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Investigation of qqqsq pentaquarks in a chiral quark model
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We investigate the pentaquark system qqqsq̄ in a framework of chiral quark model. Two structures, (qqq)(sq̄)
and (qqs)(qq̄), with all possible color, spin, flavor configurations are considered. The calculations show that
there are several possible resonance states, �π and NK̄ state with IJP = 0 1

2

−
, �∗π with IJP = 0 3

2

−
, �∗ρ with

IJP = 0 5
2

−
, �K̄ with IJP = 1 3

2

−
, and �K̄∗ with IJP = 1 5

2

−
. Where the NK̄ state with IJP = 0 1

2

−
can be used

to explain the �(1405), and together with another state �π is related to the two-pole structure of the scattering
amplitude proposed before. The decay properties of �(1520) prevent the assignment of �∗π with IJP = 0 3

2

−
to

�(1520), although the energy ≈1518 MeV of �∗π is close to experimental value of �(1520). Other resonance
states generally have a large width.

DOI: 10.1103/PhysRevC.103.015203

I. INTRODUCTION

After decades of development, the quark model has been
very successful in describing the properties of hadrons.
The traditional quark model believes that there are two
types of hadrons in nature, baryons (qqq) and mesons (qq̄),
respectively. But in addition to their existence, quantum chro-
modynamics (QCD) also allows other forms of hadron states
such as glueballs (without quarks and antiquarks), hybrids
(gluons mixed with quarks and/or antiquarks), molecular
states, and compact multiquark states. At present, the low
energy hadron states can be described well by the traditional
quark model. But for the excited states, the traditional quark
model encountered serious problems. For instance, the first
excited state of the nucleon is expected to be N∗ with JP =
1
2

−
, whose energy should be lower than the N∗ with the

JP = 1
2

+
state. Because in the N∗ state with JP = 1

2
+

one
quark is in a radial n = 1 excited state. For the N∗ state
(JP = 1

2
−

) without s quark, its energy should be significantly
lower than that of �∗(1405) with one s quark in theory. But
the experimental results are both opposite.

To solve these problems, pentaquark states are proposed.
Zou held that the N∗(1535) might be the lowest L = 1 excited
|uud〉 state with a large admixture of |[ud][us]s̄〉 pentaquark
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components and the N∗(1440) is probably the lowest radial
excited |uud〉 state with a large component of |[ud][ud]d̄〉
pentaquarks having two [ud] diquarks in the relative P wave
[1]. Similarly, the lighter �∗(1405) has a dominant pen-
taquark component |[ud][us]ū〉 [1]. In fact, the resonance
�∗(1405) was considered as a quasibound molecule state of
the K̄N system before the establishment of quantum chromo-
dynamics [2–4]. In these two decades, there was still a lot of
work devoted to the nature of the �∗(1405) state. In 2001,
Oller et al. unveiled the two-pole nature of the �(1405) within
a chiral unitary model, and an improved theoretical descrip-
tion for calculating the �π event distribution also introduced
in their work [5]. In the framework of the separable potential
model the authors confirmed that in the π� mass spectrum
the coupled-channels chiral model which employ all possible
meson-baryon channels produces two poles which can be re-
lated to the �∗(1405) resonance in the complex energy plane
[6]. Based on the the QCD sum rule method, Kisslinger et al.
claimed that the �∗(1405) is accordant with a strange hybrid
baryon [7]. Using the chiral unitary approach, Sekihara et al.
have found that the �∗(1405) resonant state has bigger spatial
radii and softer form factors than those of the baryons, more
importantly, the structure is dominated by the K̄N component
to a large extent [8]. Shevchenko calculated the K−d scat-
tering length by applying newly obtained coupled-channels
K̄N − π� potentials with one- and two-pole versions of the
�∗(1405) resonance, and calculations prove that the two re-
sults obtained with it are totally separated from each other,
therefore, the authors prefer the K̄N − π� interaction mod-
els [9]. Some theorists discussed the spatial structure of the
resonance �∗(1405) state based on the K̄N molecular picture
with the chiral K̄N potential [10,11]. However, this resonance
state may be obtained not only by two-body channels, but
also by multibody channels [12], such as K̄NN [13–18], K̄KN
[19–21], K̄K̄N [22].

Except for the �∗(1405) state, the nature of its excited
state �∗(1520) is also in controversy. In the Review of
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Particle Physics it is a particle marked with four stars [23].
In Ref. [24], the authors calculated the energy of the S- and
P-wave � family using five sets of parameters in the chiral
quark model, two states, �∗(1405) and �∗(1520), cannot
be described as three-quark baryons. In the chiral unitary
approach, a quasibound state of a meson-baryon was taken
as �∗(1520) [25], and the Weinberg compositeness condition
showed that the meson-baryon component of �∗(1520) was
as high as 87% [26]. However, the compositeness of �∗(1520)
states was estimated to be ≈23% in Ref. [27].

