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Impact of strong magnetic fields on the inner crust of neutron stars
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We study the impact of strong magnetic fields on the pasta phases that are expected to exist in the inner
crust of neutron stars. We employ the relativistic mean field model to describe the nucleon interaction and use
the self-consistent Thomas-Fermi approximation to calculate the nonuniform matter in neutron star crust. The
properties of pasta phases and crust-core transition are examined. It is found that as the magnetic field strength
B is less than 1017 G, the effects of magnetic field are not evident comparing with the results without magnetic
field. As B is stronger than 1018 G, the onset densities of pasta phases and crust-core transition density decrease
significantly, and the density distributions of nucleons and electrons are also changed obviously.
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I. INTRODUCTION

Neutron stars offer special natural laboratories for the study
of nuclear physics and astrophysics due to their extreme prop-
erties. Neutron stars consist of extreme neutron-rich matter
and their densities can cover more than 10 orders of magnitude
from surface to center [1–3]. It is generally believed that a
neutron star mainly consists of four parts, an outer crust of nu-
clei in a gas of electrons, an inner crust of neutron-rich nuclei
with electron and neutron gas, a liquid outer core of homoge-
neous nuclear matter, and an inner core of exotic matter with
non-nucleonic degrees of freedom [3–5]. From the neutron
drip to the crust-core transition, i.e., the density range of inner
crust, the stable nuclear shape may change from droplet to
rod, slab, tube, or bubble with increasing density. As a result,
the so-called nuclear pasta phases are expected to appear in
the inner crust of neutron stars [6–9], which play a significant
role in interpreting a lot of astrophysical observations, such as
the giant flares and quasiperiodic oscillations from soft γ -ray
repeaters, and glitches in the spin rate of pulsars [10–15].
The soft γ -ray repeaters and anomalous x-ray pulsars have
already been confirmed as magnetars with very strong surface
magnetic fields [16,17], which can be as high as 1014–1015 G
[18,19]. The magnetic field strength in the core of a neutron
star may even reach 1018 G [20,21]. So far, the mechanism and
origin of strong magnetic fields in magnetars remain unclear,
and several hypotheses have been proposed (see Ref. [22] for
a review and references therein). Duncan and Thompson [17]
suggested that such strong fields could be generated by the
dynamo mechanism in a rapidly rotating protoneutron star. It
has also been suggested that strong magnetic fields in neutron
stars may result from magnetic flux conservation during the
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collapse of a massive progenitor [23]. It is still under discus-
sion how strong the magnetic fields can be in the crust and
interior of neutron stars.

In past decades, great efforts have been devoted to study
the effects of strong magnetic fields on the properties of
asymmetry nuclear matter and neutron star structures, and the
homogeneous stellar matter under strong magnetic fields has
also been extensively studied [18,24–28]. The effects of Lan-
dau quantization can reduce the electron chemical potential
and increase the proton fraction, which leads to the softening
of equation of state for neutron stars. The hyperonic matter
appearing in the core of neutron stars under strong magnetic
fields were studied in Ref. [29], where it was found that
the onset densities of hyperons could be observably changed
by strong magnetic fields. Furthermore, magnetization and
magnetic susceptibility properties of cold neutron star matter
and even the warm stellar matter were also examined within
different methods [26,30,31]. However, the studies on nonuni-
form crust matter under strong magnetic fields are rare due
to the complex structures of pasta phases. Recently, some
researchers studied the density ranges and proton fractions in
neutron star crusts under strong magnetic fields by analyzing
the dynamical instability region of “npe” matter with vari-
ous models [32–35]. The neutron drip densities with strong
magnetic fields were calculated using Brussels-Montreal mi-
croscopic nuclear mass models in Ref. [36]. The magnetic
susceptibility and electron transport properties in the neu-
tron star crust with strong magnetic fields were reported in
Refs. [20,37,38]. However, most studies do not take into ac-
count the nuclear pasta structures in the inner crust of neutron
stars. In Ref. [39], the nuclear pasta phases were studied
using the relativistic mean field (RMF) models with NL3 [40]
and TM1 [41] parametrizations under strong magnetic fields
≈1017–1018 G, where the proton fraction was fixed and the
anomalous magnetic moments of nucleons were neglected.
The npe matter satisfying β equilibrium condition was studied
using SkM nucleon-nucleon interaction in Ref. [42], where
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only the droplet phase was considered. Therefore, it is inter-
esting and important to perform further investigations on the
nonuniform matter in the inner crust of neutron stars under
magnetic fields.

In order to evaluate the influence of magnetic fields, the
field strength at a given location in the star must be known.
However, it is generally believed that the magnetic field con-
figuration in a neutron star is very complex and difficult to
determine [22,43]. Only the surface magnetic field can be
obtained from related astrophysical observations, whereas the
internal magnetic field of the star cannot be directly acces-
sible to observations. Due to the complexity in dealing with
Maxwell’s equations, a number of parameterized models have
been proposed to describe the magnetic field distribution in
neutron stars [43–48]. In Ref. [43], the authors presented a
magnetic field profile from the surface to the interior of the
star, where the magnetic field strength corresponding to the
inner crust area could be as large as ≈1017 G for a central
field strength of 5 × 1017 G. In the present work, we focus
on the effects of strong magnetic fields in the inner crust
with a thickness of less than 1 km. For simplicity, we neglect
the variation of the field strength within this narrow range
of radial distance and assume a homogeneous magnetic field
along the z direction.

