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Confirming the existence of the strong CP problem in lattice QCD with the gradient flow
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We calculate the electric dipole moment of the nucleon induced by the quantum chromodynamics θ term.
We use the gradient flow to define the topological charge and use Nf = 2 + 1 flavors of dynamical quarks
corresponding to pion masses of 700, 570, and 410 MeV, and perform an extrapolation to the physical point
based on chiral perturbation theory. We perform calculations at three different lattice spacings in the range of
0.07 fm < a < 0.11 fm at a single value of the pion mass, to enable control on discretization effects. We also
investigate finite-size effects using two different volumes. A novel technique is applied to improve the signal-to-
noise ratio in the form factor calculations. The very mild discretization effects observed suggest a continuumlike
behavior of the nucleon electric dipole moment toward the chiral limit. Under this assumption our results read
dn = −0.00152(71) θ̄ e fm and dp = 0.0011(10) θ̄ e fm. Assuming the θ term is the only source of CP violation,
the experimental bound on the neutron electric dipole moment limits |θ̄ | < 1.98 × 10−10 (90% CL). A first
attempt at calculating the nucleon Schiff moment in the continuum resulted in Sp = 0.50(59) × 10−4 θ̄ e fm3

and Sn = −0.10(43) × 10−4 θ̄ e fm3.
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I. INTRODUCTION

A nonzero measurement of the electric dipole moment
(EDM) of the nucleon in the foreseeable future would be a
clear signal of new physics, since the known CP-violating
phase of the Cabibbo-Kobayashi-Maskawa (CKM) matrix
leads to EDMs that lie orders of magnitude below current
experimental limits. The source of a nonzero EDM could
then either be the quantum chromodynamics (QCD) θ̄ term
or higher-dimension CP-violating quark-gluon operators that
originate in beyond-the-standard model (BSM) physics, or a
combination of these two. To interpret an EDM signal or lack
thereof, and to possibly disentangle the source (e.g., θ̄ -term
or BSM), requires a nonperturbative calculation linking the
CP-violating sources to the hadronic observables.

Lattice QCD can calculate the nucleon EDM directly in
terms of CP-violating operators at the quark level. Various
attempts have been made in this regard [1–7]. However, the
renormalization of CP-violating operators within a lattice
(discretized) formulation of QCD is very nontrivial, and for
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several operators presents large difficulties in interpreting lat-
tice results. Further, the θ̄ term itself introduces a complex
phase in the determinant of the quark matrix, which produces
a sign problem and precludes the use of standard stochastic
methods. Several techniques have been used to address the
θ̄-term contribution to the EDM and attempts have been made
to solve the complicated renormalization patterns of the CP-
violating operators [8]. We refer to the recent review [9] for a
summary.

We proposed to use the gradient flow to calculate all CP-
violating source to the EDM in Refs. [10,11], and presented
preliminary results [12–15]. We have also performed a first
perturbative study of the flow-time dependence of the quark-
chromo and Weinberg operators [16].

In this paper we consider the θ̄ -term contribution to the
EDM in a perturbative manner as discussed in Ref. [11]. This
is well justified considering the stringent constraints on θ̄ set
by EDM experiments. In this way we avoid the problem of a
complex fermionic determinant. To define the QCD θ̄ term we
use the gradient flow. The topological charge defined in this
way has a finite and well defined continuum limit [17–19].
It is much faster to compute than using the Ginsparg-Wilson
definition and it is theoretically more robust than definitions
using cooling techniques. Another problem that hinders lattice
calculations of the nucleon EDM is the very poor signal-
to-noise ratio. In this respect we explore a novel technique
to determine the space-time region where the signal in the
relevant correlation functions is maximized. A first account
of this technique has already been presented [12].

2469-9985/2021/103(1)/015202(31) 015202-1 Published by the American Physical Society

https://orcid.org/0000-0003-3693-8300
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevC.103.015202&domain=pdf&date_stamp=2021-01-19
https://doi.org/10.1103/PhysRevC.103.015202
https://creativecommons.org/licenses/by/4.0/


DRAGOS, LUU, SHINDLER, DE VRIES, AND YOUSIF PHYSICAL REVIEW C 103, 015202 (2021)

Additional insights into the EDM of the nucleon [20–24]
and nuclei [25,26] can be provided by chiral effective field
theory. The CP-violating quark operators are translated to ef-
fective CP-violating hadronic operators and EDMs depend on
the unknown low-energy constants (LECs) of the theory. The
LECs can be estimated from dimensional analysis or, prefer-
ably, be determined from experiments and/or by lattice-QCD
calculations. We use these insights from chiral calculations to
understand the pion mass dependence of our results, and to
connect our nucleon EDM calculations to nuclear EDMs.

The remainder of the paper is organized as follows: Sec-
tion II gives a cursory discussion of the phenomenology of the
nucleon EDM, followed by an overview of the lattice details
and parameters in Sec. III, where we discuss our general
lattice strategy and we define the basic observables, including
the gradient flow. Sanity checks are given in Sec. IV, where we
compute and display the topological charge using the gradient
flow. The nucleon two-point correlation function is explored
in Sec. V, then the setup of the computation of the EDM is
derived and results shown in Sec. VI. A discussion follows the
results section in Sec. VII, where we discuss the ramifications
of our results and compare our results to the literature. Finally,
we conclude in Sec. VIII.

II. PHENOMENOLOGY OF THE QCD THETA TERM

The discrete space-time symmetries parity (P) and time-
reversal (T ), and hence via the CPT theorem also CP
symmetry, are broken in QCD by the θ̄ term. In the case of
two quark flavors the QCD Lagrangian in Minkowski space is
given by

LQCD = −1

4
Ga

μνGa,μν + q̄(iD/ − M )q − θ̄
g2

64π2
εμναβGa

μνGa
αβ,

(1)

where q = (u , d )T denotes the quark doublet containing up
and down quarks, Ga

μν is the gluon field strength tensor,
εμναβ (ε0123 = +1) is the completely antisymmetric tensor,
Dμ the gauge-covariant derivative, M the real 2 × 2 quark-
mass matrix, and θ̄ the coupling of the CP-odd interaction.
In Eq. (1) the complex phase of the quark-mass matrix has
been absorbed in the physical parameter θ̄ = θ + arg det(M ).
For the application of chiral perturbation theory (χPT) it is
useful to perform an anomalous axial U (1) transformation
to replace the CP-odd gluonic term in favor of a complex
mass term [20,27]. Under the assumption that θ̄ � 1 the QCD
Lagrangian can then be written as

LQCD = − 1
4 Ga

μνGa,μν+q̄iD/ q − m̄q̄q − εm̄q̄τ3q + m∗θ̄ q̄iγ 5q,

(2)

where we have defined the average quark mass m̄ = (mu +
md )/2, the quark-mass difference ε = (mu − md )/(mu + md ),
and the reduced quark mass m∗ = mumd/(mu + md ) = m̄(1 −
ε2)/2.

The QCD θ̄ term induces an EDM in hadrons and nuclei.
The first EDM search occurred with the neutron in 1957
[28,29]. Till this day, no signal has been found for the EDM,

despite measurement sensitivities having improved by six or-
ders of magnitude. The current bound dn < 3.0 × 10−26 e cm
[30,31] sets strong limits on the size of θ̄ and sources of CP
violation from physics beyond the SM [32].

To set a bound on the θ̄ term, it is necessary to calculate
the dependence of the neutron EDM on θ̄ [20]. One way to do
this is by using χPT. In the first step one derives interactions
between the low-energy degrees of freedom, pion and nucle-
ons (and heavier hadrons), that violate CP and transform the
same way under chiral symmetry as the complex mass term
in Eq. (2). In the second step, one combines the chiral CP-odd
interactions with the standard CP-even chiral Lagrangian to
calculate the nucleon EDM. This calculation has been done up
to next-to-leading order (NLO) in both SU (2) and SU (3) χPT
[21,23] and gives in the two-flavored theory for the neutron
(dn) and proton (dp) EDM:

dn(θ ) = d̄n − egAḡ0

8π2Fπ

(
ln

m2
π

m2
N

− πmπ

2mN

)
,

dp(θ ) = d̄p + egAḡ0

8π2Fπ

(
ln

m2
π

m2
N

− 2πmπ

mN

)
, (3)

in terms of gA � 1.27 the strong pion-nucleon coupling con-
stant, Fπ � 92.4 MeV the pion decay constant, mπ and mN the
pion and nucleon mass respectively, e > 0 the proton charge,
and three low-energy constants (LECs) of CP-odd chiral inter-
actions ḡ0 and d̄p/n. The first term in brackets in Eq. (3) arises
from the leading-order (LO) one-loop diagram involving the
CP-odd vertex,

LπN (θ ) = ḡ0 N̄ �π · �τN, (4)

in terms of the nucleon doublet N = (p n)T and the pion triplet
�π . The LO loop is divergent and the divergence and associated
scale dependence have been absorbed into the counter terms
d̄p/n which signify contributions to the nucleon EDMs from
short-range dynamics and appear at the same order as the LO
loop diagrams. The second term in brackets in Eq. (3) arises
from finite next-to-leading-order (NLO) diagrams.

Because the θ̄ term breaks chiral symmetry as a complex
quark mass, the LEC ḡ0 can be related to known CP-even
LECs using chiral symmetry arguments [20,33,34],

ḡ0 = (mn − mp)strong(1 − ε2)

4Fπε
θ̄ = −14.7(2.3) × 10−3 θ̄ ,

(5)

where (mn − mp)strong is the quark-mass-induced part of the
proton-neutron mass splitting for which we used the recent
lattice results [35,36]. Inserting Eq. (68) into Eq. (3) we obtain

dn(θ ) = d̄n − 2.1(3) × 10−3 θ̄ e fm ,

dp(θ ) = d̄p + 2.5(3) × 10−3 θ̄ e fm. (6)

Under the assumption that the terms d̄p/n do not cancel
against the calculable loop contributions, a comparison with
the experimental bound gives the strong constraint θ̄ � 10−10.
Clearly, a more reliable constraint on θ̄ requires a direct
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TABLE I. Summary of the lattice bare parameters for the ensem-
bles used. NG is the number of gauge configurations and Ncorr is the
number of correlation functions calculated using many stochoasti-
cally located sources for the same gauge configuration.

β κl κs L/a T/a csw NG Ncorr

M1 1.90 0.13700 0.1364 32 64 1.715 322 30094
M2 1.90 0.13727 0.1364 32 64 1.715 400 20000
M3 1.90 0.13754 0.1364 32 64 1.715 444 17834
A1 1.83 0.13825 0.1371 16 32 1.761 800 15220
A2 1.90 0.13700 0.1364 20 40 1.715 789 15407
A3 2.05 0.13560 0.1351 28 56 1.628 650 12867

nonperturbative calculation of the full nucleon EDMs. This
is the main goal of this work.

In the isoscalar combination dn + dp the loop contribution
cancels out to a large extent. For observables sensitive to this
combination, such as the deuteron EDM whose measurement
is the goal of the JEDI collaboration [37], a first-principle
calculation of the total nucleon EDM is important. EDMs
of light nuclei have been calculated as a function of θ̄ in
Ref. [26]. Nuclear EDMs get contributions from the single-
nucleon EDMs and from the CP-violating nucleon-nucleon
potential which is dominated by one-pion-exchange terms.
The latter depend mainly on ḡ0 and are therefore relatively
well under control. The dominant remaining uncertainty is the
size of the nucleon EDMs as a function of θ̄ . With nonpertur-
bative calculations of nucleon EDMs induced by the θ̄ term,
we immediately obtain predictions for EDMs of light nuclei.
With future improvements of nuclear theory even EDMs of
diamagnetic atoms such as 199Hg and 225Ra could be directly
given as a function of θ̄ .

