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Dispersive evaluation of the Lamb shift in muonic deuterium from chiral effective field theory
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We merge the dispersive relation approach and the ab initio method to compute nuclear structure corrections
to the Lamb shift in muonic deuterium. We calculate the deuteron response functions and corresponding
uncertainties up to next-to-next-to-next-to-leading order in chiral effective field theory and compare our results
to selected electromagnetic data to test the validity of the theory. We then feed response functions calculated
over a wide range of kinematics to the dispersion-theory formalism and show that an improved accuracy is
obtained compared to that with the use of available experimental data in the dispersive analysis. This opens
up the possibility of applying this hybrid method to other light muonic atoms and supplementing experimental
data with ab initio theory for kinematics where data are scarce or difficult to measure with the goal of reducing
uncertainties in estimates of nuclear structure effects in atomic spectroscopy.
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I. INTRODUCTION

In the past 10 years, Lamb shift measurements on muonic
atoms have enabled the extraction of the charge radius of
the proton and the deuteron with unprecedented precision.
Inconsistencies with measurements performed on electronic
systems have emerged, leading to the so-called “proton-radius
puzzle” [1] and the subsequent “deuteron-radius puzzle”
[2]. At least for the proton, recent experimental results
[3,4] seem to indicate that these differences are likely due
to an underestimation of experimental uncertainties and
systematics.

Key to the success of muonic atom experiments is a pre-
cise knowledge of nuclear structure corrections due to the
two-photon exchange diagram. The calculation of two-photon
exchange in light muonic atoms has attracted the interest of
various theorists, who have devised different methods to ap-
proach the problem (see, e.g., Ref. [5] and references therein).
Nuclear structure uncertainties are typically at least one order
of magnitude larger than the experimental precision, so that
any idea to reduce uncertainties substantially helps the exper-
iments to exploit their full potential.

The nuclear polarizability correction to the Lamb shift of
muonic deuterium can be calculated using nucleon-nucleon
(NN) interaction models. An assessment of model uncer-
tainties in such theoretical calculations is of paramount
importance when comparing with experiments. Based on di-
mensional analysis, Friar [6] showed by an analysis in the
zero-range approximation that it might be possible to reduce
the uncertainty to about 1%. Using the well-calibrated phe-
nomenological AV18 NN potential [7], Pachucki performed
a precision calculation of the polarizability correction [8],
arriving at an O(1%) estimate, obtained mainly from atomic
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physics considerations. This calculation was further improved
in Ref. [9] by including mass dependencies beyond the non-
relativistic dipole form as well as the neutron polarizability
contribution. A recent study based on analytic derivations of
the longitudinal structure function in pionless effective field
theory achieved a precision of about 5% [10].

There have recently been two notable advancements in
obtaining model-independent results with rigorous estimates
of uncertainties for the polarizability correction to the Lamb
shift of μD. Hernandez et al. [11–13] have applied chiral
effective field theory (χEFT) to perform rigorous analyses
of statistical and systematic nuclear-structure uncertainties in
theoretical calculations of the μD Lamb shift. Carlson et al.
[14] have performed a fully relativistic dispersive treatment
of the two-photon-exchange (TPE) corrections to the μD
Lamb shift in which the TPE amplitude is given exactly
by the physical elastic and inelastic eD scattering. How-
ever, this fully data-driven approach yielded the rather large
uncertainty of about 35%, mainly due to the scarcity of
data in the most relevant low-energy quasielastic kinematic
regime.

In this work, we build on these two recent achieve-
ments by using χEFT to generate the eD scattering data
that inform the dispersion-relations (DR) analysis to obtain
model-independent results for the μD Lamb shift using only
controlled approximations. It also allows us to validate the
accuracy of the χEFT approach through a comparison with
structure function data in the region where they are available.
χEFT is a low-energy EFT of quantum chromodynamics that
provides a description of hadronic and nuclear phenomena in
terms of nucleons and pions as effective degrees of freedom.
The nuclear Hamiltonian as well as couplings to external
electroweak sources are systematically constructed as per-
turbative expansions in k/�b, where k ∼ mπ is the typical
(low) momentum scale of the process under study and �b is
the scale beyond which the EFT breaks down. In a properly
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formulated EFT, one expects the calculated observables to
inherit this k/�b expansion, which enables us to perform an
order-by-order calculation and use the anticipated size of the
ignored higher-order terms as a measure of the theoretical
uncertainty of the calculation.

Here, we estimate the uncertainty due to higher-order terms
in the χEFT expansion as suggested in Ref. [15] using results
obtained in an order-by-order expansion. For a given observ-
able O, the nuclear physics uncertainty is calculated as

�(O) = max
{
χ4

∣∣O(k0 )
∣∣, χ3

∣∣O(k1 ) − O(k0 )
∣∣,

× χ2
∣∣O(k2 ) − O(k1 )

∣∣, χ ∣∣O(k3 ) − O(k2 )
∣∣}, (1)

where χ = k/�b = mπ/�b is the estimate for the chiral ex-
pansion parameter, and the superscripts indicate the order of
the χEFT calculation, for which we consider corrections to
both currents and interactions appearing at their respective
orders.

II. EVALUATION OF THE RESPONSE FUNCTIONS
IN χEFT

The cross section for the disintegration of an unpolarized
deuteron by an electron of energy ε in the rest frame of
the deuteron can be expressed in the one-photon-exchange

approximation as

d2σ

d� dε′ = σMott

[
(ν2 − q2)2

q4
RL(ν, q)

−
(

ν2 − q2

2q2
− tan2 θ

2

)
RT (ν, q)

]
. (2)

Here, σMott is the Mott cross section, given by

σM = α2
em

4ε2

cos2 θ
2

sin4 θ
2

(3)

and

ν = ε − ε′, (4)

where ε′ is the energy of the scattered electron in the labora-
tory frame at an angle θ , with

q2 = ε2 + ε′2 − 2
√

ε2 − m2
e

×
√

ε′2 − m2
e cos θ − 2m2

e , (5)

q being the three-momentum transfer, q = |q|. RL and RT are
the inelastic response functions of the electric charge and the
transverse electromagnetic current operators, defined as