We employ the Wigner-Seitz (WS) approximation to
describe the inner crust and use the self-consistent Thomas-
Fermi (TF) approximation to calculate the nonuniform matter
with considering various pasta configurations. In the TF
approximation, the surface energy and the distributions of
nucleons and electrons are treated self-consistently. We adopt
the RMF model to describe nucleon-nucleon interaction. In
the RMF model, nucleons interact with each other via the
exchange of scalar and vector mesons. We use two differ-
ent RMF parametrizations, TM1 and IUFSU [49], which
are successful in describing the ground-state properties of
finite nuclei and compatible with maximum neutron-star mass
≈2M�. The TM1 model has been successfully used to con-
struct the equation of state for neutrons stars and supernova
simulations [50]. Compared with TM1 model, an additional
ω-ρ coupling term is added in IUFSU model, which plays an
important role in modifying the density dependence of sym-
metry energy and affects the neutron star properties [49,51].
The symmetry energy slope L in TM1 model is as large
as 110.8 MeV, while L in IUFSU model is 40.7 MeV. By
comparing the results from these two models, it is helpful
for understanding the impacts of nuclear symmetry energy on
pasta phases with strong magnetic fields.

This paper is organized as follows. In Sec. II, we briefly
describe the RMF model and present the formalism used in
this study. In Sec. III, We show the numerical results and dis-
cuss the influence of strong magnetic fields on the properties
of pasta phases and the crust-core transition of neutron star.
Section IV is devoted to the conclusions.

II. FORMALISM

We employ the TF approximation to study the inner crust
of neutron stars with strong magnetic fields. The nucleon
interaction is described by the RMF model, where the nucle-

ons interact through the exchange of various mesons, and the
charged particles interact through electromagnetic field Aμ.
The isoscalar-scalar meson σ , isoscalar-vector meson ω, and
isovector-vector meson ρ are taken into account. For a system
consisting of protons, neutrons, and electrons, the Lagrangian
density is given by

LRMF =
∑
i=p,n

ψ̄i

{
iγμ∂μ − (M + gσ σ ) − 1

2
κiσμνFμν

− γμ

[
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2
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m2
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ρρ
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μρaμ

+�v
(
g2

ωωμωμ
)(

g2
ρρ
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) − 1

4
FμνFμν, (1)

where W μν , Raμν , and Fμν are the antisymmetric field tensors
corresponding to ωμ, ρaμ, and Aμ, respectively. κi (i = p, n)
denotes the anomalous magnetic moment of nucleons. In the
RMF approximation, the meson fields are treated as classical
fields, and the field operators are replaced by their expectation
values. For a static system, the nonvanishing expectation val-
ues are σ = 〈σ 〉, ω = 〈ω0〉, ρ = 〈ρ30〉, and A = 〈A0〉. From
the Lagrangian density (1), we can obtain the equations of
motion for meson fields and electromagnetic field,

−∇2σ + m2
σ σ + g2σ

2 + g3σ
3 = −gσ

(
ns

p + ns
n

)
, (2)

−∇2ω + m2
ωω + c3ω

3 + 2�vg2
ωg2

ρρ
2ω = gω(np + nn), (3)

−∇2ρ + m2
ρρ + 2�vg2

ωg2
ρω

2ρ = gρ

2
(np − nn), (4)

−∇2A = e(np − ne), (5)

where ns
i and ni represent the scalar and vector densities of

nucleons, respectively.
For a nonuniform nuclear system at zero temperature, the

local energy density including Coulomb energy is given by

εrmf (r) =
∑

i=p,n,e
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2
ρ(np − nn)

+ 1

2
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− 1
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(∇ρ)2 − 1

2
m2

ρρ
2 − �vg2

ωg2
ρω

2ρ2

− 1

2
(∇A)2 + eA(np − ne). (6)

In order to study the effects of strong magnetic fields on
neutron star crust, we assume that the nuclear system is in an
external homogeneous magnetic field B along the z direction,

015804-2



IMPACT OF STRONG MAGNETIC FIELDS ON THE INNER … PHYSICAL REVIEW C 103, 015804 (2021)

Aμ = (0, 0, Bx, 0). So the proton scalar density ns
p and proton

vector density np are given by

ns
p = eBM∗

2π2

∑
ν

∑
s

(√
M∗2 + 2νeB − sκpB√

M∗2 + 2νeB

× ln

∣∣∣∣∣ kp
F,ν,s + E p

F√
M∗2 + 2νeB − sκpB

∣∣∣∣∣
)

, (7)

np = eB

2π2

∑
ν

∑
s

kp
F,ν,s, (8)

and the proton energy density εp in Eq. (6) is written as

εp = eB

4π2

∑
ν

∑
s

[
kp

F,ν,sE
p
F + (

√
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∣∣∣∣∣
]
, (9)

where kp
F,ν,s is the Fermi momentum of proton with spin s and

Landau level ν, and M∗ = M + gσ σ is the effective nucleon
mass. The Fermi energy of proton is given by

E p
F =

√
kp2

F,ν,s + (
√

M∗2 + 2νeB − sκpB)
2
. (10)

We notice that ν = 0, 1, 2, . . . , νmax,
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[(

E p
F + sκpB

)2 − M∗2

2eB

]
, (11)

where [x] means the largest integer which is not larger than
x. The neutron scalar density ns

n and neutron vector density nn

are given by
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and the neutron energy density εn in Eq. (6) is written as
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where kn
F,s is the Fermi momentum of neutron with spin s. The

Fermi energy of neutron is given by

En
F =

√
kn2

F,s + (M∗ − sκnB)2. (15)

The electron density is given by

ne = eB

2π2

∑
ν

∑
s

ke
F,ν,s, (16)

and the electron energy density εe in Eq. (6) is written as

εe = eB

4π2
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[
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, (17)

where ke
F,ν,s is the Fermi momentum of electron with spin s

and Landau level ν, and the Fermi energy of electron is given
by

Ee
F =

√
ke2

F,ν,s + m2
e + 2νeB. (18)

For simplicity, the anomalous magnetic moment of electron is
neglected in our calculation. So, the largest Landau level νmax

of electron is given by

νmax =
[

Ee
F

2 − m2
e

2eB

]
, (19)

where the meaning of [x] is the same as the case of pro-
tons. We should point out that the energy density from the
contribution of electromagnetic field, B2/8π2, is neglected in
our calculation, which does not affect the phase transitions of
different pasta phases and crust-core transitions.