III. LATTICE QCD ACTION AND NUMERICAL DETAILS

We discretize the QCD action on an hypercubic lattice with
spacing a and volume L3 × T . The fermionic part of our QCD
lattice action is the nonperturbatively O(a)-improved Wilson
action with Nf = 2 + 1 dynamical quarks. The gauge part
is the Iwasaki gauge action. For our calculation we always
use valence quarks with the same lattice action and the same
bare parameters as the sea quark action, that is to say our
framework is fully unitary.

We performed calculations using the publicly available
PACS-CS gauge fields available through the ILDG [38]. We
used six different ensembles that allow us to study discretiza-
tion effects, finite-size effects and pion mass dependence. We
studied the pion-mass dependence with three ensembles at
three different bare quark masses, at L/a = 32 and T/a = 64
and a lattice spacing a = 0.0907(13) fm. The lattice spacing
and the physical point were determined with the experimental
input of mπ , mK , and m. More details on these ensembles are
available in Ref. [39] and are summarized in the first three M
rows of Tables I and II.

To study discretization effects we used three ensembles
with three different lattice spacings but with the same volume,
L � 1.8 fm. The ratios of masses in the pseudoscalar and
vector channels differ, between the three ensembles, at most

TABLE II. Summary of some basic lattice quantities computed
on the ensembles used.

a [fm] mπ [MeV] mN [GeV] ZV

M1 0.0907(13) 699.0(3) 1.585(2) 0.7354(37)
M2 0.0907(13) 567.6(3) 1.415(3) 0.7354(37)
M3 0.0907(13) 409.7(7) 1.219(4) 0.7354(37)
A1 0.1095(25) 710(1) 1.65(1) 0.7013(14)
A2 0.0936(33) 676.3(7) 1.549(6) 0.7354(37)
A3 0.0684(41) 660.4(7) 1.492(5) 0.77314(82)

by 1% in the light sector and at most of 3% in the strange
quark sector. These very small mismatches are irrelevant for
all purposes for our scaling violation study. The lattice spac-
ings and quark masses in these ensembles are also determined
using mπ , mK , and mφ . Details for these ensembles can be
found in Ref. [40] and summarized in the last three A rows of
Tables I and II.

Among the six ensembles described above there are two
ensembles, M1 and A2, with the same bare parameters, β =
1.9, κl = 0.13700, κs = 0.1364 and different lattice volumes
with L/a = 20, L/a = 32, and T = 2L. These two ensembles
allow us to investigate finite-size effects.

To improve the overlap with the ground state of the relevant
matrix elements in the two- and three-point functions, we
applied a Gaussian gauge-invariant smearing [41,42] at the
source and at the sink of our quark propagators. Using the
notation of Refs. [41,42] we use 64 iterations of the smearing
algorithm with a smearing fraction of α = 0.39 using the
definition in Ref. [41]. These parameters corresponds to a
spatial root-mean-square radius for the nucleon interpolating
operator of around 0.4 fm. The quality of our projection into
the ground state can be evaluated from Figs. 5(a) and 5(b).

For the vector form factors studied here, we used the renor-
malization factor ZV determined using vector Ward identities
in Ref. [43] and summarized in Tables I and II.

The strategy we use in this paper is a perturbative ex-
pansion in powers of θ̄ (the expansion is fully performed in
Euclidean space). This is justified by the small value of θ̄

estimated from experimental constraints. With this strategy
every correlation function 〈O〉θ̄ , evaluated in a θ̄ vacuum, is
determined from a small-θ̄ expansion,

〈O〉θ̄ = 〈O〉 + iθ̄ 〈OQ〉 + O(θ̄2), (7)

where O is some multi-local operator, θ̄ is the coefficient
for the CP-violating term, and Q is the topological charge.
The expectation values on the right-hand side of Eq. (7) are
computed on a standard QCD background. This allows us to
use lattice QCD gauge configurations without generating new
gauges for this specific calculation. We define the correlation
functions used to determine the nucleon EDM induced by the
θ̄ term in the next section.

The topological charge CP-violating operator that enters
the correlation functions must in principle be normalized. We
use the gradient flow [17] to define the topological charge
which in this way has a finite continuum limit and does not
need any additional normalization [17–19]. The reason is that
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(a) (b)

FIG. 1. The topological susceptibility in GeV computed for the M (left) and A ensembles (right), plotted against the flow-time radius
√

8t f

in fm.

the flowed fields are free from ultraviolet divergences [17,18]
for all positive flow times, t f > 0. Additionally it can be
shown that the topological charge defined with the gradient
flow is flow-time independent [19] for all positive flow times,
t f > 0, in the continuum limit. Details on how we numeri-
cally perform the flowing of the fields have been described in
Ref. [11].

IV. TOPOLOGICAL CHARGE AND THE GRADIENT FLOW

We define the topological charge at finite lattice spacing as

Q(t f ) = a4
∑

x

q(x, t f ), (8)

where the topological charge density reads

q(x, t f ) = 1

64π2
εμνρσ Ga

μν (x, t f )Ga
ρσ (x, t f ), (9)

and Ga
μν (x, t f ) is a lattice discretization of the continuum field

tensor defined with flowed gauge fields. As a lattice definition
for the field tensor, we use the discretization suggested in
Ref. [44]. This definition suffers from small discretization ef-
fects and, in fact, the corresponding topological susceptibility

χ (t f ) = a8

V

∑
x,y

〈q(x, t f )q(y, t f )〉 (10)

is flow-time independent starting from a flow-time radius,√
8t f , of about 1 fm for all lattice spacings we have investi-

gated. This can be seen in Fig. 1, where we show the flow-time
dependence of the topological susceptibility computed for

all M (left) and A ensembles (right). As expected, the re-
gion where the susceptibility is independent of the flow time
extends toward smaller flow-time values for smaller lattice
spacings.

We used the topological charge to perform various checks
on the quality of the ensembles. An important check for EDM
calculations is to make sure that the ensembles sample the
field space in such a way that no spurious CP-violation is
induced. In other words we must check the expectation value
〈Q(t f )〉 = 0 within statistical errors. In Fig. 2 we show 〈Q(t f )〉
evaluated on all our ensembles for various pion masses and
lattice spacings. To properly estimate the statistical uncer-
tainties we evaluate the autocorrelation function and the
corresponding integrated autocorrelation time, τint, as defined
in Ref. [45]. For all our ensembles the average topological
charge vanishes within statistical errors. In Fig. 3 we show the
flow-time dependence of the integrated autocorrelation time
for the topological charge. As expected the gradient flow, by
smoothing out some of the short-distance fluctuations, allows
a better determination of τint that reaches a plateau for

√
8t f �

0.2 fm for all our ensembles [46,47].
The integrated autocorrelation time τint we obtain falls

within the range 7 < τint < 35 for the M1 and M2 ensembles
and slightly smaller, 3 < τint < 10, for our M3 ensemble. We
attribute this behavior with the rather short Markov chain
for the M3 ensemble which most likely does not allow a
more accurate determination of its τint. We also observe from
Fig. 3 that τint increases as we decrease the lattice spac-
ing. This is an expected result [46,48] since the tunnelling
between different topological sectors becomes increasingly
difficult with decreasing lattice spacing, meaning that the
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(a) (b)

FIG. 2. Flow-time radius
√

8t f dependence of the topological charge 〈Q〉 for the M (left) and A ensembles (right). The errors are computed
using an autocorrelation analysis as described in Ref. [45].

(a) (b)

FIG. 3. Flow-time radius
√

8t f dependence of the optimal integrated correlation time τint of the topological charge for the M-(left) and
A-(right) ensembles. The error calculation, as well as the optimal autocorrelation length Wopt, are computed as described in Ref. [45].

015202-5



DRAGOS, LUU, SHINDLER, DE VRIES, AND YOUSIF PHYSICAL REVIEW C 103, 015202 (2021)

(a) (b)

FIG. 4. Flow-time-radius dependence of the topological charge for the ensemble M2 and A3 with statistical errors computed using the
autocorrelation function (blue data points) and a standard bootstrap error estimate (red data points).

sampling of different sectors, which would decrease τint, is
lessened.

For completeness in Fig. 4 we show the difference of error
determination if we were to use a standard resampling tech-
nique, such as bootstrap, instead of the error determination
using the autocorrelation function. In this case, 〈Q(t f )〉 �= 0
within uncertainties. This demonstrates how a robust uncer-
tainty determination for the topological charge requires both
the estimate of the autocorrelation function and its corre-
sponding integrated autocorrelation time.

V. TWO-POINT CORRELATION FUNCTIONS
AND THE NUCLEON MIXING ANGLE

In this section we analyze the nucleon two-point correla-
tion function used to extract the effective mass, as well as
the nucleon mixing angle. The standard two-point correlation
function with sink momentum p ′ has the form

G2(p ′, t,�) = a3
∑

x

e−ip ′ ·x Tr{� 〈N (x, t )N (0, 0)〉}, (11)

where � is some spin projector, and N is an interpolating
field with the quantum numbers of a nucleon, inserted with
a source-sink time separation of t . The spectral decomposi-
tion for this equation in the limit where T 
 t 
 0, keeping
implicit a sum over the polarizations, is

G2(p ′, t,�) = e−Eβ0 t

2Eβ0

Tr{� 〈|N |β0〉 〈β0|N |〉}, (12)

where the lowest energy state β0 for which 〈|N |β0〉 �=
0 and 〈β0|N |〉 �= 0 arises from the approximation1 T 

t 
 0.

The effective mass, which is shown in Fig. 5, is given by
the simple log ratio

Meff (p ′ = 0, t,�+) = ln

[
G2(p ′ = 0, t,�+)

G2(p ′ = 0, t + 1,�+)

]
= mβ+

0
,

(13)

where �+ = (I + γ4)/2 is the positive parity projector, β+
0

is the lowest energy positive parity nucleon state, and again,
T 
 t 
 0. In Fig. 5(a), we compare our effective mass deter-
minations for the M ensembles to those computed in Ref. [39]
and find agreement within statistical errors. As shown in
Fig. 5(b), we observe lattice-spacing dependence of the order
of 10% between the finest and coarsest lattices.

The nucleon mixing angle [1], αN , can be extracted by
utilizing the two-point correlator from Eq. (11), and the θ̄ -
modified two-point correlator

G(Q)
2 (p ′, t,�, t f )

= a3
∑

x

e−ip ′ ·x Tr{� 〈N (x, t )N (0, 0)Q(t f )〉}. (14)

1It is clear from the context when we consider operators as in
Eq. (12) or interpolating fields as in Eq. (11).
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(a) (b)

FIG. 5. Left: mπ dependence of the effective mass (in GeV) defined in Eq. (13) plotted against source-sink separation time t . Bands
correspond to values quoted in Ref. [39]. Right: lattice-spacing dependence of the effective mass (in GeV) plotted against source-sink
separation time t .

The mixing angle is defined using the small-θ̄ expansion as

αN = G(Q)
2 (p ′ = 0, t, γ5�+, t f )

G2(p ′ = 0, t,�+)
, (15)

in the region where t 
 0 and t f 
 0.
In Figs. 6(a) and 7(a), we show the dependence of the

nuclear mixing angle on the source-sink separation t (in fm)
for the M and A ensembles, respectively. For the M ensembles
in Figs. 6(a), there is little to no excited-state contamination
effects for t > 0.6 fm. The results suggest a nontrivial chiral
behavior for αN . We will discuss this in detail in Sec. VI when
we describe our EDM determination. For the lattice-spacing
ensembles in Fig. 7(a), we require a minimum source-sink
separation of t ≈ a {5, 7, 14} fm (for a = {0.1095,

0.0936, 0.0684} fm ensembles) to obtain a plateau and
achieve ground state saturation. The final plateaued quantity
for the different A ensembles all lead to the same angle αN

and all results are consistent within statistical uncertainties.
Similarly, Fig. 7(b) demonstrates that computing αN at
mπ = 700 MeV with different box sizes lead to consistent
results. In Table III we summarize the fit ranges and resulting
values for αN .

