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Statistical treatment of nuclear clusters in the continuum
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The evaluation of the subsaturation nuclear equation of state at finite temperature requires a proper state
counting of the internal partition sum of nuclei which are immersed in the background of their continuum
states. This classical statistical problem is addressed within the self-consistent mean-field approximation, which
naturally accounts for isospin and effective mass effects in the nuclear density of states. The nuclear free energy
is decomposed into bulk and surface terms, allowing a simple analytical prescription for the subtraction of gas
states from the nuclear partition sum, that avoids double counting of unbound single-particle states. We show
that this correction leads to a sizable effect in the composition of matter at high temperature and low proton
fractions, such as is formed in supernova collapse, early proto-neutron-star evolution, as well as laboratory
experiments. Specifically, the energy stored in the internal nuclear degrees of freedom is reduced, as well as
the mass fraction of heavy clusters in the statistical equilibrium. The gas subtraction prescription is compared
with different phenomenological methods proposed in the literature, based on a high-energy truncation of the
partition sum. We show that none of these methods satisfactorily reproduces the gas subtracted level density, if
the temperature overcomes ≈4 MeV.
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I. INTRODUCTION

A correct statistical mechanics description of nuclear clus-
ters is very important in the study of the nuclear equation
of state below saturation density [1]. Dilute and warm mat-
ter is dominated by the presence of bound nuclei which are
never negligible in a very large domain of densities nB ≈
10−6–10−1 fm−3, temperatures kBT ≈ 0–10 MeV, and proton
fractions yp ≈ 0.01–0.6 [2–4], and prevail over free nucleons
in most conditions encountered in nature [5]. These lat-
ter encompass presupernova collapse, postbounce dynamics,
proto-neutron-star evolution and neutron-star mergers [6], as
well as multifragmentation reactions produced in the labora-
tory by heavy-ion collisions [7,8].

In all these situations, nuclei of all sizes are believed to
coexist in thermal and chemical equilibrium with a nuclear
gas of protons and neutrons in strong and electromagnetic
equilibrium. In the astrophysical context, the simultaneous
presence of nuclei and nucleons in the same physical volume
is due to the gravitational pressure of the star. In the case
of heavy-ion collisions, a finite effective volume appears in
the statistical treatment due to the freeze-out concept in an
expansion dynamics: this volume physically measures the
spatial extension of the dynamical system at the earliest time
when the strong interactions can be neglected and the nuclear
abundancies are consequently frozen.

In both scenarios, the theoretical estimation of the relative
abundances of nuclei and nucleons depends both on the ther-
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modynamic condition, and on the treatment of the internal
partition sum of the nuclei. Indeed, in all the present models
of the subsaturation equation of state, a fully microscopic
treatment of baryonic matter is out of scope, and nuclei and
nucleons are considered as separate degrees of freedom in the
statistical approach. This naturally opens the question of in-
teractions and, more generally, statistical correlations between
the two components represented by nuclei and nucleons. The
standard view of the problem is that the nuclear interaction
is exhausted by the formation of bound states of one side,
and by the existence of a nonzero density and momentum-
dependent mean-field modifying the energetics of the free
nucleons on the other side. Residual interactions between
nuclei and nucleons are additionally included in the excluded
volume approximation [2–4].

However, the independence of the two components is at
least violated by the fermionic nature of nucleons. In a sim-
plified mean-field picture of nuclear structure, single-particle
states occupied by free nucleons cannot be simultaneously
accessed by nucleons bound in clusters, which are promoted
to higher-energy states, leading to a decrease of the cluster
binding. An important theoretical [9–11] as well as exper-
imental [12–15] effort was devoted in the recent literature
to the evaluation of the shift in the light nuclei ground-state
binding energy induced by this Pauli blocking effect, and
it was shown that it leads to an important suppression of
light cluster abundancies at the so-called Mott density, with
potential important consequences on the neutrino dynamics in
different astrophysical environments [6,16,17].

No sizable ground-state binding-energy shift is expected in
heavy clusters, because of the negligible overlap between the
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ground state of heavy nuclei and the single-particle states of
the nuclear gas. However, this is not true for the excited nu-
clear states beyond nucleon separation, which are abundantly
populated at finite temperature. In the statistical treatment,
these states are accounted for in the internal nuclear parti-
tion sum and correspond to an excitation energy allowing
the emission of one or several nucleons in the continuum.
To avoid overcounting of continuum configurations, a certain
fraction of the compound nucleus state density at high exci-
tation should therefore not be counted in the nuclear partition
sum.

This double-counting problem of the continuum states
was noticed very early in the nuclear astrophysics literature
[18,19], and a thermodynamically consistent solution was
proposed already in the late seventies by Tubbs and Koonin
[20] and exploited with microscopic self-consistent methods
by Bonche, Levit, and Vautherin [21].

In the seminal work by Tubbs and Koonin [20] it was
shown that the continuum subtraction procedure only weakly
affects the partition sum and the average excitation energy
of 56Ni in thermodynamic conditions corresponding to early
presupernova dynamics. Probably for this reason, in most of
the subsequent astrophysical equation of state literature, cor-
rections have been applied only to the surface free energy, and
unmodified bulk partition sums have been employed [4,22–
25], with very few exceptions [26]. A phenomenological pre-
scription was adopted in some works, consisting in cutting the
internal cluster partition sum to the nucleon separation energy
[27] or to the total binding energy of the nucleus [3,5].

However, most of the supernova and neutron-star (NS)
merger dynamics corresponds to thermal conditions different
from those of the early calculations, and it was recently shown
[28] that the treatment of continuum states in the internal clus-
ter partition sum is at the origin of the most important model
dependence observed in subsaturation equations of state [29].

The importance of the issue was also recognized in the
multifragmentation literature [7]. A simpler prescription than
the continuum subtraction technique by Bonche et al. was
introduced by Randrup and Koonin in the early years of mul-
tifragmentation research [30,31] and shown to be necessary
for a coherent interpretation of the whole set of fragmentation
observables [32,33]. This prescription consists in introducing
a modified internal level-density function for the fragments as

ρ(A, E∗) = ρFG(A, E∗)e−E∗/Tlim , (1)

where ρFG is the standard level density of a free Fermi gas in
the Sommerfeld approximation for a nucleus of mass number
A and excitation energy E∗ (see below for precise definitions),
and Tlim is a limiting temperature, which in principle can
be calculated consistently in a given microscopic model as
the finite-system analog of the thermodynamical transition
temperature [34], but in practice it is usually determined from
a fit of the experimental data.

