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Density variation effects in α + 208Pb and 16O + 208Pb fusion reactions
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We propose a hybrid approach between the sudden model and the adiabatic model to explain the fusion
hindrance in heavy-ion fusion reactions at deep subbarrier energies. Due to the strong Pauli blocking effects
at the density overlap region, the α particle approaching the target 208Pb becomes enlarged and its density
distribution gets changed. By introducing energy dependence into this density variation effect, the potentials
at different colliding energies are diverse. With the decrease of colliding energies, the significantly enhanced
density variation effects make the nuclear potential more attractive and result in a deeper pocket in the inner part.
A reasonable description of the experimental fusion cross sections is achieved for the α + 208Pb reaction. On
account of highlighting the influence of density variation effects on the fusion process at deep subbarrier energies,
we further investigate the density variation effects in the 16O + 208Pb fusion reaction based on the α-cluster
structures in 16O nuclei. The fusion hindrance at deep subbarrier energies is described well by considering the
density variation effects. In addition, an astrophysical S factor between the sudden model and adiabatic model is
predicted at the energies below the experimental data.
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I. INTRODUCTION

The fusion hindrance phenomenon observed recently
at deep subbarrier energies in heavy-ion fusion reactions
presents a challenge to current fusion theory [1]. The source of
this steep fall-off feature in experimental fusion cross sections
is not only helpful in understanding the properties of heavy
nuclei but also interesting in clarifying the reaction mecha-
nism, especially the nuclear reactions that occur in stars [2].
At the colliding energies close to the Coulomb barrier, it is
assumed that a compound nucleus is formed automatically
once the projectile penetrates the Coulomb barrier [3], and
the coupled-channels (CC) approach has been successful in
describing the fusion process [4–7]. With the colliding ener-
gies decreasing far below the Coulomb barrier, the projectile
nucleus is still in the classically forbidden region when two
colliding nuclei touch each other and the experimental fusion
cross sections are overestimated by the results of the CC
model [1,8–11]. This phenomenon indicates that the density
overlap between projectile and target at extremely low collid-
ing energies hinders the synthesis of the compound nucleus
and has generated renewed interest in heavy-ion fusion reac-
tions [12–26].

At deep subbarrier energies, dealing with the relationship
between fusion and density variation of two reactants after
touching is interesting. Thus, two different models have been
proposed so far in order to describe the transformation from
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projectile and target to compound nucleus, namely, the sudden
model [14–16] and the adiabatic model [17,18]. In the sudden
model [14], Mişicu and Esbensen assumed that the densities
of the two colliding nuclei are frozen and introduced a strong
repulsive core to the nuclear potential to simulate the satura-
tion properties of nuclear matter. On the other hand, Ichikawa
et al. proposed an adiabatic approach by hypothesizing that fu-
sion occurs so slowly that the density distribution has enough
time to change [17] and constructed an adiabatic one-body
potential to describe the neck formation between two colliding
nuclei in the overlapping region [17,18]. Although the origins
of the two models are considerably different from each other,
the fusion hindrance at deep subbarrier energies can be de-
scribed equally well by these two models [14,17]. Recently,
inspired by the studies of α-cluster decay in radioactive nuclei
[27–29], a preliminary work about the density overlap in α-
induced and nα-nuclei-induced fusion reactions also provided
a good description of the fusion cross sections for α + 208Pb,
16O + 208Pb, etc. reactions based on the sudden approximation
[30,31].

In the literature [12], in order to remove the sudden approx-
imation, namely, avoid the density of the compound system
exceeding the central density of nucleus 32S in 16O + 16O
fusion reaction, Reichstein and Malik employed a special
adiabatic approach to calculate the 16O-16O potential by in-
troducing a distance dependence into the density parameters,
picturing a transformation from the density distributions of
reactants to that of a compound nucleus [12]. Interestingly, in
studies of α-cluster decay in radioactive nuclei [27,32], Röpke
et al. have revealed that due to the strong Pauli blocking ef-
fects, the α particle is very sensitive to the surrounding matter
[27,32]. When approaching the nucleus 208Pb, the α particle
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dissolves at the density overlap region and its four nucleons
gets mixed up with surrounding matter, which means that the
α-particle size increases and the density distribution changes
with the decrease of the distance between the center of mass of
α particle and 208Pb nucleus [27]. By considering this effect, a
significant improvement is achieved in calculating the half-life
of α decays [33,34].