With the accumulation of the experimental data and the
improvement of the quark model, it is expected to do a rigor-
ous calculation of hadron states based on the quark model. In
this work, we systematically investigate the energy spectrum
of the five-quark state qqqsq̄, q = u, d in the framework of
the chiral quark model (ChQM), which describes the hadron
as well as hadron-hadron interaction successfully [28,29],
and a powerful few-body method, the Gaussian expansion
method (GEM) [30], which is employed to do the calcu-
lation. The GEM has proven its power in the benchmark
test calculation on four-nucleon bound state [31]. In the
present calculation, two structures, (qqq)(sq̄) and (qqs)(qq̄),

with all possible color, spin, flavor configurations are
considered.

The structure of the present paper is organized as follows.
In Sec. II the chiral quark model, pentaquark wave functions,
and GEM are briefly introduced. The calculated results and
a discussion are presented in Sec. III. The summary of our
investigation is given in the last section.

II. MODEL AND WAVE FUNCTION

The QCD-inspired quark model is one of the main methods
for studying hadron properties, hadron-hadron interactions,
and multiquark states [32–34]. Here, we apply ChQM to
five-quark systems with one s quark. The broken SU(3) fla-
vor symmetry is used in constructing the Hamiltonian for
the u, d, s system. In this model, the interaction between
quark and quark (antiquark) is through the color confinement
V CON, the one-gluon exchange (OGE) V OGE, the Goldstone
boson exchange V χ (χ = π, k, η), as well as the scalar nonet
(the extension of chiral partner σ meson) exchange V s (s =
σ, a0, κ, f0). So the Hamiltonian in the present calculation
takes the form [28,29]

H =
5∑

i=1

(
mi + p2

i

2mi

)
− Tc.m. +

5∑
j>i=1

[V CON(ri j ) + V OGE(ri j ) + V χ (ri j ) + V s(ri j )], (1)

V CON(ri j ) = λc
i · λc

j[−ac(1 − e−μcri j ) + �], (2)

V OGE(ri j ) = 1

4
αsλ

c
i · λc

j

[
1

ri j
− 1

6mimj
σ i · σ j

e−ri j/r0(μ)

ri jr2
0 (μ)

]
, r0(μ) = r̂0/μ, αs = α0

ln
(

μ2+μ2
0

�2
0

) , (3)

V χ (ri j ) = vπ (ri j )
3∑

a=1

(
λa

i · λa
j

) + vK (ri j )
7∑

a=4

(
λa

i · λa
j

) + vη(ri j )
[

cos θP
(
λ8

i · λ8
j

) − sin θP
(
λ0

i · λ0
j

)]
, (4)

vχ (ri j ) = g2
ch

4π

m2
χ

12mimj

�2
χ

�2
χ − m2

χ

mχ

[
Y (mχ ri j ) − �3

χ

m3
χ

Y (�χ ri j )

]
(σ i · σ j ), χ = π, K, η, (5)

V s(ri j ) = vσ (ri j )
(
λ0

i · λ0
j

) + va0 (ri j )
3∑

a=1

(
λa

i · λa
j

) + vκ (ri j )
7∑

a=4

(
λa

i · λa
j

) + v f0 (ri j )
(
λ8

i · λ8
j

)
, (6)

vs(ri j ) = −g2
ch

4π

�2
s

�2
s − m2

s

ms

[
Y (msri j ) − �s

ms
Y (�sri j )

]
, s = σ, a0, κ, f0, (7)

where Tc.m. is the kinetic energy of the center-of mass motion;
σ represents the SU(2) Pauli matrices; λc, λ represent the
SU(3) color and flavor Gell-Mann matrices, respectively; μ is
the reduced mass between two interacting quarks; αs denotes
the strong coupling constant of one-gluon exchange, and Y (x)
is the standard Yukawa functions.

The model parameters fixed by fitting the meson and
baryon spectra are listed in Table I. Because in the quark
model, we cannot obtain the satisfying outcome of both
meson spectra and baryon spectra via the same set of pa-
rameters [28,35], two sets of parameters are employed in
the present calculation to test the model dependence of the
results.

The five-quark states we want to investigate contain
one s quark and four light quarks, so only the following

states are involved: N , �, �, �∗, �, π , K̄ , ρ, K̄∗, ω,
η. The calculated masses for these states are listed in
Table II.

The wave function of the five-quark system is constructed
in the following way. First, the five quarks are separated as
two clusters, one is a three-quark cluster, and another is a
quark-antiquark cluster. Then, we construct the wave function
for each cluster. At last, the wave function of the five-quark
system is obtained by coupling the wave functions of two
clusters and applying the appropriate antisymmetrization op-
erator to the coupled wave function. The quark has four
degrees of freedom: orbital, spin, color, and flavor. The wave
functions for each degree of freedom we construct are as
follows:

(a) The wave function for the orbital part.
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TABLE I. Quark model parameters.

set I set II

Quark masses mu = md (MeV) 378.49 399.05
ms (MeV) 504.95 500.90
�π (fm−1) 4.20 4.20

�η = �K (fm−1) 5.20 5.20
mπ (fm−1) 0.70 0.70

Goldstone bosons mK (fm−1) 2.51 2.51
mη (fm−1) 2.77 2.77
g2

ch/(4π ) 0.54 0.54
θP(◦) −15 −15

ac (MeV) 198.73 171.85
μc (fm−1) 0.50 0.65

Confinement � (MeV) 85.18 62.68
αuu 0.59 0.85
αus 0.48 0.60

mσ (fm−1) 3.42 3.42
�σ (fm−1) 4.20 4.20

scalar nonet �a0 = �κ = � f0 (fm−1) 5.20 5.20
ma0 = mκ = mf0 (fm−1) 4.97 4.97

OGE r̂0 (MeV fm) 25.32 38.04

There are four relative motions for a five-quark system, the
wave function is constructed as

