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New approach to intranuclear cascades with quantum Monte Carlo configurations
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We propose a novel semiclassical approach to intranuclear cascades, which takes as input quantum Monte
Carlo nuclear configurations and uses a semiclassical, impact-parameter-based algorithm to model the propa-
gation of protons and neutrons in the nuclear medium. We successfully compare our simulations to available
proton-carbon scattering data and nuclear-transparency measurements. By analyzing the dependence of the sim-
ulated observables upon the ingredients entering our intranuclear cascade algorithm, we provide a quantitative
understanding of their impact. Particular emphasis is devoted to the role played by nuclear correlations, the Pauli
exclusion principle, and interaction probability distributions.
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I. INTRODUCTION

The propagation of nucleons through the nuclear medium
is an important aspect of nuclear reactions, heavy-ion colli-
sions, and astrophysical environments. It is also crucial in the
analysis of electron-nucleus scattering experiments (see, e.g.,
Refs. [1–10]), neutrino oscillation experiments [11–14], and
dark matter searches [15]. For example, scattering of neutrinos
on nuclei can produce a number of outgoing hadrons. The
multiplicity of the recoiling hadrons can indicate statistically
if the incoming particle was more likely to be a neutrino or
antineutrino [16]; their momenta are correlated with the origi-
nal neutrino energy and direction, which can be used to gather
additional information, for instance, on the leptonic CP phase
from the sub-GeV atmospheric neutrino samples [17] or from
searches for dark matter annihilation from the sun [18,19].

The quantitative understanding of nucleons’ propagation
in the nuclear medium would in principle require a fully
quantum-mechanical description of the hadronic final state.
Due to its tremendous difficulty, this problem has been tackled
by introducing different approximations. The seminal papers
by Serber and Metropolis et al. [20–23] laid the foundations
for the use of Monte Carlo techniques in semiclassical in-
tranuclear cascades (INC) that assume classical propagation
between consecutive scatterings. The latter are modeled us-
ing free-space elementary cross sections whose final state
is modified to account for the Pauli principle. The results
obtained by these first implementations of INC agree at least
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qualitatively with experimental data on nuclear transparencies
and the frequency and angular distribution of emitted fast
protons [21].

Experiments in heavy-ion reactions have spurred theoret-
ical efforts to describe the dynamical evolution of nucleus-
nucleus collisions using transport methods [24–28] based
on the Kadanoff-Baym equations [29,30]. The impossibility
of solving these equations exactly on real-world computers
requires the introduction of approximations, such as the gra-
dient expansion leading to the Boltzmann-Uehling-Uhlenback
equations (BUU). For instance, the Giessen Boltzmann-
Uehling-Uhlenback (GiBUU) model is based on this truncated
set of semiclassical kinetic equations, which describe the
dynamics of the hadronic system explicitly in phase space
and in time [31,32]. It can be difficult to estimate systematic
effects coming from the truncation of the transport equations.
Although initially developed to simulate heavy-ion collisions,
GiBUU has been extended to the description of lepton and
photon scattering on nuclei [33,34].

Over the years, several studies have been devoted to im-
proving the accuracy and extending the predictive power of
INC models, with a focus on the analysis of nuclear spalla-
tion processes, where a hadronic probe with energy from a
few tens of MeV to a few hundred MeV strikes a nucleus
[35–38]. In contrast to the standard Glauber approach [39],
where the so-called frozen approximation is utilized, INC
simulations explicitly account for the motion of the back-
ground particles or scattering centers [40]. The validity of
the semiclassical propagation assumed in the INC has yet
to be fully assessed. However, genuine quantum-mechanical
effects can either be safely neglected because they are ex-
pected to play a minor role—as for coherent scattering in
nuclear transparency calculations—or they can be effectively
parametrized by means of trajectory deflections and nuclear
collective excitations, as in the analysis of nuclear spallation
processes [41].
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Important examples of state-of-the-art INC codes used in
hadron- and lepton-nucleus scattering analyses are the LIÈGE

INC [42], NEUT [43], NUANCE [44], PEANUT (used within
FLUKA) [45,46], NUWRO [47], and GENIE [48] programs. De-
spite some differences in technical aspects and degree of
sophistication, all the above INC models use as input elemen-
tary cross sections and mean-field properties of nuclei, such
as single-nucleon densities. A notable exception is NUWRO,
which has recently been extended to incorporate effective
nucleon-nucleon correlations [49].

In this work, we propose a novel cascade model that em-
ploys nuclear configurations obtained from quantum Monte
Carlo (QMC) calculations, which retains all correlation ef-
fects. The probability that the propagating nucleon scatters
with a background particle is modeled using two different
weight functions that depend on the impact parameter of the
two nucleons and their cross section. The first weight function
is cylindrical, corresponding, roughly, to the interaction prob-
ability of a classical billiard-ball system. The second weight
function has a Gaussian profile; this shape is a novel feature
of our INC model and can be understood as a basic phe-
nomenological model for the overlapping wave functions of
the interacting nucleons. The nucleon-nucleon cross sections
used in the simulation are taken to be the same as in vacuum;
in-medium effects are partially accounted for by imposing
the Pauli exclusion principle and an effective nuclear bind-
ing. While here we use quantum configurations to determine
the initial state for the nucleus, we would like to warn the
reader that subsequent propagation of the struck nuclei follow
a semiclassical algorithm. The uncertainty from neglecting
these additional quantum effects has not been fully quantified,
and a study investigating how to estimate these effects is left
to a future work.