RL(ν, q) = 1

3

∑
sd

∑
S′S′

z

∑
T ′

∫
d3 p

(2π )3

1

2
δ(ν + Md − E+ − E−)

∣∣〈ψp,S′S′
z,T

′0
∣∣ρ∣∣ψd,sd

〉∣∣2
(6)

and

RT (ν, q) = 1

3

∑
sd

∑
S′S′

z

∑
T ′

∫
d3 p

(2π )3

1

2
δ(ν + Md − E+ − E−)

∑
λ=±1

∣∣〈ψp,S′S′
z,T

′0
∣∣ jλ

∣∣ψd,sd

〉∣∣2
. (7)

Here, ρ = j0 is the charge operator and jλ are the spherical
components of the three-vector current operator j at four-
momentum transfer (ν, q). The initial state is the deuteron
ground state, denoted |ψd,sd 〉, where sd is the projection of
the total angular momentum, whereas the final state, denoted
|ψp,S′S′

z,T
′T ′

z
〉, is the pn scattering state with the relative mo-

mentum, total isospin, isospin projection, total spin, and spin
projection given by p, T ′, T ′

z , S′, and S′
z, respectively. In

the rest frame of the deuteron, the energies of the final-state

nucleons are E± =
√

(q/2 ± p)2 + m2
N . Throughout this pa-

per, we use mN to denote the isospin-averaged nucleon mass
in the relevant NN isospin channel. The deuteron mass is
denoted Md .

The cross section in Eq. (2) can equivalently be expressed
as

d2σ

d� dε′ = σMott ×
[

2

Md
tan2 θ

2
F1(ν, Q2) + 1

ν
F2(ν, Q2)

]
(8)

in terms of the unpolarized response functions F1 and F2,
which are better suited for a dispersive calculation, as ex-
plained in Sec. IV. These are related to the response functions
RL and RT , which were defined in terms of the Coulomb and

transverse operators, by

F1(ν, Q2) = Md

2
RT (ν, q), (9)

F2(ν, Q2) = ν

2

Q2

Q2 + ν2

[
RT (ν, q) + 2Q2

Q2 + ν2
RL(ν, q)

]
,(10)

where Q2 = q2 − ν2 is the virtuality of the exchanged photon.
The nuclear wave functions in Eqs. (6) and (7) are ob-

tained by solving the Lippmann-Schwinger equation for the
NN system with the χEFT interactions in Ref. [16]. The
electromagnetic current operators we use were first derived
in χEFT in Refs. [17–19]. They can be expressed as sums
of one-body (1B) and two-body (2B) operators that act on
nucleonic degrees of freedom. In principle, in a consistent
χEFT calculation, the nucleon form factors that feature in
these current operators should be calculated to the same order
in χEFT at which the operators are truncated. However, the
convergence of these nucleon structure corrections is rather
slow [20]. It has therefore become a common practice to
use phenomenological form factors to represent the sum of
the nucleon structure diagrams, which makes the calcula-
tions of nuclear systems less sensitive to inaccuracies in the
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single-nucleon sector [21]. If not otherwise explicitly indi-
cated, we use the recent parametrization from Ref. [22] for
the proton and neutron form factors Gp/n

E/M (Q2), which incor-
porates the small proton radius obtained from the muonic
hydrogen measurement [1].

As in Ref. [23], we perform a χEFT expansion of the
electromagnetic operators ρ and j up to order k3, which

corresponds to next-to-next-to-leading order (N2LO) in the
interactions where there are no contributions at order k1. The
charge operator ρ first appears at the leading (k0) order and
is purely 1B up to the χEFT order we consider in this work.
It is given by the sum of isoscalar and isovector components,
ρ = ρS + ρV . The matrix elements of these operators between
eigenstates of two-nucleon relative momenta can be written as

〈p′|ρS/V (qμ)|p〉 = GS/V
E (Q2)

1√
1 + Q2

4m2
N

τ
S/V
1 δ(3)

(
p′ − p − q

2

)
+ (1 ↔ 2). (11)

For the isoscalar case, the isospin operator τ S
n is one-half times the identity operator, whereas the isovector isospin

operator τV
n is τn,z/2. The electric form factors GS/V

E are related to the proton and neutron electric form factors by
GS/V

E (Q2) = Gp
E (Q2) ± Gn

E (Q2).
The 1B current operator j first contributes at order k1. It consists of the so-called convection and spin-magnetization currents,

〈p′|jS/V
1B (qμ)|p〉 =

(
GS/V

E (Q2)
p′ + p
2mN

− i GS/V
M (Q2)

q × σ1

2mN

)
τ

S/V
1 δ(3)

(
p′ − p − q

2

)
+ (1 ↔ 2). (12)

The 2B current operators are purely isovector up to order k3, which is the highest order we consider here. They are given by
the sum of the so-called seagull and pion-in-flight diagrams, which can be written as

〈p′|j2B(qμ)|p〉 = −i
g2

A

4 f 2
π

(
σ1 − k1

σ1 · k1

m2
π + k2

1

)
σ2 · k2

m2
π + k2

2

(τ1 × τ2)z δ(3)(k1 + k2 − q) + (1 ↔ 2), (13)

where k1,2 = p′
1,2 − p1,2, fπ = 92.3 MeV is the pion decay constant, and gA = 1.2723 is the axial coupling constant [24].

III. COMPARISON TO ELECTROMAGNETIC DATA

Before using χEFT response functions for evaluation of
the Lamb shift in the dispersion formalism, we compare our
results obtained using NN interactions from Ref. [16] with
deuteron photo- and electrodissociation experiments. To this
end, we first calculate the photodissociation cross section,

σγ d (ν) = 2π2

ν
αRT (ν, ν), (14)

both in the impulse approximation, which uses only one-body
currents (1B), as well as with the one- and two-body currents
explicitly included (1B + 2B). We also perform a calculation
in the so-called dipole approximation, where effects of 2B
currents are implicitly included via the Siegert theorem [25].