ψLML = [[[φn1l1 (ρ)φn2l2 (λ)]lφn3l3 (r)]l ′φn4l4 (R)]LML (8)

with Jacobi coordinates

ρ = x1 − x2,

λ =
(m1x1 + m2x2

m1 + m2

)
− x3,

r = x4 − x5,

R =
(m1x1 + m2x2 + m3x3

m1 + m2 + m3

)
−

(m4x4 + m5x5

m4 + m5

)
,

(9)

where φn1l1 (ρ) represents the relative motion wave function
between the first and the second quarks, φn2l2 (λ) indicates the
relative motion between the center of mass of quarks 1 and
2 and the third quarks in the three-quark cluster. Similarly,
φn3l3 (r) denotes the relative motion between the fourth and
fifth quarks in the quark-antiquark cluster, and φn4l4 (R) ex-
presses the relative motion between two clusters.

TABLE II. The masses of ground-state baryons and mesons
involved in the calculation (unit: Mev).

N � � �∗ �

ChQM (SET I) 825 1095 1201 1268 1081
ChQM (SET II) 872 1206 1320 1405 1176
PDG [23] 939 1116 1193 1385 1232

π K̄ ρ K̄∗ η ω

ChQM (SET I) 123 535 719 844 516 625
ChQM (SET II) 134 663 788 943 484 665
PDG [23] 140 494 775 892 548 783

The orbital wave functions of the system are obtained by
solving the Schrödinger equation with the Gaussian expansion
method. In this method, the radial part of the orbital wave
function is expanded by a set of Gaussians [30],

ψlm(r) =
nmax∑
n=1

cnlφ
G
nlm(r), (10)

φG
nlm(r) = Nnlr

le−νnr2
Ylm(r̂), (11)

Nnl =
(

2l+2(2νn)l+3/2

√
π (2l + 1)!!

) 1
2

, (12)

where Nnl is the normalization constant, and cnl is the varia-
tional parameter, which is determined by the dynamics of the
system. The Gaussian size parameters are chosen according to
the following geometric progression:

νn = 1

r2
n

, rn = rminan−1, a =
( rmax

rmin

) 1
nmax−1

, (13)

where the nmax is the number of Gaussian functions. The
parameters in GEM are fixed by requiring a stability of the
results. In the present work, the stable results of hadron spec-
tra can be obtained with nmax = 7, rmin = 0.1, rmax = 2.

(b) The wave function for the flavor part.
There are two possible separations for a five-quark sys-

tem containing one s quark, one is (qqq)(sq̄) and another is
(qqs)(qq̄), q = u, d . The flavor wave functions for the three-
quark and quark-antiquark clusters are

∣∣∣∣B f 1
1
2 , 1

2

〉
= 1√

6
(2uud − udu − duu),

∣∣∣∣B f 2
1
2 , 1

2

〉
= 1√

2
(udu − duu),

∣∣∣∣B f 1
1
2 ,− 1

2

〉
= 1√

6
(udd + dud − 2ddu),

∣∣∣∣B f 2
1
2 ,− 1

2

〉
= 1√

2
(udd − dud ),

∣∣∣∣B f
3
2 , 3

2

〉
= uuu,

∣∣∣∣B f
3
2 , 1

2

〉
= 1√

3
(uud + udu + duu),

∣∣∣∣B f
3
2 ,− 1

2

〉
= 1√

3
(udd + dud + ddu),

∣∣∣∣B f
3
2 ,− 3

2

〉
= ddd,

∣∣B f
0,0

〉 = 1√
2

(uds − dus),

∣∣B f
1,0

〉 = 1√
2

(uds + dus),

∣∣B f
1,1

〉 = uus,∣∣B f
1,−1

〉 = dds,
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∣∣∣∣M f
1
2 , 1

2

〉
= sd̄,

∣∣∣∣M f
1
2 ,− 1

2

〉
= −sū,

∣∣M f
1,0

〉 = 1√
2

(−uū + dd̄ ),

∣∣M f
1,−1

〉 = −dū,∣∣M f
1,1

〉 = ud̄,

∣∣M f
0,0

〉 = 1√
2

(−uū − dd̄ ). (14)

The flavor wave functions for the five-quark system with
isospin I = 0 are obtained by the following couplings:

∣∣χ f 1
0,0

〉 =
√

1

2

∣∣∣∣B f 1
1
2 , 1

2

〉∣∣∣∣M f
1
2 ,− 1

2

〉
−

√
1

2

∣∣∣∣B f 1
1
2 ,− 1

2

〉∣∣∣∣M f
1
2 , 1

2

〉
,

∣∣χ f 2
0,0

〉 =
√

1

2

∣∣∣∣B f 2
1
2 , 1

2

〉∣∣∣∣M f
1
2 ,− 1

2

〉
−

√
1

2

∣∣∣∣B f 2
1
2 ,− 1

2

〉∣∣∣∣M f
1
2 , 1

2

〉
,

∣∣χ f 3
0,0

〉 =
√

1

3

∣∣B f
1,1

〉∣∣M f
1,−1

〉 −
√

1

3

∣∣B f
1,0

〉∣∣M f
1,0

〉

+
√

1

3

∣∣B f
1,−1

〉∣∣M f
1,1

〉
,

∣∣χ f 4
0,0

〉 = ∣∣B f
0,0

〉∣∣M f
0,0

〉
. (15)