The value of the flow-time radius,
√

8t f , for all these anal-
yses is fixed around 0.5−0.6 fm where the topological charge
is least affected by lattice artifacts. Figures 8(a) and 9(a) show
the nucleon mixing angle plotted against the flow time

√
8t f

at a fixed source-sink separation t for the M and A ensembles.
For the M ensembles, we see no flow-time dependence after√

8t f > 0.2–0.3 fm, confirming that the results obtained in

this region are free from gradient-flow discretization effects.
A similar conclusion is reached for the A ensembles.

In Figs. 6(b) we show the integrated autocorrelation time
of αN for the M ensemble results shown in Fig. 6(a). For the
M1 and M2 ensembles a factor of 2–4 increase in autocorrela-
tion as the source-sink separation approaches 0. Fortunately,
a minimum source-sink separation of t ≈ 1 fm greatly de-
creases the autocorrelation correction that we apply in the
determination of the nucleon mixing angle αN . Most impor-
tantly, in comparison to 〈Q〉 from Fig. 3 (i.e., not in the
presence of a nucleon), the autocorrelation effect is dramat-
ically decreased by a factor of at least �4. We attribute
this effect to the presence of a fermionic part, NN , in the
correlation function. Numerical evidence suggests that the
observables considered in this work containing fermion lines,
such as αN and the EDM are less coupled to the slow modes
contributing to the spectral decomposition of the autocor-
relation function [46]. As this effect will be greater when
analyzing the EDM (from three-point correlation functions),
we resort to our standard bootstrap error propagation tech-
nique for the final EDM computation. We checked explicitly
that error estimates from a bootstrap and an autocorrelation
analysis give consistent results.

A. Improving the nucleon mixing angle

In this section we describe a method previously explored
in Ref. [49], that aims to reduce the statistical uncertainty
of the determination of the nucleon mixing angle αN . The
strategy can be described as an attempt to understand the
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(a) (b)

FIG. 6. Left: The nucleon mixing angle as function of the source-sink separation t at fixed flow time
√

8t f = 0.62 fm for different pion
masses. Right: Integrated autocorrelation of left plot.

(a) (b)

FIG. 7. Nucleon mixing angle as function of the source-sink separation t at fixed flow time for the A ensembles (left) and box size
ensembles (right).
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(a) (b)

FIG. 8. Left: The nucleon mixing angle as function of the flow-time radius
√

8t f , at fixed source-sink separation t = 0.91 fm for different
pion masses. Right: Integrated autocorrelation of left plot.

(a) (b)

FIG. 9. Nucleon mixing angle as function of the flow time radius
√

8t f at fixed source-sink separation t for various A ensembles (left) and
box size ensembles (right).
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TABLE III. Fit ranges [tmin, tmax] over euclidean source-sink separation t used to extract the nucleon mixing angle αN , along with the
resulting value.

Ensemble M3 M2 M1 A1 A2 A3

Fit range [10,20] [10,20] [10,20] [5,11] [7,17] [14,21]
Fitr [fm] [0.9,1.8] [0.9,1.8] [0.9,1.8] [0.6,1.3] [0.7,1.7] [0.96,1.43]
αN −0.040(21) −0.190(27) −0.142(24) −0.099(11) −0.103(10) −0.105(11)

space-time region where the overlap between the topologi-
cal charge density and the fermionic part of the correlation
function is maximal. To perform this investigation we define
a spatially summed topological charge density,

Q(τQ, t f ) = a3
∑

x

q(x, τQ; t f ),

Q(t f ) = a
∑
τQ

Q(τQ, t f ). (16)

We then numerically study the dependence on τQ of αN and
corroborate our numerical findings with a spectral decompo-
sition of the relevant correlators.

The ratio αN and the modified two-point correlator G(Q)
2

have the same τQ dependence and we therefore focus on the
latter. Setting p ′ = 0 and omitting it in our expressions, we
define

�
(Q)
2 (t,�, t f , τQ)

= a3
∑

x

Tr{� 〈N (x, t )Q(τQ, t f )N (0, 0)〉}, (17)

where the correlator in Eq. (14) can be obtained by summing
τQ from 0 to the time extent of the lattice T ,

G(Q)
2 (t,�, t f ) = a

T/a∑
τQ
a =0

�
(Q)
2 (t,�, t f , τQ). (18)

To focus on the region where the signal resides, we sum
the spatially summed topological charge density, Q(τQ, t f ),
symmetrically starting from the source location. That is we
sum τQ starting from 0 (and T ) up to a value ts (and T − ts).

The goal is to find a summation window ts small enough such
that we capture all the signal and avoid the summation of
unnecessary “noise.” We define the partial summed correlator

G(Q)
2 (t,�, t f , ts) = a

ts/a∑
τQ
a =0

[
�

(Q)
2 (t,�, t f , τQ)

+�
(Q)
2 (t,�, t f , T − τQ)

]
, (19)

from which, using the periodicity of our lattice, the original
correlator in Eq. (14) is obtained as

G(Q)
2 (t,�, t f ) = G(Q)

2 (t,�, t f , ts = T/2). (20)

Although there are other choices for the starting point of our
summation in τQ, we only consider starting from τQ = 0. In
Appendix A we derive a spectral decomposition for the cor-
relator in Eq. (17). We argue that in the limit ts 
 t 
 0, the

partially summed correlator G(Q)
2 (t,�, t f , ts) is independent

of ts and t , up to exponentially suppressed corrections. These
corrections seem to be rather small, and in fact our numerical
experiments indicate that we can safely stop the summation
over τQ at ts � t . In this way we avoid to sum in the region
between t and T/2 where numerically the correlators seem to
vanish up to statistical fluctuations.

We first fix the source-sink separation t to a large enough
value such that effects from excited states are suppressed. We
then study the dependence of αN on the summation window
ts. In Fig. 10 we show the ts dependence of αN , for the M
ensembles (left), and A ensembles (middle) and two different
physical volumes corresponding to M1 and A2 ensembles

(a) (b) (c)

FIG. 10. M (left), A (middle), and box-size ensembles (right) of the improved nucleon mixing angle αN plotted against the sum parameter
ts. The final point coincides with the regular nucleon mixing angle from Sec. V.

015202-10



CONFIRMING THE EXISTENCE OF THE STRONG … PHYSICAL REVIEW C 103, 015202 (2021)

(a) (b) (c)

FIG. 11. αN against t plots for M ensembles, comparing the improved method (blue) to the regular determination described in Sec. V (red).

(right). In all ensembles we observe that αN reaches a plateau
when ts � t , consistent with the expectation that contribu-
tions for ts > t are exponentially suppressed and below our
statistical accuracy. We do observe a very small drift of αN

for larger values of ts for the ensembles M1, and a smaller
drift for the ensemble M3, for small values of t . We attribute
this to statistical fluctuations that could arise from small lo-
cal parity-violating effects induced by nonvanishing matrix
elements of Q(τQ, t f ) between two states of the same parity,
〈β| Q(τQ, t f ) |β〉 �= 0. These local fluctuations are averaged
out when the charge density is summed over the whole space-
time volume as shown in Fig. 2. Nevertheless, all values of αN

determined with the improved method are statistically com-
patible with the results obtained with the standard analysis.

To compare the improved extraction of αN to the standard
determination described in Sec. V, we show in Figs. 11 and 12
the standard and improved determination of αN as a function
of the Euclidean source-sink separation t . The values of ts
considered are summarized in Table IV. We observe a signal-
to-noise improvement in all our ensembles, up to a factor
2, with the most significant observed in the ensembles M1,

M2, and A3. We observe the largest discrepancy between the
improved and unimproved methods, of the order of 2.3 σ , in
the M1 and M3 ensembles. We attribute this discrepancy to
standard statistical fluctuations of the gauge fields. A sum-
mary of the fit ranges and results for the improved nucleon
mixing angle is given in Table IV, where for comparison we
added the values of αN determined in the standard way.

VI. ELECTRIC DIPOLE MOMENT RESULTS

The neutron (n) and proton (p) EDMs, dp/n, can be ex-
tracted from the CP-odd electric dipole form factor2

F p/n
3 (Q2)

2MN

Q2�m2
π−−−−→ dp/n − Sp/nQ2 + O(Q4), (21)

2The general form not requiring Q2 � m2
π , is given in Eq. (58)

and discussed in detail in Secs. VI B and VI C. We performed the
same analysis with the fit function in Eq. (58) and found insignificant
changes to the EDM results (see Secs. VI B and VI C).

(a) (b) (c)

FIG. 12. αN against t plots for A ensembles, comparing the improved method (blue) to the regular determination described in Sec. V (red).
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which requires a lattice QCD computation of F3(Q2). The
variable Q2 in this case refers to the momentum transfer and
should not be confused with the topological charge. The small
θ̄ expansion provides us a way of accessing F3 from three-
point correlation functions without the need for generating

new gauge configurations at finite θ̄ and without relying on
a problematic analytical continuation to imaginary θ̄ . To ac-
cess F3(Q2), we calculate the following three-point correlation
functions with and without the insertion of the topological
charge, respectively,

G(Q)
3 (p ′, t, q, τ,�, γμ, t f ) = a6

∑
x,y

e−i(p ′ ·x−q·y)Tr{� 〈N (x, t )Jμ(y, τ )N (0, 0)Q(t f )〉},

G3(p ′, t, q, τ,�, γμ) = a6
∑
x,y

e−i(p ′ ·x−q·y)Tr{� 〈N (x, t )Jμ(y, τ )N (0, 0)〉}, (22)

where the electromagnetic current in terms of the quark cur-
rents is given by

Jμ(y, τ ) = 4
3 u(y, τ )γμu(y, τ ) − 1

3 d (y, τ )γμd (y, τ ), (23)

and N denotes standard proton or neutron interpolating fields.
Once the three-point correlation functions are computed,

we remove the leading Euclidean time dependence and
nucleon-to-vacuum amplitude contributions via the ratios:

R(p ′, t, q, τ,�, γμ)

= G3(p ′, t, q, τ,�, γμ)

G2(p ′, t,�+)
K (p ′, t, q, τ ),

R(Q)(p ′, t, q, τ,�, γμ, t f )

= G(Q)
3 (p ′, t, q, τ,�, γμ, t f )

G2(p ′, t,�+)
K (p ′, t, q, τ ), (24)

TABLE IV. The selected starting value tmin
s for the fit ranges

[tmin
s , T/2] for the summed Q, the Euclidean source-sink separation

fit range [tmin, tmax] and the resulting nucleon mixing angle αN from
the selected parameters. A comparison between computing αN from
tmin
s and fitting from tmin

s onwards showed a negligible difference on
all ensembles. We add the values determined in a standard way for
comparison.