Although current conservation is not strictly satisfied in
a χEFT calculation due to the artifacts of regularization of
the nuclear Hamiltonian, we obtain a very good agreement
between the Siegert calculation and the one that explicitly in-
cludes one- and two-body currents. Figure 1(a) clearly shows
that we achieve current conservation to a very good approx-
imation. In Fig. 1(b), we show the excellent agreement we
obtain with the highly precise experimental photodissociation
world data compiled from Refs. [26,27] with the 1B + 2B
result. The latter includes a theory uncertainty band obtained
using Eq. (1) by varying the chiral orders consistently in the
interactions as well as in the currents. Throughout this work,
uncertainties are estimated for �b = 500 MeV, which corre-
sponds to the cutoff used in the interactions. In Fig. 1, we used
currents up to order k3 and the N2LO potential, which also
includes all contributions to the NN interaction up to order k3.

Such a consistent truncation of the expansions in current and
interaction is a necessary condition for current conservation
to be formally satisfied. Subsequent results, unless otherwise
stated, are obtained with the N3LO potential, which is more
widely used in the literature. Such calculations, which we call
order k3+, contain order k4 effects in the NN interactions but
not in the currents and agree with the order k3 results well
within the uncertainties given by Eq. (1).

To provide another reference point, the photodissociation
cross section and the transverse response function can be re-
lated to the dipole polarizabilities of the deuteron. The famous
Baldin sum rule [28] connects σγ d with the sum of the electric
αE1 and magnetic βM1 polarizabilities of the deuteron,

1

2π2

∫ ∞

νthr

dν
σγ d (ν)

ν2
= αE1 + βM1, (15)

whereas βM1 is related to the slope of the transverse response
function at Q2 = 0 via [29]

βM1 = 2α

Md

∫ νmax(0)

νthr (0)

dν

ν

d

dQ2
F1(ν, Q2)

∣∣
Q2=0. (16)

Equation (16) neglects the recoil corrections in the integration
limits, as well as the contributions of the deuteron and nucleon
charge radii. The neglected contributions turn out to be very
small for the deuteron (at the level of �1% [29]). Further-
more, since the theoretical result for σγ d (ν) only contains the
photodissociation contribution (omitting the pion production
and other higher-energy channels), the evaluation of Eq. (15)
will also neglect the nucleon contribution to the deuteron po-
larizabilities (which is also expected to be at the �1% level).
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FIG. 1. Deuteron photodissociation cross section. (a) 1B and
1B + 2B results in comparison to the Siegert operator. (b) 1B + 2B
results with the corresponding theoretical uncertainty band compared
against data from Refs. [26,27].

We now present our numerical results starting with the
Baldin sum rule. Our calculation predicts

αE1 + βM1 = 0.698(18) fm3, (17)

which coincides with the empirical result [30] αE1 + βM1 =
0.69(0.04) fm3, as one expects given the good description of
the photodissociation cross section.

Together with the Baldin sum rule, the sum rule for the
magnetic polarizability, Eq. (16), yields

αE1 = 0.626(18) fm3,

βM1 = 0.0715(15) fm3. (18)

The quoted uncertainties both in the Baldin sum rule and in
the values of αE1 and βM1 are estimates of higher-order terms
in the χEFT expansion.

The value of αE1 compares well with the empirical extrac-
tion of Ref. [30], αE1 = 0.61(0.04) fm3. It is also instructive
to compare the dominant dipole contribution to αE1 calculated
via the dipole sum rule [31,32],

α
dipole
E1 = 1

2π2

∫ ∞

νthr

dν
σ

dipole
γ d (ν)

ν2
, (19)

where only the dipole operator contribution is retained in the
cross section. Evaluating this sum rule, we obtain

α
dipole
E1 = 0.6340(10) fm3, (20)

FIG. 2. Electrodissociation cross section of the deuteron with
data from (a) Ref. [33] at ε = 292.8 MeV, θ = 60◦, (b) Ref. [34]
at ε = 175 MeV, |q| = 206 MeV, and (c) Ref. [35] at ε =
146.9 MeV, θ = 135◦.

in agreement with the result obtained averaging various phe-
nomenological potentials [32], α

dipole
E1 = 0.6328(17) fm3.

In contrast to αE1, which is dominated by the long-range
dipole contribution, the deuteron magnetic polarizability βM1

is affected by shorter-range mechanisms through the magnetic
transition, as pointed out in Ref. [30], whose model gives
βM1 = 0.071(6) fm3. Our prediction for βM1 is in agreement
with this, albeit with a significantly smaller uncertainty esti-
mate.

We now turn our attention to the electrodissociation
cross section of the deuteron calculated using Eq. (2). Fig-
ure 2 shows this cross section at various kinematics, along
with experimental data from Refs. [33–35]. An excellent
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FIG. 3. χEFT results (blue band) for the electrodissociation
cross section of the deuteron along with the theoretical calcula-
tion from Ref. [37] (yellow line) and data from Ref. [38] at ε =
222.6 MeV, θ = 157◦.

agreement is obtained for both the final-state interaction
effects near threshold and the quasielastic peak, with the the-
oretical precision surpassing the experimental uncertainty.

In Fig. 3, we show the electrodissociation cross section
calculated at kinematics that correspond to low values of the
excitation energy Ex = ν − q2/(2Md ). In these kinematics,
the data suffer from detector resolution issues as evident from
the leakage of data into the kinematically forbidden values,
Ex < Bd , where Bd = 2.224 46 MeV is the binding energy of
the deuteron [36]. A closer comparison between theory and
experiment would therefore require convolving the theoreti-
cal curves with the detector resolution, which has not been
performed here. However, we do note the excellent agree-
ment between our χEFT results and theoretical calculations of
Ref. [37] performed with AV18 interactions and phenomeno-
logical one- and two-body currents.

IV. DISPERSION THEORY FORMALISM

We briefly review the relativistic DR formalism used in
the evaluation of the nuclear structure contribution to the TPE
corrections (see Refs. [14,29,39] for details). Our strategy is
to then feed the response functions calculated in χEFT to the
DR analysis.