Similarly, the flavor wave functions with isospin I = 1 are
∣∣χ f 4

1,1

〉 =
∣∣∣∣B f 1

1
2 , 1

2

〉∣∣∣∣M f
1
2 , 1

2

〉
,

∣∣χ f 5
1,1

〉 =
∣∣∣∣B f 2

1
2 , 1

2

〉∣∣∣∣M f
1
2 , 1

2

〉
,

∣∣χ f 6
1,1

〉 =
√

3

4

∣∣∣∣B f
3
2 , 3

2

〉∣∣∣∣M f
1
2 ,− 1

2

〉
−

√
1

4

∣∣∣∣B f
3
2 , 1

2

〉∣∣∣∣M f
1
2 , 1

2

〉
,

∣∣χ f 7
1,1

〉 = ∣∣B f
0,0

〉∣∣M f
1,1

〉
,

∣∣χ f 8
1,1

〉 =
√

1

2

∣∣B f
1,1

〉∣∣M f
1,0

〉 −
√

1

2

∣∣B f
1,0

〉∣∣M f
1,1

〉
,

∣∣χ f 9
1,1

〉 = ∣∣B f
1,1

〉∣∣M f
0,0

〉
, (16)

and the flavor wave functions with isospin I = 2 are
∣∣χ f 9

2,2

〉 =
∣∣∣∣B f

3
2 , 3

2

〉∣∣∣∣M f
1
2 , 1

2

〉
,

∣∣χ f 10
2,2

〉 = ∣∣B f
1,1

〉∣∣M f
1,1

〉
. (17)

(c) The wave function for the spin part.
In a similar way as the flavor part, the spin wave functions

of the three-quark and quark-antiquark clusters are written as∣∣∣∣Bσ1
1
2 , 1

2

〉
= 1√

6
(2ααβ − αβα − βαα),

∣∣∣∣Bσ2
1
2 , 1

2

〉
= 1√

2
(αβα − βαα),

∣∣∣∣Bσ1
1
2 ,− 1

2

〉
= 1√

6
(αββ + βαβ − 2βαα),

∣∣∣∣Bσ2
1
2 ,− 1

2

〉
= 1√

2
(αββ − βαβ ),

∣∣∣∣Bσ
3
2 , 3

2

〉
= ααα,

∣∣∣∣Bσ
3
2 , 1

2

〉
= 1√

3
(ααβ + αβα + βαα),

∣∣∣∣Bσ
3
2 ,− 3

2

〉
= βββ,

∣∣∣∣Bσ
3
2 ,− 1

2

〉
= 1√

3
(αββ + βαβ + ββα),

∣∣Mσ
1,0

〉 = 1√
2

(αβ + βα),

∣∣Mσ
1,1

〉 = αα,∣∣Mσ
1,−1

〉 = ββ,

∣∣Mσ
0,0

〉 = 1√
2

(αβ − βα). (18)

The spin wave functions for the five-quark system with spin
S = 1

2 are obtained by the following couplings:∣∣∣∣χσ1
1
2 , 1

2

〉
=

∣∣∣∣Bσ1
1
2 , 1

2

〉∣∣Mσ
0,0

〉
,

∣∣∣∣χσ2
1
2 , 1

2

〉
=

∣∣∣∣Bσ2
1
2 , 1

2

〉∣∣Mσ
0,0

〉
,

∣∣∣∣χσ3
1
2 , 1

2

〉
= −

√
2

3

∣∣∣∣Bσ1
1
2 ,− 1

2

〉∣∣Mσ
1,1

〉
+

√
1

3

∣∣∣∣Bσ1
1
2 , 1

2

〉∣∣Mσ
1,0

〉
,

∣∣∣∣χσ4
1
2 , 1

2

〉
= −

√
2

3

∣∣∣∣Bσ2
1
2 ,− 1

2

〉∣∣Mσ
1,1

〉 +
√

1

3

∣∣∣∣Bσ2
1
2 , 1

2

〉∣∣Mσ
1,0

〉
,

∣∣∣∣χσ5
1
2 , 1

2

〉
=

√
1

2

∣∣∣∣Bσ
3
2 , 3

2

〉∣∣Mσ
1,−1

〉 −
√

1

3

∣∣∣∣Bσ
3
2 , 1

2

〉∣∣Mσ
1,0

〉

+
√

1

6

∣∣∣∣Bσ
3
2 ,− 1

2

〉∣∣Mσ
1,1

〉
. (19)