We employ the WS approximation to describe the inner
crust structure of neutron star, assuming that only one nucleus
is included in a WS cell, where the nucleus coexists with
neutron and surrounded by electron gases. The β equilibrium
and charge neutrality conditions are satisfied in a WS cell,

μn = μp + μe, (20)

Ne = Np, (21)

where the chemical potentials of nucleons and electron are
written as

μn = En
F + gωω − gρ

2
ρ, (22)

μp = E p
F + gωω + gρ

2
ρ + eA, (23)

μe = Ee
F − eA, (24)

and the numbers of electrons and protons inside the WS cell
are given by

Ne =
∫

cell
ne(r)d3r, (25)

Np =
∫

cell
np(r)d3r. (26)

At a given average baryon density nb as well as radius of
WS cell rws, we adopt the TF approximation to calculate the
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TABLE I. Parameter sets used in this work. The masses are given in MeV.

Model M mσ mω mρ gσ gω gρ g2 (fm−1) g3 c3 �v

TM1 938.0 511.198 783.0 770.0 10.0289 12.6139 9.2644 −7.2325 0.6183 71.3075 0.000
IUFSU 939.0 491.500 782.5 763.0 9.9713 13.0321 13.5900 −8.4929 0.4877 144.2195 0.046

distributions of nucleons and electrons. In practice, we start
with an initial guess for meson fields σ (r), ω(r), ρ(r), and
electromagnetic field A(r), and then determine the chemical
potentials, μn, μp, and μe under the constraints of Eqs. (20)
and (21) and baryon number conservation,

nbVcell =
∫

cell
[np(r) + nn(r)]d3r. (27)

Once the chemical potentials are determined, it is easy to
calculate various densities and new mean fields by solving
Eqs. (2)–(5). This procedure should be iterated until conver-
gence is achieved. Furthermore, we calculate the total energy
of WS cell

Ecell =
∫

cell
εrmf (r)d3r, (28)

and binding energy per nucleon

E/N = Ecell

nbVcell
− M. (29)

We consider five nuclear pasta structures in this work. The
volume of WS cell for different pasta shapes is given by

Vcell =

⎧⎪⎨
⎪⎩

4
3πr3

ws, for droplet and bubble,

lπr2
ws, for rod and tube,

2l2rws, for slab,

(30)

where l is the length for rod and tube and l is the width for
slab. We notice that the value of l does not affect the binding
energy per nucleon E/N and is somewhat arbitrary.

At a given average baryon density nb, we minimize the
binding energy per nucleon E/N with respect to the cell size
rws for all five pasta configurations and then we compare E/N
between different configurations in order to determine the
most stable shape that has the lowest E/N . Besides, the bind-
ing energy per nucleon of homogeneous matter at the same nb

is also calculated and compared to determine the crust-core
transition where E/N of homogeneous matter becomes lower
than that of stable pasta phase. In the TF approximation, there
is no distinct boundary between the dense nuclear phase and
the dilute gas phase, so we prefer to adopt the definition in
Ref. [51],

rin =
⎧⎨
⎩

rws
( 〈np〉2

〈n2
p〉

)1/D
, for droplet, rod, and slab,

rws
(
1 − 〈np〉2

〈n2
p〉

)1/D
, for tube and bubble,

(31)

to measure the size of inner part in the WS cell, where the
average values in brackets 〈· · · 〉 are calculated over the cell
volume Vcell and the dimension of WS cell D = 1, 2, 3 for
slab, rod (tube), and droplet (bubble), respectively.

III. RESULTS AND DISCUSSION

In this section, we show the numerical results obtained by
using self-consistent TF approximation and discuss the effects
of strong magnetic fields on the properties of neutron star
crust. The results obtained with different intensity of mag-
netic fields in TM1 model are compared with that in IUFSU
model. The parameter sets and saturation properties of these
two RMF models are given in Tables I and II, respectively.
In Fig. 1, we plot the binding energy per nucleon E/N of
pasta phases as a function of average baryon density nb for
TM1 (upper panel) and IUFSU (lower panel) models with and
without strong magnetic fields. We can see that the binding
energy E/N with B = 1017 G is slightly smaller than the one
with B = 0, while both of them are obviously larger than that
with B = 1018 G. This behavior is consistent with the results
in Ref. [39]. It is because the existence of large degeneracy
of the Landau levels in strong magnetic fields can soften the
equation of state. We also notice that only the droplet config-
uration exists as B � 1017 G before the crust-core transition
in the case of the TM1 model. However, all pasta phases
arise whether the magnetic fields are considered in the case
of IUFSU model. In order to check the effects of anomalous
magnetic moments of nucleons on pasta phase, we also calcu-
late the pasta structures for different strength of magnetic field
with κp, n = 0 in the IUFSU model. It is found that the anoma-
lous magnetic moments of nucleons have very little impact on
pasta structure as B � 1017 G, while it should not be neglected
as B ∼= 1018 G, which is also plotted in Fig. 1 for comparison.
One can see that E/N with κp, n = 0 is obviously larger than
the result with the inclusion of anomalous magnetic moments.
Besides, the onset densities of pasta phases are also changed.