Our semiclassical approach allows for the calculation of
exclusive quantities in nuclear scattering, such as the fully
differential phase space and the number of outgoing nucleons.
To test the validity of our model, we compare our simulations
with available data on proton-nucleus scattering cross sections
and nuclear transparencies.

On the technical side, the INC code developed here is
publicly available [50]. The front end is written in PYTHON

3, while computationally intensive code is written in C++,
using PYBIND11 to generate the interface code. The source
code is organized to be portable and modular, making it easy
to use, extend, and improve. All validations are available in
the source code and can be easily performed by the front-end
user.

II. PHYSICS OF THE IMPACT-PARAMETER-BASED
INTRANUCLEAR CASCADE MODEL

We now discuss in detail the physical content of our INC
and how several ingredients were incorporated in the model.
The INC starts by generating a nuclear configuration, which
describes the spatial distribution of protons and neutrons in-
side the nucleus. A large number of these configurations are
computed from quantum Monte Carlo (QMC) methods [51]
that use as input the highly realistic Argonne v18 (AV18) [52]
plus Illinois 7 (IL7) [53] Hamiltonian; more details can be
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FIG. 1. Schematics of a propagating nucleon (black circle). The
distance traveled by the propagating nucleon is depicted by a black
arrow. The crosses represent background nucleons. An interaction
test would be performed for the nucleon in red.

found in Sec. II A. All particles in a nuclear configuration
are initially labeled as background particles. After randomly
picking a nuclear configuration, an appropriate nucleon is
selected, struck, and labeled as a propagating nucleon. The
precise method for selecting the initial struck nucleon depends
on the process of interest, as we explain for each observable
below in Secs. III A–III C. Propagating nucleons are assumed
to be pointlike, on-shell particles moving at some velocity
given by their four-momentum. The spatial coordinates of
background nucleons are kept fixed until they interact with a
propagating particle. In that case, their momentum is sampled
from either a local or global Fermi gas distribution.

The system is evolved in time steps, which is a parameter
of the cascade model, and should be chosen small enough to
simulate the cascade accurately but large enough to run in a
reasonable amount of time. At each time step, the following
procedure is performed for each propagating nucleon. First,
it is checked if there are any background particles within the
volume perpendicular to the line segment defined by the initial
to the final position of a propagating particle; this is schemat-
ically shown in Fig. 1. The impact parameter is calculated
for all such nucleons, and this list is sorted from closest to
farthest. Then an accept-reject step is performed on this list,
until either an interaction takes place or the end of the list
is reached. This test determines if an interaction occurred
according to a probability distribution. If an interaction oc-
curred, the phase space is generated using a fully differential
nucleon-nucleon cross section. The Pauli exclusion principle
is approximately taken into account by comparing the mag-
nitude of the momentum of the final-state particles with the
Fermi momentum kF (the user can choose between either the
global or the local values). The interaction takes place only if
both momenta are above kF . Otherwise, the interaction does
not happen, and the propagating particle keeps its original
four-momentum.

If the interaction took place, the outgoing particles are both
treated as propagating particles, and a formation zone is set
for each of them [54,55] (see also Ref. [47]). Note that, as a
distinctive feature of our INC model, the interaction is finite
ranged and the outgoing nucleons do not have to be at the
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FIG. 2. The proposed algorithm for the INC model.

same position in space. Finally, a propagating particle that
reaches a sufficiently large radius may exit the nucleus if
its kinetic energy overcomes the effective nuclear binding. If
there is insufficient energy to escape, the particle is relabeled
as a background particle. Otherwise, this effective binding
energy is subtracted from the particle’s energy, and then the
particle is labeled as a final particle and stops propagating.
The INC stops when there are no more propagating particles
in the nucleus.

The structure of the algorithm is summarized in Fig. 2. In
what follows, we provide the details and expressions that are
used in our impact-parameter-based INC.

A. Nuclear configuration

Nuclei are complicated many-body systems of fermions,
whose structure and dynamics emerge from individual in-
teractions among the constituent protons and neutrons.

To a remarkably large extent, the latter can be modeled by
the nonrelativistic Hamiltonian

H =
∑

i

p2
i

2mN
+

∑
i< j

vi j +
∑

i< j<k

Vi jk , (1)

where pi denotes the momentum of the ith nucleon with
mass mN , while vi j and Vi jk are the nucleon-nucleon (NN)
and three-nucleon (3N) potentials, respectively. We employ
the highly realistic Argonne v18 (AV18) NN interaction
[52] that includes spin, isospin, tensor, spin-orbit, and
quadratic momentum-dependent terms as well as isospin-
symmetry-breaking corrections and reproduces the Nijmegen
nucleon-nucleon database with a χ2/datum � 1. For the 3N
interaction, we use the Illinois-7 (IL7) potential [53], which
consists of the dominant standard Fujita-Miyazawa two-pion
exchange and smaller multi-pion-exchange components re-
sulting from the excitation of intermediate � resonances.
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The IL7 potential also contains phenomenological isospin-
dependent central terms. The parameters characterizing this
three-body potential have been determined by fitting the low-
lying spectra of nuclei in the mass range A = 3–10. The
overall AV18 + IL7 Hamiltonian then leads to predictions
of ≈100 ground- and excited-state energies up to A = 12,
including the 12C ground- and Hoyle-state energies, in good
agreement with the corresponding empirical values [51].