In this paper, we work out explicitly the internal cluster
partition sum in the self-consistent mean-field approximation
applying the continuum subtraction. We first calculate the
level density by inverse Laplace transform of the partition sum
and show that this expression considerably deviates from the
Fermi gas expression even in the bulk limit, due to mean-field

and effective-mass effects. In particular, accounting for the
effective mass considerably reduces the level density even
at low temperature and consequently reduces the amount of
excitation energy E∗ stored in the clusters at the temperatures
relevant for both multifragmentation and supernova evolution.

As a second step, we study the impact of the continuum
subtraction on the E∗(T ) relation and on the mass fraction of
the clusters in different thermodynamic conditions. We will
see that the different empirical prescriptions employed in the
literature are not equivalent to the consistent gas subtraction.
Analytical expressions for the bulk free energy are given and
can be easily implemented in realistic equations of state.

II. CALCULATION IN THE WIGNER-SEITZ CELL

We first consider the simple case of a unique ion con-
fined at finite temperature T in a cell of finite volume V ,
the background of its continuum states extending out of the
spatial extension of the nucleus. The total Helmholtz free
energy of the cell is decomposed as the sum of the nucleus
or fully ionized ion, the nucleon gas, and the electrons (if
we consider stellar matter, that is neutralized by a uniform
electron background):

Fcell = FN + Fg + Fe. (2)

The nuclear interaction between the nucleus and the nu-
cleon gas, and the Coulomb interaction between the protons
and the electrons, are all included in the term FN , such that the
free nucleon and electron component are simply given by:1

Fg = VFg, Fe = VFe . (3)

In this equation, Fe is the free-energy density of a uniform
electron gas at density ne [35], and Fg corresponds to a uni-
form nucleon gas at proton (neutron) density ng,p (ng,n), to be
specified later.

In the presence of continuum states, the evaluation of the
ion contribution FN has to be handled with care because a
simple state counting in the ion field includes contributions
which are already accounted in the gas component Fg. The
ion and the gas correspond to very different densities but are
associated with the same chemical potentials. For this reason
the gas subtraction is easier to calculate in the grand canonical
ensemble. The grand canonical thermodynamic potential �N

is linked to the Helmholtz free energy FN by the following
Legendre transform:

FN = �N + μnNn + μpNp, �N = −T lnZ (N )
βμnμp

, (4)

where β = T −1, Nn and Np are the neutron and proton num-
bers of the nucleus, and μn (μp) is the neutron (proton)
chemical potential. For a given set of intensive parameters
{β,μn, μp}, two different solutions exist in the finite-size
system, namely, a purely gaseous homogeneous solution �g,
and the full nucleus-plus-gas solution �Ng. If those solu-
tions are obtained from some microscopic variational theory

1We denote with capital letters the (free) energy per ion, e.g.,
F, small letters, e.g., f , indicates quantities per baryon, while the
notation F is used for the free-energy density.
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[20,21,26,36–38] and additivity is assumed as in Eq. (2),2 the
thermodynamical potential of the bound part of the nucleus
can be calculated by simple subtraction of the two:

�N = �Ng − �g. (5)

The calculation of the partition sum was performed in the
semiclassical limit with an external spherical well potential in
Ref. [20], and in successive works it was obtained with the
self-consistent Hartree-Fock [21] and Thomas-Fermi [26,36–
38] theory using Skyrme forces. To have a simple analytic
expression of the nuclear partition sum and to extend the
calculation to account for full nuclear distributions, we work it
out in the next section in the compressible liquid drop model.

A. Analytical gas subtraction in the compressible
liquid drop formalism

If the total free energy Fcell is known through some micro-
scopic ab initio modeling, the in-medium-modified nucleus
free energy FN is simply obtained as the excess free energy
of the cell, with respect to the dominant contribution given
by a homogeneous electron and nucleon gas. However, in
the general case Fcell is not known, and a model for FN is
in order. We here restrict to heavy and medium-heavy nuclei,
for which a so-called “leptodermous” [39] expansion can be
safely applied, and the interactions between the bound and
unbound single-particle states can be treated as a surface term
[40,41]. The decomposition of the nuclear free energy reads:3

FN = F id
N + F bulk

N + F coul
N + F surf

N . (6)

Here, F id
N is the center-of-mass translational contribution

[22]:

F id
N = T

(
ln

λ3
N

V gN
− 1

)
, (7)

where gN = 2JN + 1 is the ground-state degeneracy, and
λN = h̄[2π/(MnT )]1/2 is the de Broglie wavelength, with
MN = Nnmn + Npmp being the bare bound ion mass. The nu-
clear energy is decomposed into a bulk F bulk

N and a surface
F surf

N part, possibly dependent on the external gas. In this
formalism, the nucleus is considered as a portion of bulk
nuclear matter at density nc = nc,n + nc,p and isospin asym-
metry δc = (nc,n − nc,p)/nc occupying a finite spatial volume
VN = AN/nc, and finite-size corrections are included in the
interface part F surf

N [40].
Finally, F coul

N = E coul
N is the temperature independent

Coulomb energy:

F coul
N = 3

5

e2N2
p

4πε0
(1 − fW S )

(
4π

3VN

)1/3

, (8)

2Additivity is justified by the fact that the possible gas-nucleus
interactions are accounted for in the thermodynamical potential of
the cluster.