The transition densities of various pasta phases and crust-
core transition density with different intensity of magnetic
fields are listed in detail in Table III. It is found that the
results with B = 1017 G for IUFSU model do not change
much whether the anomalous magnetic moments of nucleons
are considered. However, for B = 1018 G, considerable differ-
ences are observed in the onset densities of nonspherical pasta
phases and the transition density to homogeneous matter. For
both TM1 and IUFSU models, one can see that the results

TABLE II. Saturation properties of nuclear matter for the
TM1 and IUFSU models. The quantities E0, K , Esym, and L
are, respectively, the energy per nucleon, incompressibility coeffi-
cient, symmetry energy, and symmetry energy slope at saturation
density n0.

Model n0 (fm−3) E0 (MeV) K (MeV) Esym (MeV) L (MeV)

TM1 0.145 −16.3 281.0 36.9 110.8
IUFSU 0.155 −16.4 231.0 31.3 47.2
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FIG. 1. Binding energy per nucleon E/N of pasta phases as a
function of baryon density nb for TM1 (upper panel) and IUFSU
(lower panel) models with different magnetic field strength, B = 0
(dashed line), B = 1017 G (dotted line), and B = 1018 G (solid line).
The results with B = 1018 G ignoring the anomalous magnetic mo-
ments of nucleons for IUFSU model are also plotted by dash-dotted
line for comparison. The onset densities of various nonspherical
pasta phases are indicated by the circle dots.

with B = 1016 G are quite similar to those with B = 0, so the
effects of magnetic fields on pasta structures can be neglected
when the strength of magnetic fields B is not larger than

TABLE III. Onset densities of various nonspherical pasta struc-
tures and homogeneous matter with different intensity of magnetic
fields B for TM1 and IUFSU models. The results without the anoma-
lous magnetic moments of nucleons for IUFSU model are also listed
in the last two lines.

Onset density (fm−3)

Model B (G) Rod Slab Tube Bubble Hom.

TM1 0 0.0618
TM1 1016 0.0615
TM1 1017 0.0610
TM1 1018 0.0429 0.0514 0.0546 0.0594

IUFSU 0 0.0476 0.0620 0.0794 0.0851 0.0916
IUFSU 1016 0.0476 0.0632 0.0770 0.0851 0.0916
IUFSU 1017 0.0473 0.0630 0.0768 0.0849 0.0913
IUFSU 1018 0.0400 0.0556 0.0738 0.0807 0.0850

IUFSU (κp, n = 0) 1017 0.0473 0.0631 0.0768 0.0851 0.0916
IUFSU (κp, n = 0) 1018 0.0421 0.0608 0.0762 0.0817 0.0859

FIG. 2. Same as Fig. 1, but for binding energy per nucleon of
pasta phases relative to that of homogeneous matter �E .

∼= 1016 G. So, we will not discuss the results with B = 1016 G
in the following contents. Comparing the results of TM1 and
IUFSU models, the pasta structures are significantly different
for various values of B. In the TM1 model, the nonspherical
structures such as rod, tube, and bubble appear only in the case
of B = 1018 G; however, the slab structure is absent. In the
IUFSU model, all five kinds of pasta structures occur with and
without strong magnetic fields. The differences between these
two models should be due to their different symmetry energy
and its density dependence. It has been found that a smaller
symmetry energy slope could result in more complex pasta
phases [51]. On the other hand, as B increases, the onset den-
sity of homogeneous matter, namely the crust-core transition
density, decreases both in TM1 and IUFSU models. The tran-
sition densities between different pasta phases also decrease
with increasing B as observed in the IUFSU model. We also
notice that the transition density at the bubble-homogeneous
matter is nonmonotonic with increasing B in Ref. [39] using
NL3 parametrization to perform the calculation, where the
proton fraction is fixed as Yp = 0.3. This value is much larger
than the results of β equilibrium in this work.

The behaviors in Table III can be understood from Fig. 2,
where we plot the differences between the binding energy per
nucleon of pasta phase and that of homogeneous matter �E as
a function of baryon density nb with B = 0, 1017, 1018 G. We
can see that a larger B results in a smaller �E at lower baryon
densities and the results with B = 1018 G are much lower
than those with B = 0, 1017 G. However, as nb increases,
�E with B = 1018 G raises rapidly and then exceeds the
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FIG. 3. Proton fractions of pasta phases Yp as a function of
baryon density nb for TM1 (upper panel) and IUFSU (lower panel)
models with magnetic fields B = 1018 G (solid line) and B = 0
(dashed line). The results with B = 1018 G ignoring the anoma-
lous magnetic moments of nucleons are also plotted by dash-dotted
line for comparison. Different colors correspond to various pasta
structures.

results with B = 0, 1017 G. As a result, �E with larger B
reaches “�E = 0” earlier, which leads to a smaller crust-core
transition density.

In Fig. 3, we plot the proton fraction of pasta phase Yp

with B = 0, 1018 G for TM1 and IUFSU models. The results
with B = 1016, 1017 G will not be shown, considering no
obvious differences from the results with B = 0. The results
with B = 1018 G neglecting the anomalous magnetic moments
of nucleons for IUFSU model are also plotted. One can see
that the proton fraction for κp, n = 0 is slightly larger than
that, including anomalous magnetic moments. It can be un-
derstood from Eqs. (10) and (15). For κp, n = 0, the proton
Fermi energy E p

F decreases while the neutron Fermi energy En
F

increases, which leads to more proton energy levels occupied.
We can see in Fig. 3 that the proton fraction Yp with B = 1018

G is much larger than the results with B = 0, especially at
lower densities. It can be understood from Eq. (8). We no-
tice that only the zeroth Landau level is occupied, and eB is
much larger than kp2

F,ν,s at lower densities, when the magnetic
field B = 1018 G is included. As a result, the proton fraction
Yp with B = 1018 G is larger than that with B = 0. As nb

increases, kp
F,ν,s increases rapidly, and higher Landau levels

can be occupied, so the difference of Yp with and without
strong magnetic fields becomes smaller at higher densities.