Over the last decades significant progress has been made in
the development of ab initio nuclear methods, which solve the
many-body Schrödinger equation associated with the Hamil-
tonian of Eq. (1) with controlled approximations [56–59].
For light nuclei, quantum Monte Carlo (QMC) and, in par-
ticular, Green’s function Monte Carlo (GFMC) methods have
been exploited to carry out calculations of nuclear properties,
based on realistic NN and 3N potentials, and consistent one-
and two-body meson-exchange currents [51]. GFMC begins
with the construction of a trial wave function �T that is
a symmetrized product of two- and three-body correlation
operators acting on an antisymmetric A-body single-particle
wave function that has the proper quantum numbers for the
state of interest. The variational parameters in �T are found
by minimizing the energy expectation value

E0 � ET = 〈�T |H |�T 〉
〈�T |�T 〉 , (2)

where E0 is the true ground-state energy of the system. The
calculation of ET requires the numerical solution of a mul-
tidimensional integral that is carried out employing standard
Metropolis Monte Carlo sampling in configuration space.

GFMC then projects out the lowest eigenstate �0 of the
given quantum numbers starting from �T by performing a
propagation in imaginary time τ

|�0〉 = lim
τ→∞ exp[−(H − E0)τ ]|�T 〉. (3)

The propagation |�(τ )〉 = exp[−(H − E0)τ ]|�T 〉 is carried
out as a series of many small imaginary-time steps �τ . Ex-
pectation values of operators are evaluated as mixed matrix
elements O(τ ) = 〈�T |O|�(τ )〉, and the behavior as a func-
tion of τ analyzed to obtain converged results. Because H and
exp[−(H − E0)τ ] commute, the mixed estimate is the exact
expectation of 〈�(τ/2)|O|�(τ/2)〉 but linear extrapolations
are used to evaluate other quantities.

In addition to binding energies the GFMC provides de-
tailed information on the distribution of nucleons in a nucleus
in both coordinate and momentum space, which are interest-
ing in multiple experimental settings. For example, the mixed
estimate of the single-nucleon density is calculated as

ρN (r) = 1

4πr2
〈�T |

∑
i

δ(r − |ri|)PN |�(τ )〉 , (4)

where N = p, n; PNi = 1±τzi
2 is the neutron or proton pro-

jector operator; and, ρN integrates to the number of protons
or neutrons. The two-body density distribution, yielding the
probability of finding two nucleons with separation r, is

FIG. 3. Nucleon density in carbon from Green’s function Monte
Carlo (red) and mean-field (blue) configurations.

defined as

ρNN (r) = 1

4πr2
〈�T |

∑
i< j

δ(r − |ri j |)PNi PNj |�(τ )〉 . (5)

The positions of the constituents protons and neutrons uti-
lized in the nuclear cascade algorithm are sampled from 36000
GFMC configurations. We employ the so-called constrained-
path approximation [60] to make sure that their Monte Carlo
weights remain positive, thereby facilitating their usage in the
cascade algorithm. As a consequence, the single-proton distri-
bution displayed by the blue solid circles of Fig. 3 is slightly
different from the results reported in Ref. [61], which have
been obtained performing fully unconstrained imaginary-time
propagations. Since we neglect the charge-symmetry breaking
terms in the Hamiltonian, and since 12C is isospin symmet-
ric, the single-neutron distribution is identical to that of the
proton.

For benchmark purposes, we also sample 36000 mean-
field (MF) configurations from the single-proton distribution.
The corresponding single-proton densities coincide by con-
struction with the GFMC one, as shown in Fig. 3. However,
the differences between GFMC and MF configurations be-
come apparent when comparing the corresponding two-body
density distributions represented in Fig. 4. The short-range
repulsive core of the NN interaction prevents two nucleons
from being close to each other. As a consequence, the pp
and np GFMC density distributions are small at short sep-
aration distances. Furthermore, the difference between the
GFMC pp and np density distributions around r = 1 fm can
be attributed to the strong tensor correlations induced by
the one-pion-exchange part of the NN interaction, which is
further enhanced by the two-pion-exchange part of the 3N
potential. Note that the short-range behavior of ρNN , which is
largely nucleus independent, does depend strongly on the NN
interaction model [62]. On the other hand, the MF ones do not
exhibit this rich behavior as the correlations among nucleons
are entirely disregarded.
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FIG. 4. Proton-proton (top) and proton-neutron (bottom) corre-
lation functions in carbon from Green’s function Monte Carlo (red)
and mean field (blue) configurations.

B. Nucleon momentum distribution

As mentioned above, when a nucleon is struck, its momen-
tum is obtained assuming either a local or global Fermi gas
distribution. In the case of the local Fermi gas, the magnitude
of the three-momentum is randomly sampled in the interval
[0, kN

F (r)] where kN
F (r) is the Fermi momentum defined in

terms of the single nucleon density kN
F (r) = (ρN (r)3π3)1/3

and N = p, n. In the case of the global Fermi gas, the mo-
mentum is determined in the same way, but kN

F is position
independent. The local Fermi gas model is known to provide a
more realistic nucleon momentum distribution for finite nuclei
than the global Fermi gas. For this reason, although both
models are implemented in our code, we only present results
based on the local Fermi gas predictions. In the future, we plan
to include more accurate nucleon momentum distribution,
based on state-of-the-art many-body calculations that properly
account for nuclear correlations.