Ensemble M3 M2 M1

tmin
s /a 7 10 6

tmin
s [fm] 0.63 0.9 0.54

t/a fit range [10,20] [10,20] [10,20]
t [fm] fit range [0.9,1.8] [0.9,1.8] [0.9,1.8]
αN improved −0.098(13) −0.201(17) −0.0822(97)
αN standard −0.040(21) −0.190(27) −0.142(24)

Ensemble A3 A2 A1

tmin
s /a 10 10 10

tmin
s [fm] 1.21 0.98 0.69

t/a fit range [5,11] [7,17] [14,21]
t [fm] fit range [0.61,1.34] [0.69,1.67] [0.96,1.44]
αN improved −0.1016(89) −0.1012(75) −0.1212(67)
αN standard −0.099(11) −0.103(10) −0.105(11)

where we have implicitly defined ratios for the proton and the
neutron. We define the square-root factor as

K (p ′, t, p, τ )

≡
√

G2(p ′, τ,�+)G2(p ′, t,�+)G2(p, t − τ,�+)

G2(p, τ,�+)G2(p, t,�+)G2(p ′, t − τ,�+)
. (25)

The spectral decomposition of the ratio function R in Eq. (24),
in the limit T 
 t 
 0, reads

R(p ′, t, q, τ,�, γμ)

= A(Ep ′ , Ep)Tr{�(−i/p ′ + m)�μ(Q2)(−i/p + m)}, (26)

where the vector form factor contains all terms allowed by the
symmetries of the theory

�μ(Q2) = γμF1(Q2) + σμνqν

2m
F2(Q2). (27)

For completeness the expression of A(Ep ′ , Ep) reads

A(Ep ′ , Ep) = 1

4
√

Ep ′Ep(Ep ′ + m)(Ep + m)
. (28)

The data that we computed coming from the fixed-sink
method is such that p ′ = 0 (which implies q = −p), simpli-
fying Eq. (26) to

R(0, t, q, τ,�, γμ)

= 2mA(m, Ep)Tr{��+�μ(Q2)(−i/p + m)}. (29)

The analogous modified ratio function with the insertion of
the topological charge R(Q) in Eq. (24) has, retaining only the
ground state contribution, the following spectral decomposi-
tion at leading order in θ̄ :

R(Q)(0, t, q, τ,�, γμ, t f )

= 2mA(m, Ep)

[
αN 2mTr{��+�̃μ(Q2)γ5}

+αN Tr{�γ5�̃μ(Q2)(−i/p + m)}

+ Tr

{
��+

σμνγ5qν

2m
F̃3(Q3)(−i/p + m)

}]
, (30)

where

�̃μ(Q2) = γμF1(Q2) + σμνqν

2m
F̃2(Q2). (31)
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(a) (b)

FIG. 13. M ensemble results for the neutron (left) and proton (right) CP-odd form factor F3(Q2 )
2MN

, plotted against the transfer momentum Q2.

The extrapolation to Q2 → 0 gives the final EDMs which are displayed in Table V.

Due to subtleties between lattice and physical quantities, the
form factor decomposition in the presence of a CP-violating
operator insertion is written in terms of modified form factors,
F̃2(Q2) and F̃3(Q2), related to the physical form factors
by [6]

F3(Q2) = cos(2αN )F̃3(Q2) + sin(2αN )F̃2(Q2), (32)

F2(Q2) = − sin(2αN )F̃3(Q2) + cos(2αN )F̃2(Q2). (33)

The rotated form factor F3(Q2) corresponds to the actual elec-
tric dipole form factor as measured in experiments. From now
on, we will focus on this quantity.

The ratio functions R and R(Q) become constant, as long as
the large-time approximation T 
 t 
 τ 
 0 is satisfied to
ensure ground-state dominance. As the fixed-sink method is
employed to compute the three-point correlation functions, a
region in which this large time approximation is satisfied for
τ can be found and we denote the results of the fits as

R(p ′, t, q, τ,�, γμ) → Rfit (p ′, t, q,�, γμ),

R(Q)(p ′, t, q, τ,�, γμ, t f ) → R(Q)
fit (p ′, t, q,�, γμ, t f ). (34)

The technique for fitting these ratio functions over τ is de-
scribed in Appendix B. With this construction, a system of
equations can be solved for form factors Fi(Q2), i = 1, 2, 3 of
the form

3∑
i=1

A(Q2)AiFi(Q
2) =

{
Rfit (0, t, q j,�k, γl )

R(Q)
fit (0, t, q j,�k, γl , t f )

, (35)

where the collective index A denotes any combination of the
indices A = { j, k, l}. In other words, we run over all possible

combinations of projectors �, all current momentum q within
a given Q2, and operator gamma matrix γμ. The index A of the
matrix AAi(Q2) corresponds to the coefficients for each form
factor Fi for the corresponding ratio function R or R(Q). These
coefficients are found by analyzing the spectral decomposition
of R or R(Q), which needs to be done for every evaluated
index A.

Using Eq. (21), we extrapolate to F p/n
3 (Q2 → 0)/(2MN ) =

dp/n. We use a linear plus constant fit function, giving the
extrapolated value dp/n at Q2 → 0 (as well as slope in Q2

providing Sp/n).
The final extraction of the neutron (left) and proton (right)

CP-odd form factor F3(Q2 )
2MN

is shown for the M ensembles in
Fig. 13 and for the A ensembles in Fig. 14. Figure 13 shows
that all M ensembles are statistically consistent with each
other and with zero. Figure 14 shows that there are no major
discretization effects, as all the extrapolated Q2 → 0 results
are consistent.

Figures 15–17 are all displayed to understand the sys-
tematic effects resulting from varying the flow time t f , and
different methods of determining the nucleon mixing an-
gle αN used in the form factor decomposition [AA j (Q2)
in Eq. (35)] . In Fig. 15, for example, we show how
the form factors F3, determined at different flow-time radii√

8t f = 0.60, 0.65, 0.70 fm (green, red and blue), are statisti-
cally consistent for all three M ensembles (left to right). From
both Fig. 16, where the improved method (see Sec. V A) of
determining the nucleon mixing angle αN (in red) is compared
to the standard method for αN (in blue), and Fig. 17, where
we vary the fit range for extracting αN , it is clear that a
more precise determination of αN has a negligible impact on
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(a) (b)

FIG. 14. A ensemble results for the neutron (left) and proton (right) CP-odd form factor F3(Q2 )
2MN

, plotted against the transfer momentum Q2.

The extrapolation to Q2 → 0 gives the final EDMs which are displayed in Table VI.

improving the precision of the results for the CP-odd form fac-
tor F3. A summary of the Q2 → 0 extrapolations for different
ensembles is given in Tables V and VI.

A. Improving the modified three-point correlation function

In this section, we utilize a similar improvement technique
used for αN , but now applied to the modified three-point corre-
lation function G(Q)

3 . The improvement starts by analyzing the

time dependence of the spatially integrated topological charge
density

�
(Q)
3 (p ′, t, q, τ, τQ,�, γμ, t f )

= a6
∑
x,y

e−ip ′ ·xeiq·yTr{�〈N (x, t )

×Jμ(y, τ )Q(τQ, t f )N (0, 0)〉}, (36)

where τQ signifies the temporal location of the topological
charge Q defined in Eq. (16). The spectral decomposition for

(a) (b) (c)

FIG. 15. Flow time radii
√

8t f = 0.60, 0.65, 0.70 fm (green, red, and blue, respectively) comparison for the neutron CP-odd form factor
F3(Q2 )
2MN

using the mπ = {410, 570, 700} MeV (left, middle, and right, respectively) ensembles. The extrapolation to Q2 → 0 gives the final EDM.
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(a) (b) (c)

FIG. 16. Comparison of the neutron CP-odd form factor F3(Q2 )
2MN

determined using improved (red) and unimproved (blue) results form the

mixing angle αN/Shown are the mπ = {410, 570, 700} MeV (left, middle, and right, respectively) ensembles. The extrapolation to Q2 → 0
gives the final EDM.

this correlator has the form

�
(Q)
3 =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∑
γ ,δ

e−Eα0 (T −t )e
−Eβ0

(t−τ )
e−Eγ (τ−τQ )e−Eδ τQ

16Eα0 Eβ0 Eγ Eδ
Tr{� 〈α0|N |β0〉 〈β0|Jμ |γ 〉 〈γ | Q |δ〉 〈δ|N |α0〉}, τQ < τ < t

∑
β,γ

e−Eα0 (T −t )e−Eβ (t−τQ )e−Eγ (τQ−τ )e
−Eδ0

τ

16Eα0 Eβ Eγ Eδ0
Tr{� 〈α0|N |β〉 〈β| Q |γ 〉 〈γ |Jμ |δ0〉 〈δ0|N |α0〉}, τ < τQ < t

∑
α,β

e−Eα (T −τQ )e−Eβ (τQ−t )e−Eγ0 (t−τ )e
−Eδ0

τ

16EαEβ Eγ0 Eδ0
Tr{� 〈α| Q |β〉 〈β|N |γ0〉 〈γ0|Jμ |δ0〉 〈δ0|N |α〉}, τ < t < τQ

, (37)

where α, β, γ , and δ are labels for the states propagating, and the 0 subscript indicates the lowest energy state propagating
with the appropriate quantum numbers. We stress that t f �= 0 implies the absence of any contact terms. From Fig. 18, a clear
signal is observed at τQ = 0 on all ensembles. This motivates summing τQ symmetrically around τQ = 0 to obtain the summed

(a) (b) (c)

FIG. 17. Comparison of the neutron CP-odd form factor F3(Q2 )
2MN

determined using different fit ranges for the determination of the mixing

angle αN/Shown are the mπ = {410, 570, 700} MeV (left, middle, and right, respectively) ensembles. The extrapolation to Q2 → 0 gives the
final EDM.
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TABLE V.
F p/n

3 (Q2→0)

2MN
= dp/n fit results over M ensembles, taken

from Fig. 13.

Ensemble mπ = 410 MeV mπ = 570 MeV mπ = 700 MeV

dp [e fm] 0.0043(99) 0.0017(83) 0.0016(64)
dn [e fm] −0.0035(66) −0.0060(53) −0.0009(47)

TABLE VI.
F p/n

3 (Q2→0)

2MN
= dp/n fit results over A ensembles, taken

from Fig. 14.

Ensemble a = 0.1095 fm a = 0.0936 fm a = 0.0684 fm

dp [e fm] 0.0060(30) 0.0026(25) 0.0008(18)
dn [e fm] −0.0043(20) −0.0063(20) −0.0023(13)

three-point correlator:

G(Q)
3 (p ′, t, q, τ,�, γμ, t f , ts) = a

ts/a∑
τQ
a =0

[
�

(Q)
3 (p ′, t, q, τ, τQ,�, γμ, t f ) + �

(Q)
3 (p ′, t, q, τ, T − τQ,�, γμ, t f )

]
. (38)

The resulting fit function to the sum range ts, for the range ts > t , is

G(Q)
3 (ts) =

⎧⎪⎨⎪⎩
A0 + ∑

γ±�=0± Aγ±0∓e−Eγ± (τ−ts )e−E0∓ ts + A0±0∓e−E0± ts e−E0∓ [(T −t )−ts] 0 < ts < τ

A0 + ∑
β±,γ∓ Aβ±γ∓e−Eβ± (t−ts )e−Eγ∓ (ts−τ ) + A0±0∓e−E0± ts e−E0∓ [(T −t )−ts] τ < ts < t

A0 + ∑
β±�=0± Aβ±0∓e−E0∓ (T −ts )e−Eβ± (ts−t ) + A0±0∓e−E0± ts e−E0∓ [(T −t )−ts] t < ts < T/2

, (39)

(a) (b) (c)

(d) (e) (f)

FIG. 18. Plot of the ratio �
(Q)
3 as a function of τQ, the insertion time of the topological charge Q(t f , τQ ) [see Eq. (16)]. We show the result

for momentum q = 2π

L (0, 0, 2), γμ = γ4, � = �+iγ5γ3 and the current insertion time τ indicated in legend. The upper left, middle, and right
plots are the mπ = {410, 570, 700} MeV M ensembles and the lower left, middle, and right plots are the a = {0.1095, 0.0936, 0.0684} fm A
ensembles.
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(a) (b) (c)

(d) (e) (f)

FIG. 19. Plot of the ratio function R(Q) summed over τQ (see Fig. 18) from 0 to ts and from T − ts to T , as a function of the summation
window ts. We show the result for momentum q = 2π

L (0, 0, 2), γμ = γ4, � = �+iγ5γ3 and the current insertion time τ indicated in legend.
The upper left, middle, and right plots are the mπ = {410, 570, 700} MeV M ensembles and the lower left, middle, and right plots are the
a = {0.1095, 0.0936, 0.0684} fm A ensembles. The standard R(Q) value for this quantity is obtained by taking the final ts = T

2 value.

where γ± and β± represent the positive and negative (±)
parity nucleon states; A0, Aγ± , Aβ±,γ∓ , and Aβ± are combina-
tions of nucleon matrix elements; Eγ± is the energy of the
propagating state γ±; and E0± is the lowest energy of the pos-
itive and negative parity nucleon states 0±. We construct the
improved ratio function R(Q) in the same way as in Eq. (24),

but with the replacement of G(Q)
3 → G(Q)

3 . The value of the
correlation function G(Q)

3 , used to extract the CP-odd form
factor, is obtained in the limit ts → T . If the summation over
τQ is performed up to a value ts < T the neglected terms will
be exponentially small as one can deduce from Eq. (39). Our
numerical results seem to indicate that indeed the neglected
contributions for intermediate values of ts are well below the
statistical accuracy of our calculation.