3The convention c = kB = 1 for the speed of light and the Boltz-
mann constant is used throughout the paper.

where the electron screening factor fW S is obtained in the
Wigner-Seitz approximation as

fW S (δc, ne) = 3

2

(
2ne

(1 − δc)nc

)1/3

− 1

2

(
2ne

(1 − δc)nc

)
. (9)

The total particle number AN comprises both bound and un-
bound nucleons according to

AN = Nn + Np + ngVN , (10)

and similarly ZN = Np + ng,pVN , with the unbound nucleons
density ng = ng,n + ng,p. Particularizing Eq. (5) to the decom-
position (6), the gas subtraction affects only the bulk part of
the cluster partition sum. We express the bulk free-energy
density Fbulk

N = F bulk
N /VN in terms of the grand canonical ther-

modynamic potential ωN = −T ln zN
β,μn,μp

, as

Fbulk
N = ωN + μn(nc,n − ng,n) + μp(nc,p − ng,p), (11)

where we still have to specify ωN . To this aim, we follow the
standard derivation of the self-consistent mean-field theory
[42]. For independent fermions, the partition sum is factorized
as

z0
β,μn,μp

=
∏

q=n,p

∏
k

{1 + exp [β(μq − eq,k )]}. (12)

Here, the second product runs over single-particle states,
and for bulk matter the single-particle energies are given by

eq,k = h̄2k2

2m∗
q

+ Uq, (13)

where the effective mass m∗
q (nn, np) and the mean-field po-

tential Uq(nn, np) are calculated at the densities satisfying the
coupled self-consistent equations,

nq =
∑

k

{1 + exp [β(μq − eq,k )]}−1. (14)

In the thermodynamic conditions where matter is clus-
terized, these equations admit two solutions (ni,n, ni,p), with
i = c, g, corresponding to the two different phases that can co-
exist in infinite uncharged nuclear matter at equilibrium. They
define two different partition sums z0,c

β,μn,μp
and z0,g

β,μn,μp
. In a

finite system, according to the decomposition (6), z0,c
β,μn,μp

cor-
responds to the bulk part of the cluster, which contains bound,
resonant, and continuum states. Because of the independence
of the single-particle states, in order to sort out the continuum
contribution, we can simply write z0,c

β,μn,μp
= z0,N

β,μn,μp
z0,g
β,μn,μp

,

where z0,N
β,μn,μp

is the nucleus partition sum we are interested
in. Explicating the sum over k we have:

ln z0,N
β,μn,μp

= 2

h3

∑
q=n,p

∫
d3 p

(
ln

[
1 + exp β

{
μq − p2

2m∗
c,q

− Uc,q

}]

− ln

[
1 + exp β

{
μq − p2

2m∗
g,q

− Ug,q

}])
. (15)
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Elementary manipulations lead to

ln z0,N
β,μn,μp

= 2

3
β{(ξc,n + ξc,p) − (ξg,n + ξg,p)}, (16)

where ξi,q is the kinetic-energy density of component q in
phase i:

ξi,q =
∑

k

h̄2k2

2m∗
i,q

{1 + exp [β(μq − ei,q,k )]}−1

= 1

2π2

(
2m∗

i,q

β h̄2

)5/2

F3/2(ηi,q ), (17)

and ηi,q = β(μq − Ui,q ) is the corresponding effective chem-
ical potential, with Ui,q = Uq(ni,n, ni,p) being the mean field
which can depend on the particle densities ni,q:

ni,q = 1

2π2

(
2m∗

i,q

β h̄2

)3/2

F1/2(ηi,q ), (18)

and F3/2, F1/2 are Fermi functions. Up to this point the deriva-
tion closely follows the one by Tubbs and Koonin [20] based
on the independent-particle model, where those authors took
Uc,q = U0, Ug,q = 0, and m∗

i,q = m.
The use of a self-consistent mean field leads to two im-

portant modifications with respect to the seminal Tubbs and
Koonin paper. First, the nucleon gas is interacting, Ug,q �= 0,
and the effective masses are density dependent. This, as we
will see in the next section, has an important effect on the
partition sum. Another difference from the work of Ref. [20]
arises in the computation of the free energies. Indeed, the
mean-field and independent-particle formalisms correspond
to the same state counting but to different expressions for
the energy density, due to the rearrangement terms arising
from the self-consistency of the mean field. This is most
easily seen in the variational derivation of the finite tem-
perature mean-field theory [42], that we briefly recall. Both
the independent-particle and the mean-field partition sum can
be obtained from the maxEnt principle, where the entropy
density lnW IPM associated with independent single-particle

states is maximized under the constraint of given expectation
values for particle number(s) and energy. In the independent-
particle case we have

ln z0
β,μn,μp

= lnW IPM − β

(
ε0 −

∑
q=n,p

μqnq

)
. (19)

Here, the single-particle total-energy density ε0 = ξn +
ξp + Unnn + Upnp, and Uq = Uq(nn, np) is the mean field act-
ing on particle type q when the density is n = nn + np and the
isospin asymmetry is δ = (nn − np)/n. Similarly for the mean
field we can write

ln zm f
β,μn,μp

= lnW IPM − β

(
εm f −

∑
q=n,p

μqnq

)
, (20)

where εm f = ξn + ξp + v(n, δ) is the mean-field energy den-
sity at the same particle densities. Because of the rearrange-
ment terms, in general v �= ∑

q Uqnq. Comparing Eqs. (19)
and (20) we obtain the well-known expression for the grand
canonical thermodynamical potential in the mean-field ap-
proximation [42]:

ln zm f
β,μn,μp

= ln z0
β,μn,μp

− β[v(n, δ) − Unnn − Upnp]. (21)

Applying the same gas subtraction as in Eq. (16) we immedi-
ately get

ln zm f ,N
β,μn,μp

= 2

3
β[(ξc,n + ξc,p) − (ξg,n + ξg,p)]

−β[v(nc, δc) − Uc,nnc,n − Uc,pnc,p]

+β[v(ng, δg) − Ug,nng,n − Ug,png,p]. (22)

Once the internal partition sum of the clusters is defined,
all observables can be computed from general thermodynam-
ical relations. Recalling that the particle numbers associated
with the bound and resonant part of the clusters are Nq =
(nc,p − ng,p)VN , we have for the bulk part of the Helmholtz
free energy,

F bulk
N (Nn, Np) = −TVN ln zm f ,N

β,μn,μp
+ μnNn + μpNp = VN

[
v(nc, δc) − v(ng, δg) −

∑
q

(Uc,qnc,q − Ug,qng,q )