C. Nucleon-nucleon interaction algorithm

To check if an interaction between nucleons occurs,
an accept-reject test is performed on the closest nucleon

according to a probability distribution P(b) (see, e.g.,
Ref. [63] for similar considerations) where b is the impact
parameter. We impose two conditions on this probability,

P(0) = 1 and
∫ 2π

0

∫ ∞

0
dϕ bdbP(b) = σ, (6)

where the cross section σ depends on the incoming particle
content and the center-of-mass energy, which is sampled from
the nuclear configuration. The second condition ensures that
the mean-free path of a nucleon traveling in a medium of uni-
form density is λmfp = 1/σ ρ̄, where ρ̄ is the number density.

Two implementations of P(b) have been studied here. The
first we dub the cylinder interaction probability,

Pcyl(b) = �(σ/π − b2), (7)

where �(x) = 1 if x � 0, else �(x) = 0. This probability
mimics a more classical, billiard-ball-like system, where each
billiard ball has a radius ≈√

σ/π . The second implementation
is the Gaussian interaction probability

PGau(b) ≡ exp

(
−πb2

σ

)
, (8)

which is inspired by the work of Ref. [63]. Both Pcyl and PGau

satisfy the conditions in Eq. (6). We use the nucleon-nucleon
cross sections from the SAID database [64] obtained using
GEANT4 [65], or from the NASA parametrization [66].

D. Phase space, Pauli blocking, and after interaction

If an interaction occurred, the phase space of the outgoing
particles is generated using fully differential nucleon-nucleon
cross sections. Note that, at the moment, we only include
protons and neutrons in our INC model. Pauli blocking en-
forces Fermi-Dirac statistics for the nucleons and amounts
to testing whether their final-state momenta are above the
Fermi momentum. Two different models of the Pauli exclu-
sion principle have been approximately implemented. The
global and local Pauli blocking routines essentially forbid a
scattering if the momentum of any of the final-state particles
is below the average Fermi momentum (for the global Fermi
gas model) or the local Fermi momentum (for the local Fermi
gas model), respectively. We emphasize again that, although
we have implemented the global Fermi gas model, we do not
report any results using it.

If the interaction took place, the outgoing particles are both
treated as propagating particles, and a formation zone is set
for each of them [54,55] (see also Ref. [47]). The formation
zone is a length or period of time in which a particle does
not interact with any nucleons. This models the coherence
and interference of interactions in quantum mechanics. The
formation zone is given by

δt = E ′

m2
N − p · p′ , (9)

where mN = 938 MeV is the nucleon mass, E ′ is the energy
of the outgoing nucleon, and p and p′ are the four-momenta
of the incoming and outgoing nucleon, respectively.
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E. Exiting the nucleus

When the radial position of a propagating particle is larger
than a certain distance, much larger than the nuclear radius,
a test is performed to check if the particle has enough energy
to escape the nuclear potential. If its kinetic energy is larger
than the nuclear potential barrier, then the particle escapes the
nucleus and is labeled as a final-state particle. The momentum
of the particle is modified to include the effective nuclear
binding. Final-state particles do not propagate and are essen-
tially the input that should be given to a detector simulation.

III. RESULTS AND MODEL VALIDATION

In this section, we present the validation tests we per-
formed and the results we obtained within our INC model.
For comparison purposes, we also implement a version of the
nucleon-nucleon interaction algorithm that we dub mean-free
path (MFP). This approach is routinely used in event genera-
tors. Within this algorithm, the system is not evolved in time
steps but rather in constant position steps that we indicate
as λmax. At each step of the loop the mean-free path of the
propagating particle reads

λ̃ = 1/(ρp(r)σN p + ρn(r)σNn), (10)

where N = n, p refers to the isospin of the propagating par-
ticle and r its distance from the center of the nucleus. Note
that in the limit of constant density, ρp(n)(r) = ρ̄, we would
recover λ̃ = λmfp. (see also Sec. III A below). The probability
that the struck particle traveled a distance λ without inter-
acting can be written as P(λ) = e−λ/λ̃. We can then sample
λ = −λ̃ · ln(rand[0, 1]) and say that an interaction took place
if λ < λmax. Note that λmax has to be chosen small enough in
order to satisfy the assumption of a constant density.

A. Mean-free path

The simplest validation consists of calculating the mean-
free path of a nucleon traveling through a medium of
uniformly distributed nucleons, with fixed interaction cross
sections. Our goal is to obtain

λmfp = 1

σρ
, (11)

where σ is the nucleon-nucleon cross section, and ρ is the
number density of nucleons. We simulate a background of
static, randomly and uniformly distributed protons and neu-
trons at rest. For an event, we insert into the medium a
test particle with a fixed energy and propagate it through
the medium. When the first interaction happens, we record
the length the test particle has traveled. Figure 5 shows the
distribution of lengths traveled for a 500 MeV test proton in a
0.16 nucleons/fm3 background density of nucleons, assuming
a fixed interaction cross section of 50 mb, and using the
Gaussian interaction probability. The expected distributions,
according to Eq. (11), are also shown for the fitted (black
line) and the expected (orange line) values of the mean-free
path. The nuclear density and interaction cross section were
chosen arbitrarily. Adjusting these values does not change
the agreement between the expected mean-free path and the

FIG. 5. Distribution of distance traveled (blue histogram) by
500 MeV test nucleons traveling through a 0.16 nucleons/fm3 back-
ground density of nucleons at rest, fixed interaction cross section of
50 mb, and using the Gaussian interaction probability. The black and
orange lines are the expected distributions for the fitted (1.23 fm) and
expected (1.25 fm) values of the mean-free path, respectively.

calculated mean-free path. While not shown here, using the
cylinder interaction probability does not change the results
either. As we can see, our code correctly reproduces the ex-
pected behavior for the mean-free path, allowing us to proceed
to more complex tests of our INC.