Similarly, the spin wave functions with spin S = 3
2 are∣∣∣∣χσ6

3
2 , 3

2

〉
= −

∣∣∣∣Bσ1
1
2 , 1

2

〉∣∣Mσ
1,1

〉
,

∣∣∣∣χσ7
3
2 , 3

2

〉
= −

∣∣∣∣Bσ2
1
2 , 1

2

〉∣∣Mσ
1,1

〉
,

∣∣∣∣χσ8
3
2 , 3

2

〉
=

∣∣∣∣Bσ
3
2 , 3

2

〉∣∣Mσ
0,0

〉
,

∣∣∣∣χσ9
3
2 , 3

2

〉
=

√
3

5

∣∣∣∣Bσ
3
2 , 3

2

〉∣∣Mσ
1,0

〉 −
√

2

5

∣∣∣∣Bσ
3
2 , 1

2

〉∣∣Mσ
1,1

〉
, (20)

and the spin wave functions with spin S = 5
2 are∣∣∣∣χσ10

5
2 , 5

2

〉
=

∣∣∣∣Bσ
3
2 , 3

2

〉∣∣Mσ
1,1

〉
. (21)

(d) The wave function for the color part.
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For the color wave function, two configurations, color
singlet and hidden color, are considered. The color wave func-
tions for two subclusters are

|Bc1〉 = 1√
6

(rgb − rbg + gbr − grb + brg − bgr),

|Bc2,1〉 = 1√
6

(2rrg − rgr − grr), |Bc2,2〉 = 1√
2

(rgr − grr),

|Bc3,1〉 = 1√
6

(rgg + grg − 2ggr), |Bc3,2〉 = 1√
2

(rgg − grg),

|Bc4,1〉 = 1√
6

(2rrb − rbr − brr),

|Bc4,2〉 = 1√
2

(rbr − brr),

|Bc5,1〉 = 1√
12

(2rgb − rbg + 2grb − gbr − brg − bgr),

|Bc5,2〉 = 1√
4

(rbg + gbr − brg − bgr),

|Bc6,1〉 = 1√
12

(2rgb + rbg − 2grb − gbr − brg + bgr),

|Bc6,2〉 = 1√
4

(rbg − gbr + brg − bgr),

|Bc7,1〉 = 1√
6

(2ggb − gbg − bgg),

|Bc7,2〉 = 1√
2

(gbg − bgg),

|Bc8,1〉 = 1√
6

(rbb + brb − 2bbr),

|Bc8,2〉 = 1√
2

(rbb − brb),

|Bc9,1〉 = 1√
6

(gbb + bgb − 2bbg),

|Bc9,2〉 = 1√
2

(gbb − bgb),

|Mc1〉 = 1√
3

(r̄r + ḡg + b̄b),

|Mc2〉 = r̄b, |Mc3〉 = −ḡb, |Mc4〉 = −r̄g,

|Mc5〉 = 1√
2

(r̄r − ḡg), |Mc6〉 = 1√
6

(2b̄b − r̄r − ḡg),

|Mc7〉 = −ḡr, |Mc8〉 = −b̄g, |Mc9〉 = −b̄r,

|χ c1〉 = |Bc1〉|Mc1〉
= 1√

6
(rgb − rbg + gbr − grb + brg − bgr)

× 1√
3

(r̄r + ḡg + b̄b),

|χ c2〉 = 1√
8

(|Bc2,1〉|Mc2〉 − |Bc3,1〉|Mc3〉 − |Bc4,1〉|Mc4〉
− |Bc7,1〉|Mc7〉 − |Bc8,1〉|Mc8〉 + |Bc9,1〉|Mc9〉),

|χ c3〉 = 1√
8

(|Bc2,2〉|Mc2〉 − |Bc3,2〉|Mc3〉 − |Bc4,2〉|Mc4〉
− |Bc7,2〉|Mc7〉 − |Bc8,2〉|Mc8〉 + |Bc9,2〉|Mc9〉), (22)

where |χ c1〉 denotes the color singlet configuration, |χ c2〉 and
|χ c3〉 represent the hidden color configuration.

Finally, the total wave function of the five-quark system is
written as
�

i, j,k
JMJ

=A[[
ψLχ

σi
S

]
JMJ

χ
f
j χ c

k

]
,

× (i = 1, . . . , 10, j = 1, . . . , 10, k =1, . . . , 3), (23)

where J is the total angular momentum and MJ is the third
component of the total angular momentum, and the A is the
antisymmetry operator of the system,

A = (1 − (13) − (23))(1 − (12)) (24)

in the (qqq)(sq̄) case. Because the symmetry between 1 and
2 particles has been taken into account when the wave func-
tion is constructed, so the antisymmetrization operator can be
simplified to

A = 1 − (13) − (23). (25)

Similarly the simplified antisymmetrization operator is

A = 1 − (14) − (24) (26)

in the (qqs)(qq̄) case. The eigenenergy of system is obtained
by solving the following eigenequation:

H�JMJ = E�JMJ , (27)

by using the variational principle. The eigenfunctions �JMJ

are the linear combination of the above channel wave
functions.

III. RESULTS AND DISCUSSIONS

In the present work, we investigate the five-quark systems
with quantum numbers IJP(I = 0, 1, 2; J = 1

2 , 3
2 , 5

2 ; P = −)
in the chiral quark model. Two structures, (qqq)(sq̄) and
(qqs)(qq̄) with color singlet and hidden-color configurations
are considered. We are interested in the low energy states of
the pentaquark systems, so here we set all the orbital angular

TABLE III. The possible channels of (qqq)(sq̄) and (qqs)(qq̄)
systems.

