Abbott1, Abbott2, Parker, and SOG models (Sec. VA). The error bars reflect the effects of the bin-by-bin total uncertainties of Gd

C (Sec. IIIA).

clude that although the smearing method used with limited
models cannot precisely reflect the behavior of other models,
it can exhibit more comprehensively how a fitter controls the
bias.

VI. CONCLUSIONS AND OUTLOOK

In this section we summarize and conclude on our findings
exhibited in the paper (including both Appendices B and C).
Also, we briefly discuss the prospects that this paper may have
in the future.

Figure 5 shows the rms values of the bias for the given
five fitters, derived from fitting pseudo-data generated by the
four smeared Abbott1, Abbott2, Parker, and SOG models (see
Sec. V A), along with the bin-by-bin total uncertainties (see
Sec. III A). According to the definition of the robustness dis-
cussed in Sec. III B, the five fitters are all robust (bias[rms] <

σstat). Although the Rational (1,1) and fRational (1,3) have
larger bias values compared to those of the other three fitters,
they can control the RMSE better because their variances are
smaller than those of the others.

By comparing the bias and variance (σtotal) in that figure,
our understanding is that the RMSE (overall uncertainty) in
the DRad experiment will be dominated by the bin-by-bin
uncertainties rather than by the bias obtained in the fitting
procedure. Based on our results, we propose to use the
fRational (1,3) as the primary fitter in the deuteron charge ra-
dius extraction for this planned experiment, noting that it also
has a better asymptotic behavior compared to that of Ratio-
nal (1,1). Nonetheless, the fRational (1,3) is determined based
on the data-driven method. Since it only has constraints from
deuteron charge form-factor data at high Q2, its extrapolation
may not be very accurate, when it is used for fitting generated
pseudo-data in a lower-Q2 range. Once we have more data at
low Q2, we can better determine the fixed parameters in this
fitter, in which case we will be able to extract the rd value
more precisely. This might be done, for example, with possi-
ble upcoming new data from the A1 Collaboration at Mainz
Microtron (MAMI). On the other hand, if we consider the
results shown in Figs. 3, 5, 7, and 9 together, in this case we
find that (i) the fRational (1,3) and (ii) the modRational (1,1)
are currently our best fitters for the robust extraction of rd .
In addition, we note that the above-mentioned conclusions
are anchored upon our studies for the DRad experiment. One
should first account for the tradeoff between the bias and

variance, then select the best fitter stemming from the latest
estimation of experimental uncertainties. If it turns out that
the bin-by-bin uncertainties during the DRad experiment are
much smaller (at least ten times) than what we have already
evaluated, in this case we may search for another potentially
robust fitter, which can minimize the bias and simultaneously
will also have good asymptotics.

The radius extraction methods discussed so far depend
on specific functional forms. In [52], different extraction of
the charge radius of the proton is discussed. The so-called
cubic spline method is used to interpolate form-factor data,
by which a smooth function is obtained afterwards. Then the
radius could be extracted with an extrapolation using that
smooth function. This method may also be applicable by us
for the robust extraction of the deuteron charge radius in the
near future, as an independent way for cross checking our
results coming from the ansatz provided in this paper.
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APPENDIX A: DETAILS ON THE ABBOTT1,
ABBOTT2, PARKER, AND SOG MODELS

In this Appendix we concisely discuss the parametrizations
describing the Abbott1, Abbott2, Parker, and SOG models.

1. Parametrization I (Abbott1 model) [20]

In the first parametrization, the charge form factor is repre-
sented by

Gd
C (Q2) = GC,0 ×

[
1 −

(
Q

Q0
C

)2]
×

[
1 +

5∑
i=1

aCi Q2i

]−1

,

(A1)

where GC,0 is a normalizing factor fixed by the deuteron
charge, and Q0

C and aCi are all together six free parameters
that can be found on the website from [20].
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2. Parametrization II (Abbott2 model) [20,22]

The second parametrization is given by

Gd
C (Q2) = G2(Q2)

(2τ + 1)

[(
1 − 2

3
τ

)
g+

00 + 8

3

√
2τ g+

+0

+2

3
(2τ − 1)g+

+−

]
, (A2)

where

g+
00 =

n∑
i=1

ai

α2
i + Q2

, g+
+0 = Q

n∑
i=1

bi

β2
i + Q2

,

g+
+− = Q2

n∑
i=1

ci

γ 2
i + Q2

. (A3)