The nuclear structure TPE contribution to the Lamb shift
at O(α5) is related to the spin-independent part of the forward
double virtual Compton (VVCS) tensor,

T μν = i

8πMd

∫
d4x eiqx〈p|T ( jμ(x) jν (0))|p〉

=
(

−gμν + qμqν

q2

)
T1(ν, Q2) + 1

M2
d

(
pμ − p · q

q2
qμ

)

×
(

pν − p · q

q2
qν

)
T2(ν, Q2). (21)

Here, q2 = −Q2, ν = p · q/Md , and T1,2(ν, Q2) are the two
scalar VVCS amplitudes. The dependence of the amplitude on

the deuteron spin is trivial, ∝ εd · ε∗
d ′ , and is omitted. The TPE

contribution to the energy of the (n�) atomic level is given in
terms of T1,2(ν, Q2) by

�En� = 8α2m

π
[φn�(0)]2

∫
d4Q

× (Q2 − 2ν2)T1(ν, Q2) − (Q2 + ν2)T2(ν, Q2)

Q4(Q4 − 4m2ν2)
,

(22)

where m is the lepton mass, |φn�(0)|2 = m3
r α

3/(πn3)δ�0 is
the atomic wave function squared at the origin, and mr =
mMd/(m + Md ) is the reduced mass.

The amplitudes T1,2(ν, Q2) are even functions of ν, and
their imaginary parts are connected by the optical theorem to
the unpolarized structure functions F1,2(ν, Q2) through

ImT1(ν, Q2) = 1

4Md
F1(ν, Q2), (23)

ImT2(ν, Q2) = 1

4ν
F2(ν, Q2). (24)

It is convenient to separate the elastic contribution to the
structure functions,

F el
1 (ν, Q2) = 1

3 (1 + τd )G2
M (Q2) δ(1 − xd ), (25)

F el
2 (ν, Q2) = [

G2
C (Q2) + 2

3τd G2
M (Q2)

+ 8
9τ 2

d G2
Q(Q2)

]
δ(1 − xd ), (26)

where GC , GM , and GQ are the deuteron charge, mag-
netic, and quadrupole form factors, τd = Q2/(4M2

d ), and xd =
Q2/(2Md ν). These contributions correspond to the pole parts
of the VVCS amplitudes,

T1,2(ν, Q2) = T pole
1,2 (ν, Q2) + T nonpole

1,2 (ν, Q2), (27)

where the poles lie at ν = ±Q2/(2Md ) and are expressed
through the deuteron form factors. Upon subtracting the point-
like deuteron and the finite-size effects, T pole

1,2 (ν, Q2) provide
the elastic contribution to the energy shifts.

From this point onward we assume that the pole parts
are subtracted from T1,2(ν, Q2) and, correspondingly, that
F1,2(ν, Q2) contain only the inelastic contributions. Consider-
ing the known high-energy behavior of the structure functions
[40,41], one obtains the DR espressions for T1(ν, Q2) and
T2(ν, Q2)—a once-subtracted one and an unsubtracted one,
respectively,

ReT1(ν, Q2) = T̄1(0, Q2) + ν2

2πMd

∫ ∞

νthr (Q2 )

dω

ω

F1(ω, Q2)

ω2 − ν2
,

ReT2(ν, Q2) = 1

2π

∫ ∞

νthr (Q2 )
dω

F2(ω, Q2)

ω2 − ν2
, (28)

where νthr (Q2) = Ed + (E2
d + Q2)/(2Md ) is the inelastic

threshold, and T̄1(0, Q2) is the subtraction function. The total
TPE contribution is thus split into three parts—elastic, in-
elastic, and subtraction. Using the DR in Eqs. (28), as well
as their equivalents for the pole parts, one arrives at the
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following expressions for the three terms, with the contribu-
tions of the pointlike charge and charge radius of the deuteron

removed from the elastic part to avoid double-counting
[14]:

�Ē el
n� = mα2

Md
(
M2

d − m2
) [φn�(0)]2

∫ ∞

0

dQ2

Q2
×

{
2

3
G2

M (Q2)(1 + τd )γ̂1(τd , τl )

−
[

G2
C (Q2) − 1

τd
+ 2

3
G2

M (Q2) + 8

9
τd G2

Q(Q2)

]
γ̂2(τd , τl ) + 16M2

d

Md − m

Q
G′

C (0)

}
, (29)

�E inel
n� = − 2α2

Md m
[φn�(0)]2

∫ ∞

0

dQ2

Q2

∫ ∞

νthr (Q2 )

dν

ν

[
γ̃1(τ, τl )F1(ν, Q2) + Mdν

Q2
γ̃2(τ, τl )F2(ν, Q2)

]
, (30)

�Ē subt
n� = 4πα2

m
[φn�(0)]2

∫ ∞

0

dQ2

Q2

γ1(τl )√
τl

[T̄1(0, Q2) − T̄1(0, 0)]. (31)

Here, we denote τ = ν2/Q2, τl = Q2/(4m2), and the weight-
ing functions are defined as

γ1(x) = (1 − 2x)
√

1 + x + 2x3/2, (32)

γ2(x) = (1 + x)3/2 − x3/2 − 3

2

√
x, (33)

γ̂1,2(x, y) = γ1,2(x)√
x

− γ1,2(y)√
y

, (34)

γ̃1(x, y) =
√

x γ1(x) − √
y γ1(y)

x − y
, (35)

γ̃2(x, y) = γ̂2(x, y)

y − x
. (36)

The expressions in Eqs. (29)–(31) follow from Eqs. (22)–
(28) upon applying a Wick rotation ν = iq0, introducing
four-dimensional hyperspherical coordinates, and, finally,
integrating over the hyperspherical angles. Note that the
amplitude T̄1(0, Q2) in the subtraction term also gets an ad-
ditional subtraction to remove the effects of the pointlike
deuteron (the Thomson term).