]

−
∑

q=n,p

[
2VN

3
{ξc,q − ξg,q} − μqNq

]
, (23)

for the bulk part of the entropy,

Sbulk
N (Nn, Np) =

∑
q=n,p

[
βVN

{
5

3
(ξc,q − ξg,q ) + (Uc,qnc,q − Ug,qng,q )

}
− μqNq

]
, (24)

for the total bulk energy of the cluster,

Ebulk
N (Nn, Np) = VN (v(nc, δc) − v(ng, δg))

+
∑

q=n,p

VN [ξc,q − ξg,q], (25)

and finally for the bulk part of the excitation energy,

E∗,bulk (Nn, Np) = Ebulk
N (Nn, Np) − ET =0,bulk

N (Nn, Np) (26)

=
∑

q=n,p

VN
[
ξc,q − ξg,q − ξT =0

c,q + ξT =0
g,q

]
, (27)
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where the kinetic-energy density at zero temperature dif-
fers from the standard Fermi gas expression because of the
density-dependent effective nucleon masses:

ξT =0
i,q = 3

5

h̄2

2m∗
i,q

n5/3
i,q . (28)

The numerical computation of the cluster partition sum and
the associated observables requires the definition of an energy
functional for the nucleus interaction. We adopt a recently
proposed meta-modeling formulation [43] that allows us to
reproduce different functionals and interpolate between them.
For the applications shown in this paper, we use the Sly5
empirical parameters [44]. Detailed expressions of the effec-
tive masses m∗

q (n, δ), potential energy density v(n, δ), and the
associated mean-field potentials Uq(n, δ) = ∂v/∂nq are given
in Appendix A. Concerning the surface free energy, this term
does not enter in the gas subtraction, but it must obviously be
added to have a realistic description of the cluster functional.
For the present numerical applications, we use the finite nuclei
extension of the meta-modeling approach [45,46], detailed in
Appendix B.

B. Level density in the mean-field approximation

To compare the effect of the thermodynamically consistent
gas subtraction [Eq. (22)] to the different phenomenological
prescriptions adopted in the literature to avoid the double
counting of continuum states, we have to work out the internal
density of states of the nucleus. This latter is defined from the
grand canonical partition sum by an inverse Laplace transform
in the complex space C3. In the mean-field bulk approximation
we are employing, this reads

ρN (Nn, Np, E ) = VN

(2π i)3

∫ i∞

−i∞
dβ

∫ i∞

−i∞
dμn

∫ i∞

−i∞
dμp

× zm f ,N
β,μn,μp

exp [β(E − μnNn − μpNp)].

(29)

To simplify the discussion, we limit ourselves in this section
to the case of symmetric nuclei Nn = Np = A/2 and only
consider the bulk part of the level density. We also neglect
Coulomb effects, such that symmetric nuclei implies μn =
μp = μ and the dimensionality of the problem is reduced. We
note, however, that if the gas subtraction prescription (22) is
used, these simplifications are not needed. Indeed, to calculate
the different observables, Eqs. (23)–(25), (27), there is no
need to additionally define the density of states, which is here
introduced only to compare with previous works. Equation
(22) is more general and naturally includes isospin-dependent
effects in the density of states.

For convex entropies such as we will be interested in, in-
troducing the fugacity α = βμ, the inverse Laplace transform
can be calculated in the saddle-point approximation [47] as

ρN (A, E ) = VN

2π

zm f ,N
β0,α0

exp (β0E − α0A)

|DN |1/2

= 1

2π

exp {β0[E − F bulk
N (Nn, Nn)]}

|DN |1/2
. (30)

Here, A = Nn + Np = AN − ngVN is the total number of par-
ticles excluding the gas, and the only values of the intensive
parameters contributing to the integrals in Eq. (29) are those
verifying the ensemble equivalence conditions:

−E = VN

∂ ln zm f ,N
β,α

∂β

∣∣∣∣∣
α

, (31)

A = VN

∂ ln zm f ,N
β,α

∂α

∣∣∣∣∣
β

. (32)

The solutions of Eqs. (31) and (32) are denoted β0, α0.
Finally, the factor DN in Eq. (30) is the determinant of the
2 × 2 susceptibility matrix calculated at β = β0, α = α0,

DN =
∣∣∣∣∣∣
∂2 ln zm f ,N

β,α

∂2α

∂2 ln zm f ,N
β,α

∂α∂β

∂2 ln zm f ,N
β,α

∂β∂α

∂2 ln zm f ,N
β,α

∂2β

∣∣∣∣∣∣
α0,β0

. (33)

Using Eqs. (31) and (32), the determinant can be expressed
as a function of the first derivatives of particle-number and
kinetic-energy densities:

∂2 ln zm f ,N
β,α

∂α2
= ∂

∂α
(nc − ng),

∂2 ln zm f ,N
β,α

∂β∂α
= ∂

∂β
(nc − ng),

∂2 ln zm f ,N
β,α

∂β2
= −

{
2

3

∂

∂β
(ξc − ξg) + ∂

∂β
[v(nc) − v(ng)]

}
,

(34)

which have to be calculated at α = α0, β = β0.
These derivatives have to be calculated numerically. In-

deed, for realistic energy functionals the implicit dependence
of n on α, β due to the self-consistency cannot be neglected
with respect to the explicit dependence given by the effective
chemical potential η(α, β ) = α − βU .

The expression for the density of states, Eq. (30), is still
relatively involved. For this reason, it is customary to use the
simpler Bethe approximation, which is obtained from the gen-
eral expression (30) by neglecting all interactions leading to
mean-field and effective masses and additionally performing
a low-temperature Sommerfeld expansion [47] that allows for
the approximation of the single-particle level density to its
value at the Fermi surface, g(e) ≈ g(eF ):

ρFG(A, E∗) = exp
(
2
√

aE∗)
4
√

3E∗ . (35)

Here, E∗ = ET >0
N − ET =0

N is the excitation energy, and the
level-density parameter a is given by

a = π2

4

A

eF
, (36)

where eF = h̄2/[(2m)(3π2n/2)2/3] is the Fermi energy, and
n = nc is the cluster density. The validity of these approxi-
mations can be appreciated by comparing Eq. (35) with the
total level density ρNg, which is obtained by putting ng = 0 in
Eqs. (23) and (34). This we do in the next section.
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Once the level density is defined through Eq. (30) for a
given mass number A, the effect of the gas subtraction on the
state counting can additionally be studied by comparing ρN

with the total level density ρNg, both from Eq. (30) with and
without gas subtraction, which we also do in the next section.