This feature plays an important role in affecting the chemical
potentials. Compared with the IUFSU model, the TM1 model
has a larger symmetry energy slope L, which leads to smaller
proton fraction Yp with the same strength of magnetic fields.
This behavior is consistent with that observed in the case
without magnetic fields [51].

In Fig. 4, we plot the chemical potentials of neutrons,
protons, and electrons as a function of baryon density in
pasta phases with B = 0 and B = 1018 G. We can see that
the neutron chemical potential μn with B = 1018 G is smaller
than the results with B = 0 in all pasta phases, while the
proton chemical potential μp with B = 1018 G is larger than
the one with B = 0 at lower densities, but μp with B = 1018

G is smaller than the results with B = 0 as baryon density
nb increases. These behaviors can be understood from the
features of proton fraction. The proton fraction with B = 1018

G is much larger than the one with B = 0 at low densities
(see Fig. 3), so the neutron fraction (Yn) with B = 1018 G
is much lower than the one with B = 0 accordingly. As a
result, proton (neutron) chemical potential with B = 1018 G is
larger (smaller) than the results with B = 0 obviously at low
densities, which also results in the decrease of μe according
to the requirement of β equilibrium. Since the difference of
proton fraction with B = 1018 G and B = 0 becomes smaller
at higher densities, the chemical potentials of neutrons and
protons with B = 1018 G are more close to the results with
B = 0. The proton chemical potentials with B = 1018 G are
even lower than those with B = 0 for slab, tube, and bubble
phases, while the neutron chemical potentials with B = 1018

G and B = 0 are close to each other.
In Fig. 5, we show the radii of WS cell rws and the radii

of the inner part of WS cell rin with B = 1018 G and B = 0
as a function of baryon density nb for both TM1 and IUFSU
models. It is seen that only four kinds of pasta phases ap-
pear in strong magnetic fields B = 1018 G for TM1 model,
whereas all five pasta phases arise for IUFSU model with
or without strong magnetic fields. One can see that for each
solid pasta structure (droplet, rod, and slab), the radius of WS
cell rws decreases with increasing baryon density nb, but the
nucleus radius rin increases with nb. Such feature implies that
as baryon density nb increases, the size of nucleus becomes
larger and the distances between neighboring nuclei become
shorter. In the hollow structure (tube and bubble), the size
of inner gas phase rin decreases with nb. One can see that
as baryon density nb is close to the crust-core transition,
the radius rws increases rapidly, however, we notice that the
binding energy per nucleon is not sensitive to the large rws.
The behaviors of rws and rin with magnetic fields B = 1018

G are similar to the results with B = 0 as nb increases. rws

of solid structures (droplet, rod, and slab) with B = 1018 G
is smaller than that with B = 0, while rin of solid structures
with B = 1018 G is larger. For tube and bubble phases, rws

(rin) with B = 1018 G is smaller (larger) than the results with
B = 0. As a result, the nuclear radius becomes larger while
the separation distance is smaller with B = 1018 G compared
to the results with B = 0, which leads to the volume fraction
of dense liquid phase in WS cell increasing more quickly with
strong magnetic fields. Accordingly, the crust-core transition
happens at a smaller baryon density nb. The behavior of rin
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FIG. 4. Chemical potentials of neutrons, μn (a), protons, μp (b), and electrons, μe (c), as functions of baryon density nb for TM1 (upper
panel) and IUFSU (lower panel) models with magnetic fields B = 1018 G (solid line) and B = 0 (dashed line).

can be understood from the liquid-droplet model. We know
that the competition of Coulomb energy and surface energy
plays an important role in determining the sizes of WS cell
and nucleus inside it. In Ref. [39], the authors found that

FIG. 5. Radius of WS cell rws (thick line) and nucleus rin (thin
line) as a function of baryon density nb for TM1 (upper panel) and
IUFSU (lower panel) models with magnetic fields B = 1018 G (solid
line) and B = 0 (dashed line). The jumps in rws and rin correspond to
shape transitions in pasta phases.

the surface tension increased with the strength of magnetic
fields. A larger surface tension leads to a larger size and more
protons of the nucleus inside a WS cell. As a result, rin of
droplet, rod, and slab with B = 1018 G are larger than results
of B = 0. Furthermore, the radius of WS cell rws also depends
on the volume fraction of the inner part, so its behavior is more
complex.

We present in Fig. 6 the charge number Zd and nucleon
number Ad of the spherical nucleus as a function of baryon
density nb in the droplet configuration, where the back-
ground neutron gas is subtracted for defining Ad within the
subtraction procedure. Note that the results of nonspherical
configurations are not presented due to arbitrariness in the
definition of the nucleus. It is shown that the charge number
Zd with B = 1018 G is larger than the one with B = 0 at fixed
baryon density nb. The reason is that the strong magnetic
fields lead to larger proton fraction of WS cell and larger
surface tension, both resulting in more protons in the nucleus.
As baryon density nb increases, both charge number Zd and
nucleon number Ad increase first and then decrease in the
TM1 model with or without strong magnetic fields. However,
the behaviors in the IUFSU model are different, where both
Zd and Ad increase with increasing baryon density nb.

In order to study further the properties of spherical nucleus
of the droplet phase, we show the distributions of proton
ρp, neutron ρn, and baryon ρb in the WS cell at different
average baryon densities nb in Figs. 7 and 8 for TM1 and
IUFSU model, respectively. In Fig. 7(a), one can see that
the proton density ρp with B = 0 decreases with increasing
average baryon density nb, which directly lead to the re-
duction of Zd with nb in Fig. 6(a), considering the radius
of nucleus rin hardly changed at nb � 0.05 fm−3 for TM1
model (see Fig. 5). The behavior of ρp with B = 1018 G is
similar to the result with B = 0, but the proton with B = 1018

G has larger range of distribution with increasing nb, which
implies larger nucleus radius. As a result, the charge number
of nucleus Zd with B = 1018 G in Fig. 6 is nonmonotonic
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FIG. 6. Properties of spherical nuclei in droplet phase, such as the charge number Zd (a) and the nucleon number Ad (b), as a function of
baryon density nb for TM1 (upper panel) and IUFSU (lower panel) models with magnetic fields B = 0 G (dashed line) and B = 1018 G (solid
line).