A. Subtraction

In general, the subtraction contribution presents a non-
trivial problem since the general Q2 dependence of the
subtraction function cannot be directly related to observable
quantities, and calculating this term may involve a significant
deal of modeling (see the relevant discussion for the hydrogen
Lamb shift in Refs. [39,42]). Fortunately, the case of com-
posite nuclei features two very different characteristic energy
scales: nuclear, of the order of a few MeV, and hadronic,
of the order of a (few) hundred MeV. They correspond to
whether the photons probe the nuclear structure (starting from
the first inelastic threshold) or the internal structure of the
nucleons within the nucleus (starting from the pion production
threshold). Since typical nuclear cross sections fall off rather
rapidly as the energy transfer increases past a certain point (of
a typical nuclear scale), one can expect that there is a region
of photon energies where the nuclear structure response is
already very small, whereas the nucleon structure has not yet
started to be probed. This is indeed universally seen in, e.g.,

nuclear photoabsorption data, and this manifest separation
of scales allows one to write a sum rule for the subtraction
amplitude that selects the nuclear contribution to the structure
functions [29]:

T̄1(0, Q2) − T̄1(0, 0)

= 1

2πMd

∫ νmax(Q2 )

νthr (Q2 )

dν

ν
[F1(ν, Q2) − F1(ν, 0)], (37)

where νmax(Q2) has to be chosen in the above region of in-
termediate energies where the photoabsorption cross sections
are small. With the sum rule of Eq. (37), the subtraction
contribution to the Lamb shift can then be expressed in terms
of the structure function F1 as

�Ē subt
n� = 8α2

Md
[φn�(0)]2

∫ ∞

0

dQ

Q2
γ1(τl )

×
∫ νmax(Q2 )

νthr (Q2 )

dν

ν
[F1(ν, Q2) − F1(ν, 0)]. (38)

In practice, we use

νmax(Q2) = νthr (Q
2) + �ν

= Q2 + E2
d

2Md
+ Ed + �ν, (39)

with �ν set to mπ . Note that the same upper limit is used in
the calculation of �E inel; we thus separate the energy region
corresponding to the internal structure of the nucleons in the
inelastic contribution, following Ref. [14]. The contribution
of the hadron structure to �E inel can be calculated using
empirical data on the deuteron (virtual) photoabsorption at
energies starting from the pion production threshold, as also
done in Ref. [14]. The sensitivity of both the subtraction and
the inelastic contribution to the choice of �ν is practically
negligible in the interval mπ/2 � �ν � mπ , as discussed in
more detail in Sec. V.

B. Longitudinal and transverse terms

It is useful to compare the contributions to �En� with the
conventional longitudinal and transverse contributions. The
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corresponding longitudinal and transverse VVCS amplitudes
are related to the amplitudes T1,2(ν, Q2) through [40]

fT (ν, Q2) = T1(ν, Q2),

fL(ν, Q2) = −T1(ν, Q2) +
(

1 + ν2

Q2

)
T2(ν, Q2), (40)

which can be rearranged as

T1(ν, Q2) = fT (ν, Q2),

T2(ν, Q2) = Q2

Q2 + ν2
[ fL(ν, Q2) + fT (ν, Q2)]. (41)

One can now clearly see that the contribution of T1 is com-
pletely transverse, whereas that of T2 has both a longitudinal
and a transverse part. Note also that in order for these
definitions to be consistent with the usual expectation that
fL(ν, Q2) ∝ Q2 at low Q2, the Thomson term has to be sub-
tracted from T1(ν, Q2).

The imaginary parts of fL,T are related to the longitudinal
and the transverse response functions by

Im fT (ν, Q2) = 1

8
RT (ν, Q2), (42)

Im fL(ν, Q2) = 1

4

Q2

Q2 + ν2
RL(ν, Q2). (43)

It is evident that both fL and fT require a subtraction in
the respective dispersive relations; apart from that, the TPE
contribution to the Lamb shift can be rewritten in terms of
the longitudinal and transverse components as done above.
However, since the set of amplitudes T1 and T2 has better
convergence properties, what we actually want is to decom-
pose the sum of Eqs. (30) and (38) into the longitudinal and
transverse contributions, keeping them written in terms of F1

and F2. This is easily achieved using the relations between
the two sets of VVCS amplitudes. Note that the F2 term in
Eq. (30) only enters the longitudinal part of �E inel

n� , whereas
the F1 terms in Eqs. (30) and (38) appear in both the transverse
and the longitudinal parts. The resulting formulas read

�E inel
n�,L = − 2α2

Md m
[φn�(0)]2

∫ ∞

0

dQ2

Q2

∫ ∞

νthr (Q2 )

dν

ν

[
γ̃L(τ, τl )F1(ν, Q2) + Mdν

Q2
γ̃2(τ, τl )F2(ν, Q2)

]
, (44)

�E inel
n�,T = − 2α2

Md m
[φn�(0)]2

∫ ∞

0

dQ2

Q2

∫ ∞

νthr (Q2 )

dν

ν
γ̃T (τ, τl )F1(ν, Q2), (45)

�Ē subt
n�,L/T = 8α2

Md
[φn�(0)]2

∫ ∞

0

dQ

Q2
γL/T (τl )

∫ νmax(Q2 )

νthr (Q2 )

dν

ν
[F1(ν, Q2) − F1(ν, 0)] (46)

for the inelastic contributions and the subtraction contribu-
tions, respectively. The weighting functions that appear here
are

γL(x) = √
1 + x − √

x, (47)

γT (x) = 2x3/2 − 2x
√

1 + x + √
x, (48)

γ̃L,T (x, y) =
√

x γL,T (x) − √
y γL,T (y)

x − y
. (49)

It is straightforward to see that γL(x) + γT (x) = γ1(x) and
γ̃L(x, y) + γ̃T (x, y) = γ̃1(x, y).

Note that this definition of the “longitudinal” part only has
a physical meaning for the sum �E inel

n�,L + �Ē subt
n�,L, namely, the

terms proportional to F1 in this sum cancel the transverse part
of the contribution of F2, making the sum indeed a longitudi-
nal quantity. The sum of the quantities �E inel

n�,T and �Ēn�,T

(each being truly transverse), in turn, gives the transverse
contribution to the nonpole part of �En�.