In Fig. 19, the results for the symmetrically summed topo-
logical charge ratio function R(Q) are shown as a function of
the sum range ts. In all cases, a plateau can be observed at
ts = τ . This indicates that all the exponential terms in Eq. (39)
are suppressed for ts > τ . Coupled with the large statistical

noise inherent in the data, we fit the result with a constant
value once the plateau has formed. These fit ranges are dis-
played in Tables VII and VIII, and are used for the form factor
analysis in Sec. VI B.

TABLE VII. Fit ranges [tmin
s , T

2 ], over the symmetrically summed
Q time ts and resulting in the improved EDM determination
Fn

3 (Q2→0)
2MN

≡ dn, over the M ensembles, taken from Fig. 21. The

unimproved results from Table V, here denoted with dn to avoid
confusion, are included for comparison. The values determined at
tmin
s differ by the fit results at most by 10% of the error associated.

Ensemble mπ = 410 MeV mπ = 570 MeV mπ = 700 MeV

Fit range [6,32] [7,32] [4,32]
Fitr [fm] [0.54,2.9] [0.63,2.9] [0.63,2.9]
dn [e fm] −0.0045(26) −0.0090(27) −0.0027(20)
dn [e fm] −0.0035(66) −0.0060(53) −0.0009(47)

015202-17



DRAGOS, LUU, SHINDLER, DE VRIES, AND YOUSIF PHYSICAL REVIEW C 103, 015202 (2021)

TABLE VIII. Fit ranges [tmin
s , T

2 ], over the symmetrically
summed Q time ts and resulting in the improved EDM determina-

tion
Fn

3 (Q2→0)
2MN

≡ dn, over the A ensembles, taken from Fig. 21. The

unimproved results from Table VI, here denoted with dn to avoid
confusion, are included for comparison. The values determined at
tmin
s differ by the fit results at most by 10% of the error associated.

Ensemble a = 0.1095 fm a = 0.0936 fm a = 0.0684 fm

Fit range [3,16] [4,20] [10,28]
Fitr [fm] [0.36,1.9] [0.39,2.0] [0.69,1.9]
dn [e fm] −0.0048(13) −0.00393(97) −0.0044(10)
dn [e fm] −0.0043(20) −0.0063(20) −0.0023(13)

Finally, Fig. 20 displays a standard modified ratio function
R(Q)

3 plot over current insertion time τ , where the improved
ratio function (blue) is compared with the standard method
(red). The improved ratio function uses the “min” time from
Tables VII and VIII.

In Fig. 21, a comparison between the improved ratio func-
tions (blue) and the standard integrated topological charge
(red) used in the extraction of the neutron CP-violating form
factor F3(Q2 )

2MN
is shown. In all cases, a two- to three-fold in-

crease in the signal-to-noise is observed and all results are
statistically consistent.3

B. Continuum extrapolated results
with improved ratio functions

Armed with the improved results for the nucleon EDMs,
the next step entails the extrapolation to the physical pion
mass and the continuum limit. From χPT we learn that the
leading dependence of the nucleon EDMs on the pion mass is

3We have at most 1.5σ disagreement between the two methods at
Q2 → 0 for the a = 0.0684 fm ensemble.

(a) (b) (c)

(d) (e) (f)

FIG. 20. Comparison of improved R(Q) (blue) and unimproved R(Q) (red) method for computing the ratio function as a fucntion of the
vector current insertion time τ . We show the result for momentum q = 2π

L (0, 0, 2), γμ = γ4, � = �+iγ5γ3. The upper left, middle, and right
plots are the mπ = {410, 570, 700} MeV M ensembles and the lower left, middle, and right plots are the a = {0.1095, 0.0936, 0.0684} fm A
ensembles. The ts values in the legends were selected as the tmin

s values from Tables VII and VIII.
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(a) (b) (c)

(d) (e) (f)

FIG. 21. The neutron CP-odd form factor F3(Q2 )
2MN

results plotted against the transfer momentum Q2. The mπ results (upper) were computed
on mπ = {410, 570, 700} MeV (left, middle, and right, respectively) M ensembles, and the lattice spacing results (lower) were computed
at a = {0.1095, 0.0936, 0.0684} fm (left, middle, and right, respectively) A ensembles. The form factors computed with the improved ratio
functions (blue) is compared with the standard ratio functions (red). The bands are linear fits to the data, which are used to extrapolate to
Q2 → 0 to determine the final EDM. Similar results are obtained for the proton.

given by [50]

dp/n(mπ ) = C1 m2
π + C2 m2

π ln

(
m2

π

m2
N,phys

)
, (40)

where C1 and C2 are fit constants. To account for the finite
lattice spacing, we include an additional fit parameter, C3,

dp/n(a, mπ ) = C1 m2
π + C2 m2

π ln

(
m2

π

m2
N,phys

)
+ C3a2. (41)

The additional term ensures that the EDM only vanishes in
the chiral limit after taking the continuum limit. We have
performed a global fit with Eq. (41) taking into account our
6 data points from ensembles A1–A3 and M1–M3. In the four
plots in Figs. 22 and 23, we show the EDM results for the
proton and neutron separately as function of the pion mass
and lattice spacing.

Specifically, in Fig. 22 we show the extraction of the
neutron (left) and proton (right) EDM plotted against their

m2
π values (in MeV). The blue band shows the extrapolation

using the fit function in Eq. (41), evaluated at dp/n(a = 0, mπ ).
This function evaluated at the physical pion mass is what
we are interested in. In red we show the same extrapolation,
where the fit is evaluated instead at dp/n(a = 0.09 fm, mπ ),
to study the role of discretization errors. In particular, we
observe an uncertainty of the EDMs at the physical pion
mass that is roughly twice larger at a = 0.09 fm. It is perhaps
surprising that the uncertainty at the physical point reduces
in the continuum limit. But the reason is clear. By fitting the
nucleon EDMs to the fit function in Eq. (41), the uncertainty
on the fit parameters C1 and C2 is increased by the presence
of the C3 term. Now that the a2 dependence is taken into
account, we can perform an interpolation between the EDM
in the chiral limit and the pion masses of our ensembles.
In the continuum limit, a = 0, the resulting nucleon EDM
at the physical pion mass has now less uncertainty because
dn,p(a = 0, mπ = 0) while dn,p(a > 0, mπ = 0) �= 0 and
unconstrained.
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(a) (b)

FIG. 22. Determination of the EDM dp/n for the neutron (left) and proton (right) for all six of our ensembles, plotted against their respective
mπ values. The bands are the fits to all the ensembles using Eq. (41), evaluated in the continuum a = 0 (blue) and at a = 0.0907 fm (red) which
coincides with the lattice spacing of the M ensembles.

(a) (b)

FIG. 23. Determination of the EDM dp/n for the neutron (left) and proton (right) for all 6 of our ensembles, plotted against their respective
lattice spacing values. The bands are the fits to all the ensembles using Eq. (41), evaluated at the physical point, mπ = mphys

π , (green) and in the
chiral limit mπ = 700 MeV (purple).
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TABLE IX. Neutron and proton EDM fit parameters C1, C2, C3 extracted from the combine fits to all six ensembles using Eq. (41), as well
as the resulting χ 2

PDF. We also estimate ḡ0 using C2 and Eq. (3).

C1 [θ̄ e fm3] C2 [θ̄ e fm3] C3 [ θ̄ e fm
fm2 ] χ 2

PDF ḡθ̄
0 [θ̄ ]

Proton −3.6(5.3) × 10−4 −6.8(6.6) × 10−4 0.20(31) 2.0(1.4) −9.9(9.6) × 10−3

Neutron 3.1(3.2) × 10−4 8.8(4.4) × 10−4 −0.16(23) 1.8(1.5) −12.8(6.4) × 10−3

The final continuum extrapolation values for the neutron
and proton EDM are

dn
(
a = 0, mπ = mphys

π

) = −0.00152(71) θ̄ e fm,

dp
(
a = 0, mπ = mphys

π

) = 0.0011(10) θ̄ e fm, (42)

and we include the determination for the fit parameters C1,
C2, C3 of Eq. (41), as well as the χ -squared per degree of
freedom parameter, χ2

PDF, in Table IX. The error on χ2
PDF is

determined from the bootstrap samples distribution. Since the
correlators for the proton and the neutron EDM are different, it
is possible to obtain different relative uncertainties in the two
cases. It is not clear to us though, why we observe a relative
larger uncertainty for the proton than for the neutron.

In Fig. 23 we show the dependence of our EDM results on
the lattice spacing a for the neutron (left) and proton (right)
EDM. Overlaid on top, we have the evaluation of the fit func-
tion Eq. (41) at two different values of mπ : mπ = 700 MeV
(purple band) and mπ = mphys

π (green band). The ensembles
analyzed in this work do not allow us to study mass-dependent
discretization effects, but we can still observe the impact of the
chiral interpolation on the continuum limit. The continuum
extrapolation has less uncertainty, thanks to the constraint that
the EDM vanishes in the chiral limit. Adding more ensembles
to study mass-dependent cutoff effects is certainly desirable,
but it does not change the main conclusion of this analysis.

We can extract a value of the CP-odd pion-nucleon LEC,
ḡ0, which plays an important role in the EDMs of nuclei and
diamagnetic atoms, by identifying our result for fit parameter
C2 with the coefficient of the log term in Eq. (3) for the neutron
EDM. This gives the relation

ḡ0 = −8π2 fπ
gA

C2m2
π

e
, (43)

leading to the extraction

ḡ0 = −12.8(6.4) × 10−3 θ̄ , (44)

at the physical pion mass. As discussed in Sec. II [see Eq. (5)]
the LEC ḡ0 can also be extracted from a completely inde-
pendent calculation relating the proton-neutron mass splitting,
induced purely by QCD effects, to the θ term [20,33,34]. The
value of ḡ0 we obtain from our EDM calculation, Eq. (44),
is perfectly consistent within statistical uncertainties with the
result obtained from the proton-neutron mass difference we
rewrite here for convenience,

[ḡ0]p−n = −14.7(2.3) × 10−3 θ. (45)

This agreement gives us confidence that the lattice data are
consistent with the pion-mass dependence predicted by chiral
perturbation theory.

To assess potential sources of systematic effects that be-
come relevant once the precision of these types of calculations
reach the percent level, we perform an additional polynomial
fit of the pion-mass dependence of the EDM. In the left
plot of Fig. 24 we show the different contributions to the
EDM pion mass dependence using χPT [see Eq. (40)] and
in the right plot of Fig. 24 we show a polynomial fit to the
form

dn(mπ ) = C1m2
π + C2m4

π . (46)

The lattice data are equally well described by both expres-
sions as the resulting χ2

pdf for the polynomial fits are

χ2
pdf = 1.7(1.4), neutron,

χ2
pdf = 2.0(1.4), proton, (47)

to be compared with the results in Table IX. We note that while
in the chiral fit there is a dominance of the chiral log with
a smaller contribution from the counterterm C1 (as expected
by phenomenology going back to Crewther et al. in 1979
[20]), in the polynomial fit we have the classical behavior of a
potentially nonconverging expansion where the leading and
next-to-leading contributions have similar sizes in absolute
value and opposite signs. Nevertheless the two expressions
give statistically consistent values for the EDM at the physical
point

[dn]χPT = −1.52(71) × 10−3θ e fm, (48)

[dn]poly = −0.64(25) × 10−3θ e fm, (49)

and the EDM from the polynomial fit has even a smaller
statistical uncertainty. However, the polynomial fit is not mo-
tivated by physics, whereas the chiral fit has a first-principle
derivation. Combined with the striking agreement with our
extraction of ḡ0 with a completely independent determination
(see above), it seems best to describe the data using chiral
perturbation theory with the more conservative uncertainty in
Eq. (42).