C. Comparison with previous works

In this section we compare the different prescriptions pro-
posed in the literature to treat the internal partition sum of
the clusters. Since the overcounting of continuum states only
affects the bulk part of the free energy, we concentrate on
the bulk and limit ourselves to symmetric nuclei A = Nn +
Np = 2Nn. The validity of the Sommerfeld expansion, and
the effect of the nuclear interactions can be appreciated by
comparing the ideal-gas Bethe formula (35) obtained in the
low-temperature limit to the full inverse Laplace transform
(30) calculated for the interacting nucleus plus gas system as

ρNg(A, E ) = VN

2π

zm f
β0,α0

exp (β0E − α0A)

|D|1/2
, (37)

where zm f
β,α is given by Eq. (21) with nq = nc,q, and the de-

terminant D is given by the same expression (33) as DN ,
with zm f ,N

β,α replaced by zm f
β,α at the same density. As dis-

cussed above, the nuclear density nc is the solution of the
self-consistency equation (14), and as such, in principle, it
depends both on the temperature and on the chemical po-
tential, or equivalently on the gas density. However, because
of the strong incompressibility of nuclear matter, if realistic
functionals are used, the temperature and density dependence
of nc is much weaker than that of ng, and we can replace nc

with the saturation density of nuclear matter, nc ≈ n0.
To disentangle the effect of the interaction and the de-

viation from the Sommerfeld truncation, Eq. (37) is first
computed in the same ideal-gas limit Uq = 0, m∗

q = m as
the Bethe approximation (35). The comparison between the
two calculations is displayed in Fig. 1. As expected, the
deviation increases with increasing excitation energy and is
safely negligible for moderate excitations of the order e∗ � 5
MeV/nucleon.

The limitation of the Bethe formula clearly appears when
the nuclear interactions are accounted for in the mean-field
calculation. The inclusion of an effective mass, as is required
for a realistic description of nuclear structure, induces an
important reduction of the level density even at low excitation
energy, as we can see by comparing the full line to the dashed
line in the left panel of Fig. 1. This important effect is fully
due to the effective mass and does not depend on the presence
of a mean field. Indeed, this latter does not affect the energy
dependence of the level density and only produces a global
shift of the energy, which is exactly canceled by the definition
of the excitation energy.

Finally, the effect of the continuum subtraction can be
appreciated by comparing Eq. (30) and Eq. (37) (right panel
in Fig. 1). Both calculations are done using the Sly5 energy
functional. The importance of the gas subtraction obviously
depends on the density of the external gas and increases with
increasing gas density.

FIG. 1. Behavior of the bulk part of the level density for sym-
metric nuclei as a function of the excitation energy per baryon. (left
panel) Comparison of Bethe approximation (35) (black dotted line)
and Laplace transform (37) with m∗

q = m = 938 MeV and Uq = 0
(green dashed line) and Laplace transform (37) with both Uq and m∗

q

from Sly5 (red solid line). (right panel) Comparison of nucleus-plus-
gas level density (37) (red solid line) with the continuum subtracted
Laplace transform (30) for external gas densities ng/n0 = 0.02 (blue
dotted line), 0.05 (magenta dash-dotted line), and 0.1 (cyan dashed
line). n0 is the saturation density of symmetric nuclear matter. For
each calculation Uq and m∗

q are included and Sly5 parameters are
used.

We now turn to examine the consequence of the differ-
ent hypotheses on physical observables. Figure 2 shows the
average excitation energy per baryon as a function of the
temperature, with different approximations to account for the
overcounting of the continuum states. In all cases, the average
excitation energy of the cluster of mass A at temperature T
reads

〈E∗(A)〉T =
∫ Ecut

0 Eρ(A, E ) exp
(−E

T

)
dE∫ Ecut

0 ρ(A, E ) exp
(−E

T

)
dE

, (38)

where the different approximations consist in the different
choices for the level density ρ, as well as in the upper limit
Ecut used for the integration. If the Sommerfeld expansion of
the free Fermi gas, Eq. (35), is used and Ecut = ∞, the well-
known quadratic behavior is obtained (dotted line). A first
phenomenological prescription to account for the continuum
subtraction was proposed in the context of multifragmentation
modeling [30,31] employing the concept of limiting temper-
ature, Eq. (1). One can see a significant reduction in average
excitation over the entire temperature range. A simpler pre-
scription consists in keeping the Bethe expression for the level
density and introducing an upper cut for the allowed excitation
energy. This cut was fixed at (or close to) the nucleon separa-
tion energy Sn [19,28,48,49], or at the total nuclear binding
energy B [50,51]. The results of these prescriptions are given
by the solid and dashed line in the left panel of Fig. 2,
where we have calculated Sn and B supposing a 56Ni nucleus,
i.e., A = 56. Applying an upper cut leads to a reproduction
of the Sommerfeld quadratic behavior up to a temperature
T ≈ Ecut/A, and a saturation behavior 〈E∗〉 ≈ Ecut for higher
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FIG. 2. Average excitation energy per baryon as a function of the
temperature with different approximations for the level density. (left
panel) Comparison of the Bethe approximation (35) (black dotted
line), the Randrup and Koonin empirical correction to the Bethe
approximation, Eq. (1), with Tlim = 18 MeV (pink dashed line), the
Bethe approximation with Ecut = Sn (orange solid line), and Ecut = B
(blue dash-dotted line). (right panel) Continuum-subtracted Laplace
transform (30) using the full Sly5 functional, for external gas den-
sities ng = 0.02n0 (blue dotted line), 0.05n0 (magenta dash-dotted
line), and 0.1n0 (cyan dashed line). The red solid line represents the
excitation without continuum substraction.

temperatures. Consequently, a cut at separation energy prac-
tically amounts to ignoring the possibility of populating
exciting states over the whole temperature range. Conversely,
a cut at the total binding energy is fully ineffective up to
temperatures of the order of 10 MeV, where the excitation
energy is seen to saturate towards the total binding energy.