IJP Channel

0 1
2

−
NK̄, NK̄∗, �π,�ρ, �∗ρ, �η,�ω

0 3
2

−
NK̄∗, �ρ, �∗π,�∗ρ,�ω

0 5
2

−
�∗ρ

1 1
2

−
NK̄, NK̄∗, �K̄∗,�π, �ρ,�π,�ρ,�∗ρ, �η, �ω,�∗ω

1 3
2

−
NK̄∗, �K̄, �K̄∗, �ρ,�ρ, �∗π,�∗ρ, �ω, �∗η, �∗ω

1 5
2

−
�K̄∗, �∗ρ,�∗ω

2 1
2

−
�K̄∗, �π,�ρ, �∗ρ

2 3
2

−
�K̄, �K̄∗, �ρ, �∗π,�∗ρ

2 5
2

−
�K̄∗, �∗ρ
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TABLE IV. The energy of the pentaquark system with IJP = 0 1
2

−
. c.c. denotes all color singlet channels coupling.

Index ciσ j fk Physical content E (MeV) ETheo
th (MeV) EExp

th (MeV) E ′ (MeV)

1 i = 1; j = 1, 2; k = 1, 2 NK̄ 1358 1362 1434 1430
2 i = 2, 3; j = 1, 2; k = 1, 2 1933
3 i = 1, 2, 3; j = 1, 2; k = 1, 2 1358
4 i = 1; j = 3, 4; k = 1, 2 NK̄∗ 1671 1670 1831 1831
5 i = 2, 3; j = 3, 4; k = 1, 2 1913
6 i = 1, 2, 3; j = 3, 4; k = 1, 2 1671
7 i = 1; j = 1; k = 3 �π 1320 1324 1329 1325
8 i = 2, 3; j = 1, 2; k = 3 1949
9 i = 1, 2, 3; j = 1, 2; k = 3 1320
10 i = 1; j = 3; k = 3 �ρ 1923 1920 1964 1964
11 i = 2, 3; j = 3, 4; k = 3 2405
12 i = 1, 2, 3; j = 3, 4; k = 3 1923
13 i = 1; j = 5; k = 3 �∗ρ 1990 1987 2158 2158
14 i = 3; j = 5; k = 3 2223
15 i = 1, 3; j = 5; k = 3 1990
16 i = 1; j = 2; k = 4 �η 1614 1611 1664 1664
18 i = 2, 3; j = 1, 2; k = 4 1873
17 i = 1, 2, 3; j = 1, 2; k = 4 1614
19 i = 1; j = 4; k = 4 �ω 1724 1720 1898 1898
20 i = 2, 3; j = 3, 4; k = 4 1978
21 i = 1, 2, 3; j = 3, 4; k = 4 1724
c.c.(SET I) 1267 1324 1329 1292

1359 1362 1434 1404
c.c.(SET II) 1396 1535 1434 1282

1505 1454 1329 1389

momenta to zero. Then the parity of the five-quark system is
negative. The possible channels of the two structures are listed
in Table III.

The calculated results of IJP = 0 1
2

−
are given in Table IV,

where the first column is the index of the channels involved
in the calculation, and the second column lists the indices of
color, spin, and flavor wave functions for every channel, the
physical contents of channels are shown in the third column.
The fourth column shows the calculation results, while the
fifth and the sixth columns give the theoretical and experi-
mental thresholds (the sum of the masses of the corresponding
baryon and meson), respectively. The last column shows the
corrected energies of the states, which are obtained by

E ′ = E + E exp
th − ETheo

th (28)

for the single channel calculation. However for the results of
channel coupling calculation, the corrected energy is defined
as

E ′ = E +
∑

i

pi
(
E exp

th,i − ETheo
th,i

)
, (29)

where pi is the percentage of the color singlet channel i in
the eigenstate. Because the chiral quark model cannot give
the satisfying outcome of both meson spectra and baryon
spectra via the same set of parameters, we can minimize the
systematic error in calculating the energy of the pentaquark
state by using the corrected energy. The last four rows show
the lowest and the first excited state energies of all the cou-
pled color-singlet channels with two sets of parameters. The
hidden-color channels do not affect the low-lying energies

because of their high energies compared to the color singlet
channel. The percentages of each color singlet channel in the
lowest eigenstate are listed in Table V. All the results shown
in Tables IV (except the last two rows) and V are obtained
with the first set of parameters.

In the following part we analyze the results in detail.
(a) IJP = 0 1

2
−

(Tables IV and V): For the color-singlet
states, NK̄∗, �ρ, �∗ρ, �η, �ω, no bound states are found in
the single-channel calculation, and coupling the color-singlet
state to the corresponding hidden-color channel does not
change the lowest energy of the state. However, we find two
bound states in the single-channel calculation, NK̄ and �π ,
with binding energies −4 MeV both. The coupling of the cor-
responding hidden-color channel has no effect on the energy
of the state. So the influence of the hidden color channels on
the low-lying energy states of the system can be neglected.
This result is different from that of Ref. [36] where the NK
state is unbound in the single channel calculation. The reason
is that the value of color factor λc

i λ
c
j for qq is half of that for

qq̄, and π meson exchange potential is attractive for the uū

TABLE V. The percentages of color-singlet channels in the low-
est and next to lowest eigenstates with IJP = 0 1

2

−
.