FIG. 7. Density distributions of protons, ρp (a), neutrons, ρn (b), and baryons, ρb (c), in the WS cell at nb = 0.01, 0.02, 0.03 fm−3 (top
to bottom) obtained in the TF approximation for TM1 model with magnetic fields B = 0 (dashed line) and B = 1018 G (solid line). The cell
boundary is indicated by the hatching.
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FIG. 8. Same as Fig. 7, but for IUFSU model.

for the TM1 model. At lower density, nb = 0.01 fm−3, proton
density ρp with B = 1018 G is larger than the one with B = 0
at fixed radius r, while as nb increases, ρp with B = 1018 G
in the center part of nucleus decreases rapidly and is lower
than the result with B = 0, but ρp with B = 1018 G in the
outer part of nucleus is always larger than the result with
B = 0. In general, the nucleus with B = 1018 G includes more
protons compared to the results with B = 0. For the same
reason, it is easy to understand the behavior of nucleon num-
ber Ad in Fig. 6(b) from the baryon density distribution in
Fig. 7(c). Besides, we can see in Fig. 7 that as nb increases,
the reduction of ρb at the center of WS cell comes mainly
from the decrease of ρp, while the increment of ρb at the
boundary of WS cell is due to the augment of ρn in the gas
phase.

By comparing Fig. 8 with Fig. 7, we can see that the
effects of strong magnetic fields on nucleon distributions are
quite similar in IUFSU and TM1 models. The presence of
strong magnetic fields can enhance the charge number in the
nucleus and reduce the neutron density ρn and baryon density
ρb both at the center and boundary of WS cell. It is shown
that the nucleon distributions in WS cell for IUFSU model
are different from the results for TM1 model. From Fig. 8,
we can see that ρp in the center of nucleus decreases more
quickly with increasing nb than the results for TM1 model,
especially the results with strong magnetic fields B = 1018 G,
which decreases about 50% from nb = 0.01 to 0.03 fm−3. The
increment of charge number in nucleus Zd with increasing nb

is due to the increase of nuclear radius rin and larger ρp in the
boundary area of nucleus.

In order to investigate the effects of strong magnetic fields
on the distributions of nucleons and leptons of various pasta
phases, we show in Fig. 9 the density distributions of neutrons,
protons, and electrons in WS cell at five different average
baryon densities nb = 0.03, 0.05, 0.07, 0.08, 0.09 fm−3 for
IUFSU model with B = 0 and 1018 G, respectively. From
Fig. 9(a), we can see that the neutron density ρn at the center of
the WS cell is larger than that at the boundary for droplet, rod,
and slab phases, while it is opposite for the tube and bubble
phases. We also notice that the difference of ρn between the
center and the boundary of the WS cell decreases with in-
creasing nb, which implies that nuclear distribution in the WS
cell becomes more diffuse as close to the crust-core transition.
A similar tendency is also observed in Fig. 9(c), where the
electron distributions in the WS cell are plotted. We can see
that the electron density ρe is close to uniform distribution
with increasing nb. With the strong magnetic field B = 1018 G,
the electron density in the whole WS cell obviously increases
comparing to the results with B = 0. This is different from
the effects of strong magnetic fields on proton distribution
ρp. From Fig. 9(b), we can see that ρp at the boundary of
nucleus with B = 1018 G is larger than the results with B = 0.
However, ρp in the center of nucleus with B = 1018 G is lower
than the one with B = 0. We can clearly see that the proton
disappears in the gas phase due to its chemical potential
smaller than its mass.

Note that some kinks in ρp with B = 1018 G correspond to
the changes of Landau level. For clarity, the neutron density
in the center of nuclear liquid phase nn,L, the one in the gas
phase nn,G, and the proton density in the center of nuclear
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FIG. 9. Density distributions of neutrons, ρn (a), protons, ρp (b), and electrons, ρe (c), in the WS cell at nb =
0.03, 0.05, 0.07, 0.08, 0.09 fm−3 (top to bottom) obtained in the TF approximation for IUFSU model with magnetic fields B = 0 (dashed
line) and B = 1018 G (solid line). The cell boundary is indicated by the hatching.

liquid phase np,L are plotted in Fig. 10 as a function of baryon
density nb with B = 0 and B = 1018 G for IUFSU model. One

can see that as nb increases, the neutron density of liquid phase
nn, L does not change much; however, the neutron density of

FIG. 10. Neutron density of liquid phase nn, L and gas phase nn, G in WS cell (a) and proton density of liquid phase np, L in WS cell (b), as
a function of baryon density nb for IUFSU model with magnetic fields B = 0 (dashed line) and B = 1018 G (solid line). The kinks correspond
to shape transitions of different pasta phases.
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gas phase nn, G increases with nb obviously. Comparing to
the results with B = 0, both nn, L and nn, G with B = 1018 G
decrease. On the other hand, the proton density of liquid phase
np,L decreases with increasing nb. At lower baryon densities,
such as in the droplet phase, np, L with B = 1018 G is higher
than that with B = 0, while at higher baryon densities, the
behavior is opposite.