The effect of the approximations of the Bethe formula
(Sommerfeld expansion, neglect of the effective mass) can be
appreciated by comparing the dotted line of the left panel of
Fig. 2 with the full Laplace transform, given by the full line
of the right panel. As expected, the important reduction of the
level density of the exact formula observed in Fig. 1 leads to a
global reduction of the cluster excitation energy in the whole
temperature range. Finally, the effect of the consistent gas
subtraction, for different representative values of the outer gas,
is also shown in the right panel of Fig. 2. For these latter cal-
culations, the result of Eq. (38) with the continuum-subtracted
level density ρ = ρN and no cutoff Ecut = ∞ coincides by
construction with the grand canonical result (27), considering
Nn = Np = A/2. For practical implementations, Eq. (27) is
clearly much simpler to calculate than Eq. (38). The extra
advantage of the grand canonical formulation (27) is that it
can be extended to different neutron-to-proton ratios without
any extra effort.

The results shown in Figs. 1 and 2 show that the overcount-
ing of unbound states leads to an important overestimation of
the nuclear level density, which in turn produces an overesti-
mation of the internal energy stored in fragments, already at
moderate temperatures of the order of 4 MeV. None of the
phenomenological recipes proposed in the literature is able
to reproduce the exact state counting which is obtained when

both the nuclear clusters and the nuclear gas are consistently
treated within the same mean field formalism.

However, we have seen that the importance of the gas sub-
traction crucially depends on the relative proportion between
cluster and gas. This proportion is not a free parameter, but it
depends in a nontrivial way on the temperature, density and
proton fraction of the system, according to the global nuclear
statistical equilibrium. This is worked out in the next section.

III. EXTENSION TO NUCLEAR STATISTICAL
EQUILIBRIUM

A. Formalism

In the physical situations where an extended portion of
diluted baryonic matter exists in thermal equilibrium at proton
and neutron density np, nn and temperature T , the relative
abundances of the different nuclear species is determined
by the numerical solution of the extended nuclear statistical
equilibrium equations [27]:

np = 1

2π2

(
2m∗

g,p

β h̄2

)3/2

F1/2(ηg,p) +
∑
Nn,Np

NpnNn,Np, (39)

nn = 1

2π2

(
2m∗

g,n

β h̄2

)3/2

F1/2(ηg,n) +
∑
Nn,Np

NnnNn,Np . (40)

The first term on the right-hand side (r.h.s.) of Eqs. (39)
and (40) represents the free proton and neutron densities,
respectively, see Eq. (18). The second term gives the contri-
bution of bound nucleons, where nNn,Np is the number density
of a cluster with Nn neutrons and Np protons. We recall that
these numbers do not include the contribution of nucleons in
continuum states [see Eq. (10)], even if the unbound nucleons
do contribute to the internal cluster density nc = AN/VN and
the associated mean field, which depends on the internal clus-
ter density and isospin. The independence between the free
and cluster component, Eqs. (39) and (40), allows for simple
expressions for the cluster densities [27]:

nNn,Np = (1 − uc)
gN

λ3
N

exp

{
− 1

T

(
FN − F id

N

− [T ηg,p + Ug,p]Np − [T ηg,n + Ug,n]Nn
)}

, (41)

where the cluster free energy FN accounts for the continuum
subtraction according to Eq. (23). In this expression, the fac-
tor (1 − uc) is an excluded volume correction that modifies
the space integration associated with the center-of-mass free
energy of each cluster:

1 − uc = V tot − V tot
N

V tot
= 1 − nB − ng

〈nc〉 − ng
, (42)

where V tot is the total volume occupied by the multicompo-
nent plasma, V tot

N is the total volume occupied by the clusters,
and 〈nc〉 is their average density:

〈nc〉 =
∑

Nn,Np
nNn,NpAN∑

Nn,Np
nNn,NpVN

. (43)
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FIG. 3. Free neutron ngn (black lines), proton ngp (red lines),
bound nucleon density in H and He isotopes nH,He (green lines) and
in heavier elements ncl (blue lines) as a function of the global density,
as predicted in full thermodynamic equilibrium at two representative
temperatures T = 5 MeV (upper panels) and T = 10 MeV (lower
panels), and two representative proton fraction Yp = 0.5 (left panels)
and Yp = 0.2 (right panels). Dotted (full) lines give predictions with-
out (with) the consistent continuum subtraction.

To get the expression (41), we have additionally considered
that, in the full nuclear statistical equilibrium, the translational
part of the free energy is modified with respect to the expres-
sion (7) [27,52]. Indeed, the volume V appearing in Eq. (7)
associated with the ion translational motion now corresponds
to the macroscopic volume V tot. For this reason, the second
term on the r.h.s. of Eq. (7) can be neglected and we get

F id,NSE
N = −T ln

V totgN

λ3
N

, (44)

which allows the translational part of the free energy in
Eq. (41) to be factorized out of the exponential.

B. Effect of the gas subtraction on particle abundancies

In the calculations shown in Sec. II we have seen that the
importance of the continuum subtraction obviously depends
on the value of the external gas density, since the double
counting concerns the single-particle gas states. In realistic
physical situation, the gas density is not a free parameter but it
depends on the global temperature, pressure (or equivalently
global density) and proton fraction of the system.