B. Proton-carbon scattering data

Reproducing the proton-nucleus cross-section measure-
ments is an important test of the accuracy of the INC model.
Proton-nucleus scattering probes the nucleon-nucleon cross
section, which is typically divided into two pieces, the reac-
tion and the elastic cross sections,

σtot = σR + σel. (12)

In the elastic part, no energy is transferred into nuclear excita-
tion and the nucleus remains unbroken, that is n + A → n +
A. The reaction cross section includes transition to nuclear
excited states, n + A → n + A∗, as well as inelastic reactions
n + A → X .

Several experiments have been carried out to determine the
total reaction cross section, see for example Refs. [67–72].
The latter is typically obtained by measuring the total cross
section from the change in intensity of a calibrated proton
beam traversing a carbon target and then subtracting the cal-
culated elastic cross section.

We compute σR neglecting Coulomb interactions, as they
are expected to contribute mostly to σel. We obtain the proton-
carbon scattering cross section by the following simulation
(with a different setup from the proposed algorithm of Fig. 2).
We define a beam of protons with energy E , uniformly dis-
tributed over an area A (orthogonal to the proton momenta).
Note that A � πR2, where R is the radius of the carbon nu-
cleus. The carbon nucleus is situated in the center of the beam.
We propagate each proton in time and check for scattering
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at each step. The Monte Carlo reaction cross section is then
defined as the area of the beam times the fraction of scattered
events, namely,

σMC = A
Nscat

Ntot
. (13)

This is not exactly the experimentally measured reaction cross
section. Angular and/or momentum acceptances for the atten-
uated beam are finite, and we do not include these effects in
our calculation. Nevertheless, we do not expect such effects
to change our results significantly, and thus σMC should be a
good approximation of the reaction cross section. Moreover,
imposing Pauli blocking on both outgoing nucleons will ef-
fectively suppress the contribution of elastic transitions.

The two panels of Fig. 6 display the proton-carbon scatter-
ing cross sections as a function of the proton kinetic energy. In
the top panel our Monte Carlo simulations are compared with
experimental data in the entire energy region in which data
are available [72], while the bottom panel focuses on proton
kinetic energies below 200 MeV. The curves correspond to
different implementations of the INC. These implementations
are composed of three ingredients, namely,

(i) Nuclear configuration: quantum Monte Carlo (QMC)
or mean field (MF);

(ii) Interaction model: cylinder (cyl), Gaussian (Gauss),
or mean-free path (MFP);

(iii) Nucleon-nucleon cross section: elastic (El) or total
(Tot).

Note that the interaction model MFP does not use any
configuration, but rather the local density.

The solid lines have been obtained using the nucleon-
nucleon cross sections from the SAID database [64], obtained
using GEANT4 [65], in which only the elastic contribution is
retained. The dashed lines used the NASA parametrization
[66], which includes inelasticities. The inelastic contribution
leads to an enhancement of the cross section, which is neces-
sary to reproduce the data correctly for intermediate to large
proton kinetic energies. The NASA parametrization allows us
to approximate the effects of including pions in the cascade.
Results obtained with these two nucleon-nucleon cross sec-
tions are indicated in Fig. 6 by “El” for elastic cross section
and “Tot” for the total cross section. As expected, the p-carbon
cross section obtained using only the elastic nucleon-nucleon
cross section is consistently lower than the one obtained using
the total nucleon-nucleon cross section. The effect is large for
Tp > 50 MeV, where pion production becomes relevant. In a
future work, we will explicitly include pion degrees of free-
dom in our INC as these are known to play a crucial role in this
region. Additionally, the present results neglect modifications
to the nucleon-nucleon cross section arising from the nuclear
medium itself. Such modifications have been considered in the
literature [73]. We also leave these considerations for a future
work.

The dependence of the results on the functional form of
the interaction probability and on the nuclear model adopted
to generate nuclear configurations has also been investigated.
The blue and red lines are obtained from the cylinder probabil-
ity of Eq. (7) and sampling the initial nucleon configurations

FIG. 6. Proton-carbon scattering total cross section as a function
of the incoming proton kinetic energy. In the top panel the entire
energy range for which experimental data are available is shown. In
the bottom panel the low-energy region is magnified. The red and
blue curves correspond to the cylinder algorithm where the mean-
field (MF) and quantum Monte Carlo (QMC) configurations have
been used, respectively. The green and orange curves are the same
but for the Gaussian interaction probability. The results displayed in
purple refers to the mean-free path (MFP) calculations. The solid
and dashed curves corresponds to the use of the GEANT4 [65] and
NASA [66] parametrization of the cross section in the interaction
probability, respectively. The data points are from Ref. [72]

from the quantum Monte Carlo (QMC) and mean-field (MF)
distributions, respectively. To obtain the orange and green
curves, QMC and MF configurations were used together with
the Gaussian probability of Eq. (8). We observe that in both
cases, the QMC and MF curves are almost superimposed,
indicating that this observable does not depend strongly on
correlation effects among the nucleons. A more detailed dis-
cussion of their impact on particle propagation distances will
be discussed in Sec. III D.

The purple lines refer to mean-free path (MFP) calcula-
tions, which present conceptual differences with respect to
the cylinder and Gaussian cases and yield large discrepancies
in the results. The predictions for the p-carbon cross section
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obtained from the MFP approach underestimate the experi-
mental data and are significantly lower with respect to the
other curves obtained with more refined techniques.