C. Schiff moment of the proton and neutron

Apart from the EDMs of the neutron and the proton, the nu-
cleon electric dipole form factor (EDFF) contains additional
information. The EDFF can be decomposed as

F p/n
3 (Q2)

2MN
= dp/n − Sp/nQ2 + Hp/n(Q2), (50)

where dp/n denotes the proton or neutron EDM, Sp/n de-
notes the proton or neutron Schiff moments defined by
Sp/n = (2MN )−1(dF p/n

3 /dQ2)|Q2=0, and Hp/n are functions
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FIG. 24. Left plot: Graphical representation of the chiral fit results. The green band represents the result of the chiral fit in Eq. (40). The blue
and red bands represents the separate contributions to the chiral fit, respectively, the contribution proportional to C1 (blue) and the contribution
proportional to C2 (red band). Right plot: Same plot description as the left plot. The contributions now though refer to the polynomial fit in
Eq. (46).

that capture the remaining Q2 dependence. Chiral perturbation
theory allows for a calculation of the Schiff Moments and
the Hp/n functions from the analogous isovector and isoscalar
quantities [50]. At leading order in the chiral expansion the
nucleon EDMs are given in Eq. (3). The leading-order Schiff
moments are isovector and given by

Sp = −Sn = − egAḡ0

48π2Fπ m2
π

= 1.7(3) × 10−4 θ̄ e fm3, (51)

where we have used Eq. (5). NLO corrections have been
calculated in Ref. [23] and reduce the leading-order result
by roughly 50% and provide a tiny contribution to Sn + Sp =
O(10−5 θ̄ e fm3). χPT thus predicts that the neutron and pro-
ton Schiff moments are equal in magnitude but with opposite
sign. The leading-order Hp/n are also isovector and given by

Hp = −Hn = − egAḡ0

30π2Fπ

[
h(0)

1

(
Q2

4m2
π

)]
, (52)

where

h(0)
1 (x) = −15

4

[√
1+1

x
ln

(√
1 + 1/x + 1√
1 + 1/x − 1

)
−2

(
1 + x

3

)]
.

(53)

In the limit Q2 � m2
π the nucleon EDFFs become

F p
3 (Q � mπ )

2MN
= dp + egAḡ0

48π2Fπ

(
Q2

m2
π

+ · · ·
)

, (54)

F n
3 (Q � mπ )

2MN
= dn − egAḡ0

48π2Fπ

(
Q2

m2
π

+ · · ·
)

, (55)

such that the Schiff moments provide the dominant Q2 depen-
dence of the EDFFs. The nucleon EDMs and the LEC ḡ0 are
induced by the θ̄ term and scale as dp/n ∼ ḡ0 ∼ m̄∗θ̄ ∼ m2

π θ̄ .
As such, the Schiff moments scale as Sp/n ∼ ḡ0/m2

π which
is pion mass independent. This statement is potentially con-
fusing as we infer from Eq. (2) that the θ̄ term decouples in
the chiral limit and the whole nucleon EDFF should vanish.

Equation (55), however, requires Q2 � m2
π . In the opposite

limit, we obtain

F p
3 (Q 
 mπ )

2MN
= dp − egAḡ0

8π2Fπ

(
2 + ln

m2
π

Q2

)
, (56)

F n
3 (Q 
 mπ )

2MN
= dn + egAḡ0

8π2Fπ

(
2 + ln

m2
π

Q2

)
, (57)

and the EDFFs vanish in the chiral limit as expected.
The goal is to extract Sp/n from our lattice data as this al-

lows for a direct comparison to the χPT prediction in Eq. (51)
and the extraction in the previous section based on the pion
mass dependence of the nucleon EDMs. To extract Sp/n, we
first extrapolate our results to small Q2 by fitting the EDFF to
the function

F p/n
3

(
Q2, m2

π , a2
)

2MN
= dp/n

(
m2

π , a2
) − Sp/n

(
m2

π , a2
)

×
[

Q2 − 8m2
π

5
h(0)

1

(
Q2

4m2
π

)]
. (58)

The effects of the h(0)
1 function turns out to have minimal

impact on the extraction of dp/n(m2
π , a2) and Sp/n(m2

π , a2), and
we obtain similar results if we use the fit function

F p/n
3

(
Q2, m2

π , a2
)

2MN
= dp/n

(
m2

π , a2
) − Sp/n

(
m2

π , a2
)
Q2. (59)

This shows that our results are not precise enough to isolate
the more subtle Q2 behavior.

Once we have obtained Sp/n(m2
π , a2) we can extrapolate

to the continuum limit and the physical pion mass. LO χPT
predicts no dependence on the pion mass, and, having an O(a)
improved lattice action, we add a quadratic dependence on the
lattice spacing a,

Sp/n
(
m2

π , a2) = C4 + C5a2, (60)

with C4 and C5 fit constants. The results for the Schiff mo-
ments along with the continuum extrapolation are shown in
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(a) (b)

FIG. 25. Determination of the Schiff moment Sp/n for the neutron (left) and proton (right) for all six of our ensembles, plotted against their
respective mπ values. The bands are the fits to all the ensembles using Eq. (60), evaluated in the continuum limit a = 0 (blue) and the lattice
spacing corresponding to the M ensembles (red).

Figs. 25 and 26. In Fig. 26 we show the fit results with
the a2 dependence. We observe minimal discretization effects

over the range a = {0 → 0.12} fm. In Fig. 25 we show the
fit results as a function of the pion mass mπ . At a = 0 we

(a) (b)

FIG. 26. Determination of the Schiff moment Sp/n for the neutron (left) and proton (right) for all six of our ensembles, plotted against their
respective lattice spacing values. The green band is the lattice spacing dependence of the fit to all the ensembles using Eq. (60).
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TABLE X. Neutron and proton Schiff fit parameters C4, C5 ex-
tracted from the combine fits to all six ensembles using Eq. (60), as
well as the resulting χ 2

PDF. We additionally include the ratio C2
C4

, where
C2 is the second fit parameter result from Table IX.

C4 [θ̄ e fm3] C5 [ θ̄ e fm3

fm2 ] χ 2
PDF

C2
C4

≈ −6

Proton 0.50(59) × 10−4 −0.0022(73) 1.25(80) −20(200)
Neutron −0.10(43) × 10−4 −0.0057(51) 1.37(97) 70(970)

perform a constant fit in the pion mass to obtain the proton
and neutron Schiff moments at the physical point. We do not
extrapolate to the chiral limit because the χPT prediction that
Sp/n are pion-mass independent will break down at some point
as inferred from Eq. (56). We obtain for the Schiff moments
at the physical point

Sp = 0.50(59) × 10−4 θ̄ e fm3, (61)

Sn = −0.10(43) × 10−4 θ̄ e fm3, (62)

as well as the fit parameters C4 = Sp/n and C5 from perform-
ing this fit in Table X. The uncertainties are significant and
the magnitudes are somewhat below the LO χPT predic-
tions in Eq. (51), but in better agreement once χPT NLO
corrections are included. There is some evidence for a dom-
inantly isovector Schiff moment as predicted from χPT, but
the uncertainties are too large to make strong statements. We
perform a sanity check of our result by comparing the ChPT
predictions for the fit coefficient C2 and C4. From Eqs. (43)
and (51), we infer the LO ChPT prediction

C2

C4
= −6. (63)

Our fit values for this ratio are given in Table X, and agree
with this prediction within (large) statistical errors.

VII. DISCUSSION

In this section, we discuss the EDM and Schiff moment
results for the neutron and proton. The succeeding Sec. VII A
compares our determination of the EDM to previous lattice
QCD EDM computations. Then following in Sec. VII B, the
phenomenological ramifications of our results for the EDM
and Schiff moments are discussed.

A. Comparison with other works

In this section, we compare the results obtained for the neu-
tron EDM dn with few lattice QCD results from the literature.
As noted in Ref. [6], it is sometimes problematic to compare
different EDM calculations, as most results preceding this
paper do not consider the rotation of the CP-odd form factor F3

with F2 and αN computed on the lattice.4 The EDM dn (rotated
to F3) is shown in Fig. 27. Good agreement is seen from our

4We note that no general consensus has been reached about the
need to perform this rotation of the form factors.

results to the others [1,3] at mπ ≈ 475 MeV, but we see a
slight tension between the results of [3,4] and our results at
mπ ≈ 350 MeV. It must be stressed that the rotation requires
knowledge of the phase αN and the unrotated form factors F2

and F3 which are not always easy to extract. To rotate the “C.
Alexandrou et al., 2016” [4] results, an estimation of F2 was
determined from [51]. To rotate the “F.-K. Guo et al., 2015”
[3] results, F2 was determined from [52] (at θ̄ = 0) and αN and
F3 estimated via a linear+cubic fit in θ̄ performed by Ref. [6].

In particular, the lattice results for F3 not obtained in this
work do not take into account correlations between F2, F3, and
αN . As such, Fig. 27 is mainly shown for illustrative purposes
and the error estimates for results not obtained in this work
should be taken with a grain of salt.

B. Impact on EDMs of light nuclei

Armed with a nonperturbative determination of the nucleon
EDMs as a function of θ̄ we can revisit EDMs of systems
with more than a single nucleon. EDM experiments so far
have mainly focused on neutral systems, but EDMs of charged
particles can be probed if the particles are trapped in elec-
tromagnetic storage rings [53]. This technique has lead to
a direct limit on the EDM of the muon [54], and to plans
to pursue EDM measurements of protons and light nuclei in
dedicated storage rings. Such measurements are still far away
but impressive progress has been reported in Refs. [37,55].
EDMs of light nuclei have been calculated using chiral EFT
[25,26],

d2H = 0.94(1)(dn + dp) + [0.18(2) ḡ1] e fm, (64)

d3H = −0.03(1)dn + 0.92(1)dp

− [0.11(1)ḡ0 − 0.14(2)ḡ1] e fm, (65)

d3He = 0.90(1)dn − 0.03(1)dp

+ [0.11(1)ḡ0 + 0.14(2)ḡ1] e fm, (66)

in terms of the EDMs of nucleons and the CPV pion-nucleon
coupling constants ḡ0 and ḡ1 associated to the interactions

LπN (θ̄ ) = ḡ0 N̄ �π · �τN + ḡ1 N̄π3N. (67)

Values of ḡ0 and ḡ1 can be obtained from chiral-symmetry ar-
guments [34,56] that link these LECs to the hadron spectrum

ḡ0 = −14.7(2.3) × 10−3 θ̄ ,

ḡ1 = 3.4(2.4) × 10−3 θ̄ , (68)

and the smallness of ḡ1/ḡ0 is due to approximate isospin
symmetry.

In absence of direct lattice calculations of dn and dp we
could only predict values for the combinations

d2H(θ̄ ) − dn(θ̄ ) − dp(θ̄ ) = 0.6(4) × 10−3 θ̄ e fm,

d3H(θ̄ ) − 0.9 dp(θ̄ ) = 2.1(5) × 10−3 θ̄ e fm, (69)

d3He(θ̄ ) − 0.9 dn(θ̄ ) = −1.1(5) × 10−3 θ̄ e fm.
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FIG. 27. The results of dn from this paper, improved in light blue and not-improved in dark blue, compared to other lattice QCD results
[1,3,4]. The light blue bands correspond to a chiral extrapolation, using the improved data (light blue), after having performed the continuum
limit as described in Sec. VI B. To perform the rotation of the CP odd form factor F3 of other lattice calculations see the main text. We underline
that our error determination for other works is purely illustrative since, not having at our disposal the raw data, we do not take into account
correlations in the data.