G(Q2) in Eq. (A2) is a dipole form factor given by

G(Q2) =
(

1 + Q2

δ2

)−2

, (A4)

where δ is a parameter of the order of the nucleon mass.
The 24 parameters ai, bi, ci, α

2
i , β

2
i , γ 2

i can also be found
on the website of [20]. They are constrained by the following
12 relations:

n∑
i=1

ai

α2
i

= 1,

n∑
i=1

bi = 0,

n∑
i=1

bi

β2
i

= 2 − μd
M

2
√

2Md

,

n∑
i=1

ci = 0,

n∑
i=1

ciγ
2
i = 0,

n∑
i=1

ci

γ 2
i

= 1 − μd
M − μd

Q

4M2
d

,

α2
n = 2Md μ(α), α2

i = α2
1 + α2

n − α2
1

n − 1
(i − 1),

for i = 1, . . . , n, (A5)

where the parameter μ(α) has the dimension of energy and is
of the order of �QCD ∼ 0.2 MeV. In total, there are 12 free
parameters in this model.

3. Parametrization III (Parker model) [23]

The third parametrization is essentially based upon the
remade fits from the first two parametrizations, however, with
constraints to prevent singularities in the functional forms of
the Gd

C , Gd
Q, and Gd

M form factors:

Gd
C (Q2) = GC,0 ×

[
1 −

(
Q

Q0
C

)2]
×

[
5∏

i=1

(1 + |ai| Q2)

]−1

,

(A6)

where the values of GC,0 and Q0
C are the same as the ones

shown in Eq. (A1). ai are all together five free parameters
determined from fitting the data from the website of [20].

4. Parametrization IV (SOG model) [20,24,25]

The fourth parametrization utilizes the SOG method, by
which Gd

C (Q2) reads as

Gd
C (Q2) = GC,0 × e− 1

4 Q2γ 2 ×
N∑

i=1

Ai

1 + 2R2
i /γ

2
×

[
cos(QRi ) + 2R2

i

γ 2

sin(QRi )

QRi

]
. (A7)

In the configuration space this parametrization corresponds to
a density ρ(s) given5 in terms of a sum of Gaussians located
at arbitrary radii Ri, with amplitudes Ai fitted to the data and
with a fixed width γ , where γ

√
3/2 = 0.8 fm.

In our fitting we take N = 12. There are 11 free fitting
parameters: ten Gaussian amplitudes A1, A2,..., A10 that cor-
respond to ten Ri < 4 fm, and one overall amplitude A11

corresponding to the range of R11 from 4 to 10 fm. For ob-
taining the normalization, there is one more amplitude A12

with R12 = 0.4 fm. All the amplitudes satisfy the condition∑12
i=1 Ai = 1. To determine the parameters Ai, a set of Ri is

randomly generated in the range mentioned above, then the
function in Eq. (A7) is fitted to the Gd

C data set from Table
1 of [20]. The sets of Ri are generated repeatedly until the
χ2 value is minimized and converged. With 11 fixed Ri and
11 free parameters Ai, a fit to the data set is obtained with
χ2/NDF � 1.63 [25].

APPENDIX B: A FITTER TEST BASED UPON USING
THEORY-BASED MODELS

Except for the four data-based deuteron charge form-factor
models under consideration, we also test some theory-based
models by following the same method developed in [26]. The
data generation and fitting procedure is already described in
Sec. III A with statistical fluctuations included. Here we use
the following Gd

C models as additional generators.
(i) The IA (relativistic impulse approximation), IAMEC

(relativistic IA plus meson exchange current), RSC (relativis-
tic IA with Reid Soft Core), and RSCMEC (relativistic IA
plus meson exchange current with Reid Soft Core) are the
parametrizations to the theoretical calculations discussed in
[53].

(ii) The quadratic and cubic models are the second- and
third-order polynomial fits to theoretical points calculated by
using the model in [54], where the parameters in these models
are given in Table 13 of [54].

(iii) The Gaussian, monopole, and dipole are naive mod-
els that imitate possible approximations to the would-be true
form-factor function (from Nature) at Q2 → 0. Their func-
tional forms can be found in [26].