In the bottom panel of Fig. 6 we focus on the compar-
ison between the different MC simulations and the data in
the low-energy region, i.e., proton kinetic energies below
200 MeV. The results obtained using the Gaussian and cylin-
der algorithm are in fair agreement with the experimental
data: the curves display the correct behavior although the
position of the peak is not exactly reproduced. We note that
Pauli blocking plays a fundamental role for these kinematics,
significantly quenching the results. More sophisticated tech-
niques aimed at consistently orthogonalizing the nuclear wave
function in the final state are discussed in Ref. [74]. Their
implementation in our INC will be the subject of a future
work.

The functional forms adopted to determine the probability
distribution (Gaussian vs. cylinder) yield predictions that dif-
fer by ≈15% in the low-energy region (compare, for instance,
the green and red lines in Fig. 6). For intermediate proton
kinetic energies Tp the curves converge to the same result and
reproduce the data. At low Tp, the predicted cross sections for
the MFP method are ≈50% smaller than those of the Gaussian
and cylinder methods. As these differences are also present in
nuclear transparency, we will discuss their origins in the next
section.

C. Nuclear transparency

The nuclear transparency yields the average probability
that a struck nucleon (either a proton or a neutron) leaves
the nucleus without interacting with the spectator particles.
Measurements of the nuclear transparency to high-energy pro-
tons in quasielastic e + A → e + p + A′ scattering have been
carried out by a number of experiments [4,6,7,75–77]. These
measurements are performed with fixed kinematics (i.e., for
a fixed incoming beam energy and scattering angle) and mea-
sure the outgoing electron and proton. The proton produced in
the primary vertex can be absorbed or deflected while exiting
the nuclear medium because of final-state interactions with
the remnant system, leading to a reduction of the measured
e + A → e + p + A′ cross section. This reduction defines the
nuclear transparency, which is given by the ratio of the ob-
served events to events predicted in the plane wave impulse
approximation (PWIA)

T = Nexp

NPWIA
. (14)

To obtain NPWIA the initial proton is treated as a bound state
with energy and momentum distribution described by a spec-
tral function; while the final proton is a free particle state
propagating as a plane wave.

In our Monte Carlo simulation, the nuclear transparency
has been obtained via the following procedure. We randomly
sample a nucleon, its position being generated according to ei-
ther the QMC or MF distributions. We give the nucleon a kick
by assigning it a given kinetic energy Tp and three-momentum
p, and propagate it through the nuclear medium. The Monte

FIG. 7. Carbon transparency as a function of the proton ki-
netic energy. The different curves indicate different approaches
used as described in Fig. 6. The experimental data are taken from
Refs. [4,6,7,75–77].

Carlo transparency is then defined as

TMC = 1 − Nhits

Ntot
, (15)

where Pauli blocking has been implemented in the determi-
nation of Nhits. Note that for a given initial and final energy
and scattering angle of the electron, one can unambiguously
define the momentum q transferred to the target nucleus.
The direction and the momentum of the nucleon in the final
state has to be determined applying energy- and momentum-
conservation relations and accounting for the Fermi motion
of the struck nucleon in the initial state. It follows that defin-
ing the kinematics of the hadronic final state after the hard
scattering depends on the nuclear model of choice. However,
in the analysis of different experiments, the data are given
as a function of the average nucleon momentum (and kinetic

energy) given by p = q (Tp =
√

|q|2 + m2
N − mN ).

There is no consensus on the role played by nuclear corre-
lations in nuclear transparency. For example, Ref. [49] using
the NUWRO generator found that the transparency is enhanced
significantly when nucleon-nucleon correlations are included.
In contrast, it has also been argued that the full physical ef-
fect (which includes the higher-order many-body correlations)
will be small due to cancellations between the hole and specta-
tor effect. [78]. This situation makes the nuclear transparency
a particularly interesting observable for our INC model with
its quasiexact treatment of the full set many-body correlations.
We discuss these points in more detail in Sec. III D below.

In Fig. 7 we compare the nuclear transparency data from
Refs. [4,75] to our predictions. The different lines are the same
as for Fig. 6. We find an overall satisfactory agreement be-
tween the Gaussian and cylinder curves with the experimental
data once inelastic effects are taken into consideration; this
corresponds to the results using the NASA parametrization
for the nucleon-nucleon cross sections. For moderate to large
values of the proton kinetic energy, pions play an important
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σ/π

d
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//π

σ/π
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x

r1

FIG. 8. Left: a schematic picture of an external proton scattering
off the nucleus. The distance from the proton to the center of the nu-
cleus is r1, and the propagation step is d
. The radius of the cylinder
is given by

√
σ/π where σ is the interaction cross section between

the proton and a background particle; d
 is also the height of the
cylinder. Right: same as for the left, but for a nucleon kicked inside
the nucleus. This follows what is done in the nuclear transparency
event simulations.

role in quenching the transparency. Moreover, the Gaussian
and cylinder curves exhibit correct behavior consistent with
the data also for small Tp where the simplified MFP model
described above fails. As in Fig. 6, we observe very small
differences between the QMC and MF calculations. For low
and intermediate kinetic energies, the transparency obtained
from the MFP approach is much smaller than the correspond-
ing results for the cylinder and Gaussian curves.