C. Comparison to Rosenfelder’s method

Here we show that the covariant method used in the present
work is (almost) equivalent to the formalism of Rosenfelder
[47]. We start from Eq. (22) for the TPE contribution, as-
suming that the pole terms are subtracted from T1 and T2.
We furthermore assume that the Thomson term is subtracted
from T1 both in fL and in fT . As argued in Ref. [42], a more

consistent way to subtract the amplitude would be to remove
the Born term instead of just the pole plus Thomson term; the
effect of this additional subtraction, however, would be very
small [of the relative order of αr2

d/(6MαE1) ∼ 10−3], so we
do not consider the possible effect of doing the subtraction
differently in the two methods.

Recalling that the definitions in Ref. [47] differ from those
in Eq. (40) by a factor of q2/Q2 for fL and 2 for fT ,

f (R)
L = q2

Q2
fL, f (R)

T = 2 fT , (50)

one gets, substituting the definitions into Eq. (22),

�En� = −8α2m

iπ
[φn�(0)]2

∫
d4q

1

(Q4 − 4m2ν2)

×
{

1

q2
f (R)
L (ν, Q2)

+ ν2

Q4

[
f (R)
T (ν, Q2) − f (R)

T (0, 0)
]}

. (51)

At this point, in order to arrive at Rosenfelder’s formalism,
one only needs to consider fL,T as functions of (q0, q2) rather
than (ν, Q2), assume that they obey unsubtracted DRs in q0,
substitute those DRs in Eq. (51) (taking care of the subtracted
f (R)
T using the same DRs), and integrate over q0. One has to

note that our use of Eq. (37) is very similar to the use of
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an unsubtracted DR. Indeed, extending the upper integration
limit in this equation to infinity, we get, upon combining it
with the subtracted DR for T1 given by Eq. (28),

T1(ν, Q2) − T1(0, 0)

= 1

2πMd

∫ ∞

νthr (Q2 )
dν ′

{
ν ′F1(ν ′, Q2)

ν ′2 − ν2 − i0
− F1(ν ′, 0)

ν ′

}
. (52)

Even though an unsubtracted DR in q0 for functions of
(q0, q2) cannot be directly obtained from this equation, the
use of either (ν, Q2) or (q0, q2) as independent variables
should be mathematically equivalent as long as the analytic
properties of the amplitudes are not spoiled by the choice of
variables. Furthermore, taking the upper integration limit in
Eq. (37) to infinity should also work fine if one uses the re-
sponse functions calculated from a nuclear Hamiltonian, since
this automatically filters out high-energy degrees of freedom,
making the use of a finite νmax(Q2) unnecessary. Under these
conditions, the two methods appear to be equivalent.

The requirement that the analytic properties of the am-
plitudes should not be spoiled by the choice of variables is
crucial for a reliable comparison of the two methods, and
fulfilling it represents a certain difficulty in the perturbative
scheme of χEFT, at least at lower orders in the expansion.
Indeed, the definition of T2 in terms of fT and fL in Eq. (41)
introduces a pole at ν = ±iQ, where the denominator Q2 +
ν2 = q2 vanishes. This is the Siegert limit |q| → 0 at finite ν,
where the 0 in the denominator has to be compensated by the
cancellation of the terms in the numerator [40],

fL(ν, Q2) + fT (ν, Q2) = 0 at ν = ±iQ, (53)

which constrains the imaginary parts as well:

lim
ν→±iQ

[
RT (ν, Q2) + 2

Q2

Q2 + ν2
RL(ν, Q2)

]
= 0. (54)

Current conservation will ensure that this constraint holds;
however, the continuity equation relates the charge operator
to current operators at higher orders in the χEFT expansion,
i.e., current conservation is achieved only perturbatively. This,
in turn, can lead to a violation of the equivalence of the
two methods at a given χEFT order, especially at low orders
in the expansion, complicating a meaningful comparison of
their order-by-order results. This can be mitigated by the use
of the Siegert theorem to calculate the transverse response.
In practice, however, the difference between our Siegert and
perturbative results at order k3, as we see below, is already
smaller than the estimated uncertainty due to higher-order
terms in the expansion, indicating that the current conserva-
tion is achieved to an acceptable degree of precision.

While the method of Rosenfelder does not seem to be
sensitive to the Siegert limit due to the choice of indepen-
dent variables ensuring that no pole appears in the dispersion
relation, the associated singularity in the covariant method
is simply a technical obstacle that makes comparison of the
two methods somewhat difficult. The covariant method’s use
of the variables (ν, Q2) is clearly more advantageous when a
connection to empirical data is considered.

The covariant method only uses the information from the
physical domain Q2 � 0, thus allowing one to confront the

FIG. 4. Electrodissociation cross section of the deuteron in kine-
matic regions where no data are available: comparison of the χEFT
calculation (blue band) with the results in Ref. [14] with two different
sets of fit parameters (hatched red band) at (a) ε = 80 MeV, θ = 16◦

and (b) ε = 180 MeV, θ = 30◦.

calculated theoretical response functions with experimental
data where the latter are available and, ultimately, to replace
the theory input with empirical information. In contrast to
that, the use of q2 as the second independent variable requires
information at all possible values of q2 for each ν � νthr—also
from the Q2 < 0 region, which is unphysical for scattering
processes. While this circumstance does not preclude a correct
theoretical calculation, connection to scattering experiments
becomes more tenuous.

V. RESULTS FOR MUONIC DEUTERIUM

We now focus on the nuclear structure corrections to
muonic deuterium, which constitute the main results of this
paper. Because our idea is to use response functions calculated
from χEFT to inform the DR analysis, we first compare χEFT
results with the results obtained in Ref. [14] for the kinematics
where no data are available. Figure 4 shows a selection of
two different kinematics where the χEFT calculations are
shown as blue bands, while results from Ref. [14] are shown
as hatched red bands. The latter were obtained by extrapo-
lating the fit of the available quasielastic electron scattering
data to lower values of the electron beam energy and more
forward angles. Note that the difference between the lower
and the upper red curves was used in Ref. [14] to estimate the
uncertainty of the Lamb shift calculation. While the theory
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TABLE I. Impulse approximation results for the nuclear structure contributions to the energy shift of the 2S state for various nucleon form
factor parametrizations: the point particle limit, linear in Q2 with the PDG 2020 [24] recommendations for all the mean-square charge and
magnetization radii including the value of 0.840 87 fm for the proton charge root-mean-square (rms) radius, the same but using the CODATA
2014 [36] recommendation of 0.8751 fm for the proton charge rms radius value, and the Kelly, traditional dipole, and recent extraction based
on z expansion form factors as explained in the text.