As a reverse quantum tunneling process with decay, the
projectile α particles in fusion reactions should also suffer
the density variation at the density overlap region. In addi-
tion, in literature [22,23,35–37], the energy dependence of
the nucleus-nucleus potential has been demonstrated to have
an important role on fusion. So, in this paper, we not only
introduce the density variation effect (DVE) of α particle in
α + 208Pb fusion reaction but also consider the energy depen-
dence of this effect. Then, according to the α-cluster structures
in the 16O nucleus, we analyze the contributions of DVE to the
potential for 16O + 208Pb fusion system and study its influence
on fusion hindrance at deep subbarrier energies.

The rest of paper is organized as follows. In Sec. II, we
first describe the potential formulation and how to introduce
the density variation effects. Then the theoretical framework
of coupled-channels model is presented simply. In Sec. III,
the contributions of density variation in α + 208Pb and 16O +
208Pb fusion reactions to potentials and fusion cross sections
are discussed. The summary is displayed in Sec. IV.

II. THEORETICAL FRAMEWORK

A. Heavy-ion potential

First, we give the explicit form of the potential between
projectile and target used in our calculations. In the literature
[30,31], it is concluded that in addition to the attractive nuclear
interaction and the repulsive Coulomb interaction, there is a
non-negligible Pauli repulsive interaction between two collid-
ing nuclei. When the projectile and target nuclei start touching
each other, the Pauli blocking effects become increasingly
important owing to the density overlap. To this end, a Pauli
blocking potential, VP, as the consequence of antisymmetriza-
tion, is introduced to replace the exchange term in the standard
Michigan-3-Yukawa (M3Y) potential as follows [30,31]:

VN (R) =
∫

dr1dr2ρp(r1)ρt (r2)g(|s|) + VP(R), (1)

with

g(|s|) = c1
exp(−4s)

4s
− c2

exp(−2.5s)

2.5s
. (2)

In Eq. (1), the symbol R denotes the distance between the
center of mass of two colliding nuclei and the quantity |s|(s =
R − r1 + r2) is the distance between a nucleon in the target
and a nucleon in the projectile. The parameters c1 and c2 in
Eq. (2) are the strength of the Yukawa interactions and their
fitted values are c1 = 11423 MeV fm and c2 = 3551 MeV fm,
respectively. For convenience, we label this nuclear interac-
tion as “M3Y + Pauli” potential.

The density distribution of projectiles ρp employed in
Eq. (1) is a standard Gaussian form for α particle [38–40] or
a modified Gaussian form for 16O nucleus [41,42],

ρα
p (r) = ρα

0 exp(−β0r2), (3)

ρO
p (r) = ρO

0 (1 + ωr2) exp(−γ r2), (4)

where the parameters β0, ω, and γ are obtained by fitting the
corresponding root mean square (rms) radii and their values
used in calculations are 0.7024, 0.6457, and 0.3228 fm−2, re-
spectively [38,42]. ρ0 is determined by integrating the density
distribution equivalent to the corresponding mass number.

The density distribution of target ρt adopted in Eq. (1) is
given by the standard Fermi form [43]

ρt (r) = ρ0t

1 + exp( r−c
a )

, (5)

in which c and a are half-density radius and diffuseness pa-
rameters and ρ0t is determined by the normalization condition.
The proton and neutron density parameters used in calcula-
tions for 208Pb nuclei are cp = 6.68, ap = 0.447, cn = 6.7, and
an = 0.55 fm [27].