The evolution of the external gas density as a function of
the thermodynamic conditions of the statistical equilibrium
can be obtained by numerically solving the coupled equations
(39) and (40). The resulting behavior is reported in Fig. 3 for
different temperatures, densities, and proton fractions repre-
sentative of the typical conditions that can be encountered
in heavy-ion collisions (left panels) and in supernova and
proto-neutron-star matter (right panels). In this figure, the

FIG. 4. Mass fraction of elements heavier than helium as a
function of the global density, as predicted in full thermodynamic
equilibrium at two representative temperatures T = 5 MeV (upper
panels) and T = 10 MeV (lower panels), and two representative pro-
ton fractions Yp = 0.5 (left panels) and Yp = 0.2 (right panels). Black
dotted (red full) lines give predictions without (with) the consistent
continuum subtraction.

density of nucleons bound in the different H and He isotopes
is defined as nH,He = ∑

Nn>0[(Nn + 1)nNn,1 + (Nn + 2)nNn,2],
and the cluster density is ncl = nB − ng − nH,He. We can see
that, for a given baryonic density and proton fraction, proton
and neutron densities as well as nH,He increase with temper-
ature, therefore the cluster density decreases. For symmetric
matter (left panels), the density of unbound nucleons is several
order of magnitude lower than the density of clusters except
at the lowest densities, and we expect that the consistent
continuum subtraction will only be important below ≈n0/10.
For neutron-rich matter beyond the neutron driplines (right
panels), the gas contribution is typically dominant over the
clusterized one, and we expect more important effects of the
correct state counting. We can also observe that, at those low
proton fractions, the free proton contribution is systemati-
cally negligible even at very high temperature, the continuum
being essentially represented by neutron excitations. As we
can see from the comparison between full and dotted lines,
these general features are very robust and show a very limited
dependence on the finite-temperature state counting.

The effect of the gas subtraction on the observables can
be appreciated more clearly from Figs. 4 and 5, which report,
in the same thermodynamic conditions as in Fig. 3, the mass
fraction bound in clusters and their average excitation energy
per nucleon of the clusters.

In symmetric matter at moderate temperatures, the double
counting of continuum states is fully negligible at all densi-
ties, and almost identical predictions are obtained if the gas
partition sum is subtracted from the cluster level counting or
not. However, this is not the case any more if the temperature
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FIG. 5. Average excitation energy of elements heavier than he-
lium as a function of the global density, as predicted in full
thermodynamic equilibrium at two representative temperatures T =
5 MeV (upper panels) and T = 10 MeV (lower panels), and two
representative proton fraction Yp = 0.5 (left panels) and Yp = 0.2
(right panels). Black dotted (red full) lines give predictions without
(with) the consistent continuum subtraction.

is higher, or the system is strongly asymmetric: at the highest
temperature and lowest proton fraction, such as they can be
encountered in the early evolution of the proto-neutron star,
the cluster mass fraction drops from ≈60% to ≈20% at the
highest density close to the crust-core transition, if the gas
subtraction is taken into account. Figure 5 additionally shows
that the energy stored in internal cluster degrees of freedom is
systematically overestimated if the effect of the gas is not ac-
counted for. As expected, the effect increases with increasing
temperature and decreasing proton fraction.

The double counting of continuum states between the gas
and cluster component does not directly affect the light par-
ticles with Np = 1 (hydrogen) and Np = 2 (helium), because
such light elements have a sparse spectrum with very few or
no excited states. In our model, we do not consider any excited
state for such clusters; that is, we consider FN = F id,NSE

N −
B(Nn, Np), where B is the experimental binding energy of the
considered helium or hydrogen isotope. However, because of
the mass and charge conservation laws Eqs. (39), and(40), the
continuum subtraction may indirectly affect the abundancy of
those light clusters, which as we saw in Fig. 3 dominate the
composition of very hot matter except at the highest densities.

This is shown in Fig. 6, which displays as a function of
the global proton fraction the density of the different H and
He isotopes in hot and dense matter, for nB = 0.3n0 and two
different temperatures. Concerning hydrogen (right panel), we
can see that deuterons dominate over heavier isotopes for rel-
atively symmetric matter, but tritons take over for asymmetric

FIG. 6. Density of hydrogen (left panel) and helium (right panel)
isotopes as a function of the global proton fraction, as predicted
in full thermodynamic equilibrium for nB = 0.3n0 and T = 5 MeV
(upper panels) and T = 10 MeV (lower panels). Dotted (full) lines
give predictions without (with) the consistent continuum subtraction.

matter and heavier resonances dominate in extremely neutron
rich matter. Those very loosely bound resonances disappear
at the highest temperatures, but deuterons and tritons survive
with a non-negligible fraction at temperatures as high as 10
MeV. The absolute fraction of He is an order of magnitude
lower than the one of H, but concerning the relative abundancy
of the different isotopes a similar trend can be observed.
Specifically, 4He dominates in symmetric matter and for mod-
erate temperatures, while more-neutron-rich isotopes tend to
prevail if the global proton fraction decreases. Interestingly,
loosely bound neutron rich resonances dominate the hydrogen
and helium composition of very rich neutron matter if the
temperature is not too high. This feature is not accounted in
the most popular EoS models for astrophysical applications
[22–24]. Concerning the effect of the continuum subtraction,
we can see that the suppression of the high-energy continuum
states of the heavy clusters naturally leads to an increased
importance of the H and He isotopes, for which no correction
was applied. This is particularly clear at high temperature
and low proton fraction, where the continuum subtraction
procedure is most effective. This effect is, however, globally
very small whatever the thermodynamic condition.

These results are in good qualitative agreement with previ-
ous works [5,28], but they should be taken with care, because
in the calculation we have considered experimental vacuum
binding energies for all light clusters, while it is known from
both theoretical [9–11] and experimental works [12–15] that
the effect of the occupied gas orbitals is an in-medium mod-
ification of the ground-state binding energy of those clusters,
an effect that cannot be treated with the present mean-field
approach. In particular, the use of the Beth-Uhlenbeck for-
mula and the corresponding virial expressions to treat the
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contributions of the continuum seems to give larger devia-
tions, see Refs. [53,54].

IV. CONCLUSIONS

In this paper, we have proposed a well-defined protocol
to consistently treat the internal nuclear degrees of free-
dom in the finite-temperature subsaturation equation of state,
that is needed to model different dynamical processes such
as supernova collapse, proto-neutron star cooling, neutron-
star mergers, and heavy-ion collisions. Specifically, we have
worked out a simple analytical expression for the internal
nuclear partition sum in the presence of continuum states,
which is based on a decomposition of the nuclear energy into a
bulk and a surface part in the spirit of the compressible liquid
drop model.