IV. CONCLUSION

In this work, we have studied the influence of strong mag-
netic fields on the properties of nuclear pasta phases and
crust-core transition in the inner crust of neutron star by
using the RMF model and the self-consistent TF approxi-
mation. The distributions of nucleons and electrons in the
WS cell are determined self-consistently, in which the charge
neutrality and β equilibrium conditions are satisfied. It has
been found that the pasta phase structures and the crust-core
transition density were changed obviously when the magnetic
field strength is as large as B = 1018 G, where the binding
energy per nucleon E/N is lower than the results with B = 0,
and the onset densities of various pasta phases and crust-core
transition density become smaller. However, the proton frac-
tion Yp with B = 1018 G is larger than that with B = 0, since
the protons occupy the lowest Landau level. The impacts of
anomalous magnetic moments of nucleons are almost invis-
ible in the case of B = 1017 G, but they have to be taken
into account for a stronger magnetic field as B = 1018 G. In
general, the radius of WS cell decreases with increasing B,

while the size of nucleus increases with B, which results in
the charge number and nucleon number of the nucleus varying
with B. The density distributions of nucleons and electrons
with B = 1018 G are clearly different from the results with
B = 0.

In order to check the model dependence of the results
obtained, we adopt two successful RMF models, i.e., TM1 and
IUFSU, with different symmetry energies and their slopes,
which play an important role in determining the properties
of inner crust of neutron star with strong magnetic fields.
The features with strong magnetic fields due to the symmetry
energy and its density slope are similar to the results with
B = 0, which are consistent with our earlier study [51]. A
smaller slope L leads to more complex pasta structures. For
the TM1 model with a larger slope L, only droplet appears
in the inner crust of neutron star for B = 0. However, some
nonspherical pasta phases arise before crust-core transition
for B = 1018 G, even though the crust-core transition density
becomes smaller. It would be interesting to further study the
nuclear pasta phase with strong magnetic fields and their
impacts on the observations of neutron star.

ACKNOWLEDGMENT

This work was supported in part by the National Natu-
ral Science Foundation of China (Grants No. 11805115, No.
11675083, and No. 11775119).

[1] J. M. Lattimer and M. Prakash, Science 304, 536 (2004).
[2] M. Oertel, M. Hempel, T. Klähn, and S. Typel, Rev. Mod. Phys.

89, 015007 (2017).
[3] N. Chamel and P. Haensel, Living Rev. Relativity 11, 10

(2008).
[4] H. Heiselberg and M. Hjorth-Jensen, Phys. Rep. 328, 237

(2000).
[5] F. Weber, Prog. Part. Nucl. Phys. 54, 193 (2005).
[6] D. G. Ravenhall, C. J. Pethick, and J. R. Wilson, Phys. Rev.

Lett. 50, 2066 (1983).
[7] S. S. Avancini, D. P. Menezes, M. D. Alloy, J. R. Marinelli,

M. M. W. Moraes, and C. Providência, Phys. Rev. C 78, 015802
(2008).

[8] F. Grill, C. Providência, and S. S. Avancini, Phys. Rev. C 85,
055808 (2012).

[9] M. Okamoto, T. Maruyama, K. Yabana, and T. Tatsumi, Phys.
Rev. C 88, 025801 (2013).

[10] T. Delsate, N. Chamel, N. Gürlebeck, A. F. Fantina, J. M.
Pearson, and C. Ducoin, Phys. Rev. D 94, 023008 (2016).

[11] A. W. Steiner, Phys. Rev. C 77, 035805 (2008).
[12] R. Nandi, P. Char, D. Chatterjee, and D. Bandyopadhyay, Phys.

Rev. C 94, 025801 (2016).
[13] J. A. Pons, D. Viganò, and N. Rea, Nat. Phys. 9, 431 (2013).
[14] C. Thompson and R. C. Duncan, Mon. Not. R. Astron. Soc. 275,

255 (1995).
[15] Z. Wang, G. Lü, C. Zhu, and W. Huo, Astrophys. J. 773, 160

(2013).
[16] V. V. Usov, Nature (London) 357, 472 (1992).

[17] R. C. Duncan and C. Thompson, Astrophys. J. 392, L9 (1992).
[18] A. Rabhi, M. A. Pérez-García, C. Providência, and I. Vidaña,

Phys. Rev. C 91, 045803 (2015).
[19] SGR/APX online catalog, http://www.physics.mcgill.ca/

∼pulsar/magnetar/main.html.
[20] Y. D. Mutafchieva, N. Chamel, Z. K. Stoyanov, J. M. Pearson,

and L. M. Mihailov, Phys. Rev. C 99, 055805 (2019).
[21] D. Chatterjee, T. Elghozi, J. Novak, and M. Oertel, Mon. Not.

R. Astron. Soc. 447, 3785 (2015).
[22] R. Turolla, S. Zane, and A. L. Watts, Rep. Prog. Phys. 78,

116901 (2015).
[23] L. Ferrario and D. Wickramasinghe, Mon. Not. R. Astron. Soc.

367, 1323 (2006).
[24] A. Broderick, M. Prakash, and J. M. Lattimer, Astrophys. J.

537, 351 (2000).
[25] P. Yue and H. Shen, Phys. Rev. C 74, 045807 (2006).
[26] J. Dong, W. Zuo, and J. Gu, Phys. Rev. D 87, 103010 (2013).
[27] R. Aguirre, Phys. Rev. C 83, 055804 (2011).
[28] M. Á. Pérez-García, C. Providência, and A. Rabhi, Phys. Rev.

C 84, 045803 (2011).
[29] P. Yue, F. Yang, and H. Shen, Phys. Rev. C 79, 025803 (2009).
[30] A. Rabhi, P. K. Panda, and C. Providência, Phys. Rev. C 84,

035803 (2011).
[31] R. Aguirre, E. Bauer, and I. Vidaña, Phys. Rev. C 89, 035809

(2014).
[32] S. Avancini, B. P. Bertolino, A. Rabhi, J. Fang, H. Pais, and C.