Finally, we discuss the origin of the discrepancies between
the MFP and the cylinder algorithm with MF configurations
for the p-carbon cross section and carbon transparency. Both
approaches rely on the single-nucleon density distribution
to sample the initial nucleon positions (nuclear correlations
are neglected) but use different definitions of the interaction
probability. The left panel of Fig. 8 schematically shows one
contribution to the p-carbon cross section in which the proton
is at a distance r1 larger than the nuclear radius. In the cylinder
algorithm, the interaction probability is equal to one if a parti-
cle is present in the volume defined by: V = d
 · σ . Both σpp

and σnp have a maximum for low proton momentum values.
Hence, for low momenta, the probability of interaction could
be nonvanishing even when the projectile proton is far from
the center of the nucleus.

On the other hand, within the MFP approach, if the probe
is outside the nucleus then the approximation of a constant
density ρ(r1) = 0 within the volume V = d
 · σ yields a van-
ishing interaction probability. This different behavior leads to
a lower p-carbon cross section using the MFP approach, as
observed in Fig. 6. When computing the nuclear transparency
we kick a nucleon that is located inside the nucleus as dis-
played in the right panel of Fig. 8. In this case, assuming a
constant density is more likely to overestimate the interac-
tion probability, especially for low momenta where the cross

section is larger. This observation is consistent with Fig. 7
where the MFP curves predict a larger number of interactions,
and therefore a lower nuclear transparency, for small Tp.

D. Correlation effects

The role played by nuclear correlations in final-state in-
teractions of the recoiling nucleon has been investigated in
Refs. [73,78–81]. As discussed in Ref. [82] the hit nucleon
is surrounded by a short-distance correlation hole produced
by both the Pauli principle and the repulsive nature of re-
alistic nuclear interactions. Because of this correlation hole,
the stuck nucleon is expected to freely propagate for ≈1 fm
before interacting with any of the background particles. To
test the validity of these observations in our INC model, in
Fig. 9 we report the histograms of the distance traveled by
a struck nucleon before its first interaction occurs—we stop
the simulation afterwards—with each panel corresponding to
a different value of the interaction cross section. In order to
gauge the effect of nuclear correlations, the initial positions
of the nucleons are sampled from either MF (blue) or QMC
(red) configurations. A random nucleon inside the nucleus
is recoiled and assigned a momentum of 200 MeV. Pauli
blocking has been neglected here to isolate the dependence
of the results on the spatial distribution of the nucleons. We
employ the cylinder algorithm and use a fixed cross section,
which determines the cylinder base area, varying between 0.5
and 100 mb.

For σ = 0.5 and 10 mb, the volume spanned by the prop-
agating particle is very small. The first and second panels
of Fig. 9 clearly show the MF distribution peaking toward
smaller distances than the QMC distribution. This difference
primarily originates from the short-range repulsion of the
AV18 potential that reduces the probability of finding two
nucleons close to each other and allows the struck particle
to propagate longer before interacting. This effect is more
pronounced for cross sections below about 10 mb = 1 fm2

since correlations affect nucleon configuration for interpar-
ticle distances within 1–2 fm, as can be seen in Fig. 4. On
the other hand, larger cross sections yield larger cylinders. In
this case, the propagating particle becomes less sensitive to
the local distribution of nucleons and more sensitive to the
integrated density in a larger volume, reducing the effect of
correlations. For these larger cross sections, the MF and QMC
event distributions follow the same trend, as can be seen in the
bottom panels of Fig. 9, corresponding to σ = 50 and 100 mb.

In each panel we also report the number of hits and the
total number of events simulated. Obviously, the number of
interactions increases for the larger cross sections. It is more
interesting to notice that the total number of hits does not
present a strong dependence on configurations with (QMC)
and without (MF) correlations. This explains why sampling
from these two different set of configurations give comparable
results for the p-carbon cross section and carbon transparency,
displayed in Figs. 6 and 7. These observables are indeed more
sensitive to the occurrence of any interaction rather than to
its location inside the nucleus. This is especially true for
the p-carbon cross section, since the attenuation of a proton
beam is sensitive to the total nuclear density rather than its
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FIG. 9. The four panels corresponds to histograms of the distance traveled by a struck particle before the first interaction takes place
for different values of the interaction cross section. The results in blue and red correspond to MF and QMC initial nucleon configurations,
respectively. For each of the panels we also report the fixed cross section used, the total number of events generated, and the number of hits for
each configuration.

differential profile (compare, e.g., the solid blue and red lines
in Fig. 6).

An alternative way to include correlation effects in INC
models, based on two-body density distributions, has been
recently proposed by the NuWro Collaboration and leads to
a larger enhancement of the nuclear transparency than we
find [49]. This difference can partly be ascribed to correlation
terms between two spectator nucleons [78] that are automat-
ically incorporated in our QMC configurations, but cannot
be modeled by the two-body correlation functions alone. In
addition, as discussed in Sec. III D, when the nucleon-nucleon
cross section is larger than about 20 mb, the base of the prop-
agating cylinder in our model covers the correlation hole and
reduces the importance of correlations. This effect is absent
when only local properties of two-body distribution functions
are considered.

Nuclear correlations in final-state interactions do not play
a prominent role in the observables we have considered so
far. One would expect correlations to be more important in
observables such as proton multiplicity and the distribution of
outgoing protons’ direction and energy. Although a detailed

exploration of these questions is reserved to a future work, we
show in Fig. 10 the nucleon multiplicity for a simulation setup
similar to the nuclear transparency described above: a random
nucleon is kicked at fixed kinetic energy (which in this case is
chosen to be Tp = 800 MeV) and propagated throughout the
nucleus. The nucleon multiplicity is defined as the number of
nucleons that exit the nucleus. We plot the fraction of events
with a given multiplicity.