Indeed, the relative proportion between free nucleons and
nucleons bound in clusters in dense and hot nuclear matter is
governed by the nuclear partition sum; at high temperature,
this latter includes unbound continuum states that should not
be double counted with the states of the free nucleon gas.
We have shown that an exact subtraction of the continuum
contribution can be performed if the problem is treated in
the self-consistent mean-field approximation. The resulting
nuclear level density obtained by an inverse Laplace transform
in the saddle-point approximation was compared with differ-
ent phenomenological prescriptions proposed in the equation
of state literature, and we have observed that none of them
correctly reproduces the exact gas subtraction at high temper-
ature.

In a second part of the paper, we have worked out the
effect of gas subtraction on the composition of stellar matter in
different thermodynamic conditions and shown that it leads to
an increased fraction of unbound nucleons and light clusters,
with respect to calculations that do not account for this effect.

This method of consistently treating the internal nuclear
degrees of freedom in the thermodynamical equilibrium re-
duces the model dependence of the subsaturation equation of
state to the choice of the nuclear energy functional, which
is still affected by important uncertainties as far as isospin
asymmetric matter is concerned. The calculations presented
in this paper were performed using the Sly5 functional,
but the expression can be used for any nonrelativistic or
relativistic energy functional, provided the empirical param-
eters of the equation of state for homogeneous matter are
known. The study of such possible model dependence in-
duced by the nuclear energy functional is left for future
work.

The main limitation of the present formalism is that the
effect of the nuclear gas can only be computed on heavy
nuclei that can be realistically described by the mean-field
approach. Concerning light clusters such as hydrogen and
helium isotopes, the vacuum free energy is assumed and
the in-medium modifications induced by the nucleon gas is
simply treated in the excluded volume approximation. In the
future, we plan to fix the correction to the light cluster free en-
ergy using recent constraints from heavy-ion collisions [15].
We expect that a modified composition of stellar matter, due
to the inclusion of gas corrections to both heavy and light

clusters, might have consequences on neutrino transport prop-
erties in hot and dense matter, which is the final aim of this
work.
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APPENDIX A: META-MODELING OF BULK MATTER

The calculation of the bulk free energy (23), total energy
(25), and excitation energy (27) requires the specification of
the mean-field potentials Ui,q and energies v(ni, δi ). In the
meta-modeling framework [43], the expression of potential
energy per particle that can be adapted to different effective
interactions and energy functionals is given by

v(n, δ) =
N∑

k=0

1

k!

(
vis

k + viv
k δ2

)
xk

+(
ais + aivδ2

)
xN+1 exp

(
−b

n

n0

)
, (A1)

where x = (n − n0)/3n0 and n0 is the saturation density of
symmetric nuclear matter. For this paper, we choose N = 4
and b = 10 ln 2. This value of b leads to a good reproduction
of the Sly5 functional which is used for the numerical appli-
cations presented in this paper. The model parameters v

is(iv)
k

can be linked with a one-to-one correspondence to the usual
EoS empirical parameters, via

vis
0 = Esat − t0(1 + κ0),

vis
1 = −t0(2 + 5κ0),

vis
2 = Ksat − 2t0(−1 + 5κ0),

vis
3 = Qsat − 2t0(4 − 5κ0),

vis
4 = Zsat − 8t0(−7 + 5κ0), (A2)

viv
0 = Esym − 5

9
t0[(1 + (κ0 + 3κsym )],

viv
1 = Lsym − 5

9
t0[(2 + 5(κ0 + 3κsym )],

viv
2 = Ksym − 10

9
t0[(−1 + 5(κ0 + 3κsym )],

viv
3 = Qsym − 10

9
t0[(4 − 5(κ0 + 3κsym )],

viv
4 = Zsym − 40

9
t0[(−7 + 5(κ0 + 3κsym )], (A3)

where Esat, Ksat, Qsat, and Zsat are saturation energy, in-
compressibility modulus, isospin symmetric skewness, and
kurtosis, respectively, and Esym, Lsym, Ksym, Qsym, and Zsym

are symmetry energy, slope, and associated incompressibility,
skewness, and kurtosis, respectively. Concerning the κ0 and
κsym, they govern the density dependence of the neutron and
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proton effective mass according to

mq

m∗
q (n, δ)

= 1 + (κ0 ± κsymδ)
n

n0
, (A4)

with q = n, p. For the applications presented in this paper, all
the parameters are taken from the Sly5 functional.

The baryonic density of cluster with isospin asymmetry
δc = Nn−Np

Nn+Np
is approximated to the corresponding saturation

density at finite asymmetry according to

nc(δ) = n0

(
1 − 3Lsymδ2

c

Ksat + Ksymδ2
c

)
. (A5)

APPENDIX B: SURFACE FREE ENERGY

For the surface free energy, we use the prescription pro-
posed in Refs. [22,45,46] on the basis of Thomas-Fermi
calculations with extreme isospin ratios:

F surf
N = 4πr2

c A2/3
N σ (yc,p, T ), (B1)

with AN = Nn + Np + ngVN , rc = {3/(4πnc)}1/3, yc,p =
Np/(Np + Nn), and

σ (yc,p, T ) = σ0h

(
T

Tc(yc,p)

)
2p+1 + bs

y−p
c,p + bs + (1 − yc,p)−p

, (B2)

where σ0 represents the surface tension of symmetric nuclear
matter and bs and p govern the isospin dependence. For the
Sly5 functional, the parameters were optimized in Ref. [45] as
σ0 = 1.091 91, bs = 15.365 63, and p = 3.0. The temperature
dependence is incorporated by

h

(
T

Tc(yc,p)

)
=

[
1 −

(
T

Tc(yc,p)

)2]2

for T � Tc(yc,p)

= 0 for T > Tc(yc,p). (B3)

Tc(yc,p) is the critical temperature of the nuclear liquid-gas
phase transition approximated as (in MeV) [22]

Tc(yc,p) = 87.76
(Ksat

375

)1/2(0.155

n0

)1/3

yc,p(1 − yc,p), (B4)

where Ksat, n0 are expressed in MeV and fm−3, respectively.
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