But with our lattice determination of dn(θ̄ ) and dp(θ̄ ), we can
now estimate the EDMs of light ions directly in terms of θ̄ ,

d2H(θ̄ ) = 0.2(1.2) × 10−3 θ̄ e fm ,

d3H(θ̄ ) = 3.2(1.0) × 10−3 θ̄ e fm , (70)

d3He(θ̄ ) = −2.5(0.8) × 10−3 θ̄ e fm.

Due to the dependence on the isoscalar nucleon EDM, dn +
dp, the deuteron EDM is still very uncertain. The tri-nucleon
EDMs, however, are predicted more than three standard devi-
ations from zero and with a fixed sign. The total uncertainty
arises in roughly equal amounts from uncertainties in Eq. (68)
and in the determination of the nucleon EDMs in Eq. (42).
If nonzero EDMs are measured these relations can be used
to differentiate between the SM θ term and BSM sources
of CP violation. They can also provide indirect evidence for

the existence of a Peccei-Quinn mechanism, by finding EDM
patterns in disagreement with Eq. (70) [57].

VIII. CONCLUSION

In this paper we computed the proton and neutron EDM
from dynamical lattice QCD using various pion masses at
different lattice spacings and volumes, as enumerated in
Tables I and II. We found our results have rather small
(within our statistical uncertainties) discretization effects,
which greatly simplified our continuum limit extrapolations.
We found satisfactory agreement with existing results, as
discussed in Table VII. With our measurements at multiple
pion masses, we performed a chiral interpolation to ob-
tain, at the physical pion mass and in the continuum limit
dn = −0.00152(71) θ̄ e fm and dp = 0.0011(10) θ̄ e fm. The
nonzero result for the neutron EDM confirms the existence
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of the strong CP problem at two standard deviations and
limits |θ̄ | < 1.98 × 10−10 at 90% C.L. The dependence of the
nucleon EDMs on the pion mass allowed us to extract the
CP-odd pion-nucleon coupling, ḡ0, and the resulting value is
in good agreement with chiral perturbation theory. We have
compared our chiral interpolation with a simple polynomial
fit, and while the two interpolations give consistent results,
the behavior of the expansion coefficients of the polynomial
fit, and the consistency of the LEC g0 obtained with two
completely independent determination, gives us confidence
that chiral perturbation theory describes the lattice data sat-
isfactorily. More precise lattice data will allow for better tests.

Important to our analysis was the implementation of the
gradient flow on the topological charge. In fact we can per-
form the continuum limit at fixed flow time with no need
to calculate the normalization of the topological charge. As
we have discussed and documented in Sec. V and ensuing
subsections, the gradient flow also allows a more robust de-
termination of the integrated autocorrelation time that must be
taken into account when estimating statistical uncertainties.

Be that as it may, the extraction of a nonzero EDM is
notoriously difficult due to its poor signal-to-noise ratio. To
address this issue we have employed a novel technique, first
documented in Ref. [12], for reducing the noise in our mea-
sured observables. Instead of summing all space-time points
in the calculation of ratios relevant for the extraction of our
3-point function and αN term, this method focuses on the
space-time region where the signal is strongest. We argued
that the neglected space-time region gives exponentially sup-
pressed contributions to the correlation functions and this
expectation has been confirmed by our numerical results. On
some ensembles this method enabled us to increase the signal
to noise by a factor of ≈2. This method was described in detail
in Sec. VI A and Appendix A.

We have also analysed the Q2 dependence of our form
factors and performed an extraction of the Schiff moment
with dynamical fermions. Our results of Sp = 0.50(59) ×
10−4 θ̄ e fm3 for the proton and Sn = −0.10(43) ×
10−4 θ̄ e fm3 for the neutron are in reasonable agreement with
chiral perturbation theory predictions. Our estimates for this
value can be improved upon with more statistics and calcu-
lations on larger lattices (and thus lower Q2 points), which
would allow for a more robust extraction.

Our calculation represents a big step toward a precise
determination of the nucleon EDM and Schiff moments. Im-
provement of these results will most definitely come from
increased statistics, and more calculations at different pion

masses at several lattice spacings. We comment here on the
necessity to perform calculations at the physical pion mass. In
the chiral limit the EDM induced by the θ term vanishes (i.e.,
dp/n = 0 at mπ = 0). In our view, given the small value of the
EDM induced by the θ term and the additional standard reduc-
tion in signal-to-noise as the pion mass is lowered for nucleon
correlators, calculations of these quantities at the physical
pion mass have possibly less to gain than those at higher pion
masses. Because of this constraint, it could be advantageous to
have results at slightly heavier-than-physical pion masses and
then robustly interpolate to the physical pion mass using χPT.
The subsequent errors of the interpolation are stable and easily
quantified precisely because one is doing an interpolation and
not an extrapolation. We remark though that, for a chirally
breaking lattice action, such as the nonperturbatively O(a)
improved Wilson-clover fermion action we have adopted, the
nucleon EDMs vanish in the chiral limit only after performing
the continuum limit. This emphasizes the importance of the
continuum limit when using a chirally breaking action. In this
respect the gradient flow allows us to perform a safe study of
discretization effects.

To summarize, the ideal scenario of a direct determina-
tion at the physical point with statistical uncertainties under
control, can be circumvented by simply investing more time
in lattice QCD calculations at slightly heavier pion masses
(where the signal-to-noise is not as prohibitive). It goes
without saying that calculations of the EDM at heavier-than-
physical pion masses can potentially be more cost effective
than the physical-pion-mass calculations only if one has a
robust description of the lattice data with χPT.
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APPENDIX A: ALPHA IMPROVEMENT DERIVATION

Staring with the general three-point correlation function

�
(O)
2 (p ′, t ; q, τ ; �) = a6

∑
x,y

e−ip ′ ·(x−y)eiq·yTr{� 〈N (x, t )O(y, τ )N (0, 0)〉}, (A1)

we handle the time ordering in the next two sections, by performing the spectral decomposition for t > τ and τ < t . This is the
general expression for an arbitrary operator O and spin projector �. For the computation of the nucleon mixing angle αN , we
have O = Q.
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1. Case t > τ

Starting with the specific time ordering t > τ in Eq. (A1), we perform the standard spectral decomposition to produce the
correlation function

�
(O)
2 (p ′, t ; q, τ ; �) =

∑
α,β,γ

1

8EαEβEγ

e−Eα (T −t )e−Eβ (t−τ )e−Eγ τ Tr{� 〈α|N |β〉 〈β| O |γ 〉 〈γ |N |α〉}, (A2)

where the sum over states α, β, γ have been reduced to states that only contain momenta pγ = q, pβ = p − q, and pα = p. The
two approximations one can apply to this equation are T 
 t and t 
 0, which are related to the source-sink separation of the
two-point correlation function

�
(O)
2 (p ′, t ; q, τ ; �) =

∑
β,γ

1

8Eα0 EβEγ

e−Eα0 (T −t )e−Eβ (t−τ )e−Eγ τ Tr{� 〈α0|N |β〉 〈β| O |γ 〉 〈γ |N |α0〉}, (A3)

where α0 is the lowest lying energy state that gives a nonzero contribution to �
(O)
2

Tr{� 〈α0|N |β〉 〈β| O |γ 〉 〈γ |N |α0〉} �= 0. (A4)

2. Case t < τ

This has the same form, with replacing N ↔ O

�
(O)
2 (p ′, t ; q, τ ; �) =

∑
α,β,γ

1

8EαEβEγ

e−Eα (T −τ )e−Eβ (τ−t )e−Eγ t Tr{� 〈α| O |β〉 〈β|N |γ 〉 〈γ |N |α〉}. (A5)

The two approximations T 
 t and t 
 0 are again applied

�
(O)
2 (p ′, t ; q, τ ; �) =

∑
α,β

1

8EαEβEγ0

e−Eα (T −τ )e−Eβ (τ−t )e−Eγ0 t Tr{� 〈α| O |β〉 〈β|N |γ0〉 〈γ0|N |α〉}, (A6)

where this time, γ0 is the lowest lying state that gives a nonzero contribution to �
(O)
2

Tr{� 〈α| O |β〉 〈β|N |γ0〉 〈γ0|N |α〉} �= 0. (A7)

3. Total form

Over the total range τ ∈ [0, T ], the expression is

�
(O)
2 (p ′, t ; q, τ ; �) =

⎧⎪⎨⎪⎩
∑

β,γ
1

8Eα0 Eβ Eγ
e−Eα0 (T −t )e−Eβ (t−τ )e−Eγ τ Tr{� 〈α0|N |β〉 〈β| O |γ 〉 〈γ |N |α0〉} t > τ

∑
α,β

1
8EαEβEγ0

e−Eα (T −τ )e−Eβ (τ−t )e−Eγ0 t Tr{� 〈α| O |β〉 〈β|N |γ0〉 〈γ0|N |α〉} τ > t

. (A8)

4. Symmetric partially summed current ts > t

This region is where the fit will take place, so we omit the derivation for ts < t .

G(O)
2 (p ′, t ; q, ts; �) = a

t/a∑
τ/a=0

�
(O)
2 (p ′, t ; q, τ ; �) + a

ts/a∑
τ/a=t/a+1

�
(O)
2 (p ′, t ; q, τ ; �) + a

ts/a∑
τ/a=0

�
(O)
2 (p ′, t ; q, T − τ ; �)

= a
t/a∑

τ/a=0

∑
β,γ

1

8Eα0 EβEγ

e−Eα0 (T −t )e−Eβ (t−τ )e−Eγ τ Tr{� 〈α0|N |β〉 〈β| O |γ 〉 〈γ |N |α0〉}

+ a
ts/a∑

τ/a=t/a+1

∑
α,β

1

8EαEβEγ0

e−Eα (T −τ )e−Eβ (τ−t )e−Eγ0 t Tr{� 〈α| O |β〉 〈β|N |γ0〉 〈γ0|N |α〉}

+ a
ts/a∑

τ/a=0

∑
α,β

1

8EαEβEγ0

e−Eατ e−Eβ (T −t−τ )e−Eγ0 t Tr{� 〈α| O |β〉 〈β|N |γ0〉 〈γ0|N |α〉}, (A9)

noting the second sum is shifted to τ ∈ [t + a, ts] using the lattice spacing increment a.
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One thing to note here, is the terms τ = 0 and τ = t are contact terms, which need to be handled properly (operator product
expansion, or gradient flow). Next we group τ terms in preparation for the ts sum

G(O)
2 (p ′, t ; q, ts; �) =

∑
β,γ

[
a

t/a∑
τ/a=0

e−(Eγ −Eβ )τ

]
1

8Eα0 EβEγ

e−Eα0 (T −t )e−Eβ t Tr{� 〈α0|N |β〉 〈β| O |γ 〉 〈γ |N |α0〉}

+
∑
α,β

[
a

ts∑
τ/a=t/a+1

e−(Eβ−Eα )τ

]
1

8EαEβEγ0

e−EαT e−(Eγ0 −Eβ )t Tr{� 〈α| O |β〉 〈β|N |γ0〉 〈γ0|N |α〉}

+
∑
α,β

[
a

ts/a∑
τ/a=0

e−(Eα−Eβ )τ

]
1

8EαEβEγ0

e−Eβ (T −t )e−Eγ0 t Tr{� 〈α| O |β〉 〈β|N |γ0〉 〈γ0|N |α〉}. (A10)