Providência, Phys. Rev. C 98, 025805 (2018).
[33] Y. J. Chen, Phys. Rev. C 95, 035807 (2017).

015804-11

https://doi.org/10.1126/science.1090720
https://doi.org/10.1103/RevModPhys.89.015007
https://doi.org/10.12942/lrr-2008-10
https://doi.org/10.1016/S0370-1573(99)00110-6
https://doi.org/10.1016/j.ppnp.2004.07.001
https://doi.org/10.1103/PhysRevLett.50.2066
https://doi.org/10.1103/PhysRevC.78.015802
https://doi.org/10.1103/PhysRevC.85.055808
https://doi.org/10.1103/PhysRevC.88.025801
https://doi.org/10.1103/PhysRevD.94.023008
https://doi.org/10.1103/PhysRevC.77.035805
https://doi.org/10.1103/PhysRevC.94.025801
https://doi.org/10.1038/nphys2640
https://doi.org/10.1093/mnras/275.2.255
https://doi.org/10.1088/0004-637X/773/2/160
https://doi.org/10.1038/357472a0
https://doi.org/10.1086/186413
https://doi.org/10.1103/PhysRevC.91.045803
http://www.physics.mcgill.ca/~pulsar/magnetar/main.html
https://doi.org/10.1103/PhysRevC.99.055805
https://doi.org/10.1093/mnras/stu2706
https://doi.org/10.1088/0034-4885/78/11/116901
https://doi.org/10.1111/j.1365-2966.2006.10058.x
https://doi.org/10.1086/309010
https://doi.org/10.1103/PhysRevC.74.045807
https://doi.org/10.1103/PhysRevD.87.103010
https://doi.org/10.1103/PhysRevC.83.055804
https://doi.org/10.1103/PhysRevC.84.045803
https://doi.org/10.1103/PhysRevC.79.025803
https://doi.org/10.1103/PhysRevC.84.035803
https://doi.org/10.1103/PhysRevC.89.035809
https://doi.org/10.1103/PhysRevC.98.025805
https://doi.org/10.1103/PhysRevC.95.035807


S. S. BAO, J. N. HU, AND H. SHEN PHYSICAL REVIEW C 103, 015804 (2021)

[34] J. Fang, H. Pais, S. Avancini, and C. Providência, Phys. Rev. C
94, 062801(R) (2016).

[35] J. Fang, H. Pais, S. Pratapsi, S. Avancini, J. Li, and C.
Providência, Phys. Rev. C 95, 045802 (2017).

[36] A. F. Fantina, N. Chamel, Y. D. Mutafchieva, Z. K. Stoyanov,
L. M. Mihailov, and R. L. Pavlov, Phys. Rev. C 93, 015801
(2016).

[37] R. D. Blandford and L. Hernquist, J. Phys. C: Solid State Phys.
15, 6233 (1982).

[38] D. G. Yakovlev, Mon. Not. R. Astron. Soc. 453, 581
(2015).

[39] R. C. R. de Lima, S. S. Avancini, and C. Providência, Phys. Rev.
C 88, 035804 (2013).

[40] G. A. Lalazissis, J. König, and P. Ring, Phys. Rev. C 55, 540
(1997).

[41] Y. Sugahara and H. Toki, Nucl. Phys. A 579, 557 (1994).
[42] R. Nandi, D. Bandyopadhyay, I. N. Mishustin, and W. Greiner,

Astrophys. J. 736, 156 (2011).

[43] D. Chatterjee, J. Novak, and M. Oertel, Phys. Rev. C 99, 055811
(2019).

[44] D. Bandyopadhyay, S. Chakrabarty, and S. Pal, Phys. Rev. Lett.
79, 2176 (1997).

[45] E. J. Ferrer, V. de la Incera, J. P. Keith, I. Portillo, and P. L.
Springsteen, Phys. Rev. C 82, 065802 (2010).

[46] V. Dexheimer, R. Negreiros, and S. Schramm, Eur. Phys. J. A
48, 189 (2012).

[47] L. Lopes and D. Menezes, J. Cosmol. Astropart. Phys. 08
(2015) 002.

[48] V. Dexheimer, B. Franzon, R. O. Gomes, R. L. S. Farias,
S. S. Avancini, and S. Schramm, Phys. Lett. B 773, 487
(2017).

[49] F. J. Fattoyev, C. J. Horowitz, J. Piekarewicz, and G. Shen,
Phys. Rev. C 82, 055803 (2010).

[50] H. Shen, H. Toki, K. Oyamatsu, and K. Sumiyoshi, Astrophys.
J. Suppl. 197, 20 (2011).

[51] S. S. Bao and H. Shen, Phys. Rev. C 91, 015807 (2015).

015804-12

https://doi.org/10.1103/PhysRevC.94.062801
https://doi.org/10.1103/PhysRevC.95.045802
https://doi.org/10.1103/PhysRevC.93.015801
https://doi.org/10.1088/0022-3719/15/30/017
https://doi.org/10.1093/mnras/stv1642
https://doi.org/10.1103/PhysRevC.88.035804
https://doi.org/10.1103/PhysRevC.55.540
https://doi.org/10.1016/0375-9474(94)90923-7
https://doi.org/10.1088/0004-637X/736/2/156
https://doi.org/10.1103/PhysRevC.99.055811
https://doi.org/10.1103/PhysRevLett.79.2176
https://doi.org/10.1103/PhysRevC.82.065802
https://doi.org/10.1140/epja/i2012-12189-y
https://doi.org/10.1088/1475-7516/2015/08/002
https://doi.org/10.1016/j.physletb.2017.09.008
https://doi.org/10.1103/PhysRevC.82.055803
https://doi.org/10.1088/0067-0049/197/2/20
https://doi.org/10.1103/PhysRevC.91.015807