E ′ (MeV) NK̄ NK̄∗ �π �ρ �∗ρ �η �ω

1292 29.8% 1.8% 66.4% 0.6% 0.1% 0.2% 1.1%
1404 59.1% 0.1% 40.3% 0.1% 0.0% 0.1% 0.3%
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TABLE VI. The energy of the pentaquark system with IJP = 0 3
2

−
. c.c. denotes all color singlet channels coupling.

Index ciσ j fk Physical content E (MeV) ETheo
th (MeV) EExp

th (MeV) E ′ (MeV)

1 i = 1; j = 6, 7; k = 1, 2 NK∗ 1664 1669 1831 1826
2 i = 2, 3; j = 6, 7; k = 1, 2 1913
3 i = 1, 2, 3; j = 6, 7; k = 1, 2 1664
4 i = 1; j = 6; k = 3 �ρ 1919 1920 1964 1963
5 i = 2, 3; j = 6, 7; k = 1, 2 2398
6 i = 1, 2, 3; j = 6, 7; k = 1, 2 1919
7 i = 1; j = 8; k = 3 �∗π 1390 1391 1523 1522
8 i = 3; j = 8; k = 3 1987
9 i = 1, 3; j = 8; k = 3 1390
10 i = 1; j = 9; k = 3 �∗ρ 1989 1987 2158 2158
11 i = 3; j = 9; k = 3 2123
12 i = 1, 3; j = 9; k = 3 1989
13 i = 1; j = 7; k = 4 �ω 1723 1720 1898 1898
14 i = 2, 3; j = 6, 7; k = 4 2297
15 i = 1, 2, 3; j = 6, 7; k = 4 1723
c.c.(SET I) 1380 1391 1523 1512
c.c.(SET II) 1534 1539 1523 1518

pair and is repulsive for the uu pair. The results of coupling
all color singlet channels are given in the last four rows of
Table IV. The results show that there is a strong coupling
between NK̄ and �π , the main component of the lowest
state is �π , 66.4%, while the NK̄ state takes the percentage
29.8%. For the next to the lowest state, the percentages for
�π and NK̄ are 40.3% and 59.1%, respectively. The corrected
energies of two states are 1292 MeV and 1404 MeV. The
state with mass 1404 MeV is naturally taken as a candidate of
�∗(1405). Our results can be compared with that of Ref. [5],
in which the author put forward two poles of the scattering
amplitude between the NK̄ and �π thresholds in the complex
energy plane to explain the �∗(1405) resonance state. Two-
pole structure of �∗(1405) was also claimed in Refs. [37–40].
To check parameter-sensitivity of the results, the second set
of parameters is employed to do the calculation. The similar
results are obtained, besides the lowest state dominated by �π

has mass 1282 MeV and the second lowest state dominated by
NK̄ has the mass 1389 MeV, 10 MeV and 15 MeV away from
the value of first set of parameters, respectively.

(b) IJP = 0 3
2

−
(Tables VI and VII): There are three states,

NK̄∗, �ρ, and �∗π having energy below the correspond-
ing thresholds in the single-channel calculation. The binding
energies are −5 MeV, −1 MeV, and −1 MeV, respectively.
Similar to the case of IJP = 0 1

2
−

, coupling to the hidden-color
channel does not change the energies of the states. It is inter-
esting to find herein that after coupling all the color-singlet
channels in the IJP = 0 3

2
−

system, we can get the corrected

TABLE VII. The percentages of color-singlet channels in the
lowest and next to lowest eigenstates with IJP = 0 1

2

−
.

E ′ (MeV) NK̄∗ �ρ �∗π �∗ρ �ω

1512 2.3% 0.1% 96.5% 0.1% 1.0%

energy of the lowest state 1512 MeV, which is very close to
the experimental mass of �∗(1520). As above, we checked the
dependence of the results on the parameters. The corrected
energy of the lowest state is 1518 MeV under the second
set of parameters, 6 MeV away from the value of the first
set of parameters. However, there is a problem to assign the
�∗(1520) state as the pentaquark state �∗π . From Table VII,
we can see that the dominant component of the lowest state is
�∗π , and the partial decay width of �∗π → �ππ is about 3
MeV, which is obtained from the decay width of �∗ → �π ,
≈ 4 MeV with phase space correction. But the experimental
value of partial decay width of �∗(1520) → �ππ is 0.009 ×
15.6 = 0.14 MeV, which is far smaller than 3 MeV. The fact
that the main decay modes of �∗(1520) are NK̄ and �π also
supports the 3q structure of the state �∗(1520). Garcia-Recio
et al. studied the compositeness of �∗(1520), 1 − Z = 0.227
also disfavors the baryon-meson explanation of the state [27].
Nevertheless, the �∗π as a sizable component of �∗(1520) is
possible when we go beyond the quenched picture of baryon.