1B, point particle 1B, linear (PDG 2020) 1B, linear (CODATA 2014) 1B, Kelly 1B, dipole 1B, z expansion

�E inel
2S (meV)

“Transverse” −0.077 −0.068 −0.068 −0.069 −0.070 −0.069
“Longitudinal” −1.848 −1.786 −1.783 −1.789 −1.793 −1.791

Total −1.925 −1.854 −1.851 −1.858 −1.863 −1.861

�Ē subt
2S (meV)

“Transverse” 0.075 0.065 0.065 0.066 0.067 0.066
“Longitudinal” 0.354 0.328 0.328 0.330 0.332 0.331

Total 0.429 0.393 0.393 0.396 0.399 0.398

�E inel
2S + �Ē subt

2S (meV)
Transverse −0.002 −0.003 −0.003 −0.003 −0.003 −0.003
Longitudinal −1.493 −1.458 −1.455 −1.459 −1.461 −1.460

Total −1.495 −1.461 −1.458 −1.462 −1.464 −1.463

curves are in reasonable agreement for the kinematics shown
in Fig. 4(a), there are visible differences in Fig. 4(b) that
can be attributed to the DR extrapolation. Most importantly,
the χEFT calculations have a smaller uncertainty and, thus,
supersede the existing DR calculations in terms of precision. It
is to be expected that this will reflect in a reduced uncertainty
in the TPE calculation provided by our hybrid method.

At this point, by feeding the response functions computed
within χEFT to the DR method we are ready to compute
the various terms in Eqs. (44)–(46) and analyze the various
sources of uncertainties. First, we analyze the uncertainty
coming from the different parametrizations of the single-
nucleon form factor. On one hand, we use the dipole model in
which the electric form factors of the proton and the neutron
are, respectively, given by

Gp
E (Q2) = 1(

1 + Q2

�2
D

)2 (55)

and

Gn
E (Q2) = −μn

Q2

4
(
m2

n + Q2
) 1(

1 + Q2

�2
D

)2 , (56)

with the value �D = 833 MeV determined from fits to elastic
electron scattering off the proton and deuteron [43], μn =
−1.913μN [24] is the neutron magnetic moment, and mn is
the neutron mass. The magnetic form factors are given by
Gp

M = μp/(1 + Q2/�2
D)2 and Gn

M = μn/(1 + Q2/�2
D)2. This

parametrization is common in the nuclear physics literature
and will facilitate comparison with Refs. [11–13]. On the
other hand, we perform a model-independent expansion of the
form factors up to terms linear in Q2,

Gp,n
E ,M (Q2) = Gp,n

E ,M (0)

[
1 − 〈

rp,n
E ,M

2〉 Q2

6

]
+ O(Q4), (57)

where Gp,n
E ,M (0) and 〈rp,n

E ,M
2〉 are, respectively,

the charge/magnetic moments and mean-square
charge/magnetization radii. Finally, we also implement
the realistic form factor from Refs. [44] and the z-expansion-
based form factors from Ref. [22].

Table I shows the different contributions to the energy shift
of the 2S state in the impulse approximation, i.e., with only
1B currents, for several nucleon form factor parametrizations.
Compared to the point particle limit, the magnitude of the total
nuclear structure correction decreases by about 2% when we
use nucleon form factors. We use two variants of the linear
form factors of Eq. (57). The “PDG 2020” results use the
most recent recommendations for charge and magnetization
radii from the Particle Data Group [24], including the muonic
hydrogen radius for the proton. We also present the “CODATA
2014” results, which use linear form factors with CODATA
2014 averages [36], because the dipole form factors are also fit
to older ep measurements [43] which are inconsistent with the
PDG 2020 value for the proton charge radius. We see in Ta-
ble I, however, that the differences among the two linear form
factors, as well as the differences among the Kelly, dipole, and
z-expansion form factors, are much smaller than 1% and, as
we see further below, are also much smaller than the nuclear
structure uncertainty due to the χEFT expansion. All of the
following results are obtained with the recent parametrization
of form factors based on z expansion [22] unless explicitly
stated otherwise. This form factor is optimal for our analysis
as it is model independent, incorporates the low-Q2 constraint
from the muonic-hydrogen spectroscopy of the proton radius,
and is optimized for Q2 � a few GeV2.

In Table II, we present the contributions to the energy
shift of the 2S state in impulse approximation as well
as with the meson-exchange current contributions included
in two ways: using the “Siegert” method, which assumes
current conservation as discussed above, and explicit calcu-
lation of the matrix elements with 1B and 2B currents. The
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TABLE II. Results for the nuclear structure contributions to the energy shift of the 2S state in the impulse approximation (1B), with
the current operators deduced from the charge operator assuming current conservation (Siegert) and with both one- and two-body currents
explicitly included (full).

1B Siegert Full = 1B + 2B

�E inel
2S (meV)

“Transverse” −0.069 −0.065 −0.075
“Longitudinal” −1.791 −1.824 −1.857

Total −1.861 −1.889 −1.932
�Ē subt

2S (meV)
“Transverse” 0.066 0.059 0.070
“Longitudinal” 0.331 0.311 0.351

Total 0.398 0.370 0.421
�E inel

2S + �Ē subt
2S (meV)

Transverse −0.003 −0.006 −0.005
Longitudinal −1.460 −1.513 −1.506

Total −1.463 −1.519 −1.511

meson-exchange contribution is about 2.5% of the total nu-
clear structure correction.