Figure 6 shows the statistical variance, bias, and their
quadratic sum (RMSE) from fitting various fitters with
pseudo-data (including statistical fluctuations) generated by
11 different deuteron models. One can see that the bias is

5The density ρ is a function of the distance s, which is the distance
of the nucleons to the deuteron center of mass.
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FIG. 6. The variance (rms value) and bias obtained from fitting
the given fitters with pseudo-data (including statistical fluctua-
tions) generated by 11 different deuteron models. The RSCMEC,
RSC, IAMEC, and IA models are discussed in [53]. Both Ab-
bott parametrizations are taken from [20,22]; the Parker and SOG
parametrizations are taken from [23] and [24], respectively. The
dipole, monopole, and Gaussian are described by simple models. The
quadratic/cubic models are taken from [54]. The RMSE calculation
here follows [26].

much larger than the statistical variance. In Table III we show
the calculated χ2 values [from Eq. (12)] for all the models
from Fig. 6 using the available data points from Table 1 of
[20], and find that those theory-based models have large dis-
crepancies with the experimental data. We conclude that the
method to test the robustness in the charge radius extraction
of the proton from [26] is not suitable for the deuteron’s case
in the DRad kinematics. When we investigate the properties
of the fitters for DRad, we would need to have more data to
decide whether we should take any of these existing theory-
based models into consideration.

TABLE III. The χ 2 value, obtained from Eq. (12),
for each of the 11 models using the available data
points from Table 1 of [20].

Models χ 2

IA 183.09
IAMEC 295.57
RSC 125.74
RSCMEC 196.71
Abbott1 19.77
Abbott2 38.59
Parker 22.94
SOG 17.88
Gaussian 668.59
Monopole 1.14 × 105

Dipole 5.83 × 103

Quadratic 2.65 × 1012

Cubic 1.15 × 1015

APPENDIX C: SEARCHING FOR OTHER ROBUST
FITTER CANDIDATES

1. The modified Rational (1,1) function

Except for the fRational (1,3) fitter function discussed in
the paper, for the deuteron charge radius extraction we have
also studied a modified and generalized version of Ratio-
nal (1,1), which we designate as modified Rational (1,1) [or
simply as modRational (1,1)]:

fmodified Rational (1,1)(Q
2) ≡ modRational (1, 1)

= p02 Gd
C (Q2) = p02

(
1 + p(a′ )

1 Q2
)A

(
1 + p(b′ )

1 Q2
)B ,

(C1)

where p02 is a floating normalization parameter, and p(a′ )
1

and p(b′ )
1 are two free fitting parameters. To control the

variance, we need to limit the number of the free parame-
ters. The deuteron rms charge radius is calculated by rd =√

6(B × p(b′ )
1 − A × p(a′ )

1 ). It is obvious that Eq. (C1) reduces
to Eq. (7) at A = 1 and B = 1. Both powers A and B can be
fixed and given by different methods that we discuss below.

To search for the best combination of A and B in Eq. (C1),
for the purpose of extracting rd robustly within the scope of
the data-based models, we use a scanning approach. In this
approach, A and B (each) are varied from 0 to 10 with the step
equal to 0.1, and the fitter is fitted with the pseudo-data gener-
ated by the four models discussed in Appendix A in the DRad
kinematic range of 2 × 10−4 < Q2 < 0.05 (GeV/c)2. Using
the scanning approach, we obtain A = 3.0–4.2 and B = 0.8 to
be the best A range and B value to minimize the bias.

Nonetheless, the outlined scanning method is model de-
pendent, which is limited by the number of the given charge
form-factor models. In that case the fewer the reliable models
are, the higher the model dependency is. In order to avoid
this issue, we have also tried a data-driven method described
in Sec. IV B. For the modRational (1,1), when A and B are
also considered as free parameters, there are in total four free
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FIG. 7. The upper plot shows the Rational (1,1), fRational (1,3),
modRational (1,1) (with A = 3.4 and B = 0.8), and fmodRa-
tional (1,1) (with A = 3.486 68 and B = 0.756 00) obtained from
fitting the pseudo-data generated by the Abbott1 model [20], which
for comparison are overlaid with the black colored data points listed
in Table 1 of [20]. The color coding is displayed in the legends, where
the CF (3) and Rational (1,2) are the same and described by the two
asymptotic green dotted lines. The lower plot shows the residual
points for these fitters, where “the residual” means the difference
between Gd

C[fit] described by the fitters and Gd
C[data] from the data.

parameters. We use this fitter for fitting the form-factor data at
the high-Q2 region listed in Table 1 of [20]—which gives A =
3.486 68 ± 0.015 68 and B = 0.756 00 ± 0.113 13—then fix
these values for fitting the pseudo-data in the low-Q2 range
of the DRad kinematics. In this case we will have the fixed
modified Rational (1,1) [or simply the fmodRational (1,1)]:

ffixed modified Rational (1,1)(Q
2) ≡ fmodRational (1, 1)

= p02

(
1 + p(a′ )

1 Q2
)A,fixed

(
1 + p(b′ )

1 Q2
)B,fixed , (C2)

where the uncertainties in the fixed parameters are taken also
into account when we calculate the bias.