(c) IJP = 0 5
2

−
(Table VIII): In this case there is only one

channel �∗ρ. The energy of the �∗ρ state obtained is just 2
MeV lower than its threshold, and 4 MeV below the threshold
in the calculation with the second set of parameters. The
hidden-color channel does not change the energy of the sys-
tem as before. As a result, we can predict it as the pentaquark
configuration of the �∗ with IJP = 0 5

2
−

. Because of the weak
bind, the decay width of the state can be estimated as the sum
of �∗ decay width and ρ decay width, the state will decay
to the �πππ with the width � ≈ 185 MeV. In the Particle
Data Group (PDG) [23], there are two states with masses
in the range 2.1–2.2 GeV, �(2100) 7

2
−

, �(2110) 5
2

+
, but the

quantum number is a mismatch.
For both systems with I = 1 and I = 2, the channel cou-

pling calculation shows that there exists no bound state, so we
omit the numerical results here and just give a brief discussion
in the following.
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TABLE VIII. The energy of the pentaquark system with IJP = 0 5
2

−
.

Index ciσ j fk Physical content E (MeV) ETheo
th (MeV) EExp

th (MeV) E ′ (MeV)

1 (SET I) i = 1; j = 10; k = 3 �∗ρ 1985 1987 2160 2158
2 (SET I) i = 3; j = 10; k = 3 2128
3 (SET I) i = 1, 3; j = 10; k = 3 1985
1 (SET II) i = 1; j = 10; k = 3 �∗ρ 2189 2193 2160 2156

(d) IJP = 1 1
2

−
: The possible channels are shown in

Table III. The single channel calculation cannot find any
bound state, and the channel coupling does not push down any
state below the threshold. Two sets of parameters obtain the
similar results. So in this system, no bound states or resonant
states may be found.

(e) IJP = 1 3
2

−
: The single channel calculation reveals that

all the states are unbound except the �K̄ state which has
binding energy 4 MeV, and the corrected energy is 1723 MeV.
The lowest energy of the system is 1523 MeV, which is the
sum of the masses of �∗ and π . So �K̄ may turn out to be
a resonance state after coupling to the �∗π channel, and the
dominant decay mode is NK̄π with decay width ≈120 MeV,
which mainly comes from the decay width of �. Because
there exist a lot of � states around 1700 MeV, the �K̄ state
is difficult to be observed experimentally due to its large
width.

(f) IJP = 1 5
2

−
: There are three channels, �K̄∗, �∗ρ, and

�∗ω. The �K̄∗ state is proved to be a bound state which has
the binding energy of 8 MeV in our single channel calculation,
however, the other two channels are unbound. The corrected
energy of the �K̄∗ state is 2116 MeV, and its decay width
is estimated to be ≈200 MeV. So far there is no appropriate
candidate in the PDG [23].

(g) IJP = 2 1
2

−
channel, IJP = 2 3

2
−

channel, and IJP =
2 5

2
−

channel: The results are similar to case (d), there is
no bound state showing up in the single channel calculation
and the channel coupling does not help to push down the
energy below the threshold. So there exist no bound state or
resonance states with high isospin.

IV. SUMMARY

In the present work, we investigated the pentaquark state
qqqsq̄ in two structures, (qqq)(sq̄) and (qqs)(qq̄) based on the
chiral quark model and the Gaussian expansion method. The
interesting results are demonstrated in the following: (1) For
the IJP = 0 1

2
−

system, two states are found, one of which is
the �π state with the energy of 1282–1292 MeV and another
is the NK̄ state with its energy of 1389–1401 MeV. The
results echo the two-pole structure of the scattering amplitude

between the NK̄ and �π thresholds proposed in explaining
the �∗(1405) resonance state.Particularly, because the energy
of the NK̄ state is much closer to the �(1405) state, so we
are more inclined to interpret the �(1405) state as the NK̄
state. (2) For the IJP = 0 3

2
−

system, a resonance state with
energy 1512–1518 MeV is obtained, the main component of
which is �∗π . Although the energy of the state is close to the
experimental value of �∗(1520), the assignment is prevented
by the decay properties of �∗(1520). However, the �∗π as a
high Fock component of �∗(1520) is possible. (3) Although
in the IJP = 0 5

2
−

system, there exists only one channel, �∗ρ.
It can be a good wide pentaquark resonance with the energy
≈2156 MeV and width ≈185 MeV. (4) For I = 1 states,
�K̄ with JP = 3

2 and �K̄∗ with JP = 5
2 are possibly two

wide resonance states. Besides, to check the sensitivity of the
results to the model parameters, two sets of parameters are
employed to perform the calculation and similar results are
obtained. In addition, the AL1 model [41] is also employed
in the calculation, the results show that there is no bound
state in the AL1 model, which is different from the results of
the chiral quark model. The reason we think is that the AL1
model has only potential terms from gluon exchange, which
can describe the q3 baryon and qq̄ meson spectra well, but
it cannot describe the hadron-hadron interactions. Just as the
Isgur-Karl model describes hadron spectra well, but it cannot
describe nucleon-nucleon interaction, no intermediate range
attraction is obtained. While the chiral quark model incorpo-
rates the Goldstone boson exchange and it can give a good
description of hadron-hadron interactions. So we believe that
the Goldstone boson exchange term in our model contributes
a lot to the result.

All calculations in the present work are carried out for
the baryon and meson in the ground state. The calculation
involved P-wave and D-wave hadrons, and the pentaquark
states in other structures will be pursued in a future work.
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