The Pauli blocking potential VP in Eq. (1) for the α parti-
cle is obtained by solving the in-medium four-nucleon wave
equation with a variational approach, and a good fit formula
is given by [27]

V α
P (ρt ) = 4515.9ρt − 100935ρ2

t + 1202538ρ3
t . (6)

As a reverse quantum tunneling process with fusion, this
Pauli blocking potential has been successfully applied to the
radioactive α-cluster decay in heavy nuclei and superheavy
nuclei [27–29]. For the 16O nucleus, the Pauli blocking poten-
tial is constructed by using a single folding procedure [31],

V O
P (R) =

∫
ρc(r′)V α

p (R + r′)dr′, (7)

where ρc is the α-cluster distribution function in nα nuclei and
satisfies the condition [41]

ρO
p (r) =

∫
ρc(r′)ρα

p (|r − r′|)dr′. (8)

By using the Fourier transform techniques [38], the α-cluster
distribution function ρc(r) can be given by [42]

ρc(r) = ρ0c(1 + μr2) exp(−ξr2), (9)

with

η = β0 − γ , ξ = γ β0/η, μ = 2ωβ2
0

η(2η − 3ω)
, (10)

where ρ0c is obtained by integrating Eq. (8) equivalent to the
mass number of projectiles.

The Coulomb potential employed in calculations is the
double-folding integral of the proton-proton Coulomb inter-
action

VC (R) =
∫

dr1dr2
e2

|s|ρpp(r1)ρt p(r2), (11)

where ρpp and ρt p denote the proton density distributions of
the projectile and target nucleus, respectively.
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B. Density variation effect

In the literature [32], Röpke concluded that the α particles
are sensitive to Pauli blocking from the surrounding matter
(or target nuclei). At the critical distance, this α particle ap-
proaching the target dissolves and its four nucleons get mixed
up with the surrounding Fermi gas. Here, this dissolving effect
of the α particle is introduced into the fusion reactions. So the
width parameter β of the α particle is employed as a function
of the density of target ρt (or characterized by the distance
between the center of mass of two colliding nuclei R) by

β(ρt , E ) = β(R, E ) = β0

1 + exp(−R−Rc
ac

)
, (12)

and now the density distribution of α particle is obtained by

ρα
p (r, R, E ) = ρα

0 exp(−βr2). (13)

In Eq. (12), β0 is the width parameter of α particle at infinity
(or free α particle) and Rc is dissolving radius given by Rc =
1.2(Ap + At )1/3 fm.

The parameter ac in Eq. (12) is the dissolving diffuseness
parameter depending on the colliding energies E and can
be obtained by ac = a0Vb/E . This indicates that when the
colliding energy is relatively low, the fusion reaction slows
down so that the projectile has enough time to change its
density distribution. In contrast, a fast fusion occurs at the
high colliding energies and corresponds to a sudden picture.
For simplicity, the strength a0 is assumed to be unity and the
values of Coulomb barrier Vb are 20.6 MeV for α + 208Pb
fusion system [44] and 75.65 MeV for 16O + 208Pb fusion
system [16].

For nucleus 16O, Eq. (9) shows its α-cluster distribution
function under the free condition. Here, we approximately
assume this distribution function is fixed and still valid as
projectile 16O approaches the target. Then the density of 16O
nucleus with DVE can be obtained from Eq. (8) by inserting
Eq. (13).

Note that when the projectile α particle or 16O nucleus is
approaching the target, the density of nucleus 208Pb should
also be transformed into that of compound nucleus. However,
due to extreme asymmetry of mass between the projectile
and target in the fusion systems studied here, the DVE of the
target 208Pb is very weak and negligible. In addition, the Pauli
blocking potential obtained from Eq. (6) is only dependent on
the density of target and is consistent with or without DVE.