To compare the differences between the Rational (1,1),
fRational (1,3), modRational (1,1), and fmodRa-

FIG. 8. The Rational (1,3) (red curve) fitted with the pseudo-data
generated by Eq. (C3) (black points).

tional (1,1) in the Abbott1/Abbott2 model range [from
3 × 10−2 to 1.5 (GeV/c)2], all the functions are plotted in
this range. As an example, we pick up fixed values A = 3.4
and B = 0.8 in the modRational (1,1) in Eq. (C1). The
parameters in these different fitters are determined by fitting
pseudo-data generated from the Abbott1 model in the DRad
range. The results from the Abbott2, Parker, and SOG models
are quite similar, and are not shown here. As shown in Fig. 7,
except for the Rational (1,1), the other fitters show good
asymptotic behavior in the high-Q2 range.

2. Similarity of the fitters modRational (1,1) and Rational (1,3)

The modRational (1,1) fitter lacks a clear physical mean-
ing. Meanwhile, one can show that the functional form of
the modRational (1,1) is actually similar to the Ratioanl (1,3).
This could be demonstrated if we started with the fitted mod-
Rational (1,1) for generating a set of Gd

C pseudo-data, and
then used the Rational (1,3) for fitting this set of generated
pseudo-data. Thereby, we have the following steps.

(i) The modRational (1,1) with A = 3.4 and B = 0.8 from
Eq. (C1) is used to fit pseudo-data generated by the Abbott1
model [20]. The fitted function comes out to be the following:

modRational (1, 1) = (1 − 0.045 678 5 Q2)3.4

(1 + 0.718 695 Q2)0.8 , (C3)

where the dimension of Q2 is in fm−2.
(ii) To generate a set of Gd

C pseudo-data with reasonable
bins and uncertainties, we choose both the DRad binning with
its simulated statistical uncertainty and the Abbott binning
from Table 1 of Ref. [20]. In total, there are 82 pseudo-data
points that are generated by the function in Eq. (C3), in the
range of Q2 = 0.006–21.344 fm−2.

(iii) The Rational (1,3) function as shown in Eq. (10) is
used to fit those pseudo-data.

By fulfilling the above steps, we present the result in Fig. 8,
where the black points are the pseudo-data points generated
from Eq. (C3), and the red curve is a fitted Rational (1,3). This
figure shows that the modRational (1,1) has a very similar
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FIG. 9. This figure shows the rms values of the bias for the shown fitters, derived from fitting pseudo-data generated by the four smeared
Abbott1, Abbott2, Parker, and SOG models (Sec. VA). The error bars reflect the effects of the bin-by-bin total uncertainties of Gd

C (Sec. IIIA).

behavior as the Rational (1,3) in the range of Q2 < 21.5 fm−2

or equivalently of Q2 < 0.84 (GeV/c)2.
Finally, we wish to briefly discuss Fig. 9, which shows the

rms values of the bias for the given four fitters, derived from
fitting pseudo-data generated by the four smeared Abbott1,
Abbott2, Parker, and SOG models (see Sec. V A), along with
the bin-by-bin total uncertainties (see Sec. III A). For the
modRational (1,1), the results of various tested combinations
with A = 3.0–4.2 and B = 0.8 are stable inside the A range.
As shown in this figure, all the fitters are robust (bias[rms] <

σstat) based on the definition in Sec. III B. The RMSE (overall
uncertainty) values from the Rational (1,1), fRational (1,3),
and modRational (1,1) are similar, which means that the mod-
Rational (1,1) can also be considered as a good fitter candidate
for the deuteron charge radius extraction. However, taking
also into account the Gd

C behavior that we observe in Figs. 3
and 7, we consider both fRational (1,3) and modRational (1,1)
as the best two fitters for the robust extraction of rd in the
DRad experiment because the Rational (1,1) drops out in this
combined picture.
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