We present order-by-order results in the χEFT expansion
in Table III. The error estimate is again calculated as

σ (�E ) = max {0.007, 0.006, 0.007, 0.012} meV

= 0.012 meV. (58)

To arrive at this estimate, we assumed that the typical momen-
tum scale that contributes the most to the response functions is
k  mπ , and we take �b = 500 MeV equal to the cutoff used
in the NN interaction. The values of the error estimate above
are given for the total (inelastic + subtraction) contribution,
resulting in

�E inel+subt
2S = −1.511(12) meV, (59)

with the relative uncertainty of 0.8%. The difference between
the k3+ and the k3 results, generated by the k4 terms in the NN
interaction, is well within this uncertainty estimate.

The sensitivity of the subtraction (and inelastic) contribu-
tion to the choice of νmax(Q2) can be estimated by varying

this limit. We find that using νmax(Q2) = νthr (Q2) + 100 MeV
changes the total result for �Ē subt

2S and �E inel
2S by less than

0.003 meV. The sensitivity to the choice of the upper limit
of the ν integration thus appears to be much smaller than
the uncertainty due to higher orders in the χEFT expan-
sion, (58), and contributes a negligible amount to the total
uncertainty estimate. To check this, we used a more ex-
treme cutoff, setting νmax(Q2) = νthr (Q2) + mπ/2; even that
changes the values of �Ē subt

2S and �E inel
2S by only 0.002 and

0.005 meV, respectively (although the small transverse contri-
butions experience the relatively significant change of about
0.6%–0.9%).

To obtain the value of the nuclear structure contribution to
the TPE correction, we add to the result of Eq. (59) the elastic
part of the energy shift, which, for the 2S level, is evaluated in
Ref. [14] at

�Ē el
2S = −0.417(2) meV, (60)

where the uncertainty is estimated by taking different form
factor parametrizations deduced in [45]. As explained above,

TABLE III. Nuclear structure contributions to the energy shift of the 2S state for various χEFT orders. The “full” (k3+) result includes k4

terms in the interactions but not in the currents.

k0 k1 k2 k3 Full = k3+

�E inel
2S (meV)

“Transverse” 0 −0.071 −0.070 −0.075 −0.075
“Longitudinal” −1.122 −1.709 −1.795 −1.851 −1.857

Total −1.122 −1.780 −1.865 −1.926 −1.932

�Ē subt
2S (meV)

“Transverse” 0 0.067 0.067 0.070 0.070
“Longitudinal” 0 0.337 0.335 0.349 0.351

Total 0 0.404 0.402 0.419 0.421

�E inel
2S + �Ē subt

2S (meV)
Transverse 0 −0.003 −0.003 −0.005 −0.005
Longitudinal −1.122 −1.373 −1.460 −1.502 −1.506

Total −1.122 −1.376 −1.463 −1.507 −1.511
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TABLE IV. Comparison of our dispersive χEFT result for the
two-photon exchange corrections to the μD Lamb shift with prior
calculations. For comparison with Ref. [12], we use the value ob-
tained with the same χEFT interactions. Their full result, obtained
by averaging the values given by different χEFT interactions, is
−1.715+22

−24 meV. For consistent comparison with Ref. [13], we have
applied the hadronic correction of Eq. (61) to their “η-less” result.

�ETPE
2S (meV)

This work (1B + 2B) −1.695(13)
This work (Siegert) −1.703(15)
Ref. [8] −1.680(16)
Ref. [9] −1.717(20)
Ref. [11] −1.690(20)
Ref. [12] −1.712(21)
Ref. [13] −1.703
Ref. [14] −2.011(740)

we also have to add the hadronic contribution, coming from
energy scales typical of the pion production and higher. We
use the value calculated in [14]:

�Ehadr
2S = −0.028(2) meV. (61)

The Coulomb distortion contribution, which is a nominally
subleading—O(α6 ln α)—but practically important effect, has
to be taken into account as well. We use the value from the
compilation in Ref. [46]:

�ECoulomb
2S = 0.262(2) meV. (62)

Adding these contributions together, we get the total two-
photon-exchange contribution to the μD Lamb shift:

�ETPE
2S = −1.695(13) meV. (63)

VI. CONCLUSION

We have performed an analysis of the nuclear polarizability
correction to the Lamb shift of muonic deuterium by com-
bining dispersion relations with chiral effective field theory.
This approach relies only on controlled approximations and
provides a well-justified uncertainty estimate. Final results
for the two-photon-exchange correction to the Lamb shift are
compared to those of prior χEFT [11–13] and dispersive [14]
studies in Table IV.

We obtain good agreement with prior studies as shown
in Table IV. In Refs. [8,9,11–13], the polarizability cor-
rection to the Lamb shift was directly evaluated without
explicitly calculating the electromagnetic response functions.
The calculations in Refs. [8,9,11,12] were performed in a
perturbative framework using the AV18 [8,9,11] and χEFT
[11,12] interactions. Reference [13] was based on the Rosen-
felder [47] formalism, which is, in principle, equivalent to
our method based on dispersion relations as discussed in
Sec. IV C. We reiterate, however, that our approach allows us
to more directly compare the inputs that go into the dispersion
relations to a large body of existing data from electron-
scattering experiments. Indeed, an excellent agreement with
electron-scattering data is obtained over a wide range of kine-
matics. Without sacrificing model independence, we achieve
a much higher precision than the fully data-driven approach in
Ref. [14], which used extrapolants fitted to electron-scattering
data to inform their dispersion relations. This was possible
because χEFT, which is based on symmetries of quantum
chromodynamics and is constrained by πN and NN data,
allows us to obtain accurate and precise electromagnetic re-
sponse functions even in kinematics not explored so far by
electrodissociation experiments. While χEFT served as a
good proxy for electron-scattering experiments here, even at
low beam energies (�200 MeV) and forward angles (�30◦),
future measurements of the deuteron electrodisintegration
at the MAMI A1 and MESA facilities will enable a more
comprehensive comparison of the χEFT cross sections with
experiments and allow us to fully exploit the merits of the
dispersive approach.
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