C. Coupled-channels model

We apply the CCFULL code to calculate the fusion cross
sections [45,46]. In the calculations, the incoming wave
boundary condition (IWBC) is imposed and the absorption
radius is taken to be at the minimum of the potential inside
the Coulomb barrier [45,46]. With the IWBC, the coupled-
channels equations can be given by [45][

− h̄2

2μ

d2

dR2
+ J (J + 1)h̄2

2μR2
+ V (R) + εn − E

]
un(R)

+
∑

m

Vnm(R)um(R) = 0, (14)

where E is the incident energy in the center-of-mass frame,
εn is the excitation energy of the nth channel, and un is the
radial wave function of the nth channel. The total potential
V (R) between two colliding nuclei consists of both Coulomb
and nuclear interactions, i.e., V (R) = VN (R) + VC (R) and is
associated with the incident energies by considering the DVE.

The symbol Vnm(R) in Eq. (14) denotes the matrix of
the coupling Hamiltonian which includes both the Coulomb
and nuclear components. The Coulomb coupling matrix ele-
ments V C

nm are calculated by the linear coupling approximation
[4,45,46]. The nuclear coupling Hamiltonian is generated
by introducing a dynamical operator Ôλ in the calcula-
tions and given by ṼN (R, Ôλ) = VN (R − Ôλ) [45,46]. For
the vibrational coupling, the operator Ôλ is given by Ôλ =
(β∗/

√
4π )Ri(α

†
λ0 + αλ0) [4,45,46], where α

†
λ0 and αλ0 are the

creation and annihilation operators of the phonons, respec-
tively, the eigenvalues λ and eigenvectors |α〉 of the operator
Ô satisfy Ôλ|α〉 = λα|α〉, Ri is the radius of the projectile or
target, and β∗ denotes the corresponding deformation param-
eter. The nuclear coupling matrix elements are then evaluated
by [4,45,46]

V N
nm = 〈n|ṼN (R, Ôλ)|m〉 − VN (R)δn,m

=
∑

α

〈n|α〉〈α|m〉ṼN (R, λα ) − VN (R)δn,m. (15)

The nuclear coupling potential ṼN (R, λα ) = VN (R − λα ) is
taken up to the second order of λα [4,45,46]

ṼN (R, λα ) = VN (R) − dVN (R)

dR
λα + 1

2

d2VN (R)

dR2
λ2

α, (16)

where the first term VN (R) is the nuclear potential in the
absence of the coupling and the second and third terms are
the nuclear coupling form factor, which are closely associated
with the nuclear potential.

By solving the CC equations, the penetrability PJ can be
obtained and the total fusion cross section σfus is then given
by summing the partial fusion cross section [45]

σfus(E ) = π

k2

∑
J

(2J + 1)PJ (E ), (17)

where k =
√

2μE/h̄2 is the wave number associated with the
energy E . Here, it is noted that the fusion cross section with
DVE is calculated from the potential at each colliding energy.

III. RESULTS AND DISCUSSION

A. α + 208Pb

We first study the effect of density variation in the α +
208Pb fusion reaction. In Fig. 1, it is shown that by considering
DVE, the values of width parameter β and corresponding
central density ρ0 of α particle decrease significantly along
with the decrease of distance between the centers of mass of
two colliding nuclei. The energies of 23.5 MeV (dotted line)
and 15.6 MeV (dashed line) correspond to the two extreme
energy values in the current experimental data in Ref. [44],
namely, the maximum colliding energy and minimum collid-
ing energy, respectively. At energy of 15.6 MeV, the fusion
reaction occurs relatively more slowly and the density of the
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FIG. 1. The width parameter β and corresponding central density
ρ0 of α particle vs the distance between the center of mass of two
nuclei at energies of 23.5 MeV (dotted line) and 15.6 MeV (dashed
line) for α + 208Pb fusion reaction. The solid lines denote the results
without considering DVE.

α particle has enough time to redistribute. So there is a more
obvious DVE at energy of 15.6 MeV than that at energy of
23.5 MeV.