The red solid and blue dashed histograms are obtained with
QMC and MF configurations, respectively. We emphasize that
QMC accounts for all nuclear correlations, unlike the MF
configuration. We can observe some differences in the nucleon
multiplicity. This difference is related to the typical size of the
correlation hole, see Fig. 4, and the formation zone, which
prevents a particle from reinteracting in the aftermath of a
scattering for some period of time. In the MF case, the for-
mation zone sometimes prevents particles from reinteracting
with nearby nucleons. When QMC configurations are used,
it is less likely to find nucleons in the vicinity of the struck
nucleon due to the correlation hole. This effect reduces the
impact of the formation zone, leading to more interactions
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FIG. 10. Nucleon multiplicity, defined as the number of nucle-
ons that exit the nucleus in a simulation setup similar to nuclear
transparency. These distributions are obtained using quantum Monte
Carlo configurations with (solid red) and without (solid green) for-
mation zone, as well as using mean-field configurations with (dashed
blue) and without (dashed orange) formation zone. The inset displays
the same distribution but in a linear scale.

overall and thus a slightly higher nucleon multiplicity. To
validate this interpretation, Fig. 10 also shows the nucleon
multiplicity as obtained by switching off the formation zone
for QMC (green solid) and MF (orange dashed). Neglecting
the formation zone, the nucleon multiplicities are much larger
and essentially identical, demonstrating the interplay between
the formation zone and nuclear correlations.

IV. CONCLUSIONS

We have presented a novel INC model that takes as input
realistic QMC nuclear configurations to sample the distribu-
tions of protons and neutrons inside the nucleus. Either a
cylinder or a Gaussian distribution is used to define the inter-
action probability of the propagating nucleon as a function of
the impact parameter and the nucleon-nucleon cross sections.
We have considered the elastic and the total cross sections,
corresponding to the SAID database [64] and to the NASA
parametrization [66], respectively.

To validate the INC we have compared our simulations
with experimental data for p-carbon scattering and carbon
transparency. For both observables, we find minimal differ-
ence between the cylinder and Gaussian distributions, and
both correctly reproduce the trend of the data. We gauge the
role of nuclear correlations in the propagation of the recoil-
ing nucleons by utilizing nuclear configurations computed
within quantum Monte Carlo and comparing with mean-field
distributions. The distance traveled by a struck particle be-
fore the first interaction occurs, for sufficiently small value
of the nucleon-nucleon cross section, is significantly longer
when nuclear correlations are accounted for. This is due to
the short-range repulsion characterizing the AV18 potential
that gives rise to a correlation hole surrounding the propagat-
ing nucleon, thereby reducing the probability of finding two

FIG. 11. Comparison between the two interaction models used
within the intranuclear cascade model. The GEANT model is based
on the SAID database [64] and obtained using GEANT4 [65] and the
NASA model is given from Ref. [66].

nucleons close to each other. However, the total number
of hits is only mildly affected by the presence of nuclear
correlations. As a consequence, they mildly affect our cal-
culations of p-carbon scattering and carbon transparency.
The results presented for the latter quantity by the NuWro
Collaboration indicate a larger importance of nuclear correla-
tions, whose implementation is based on the two-body density
distributions [49].

Nucleon-nucleon cross sections are an important ingre-
dient in INC models. Since the scattering between the two
nucleons takes place in the nuclear medium, the free nucleon-
nucleon cross sections have to be corrected. In our simulation,
we do so by approximately implementing the Pauli exclusion
principle: in the aftermath of each collision, the magnitude
of final nucleons’ momenta have to be larger than the Fermi
momentum. This constraint reduces the effective cross section
and considerably improves the agreement between our simu-
lations and experimental data. As a next step, along the lines
of Ref. [73], we plan to replace the bare nucleon mass with an
effective one that depends on the momentum and the nuclear
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density, leading to a more complete and consistent treatment
of in-medium effects.

At energies larger than the pion-production threshold, in-
elastic contributions to the nucleon-nucleon cross section
become relevant. Using the NASA parametrization, which in-
cludes these inelasticities, noticeably improves the agreement
with p-carbon scattering and carbon transparency experimen-
tal data in the higher-energy region. Our INC model has yet
to include pion propagation in the nuclear medium. Existing
event generators have to rely on a number of semiphenomeno-
logical approaches constrained by experimental data [33,83–
86], the validity of which strongly depends upon the energy
of the propagating pion. A consistent implementation of pion
propagation and absorption is an extremely challenging prob-
lem and we leave this aspect for future works.

The transparency measurements used here depend upon
theoretical calculations based on the plane wave impulse ap-
proximation. To compare directly to the experimental data, we
plan on implementing the primary interaction vertex using the
spectral function formalism [87–89]. Additionally to further
validate our model, we will carry out extensive compari-
son against available semiexclusive electron scattering data
[90,91].
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APPENDIX : NUCLEON-NUCLEON INTERACTION
MODELS

The nucleon-nucleon cross sections used in our INC are
obtained externally. The elastic cross section is taken from the
SAID database [64], obtained using GEANT4 [65]. The total
cross section, including inelastic contributions (e.g., pion pro-
duction) is taken from Ref. [66]. For reference, we reproduce
those in Fig. 11. As it can be seen, the cross sections from
these databases are similar in the region where the elastic
contribution dominates, that is, below 300 MeV for pp inter-
actions and 500 MeV for np interactions. The differences at
high energy can be attributed to inelastic contributions.
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