The sums can be computed by using
T/a∑

τ/a=T0/a

ae−Eτ =
T/a∑

τ/a=T0/a

ae−Ea(τ/a) = a
eE−ET0 − e−ET

eE − 1
= a

eE (1−T0 ) − e−ET

eE − 1
, (A11)

substituting in this expression, and including the terms where α = β and γ = β separately,

G(O)
2 (p ′, t ; q, ts; �) =

∑
β

t

8Eα0 E2
β

e−Eα0 (T −t )e−Eβ t Tr{� 〈α0|N |β〉 〈β| O |β〉 〈β|N |α0〉}

+
∑

α

2ts − t − a

8E2
αEγ0

e−Eα (T −t )e−Eγ0 t Tr{� 〈α| O |α〉 〈α|N |γ0〉 〈γ0|N |α〉}

+ a
∑
β �=γ

e(Eγ −Eβ )a − e−(Eγ −Eβ )t

8[e(Eγ −Eβ )a − 1]Eα0 EβEγ

e−Eα0 (T −t )e−Eβ t Tr{� 〈α0|N |β〉 〈β| O |γ 〉 〈γ |N |α0〉}

+ a
∑
α �=β

e(Eβ−Eα )t − e−(Eβ−Eα )ts

8[e(Eβ−Eα )a − 1]EαEβEγ0

e−EαT e−(Eγ0 −Eβ )t Tr{� 〈α| O |β〉 〈β|N |γ0〉 〈γ0|N |α〉}

+ a
∑
α �=β

e(Eα−Eβ )t − e−(Eα−Eβ )ts

8[e(Eα−Eβ )a − 1]EαEβEγ0

e−Eβ (T −t )e−Eγ0 t Tr{� 〈α| O |β〉 〈β|N |γ0〉 〈γ0|N |α〉}. (A12)

As the final two terms are only exponentially dependent on ts, we write these terms as exponentials of single energy indices

G(O)
2 (p ′, t ; q, ts; �) =

∑
β

t

8Eα0 E2
β

e−Eα0 (T −t )e−Eβ t Tr{� 〈α0|N |β〉 〈β| O |β〉 〈β|N |α0〉}

+
∑

α

2ts − t − a

8E2
αEγ0

e−Eα (T −t )e−Eγ0 t Tr{� 〈α| O |α〉 〈α|N |γ0〉 〈γ0|N |α〉}

+ a
∑
β �=γ

e(Eγ −Eβ )a − e−(Eγ −Eβ )t

8[e(Eγ −Eβ )a − 1]Eα0 EβEγ

e−Eα0 (T −t )e−Eβ t Tr{� 〈α0|N |β〉 〈β| O |γ 〉 〈γ |N |α0〉}

+ a
∑
α �=β

e−Eα (T +t )e−(Eγ0 −2Eβ )t − e−Eα (T −ts )e−Eγ0 t e−Eβ (ts−t )

8[e(Eβ−Eα )a − 1]EαEβEγ0

Tr{� 〈α| O |β〉 〈β|N |γ0〉 〈γ0|N |α〉}

+ a
∑
α �=β

e−Eβ T e−Eγ0 t eEαt − e−Eβ (T −t−ts )e−Eγ0 t e−Eαts

8[e(Eα−Eβ )a − 1]EαEβEγ0

Tr{� 〈α| O |β〉 〈β|N |γ0〉 〈γ0|N |α〉}, (A13)

and clumping like terms

G(O)
2 (p ′, t ; q, ts; �) =

∑
β

t

8Eα0 E2
β

e−Eα0 (T −t )e−Eβ t Tr{� 〈α0|N |β〉 〈β| O |β〉 〈β|N |α0〉}

+
∑

α

2ts − t − a

8E2
αEγ0

e−Eα (T −t )e−Eγ0 t Tr{� 〈α| O |α〉 〈α|N |γ0〉 〈γ0|N |α〉}

+ a
∑
β �=γ

e(Eγ −Eβ )a − e−(Eγ −Eβ )t

8[e(Eγ −Eβ )a − 1]Eα0 EβEγ

e−Eα0 (T −t )e−Eβ t Tr{� 〈α0|N |β〉 〈β| O |γ 〉 〈γ |N |α0〉}
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+ a
∑
α �=β

Tr{� 〈α| O |β〉 〈β|N |γ0〉 〈γ0|N |α〉}e−Eγ0 t

×
[

e−Eα (T +t )e2Eβ t − e−Eα (T −ts )e−Eβ (ts−t )

8[e(Eβ−Eα )a − 1]EαEβEγ0

+ e−Eβ T eEαt − e−Eβ (T −t−ts )e−Eαts

8[e(Eα−Eβ )a − 1]EαEβEγ0

]
. (A14)

5. Explicit form for O = Q

As Q is a parity violating operator, the nucleon states that propagate before and after this operator must be opposite in parity.
This removes the first and second terms as 〈β| Q |β〉 = 0. As well as this, the terms with sums over two terms either require
(α, β = α+, β−) or (α, β = α−, β+) where the subscript ± refers to the state having positive or negative parity. The projector is
selected to be � = γ5�+ = γ5

I+γ4

2 , which results in only the trace term with (α, β = α+, β−) being nonzero

G(Q)
2 (p ′, t ; q, ts; γ5�+) = a

∑
β �=γ

e(Eγ −Eβ )a − e−(Eγ −Eβ )t

8[e(Eγ −Eβ )a − 1]Eα0 EβEγ

e−Eα0 (T −t )e−Eβ t Tr{γ5�+ 〈α0|N |β〉 〈β| Q |γ 〉 〈γ |N |α0〉}

+ a
∑

α+,β−

Tr{γ5�+ 〈α+| Q |β−〉 〈β−|N |γ0〉 〈γ0|N |α+〉}e−Eγ0 t

×
[

e−Eα+ (T +t )e2Eβ− t − e−Eα+ (T −ts )e−Eβ− (ts−t )

8[e(Eβ− −Eα+ )a − 1]Eα+Eβ−Eγ0

+ e−Eβ− T eEα+ t − e−Eβ− (T −t−ts )e−Eα+ ts

8[e(Eα+ −Eβ− )a − 1]Eα+Eβ−Eγ0

]
. (A15)

The terms e−Eα+ (T +t ) and e−Eα+ (T −ts ) in the final sum are exponentially suppressed as T 
 T/2 � ts and T 
 t

G(Q)
2 (p ′, t ; q, ts; γ5�+) = a

∑
β �=γ

e(Eγ −Eβ )a − e−(Eγ −Eβ )t

8[e(Eγ −Eβ )a − 1]Eα0 EβEγ

e−Eα0 (T −t )e−Eβ t Tr{γ5�+ 〈α0|N |β〉 〈β| Q |γ 〉 〈γ |N |α0〉}

+ a
∑

α+,β−

e−Eβ− T eEα+ t

8[e(Eα+ −Eβ− )a − 1]Eα+Eβ−Eγ0

e−Eγ0 t Tr{γ5�+ 〈α+| Q |β−〉 〈β−|N |γ0〉 〈γ0|N |α+〉}

− a
∑

α+,β−

e−Eβ− (T −t−ts )e−Eα+ ts

8[e(Eα+ −Eβ− )a − 1]Eα+Eβ−Eγ0

e−Eγ0 t Tr{γ5�+ 〈α+| Q |β−〉 〈β−|N |γ0〉 〈γ0|N |α+〉}. (A16)

From this complicated expression, the ts dependence only
appears exponentially in the final term. Therefore, we can fit
the two-point correlation function with

fit(ts) = A + Be−Ets . (A17)

Due to the statistical noise of the data and high correlation
in the data with respect to ts, we elected to neglect the excited
state term by fitting a constant in the region where Be−Ets �
A.

APPENDIX B: RATIO FUNCTION FIT RANGE SELECTION

In this Appendix, we present the technique used for ex-
tracting the CP-odd form factor F3(Q2) from the ratio function
in Eq. (34). Since only constant (“one-state”) fits are imple-
mented for the ratio functions, careful consideration to excited
state effects is needed.

The method employed to account for fit range dependence
in our error estimates, is to include multiple fit ranges that sat-
isfy some χ2 per degree of freedom (χ2

PDF) criterium. For this
study, we only select fits that satisfy χ2

PDF ∈ [0.5, 1]. Using
the multiple fit range determinations of R and RQ, we extend

Eq. (35) to include different fit ranges:

3∑
i=1

A(Q2)AiFi, f (A)(Q
2) =

{
R f (A)(0, t, q j,�k, γl )

R(Q)
f (A)(0, t, q j,�k, γl , t f )

, (B1)

where the extra index f (A) refers to which fit range is
used, which depends on the collective index A = { j, k, l}, A ∈
[1, . . . , NA].

Since each ratio function selected by index A has f (A)
different ways to extract the quantity, the system is solved
for every combination of f (A) ∀ A ∈ [1, . . . , NA]. This results
in

∏
A F (A) independent system of equations to solve, where

F (A) is the number of different fits accepted (using the χ2
PDF

criterium) for index f (A) = 1, 2, . . . , F (A).
Once the form factors have been solved over different fit

range combinations, the result we obtain is Fi, f (Q2), where the
(A missing) index f refers to which combined set of fit ranges
were used. Since the extrapolation to Q2 → 0 must be per-
formed to compute the nucleon EDM, this must be performed
for every f (Q2) combination (analogous to f (A) above). So,
in addition to the above, we increase the number of fits to∏

Q2 F (Q2), where F (Q2) is the number of fits computed for
index f (Q2) = 1, 2, . . . , F (Q2).
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(a) (b) (c)

FIG. 28. Comparison of different randomly selected fit ranges used in the solving of the CP-odd form factor F3(Q2 )
2MN

using the mπ =
410, 570, 700 MeV (left, middle, and right) ensembles. Although lattice transfer momentum increment (q/a)2 = 3, 4 were selected, all other
momenta exhibited the same (lack of) behavior.

Combining both these studies together, the resulting nu-
cleon EDM has been computed using different fit ranges,

indexed by
F p/n

3, f (Q2→0)

2MN
= dp/n, f . So to obtain a final result

where the statistical uncertainty from the gauge fields and
the systematic errors arising from the fit ranges can be
combine into a single uncertainty, we extend the bootstrap
samples which are already used to compute the statistical
uncertainty dp/n,B where B runs over [1, Nb] ⊗ [1, NF ] where
Nf is the number of fits which each have Nb bootstrap
samples.

1. Computational viability

As one may notice, the above formulation is of order
O(A!), assuming a fixed number of fit ranges selected. A
stochastic estimation of the fit range variation is highly recom-
mended, which can be employed when solving the form factor
Eq. (B1), as well as when taking the form factor Q2 → 0
extrapolation.

At the form factor solving stage, this is employed by ran-
domly selecting Nχ different fit range that satisfy the χ2

PDF
criterium. The resulting number of systems of equations to be
solved are NNA

χ .

For the form factor extrapolation in Q2 → 0, a random
selection of NF results of index f (Q2) in FN, f (Q2 )(Q2). The
resulting number of fits to be performed using this estimation
is NNQ

F for NQ number of transfer momentum Q2.

2. Results computed in this paper

The results computed in this paper use the fit criterium
χ2

PDF ∈ [0.5, 1], and excluded fits of length 2. The cutoff for
the number of fit ranges per ratio function is Nχ = 4 and the
cutoff for the form factor extrapolation is NQ = 4 as well.

As for the number of equations to solve, results at lattice
(q/a)2 = 1, 4 has 1024 equations, (q/a)2 = 2 has 4096 equa-
tions and (q/a)2 = 3 has 16384 equations. Multiplying these
numbers by 200 bootstrap samples, will give the individual
number of system of equations solved. Once this is complete,
we avoid computing ∼70 trillion equations by performing
the stochastic estimate which only requires 256 equations to
solve for. Although it may seem the values for Nχ and NF are
insufficient in size, the results shown in Fig. 28 demonstrates

minimal variation when analyzing each individual
F p/n

3, f (Q2 )

2MN

over different fit ranges f .
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