The insert of Fig. 2 shows the potentials of M3Y + Pauli
(solid line) and M3Y + Pauli + DVE at energies of 23.5
MeV (dotted line) and 15.6 MeV (dashed line). In the outer
region, the role of DVE is negligible and the potentials have
the same behavior. The geometry of the potential obviously
varies in the inner region. By considering the DVE, a deeper

FIG. 2. The experimental cross sections for α + 208Pb fusion
reaction [44] compared with the results calculated by M3Y + Pauli
potential (solid line) and M3Y + Pauli + DVE potential (dashed
line). The insert shows the M3Y + Pauli potential (solid line) and
M3Y + Pauli + DVE potentials at energies of 23.5 MeV (dotted
line) and 15.6 MeV (dashed line).

pocket is generated as compared to the one obtained from
the M3Y + Pauli potential. By ignoring the channel coupling
for fusion reaction α + 208Pb, we compare, in Fig. 2, the
experimental fusion cross sections with the results calculated
by M3Y + Pauli potential (solid line) and M3Y + Pauli +
DVE potentials (dashed line). Good consistency is obtained
between experimental data and the results calculated by the
potentials with or without DVE at low-energy regions (ap-
proximately before 21 MeV, the decline in fusion data after
21 MeV results from the influence of neutron evaporation
effects, i.e., the experimental data only contain the evaporation
residue cross sections of the one-neutron evaporation channel
and is short of the evaporation residue cross sections of two-
neutron and three-neutron evaporation channels, which have
been indicated to play a considerable role after the incident
energy reaching about 21 MeV [44,47]). At the energies above
15.6 MeV, there is little difference between the potentials with
or without DVE and the fusion cross sections obtained from
these two potentials are almost the same. To further study
the influence of DVE at deep subbarrier energies, next, we
extended our calculations to fusion system 16O + 208Pb.

B. 16O + 208Pb

Approaching the target nuclei, there is considerable density
variation of the projectile nuclei 16O resulting from the DVE
of the α-cluster components. For better understanding, the
density distributions of 208Pb nuclei, 16O nuclei, and α cluster
at Coulomb barrier energy 75.65 MeV are shown in Fig. 3
for distances R equivalent to 15, 11, 8, and 7 fm. Before
density overlapping between projectile and target, the radii of
16O and α clusters are almost the same as those in infinity,
such as the rms radii of 16O and α clusters being 2.64 and
1.46 fm at distance R = 15 fm. With the density overlapping,
the α clusters dissolve and the projectile nuclei 16O becomes
looser due to the Pauli blocking effects. Therefore, at a strong
density overlap region, such as at R = 8 fm, the rms radii of
α clusters increase to 1.78 from 1.46 fm at R = 15 fm and the
corresponding rms radius of the 16O nucleus also increases to
2.83 from 2.64 fm. It can be seen that the density distributions
of 16O nucleus and α particle have changed considerably in
Fig. 3.

In Fig. 4, we make a comparison between two potentials
calculated by M3Y + Pauli with or without DVE. The nu-
clear, Coulomb, and Pauli blocking interactions are shown in
Fig. 4(a) and the insert focuses on the difference between two
nuclear interactions near R = 9.6 fm. Because we ignore the
DVE of target nuclei and the changes of α cluster distribution
function ρc in Eq. (7), the Pauli blocking interactions are the
same with or without DVE. The difference of the Coulomb
interactions is extremely small before R = 7 fm (about 1%
at R = 7 fm). A sensitive dependence of density variation
is embodied in the nuclear interaction; i.e., the increasing
density distribution of 16O nucleus causes a more attractive
force in the M3Y + Pauli + DVE nuclear interaction. When
further approaching, the repulsive Pauli blocking interaction
rises steeply and dominates in nuclear interaction. A deeper
pocket at the inner part of the total potential calculated with
DVE is formed as shown in Fig. 4(b).
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FIG. 3. The density variation of 16O nuclei and α cluster ap-
proaching the target 208Pb at colliding energy of 75.65 MeV. The
solid, dashed, and dotted lines denote the density distributions of
208Pb, 16O, and α cluster, respectively. Note that the density of α

cluster has been multiplied by 0.25. The numbers in box show the
root-mean-square radii of corresponding nuclei at specified distance.

The total potentials calculated by M3Y + Pauli with or
without DVE are compared in Fig. 4(b). The energies of
109.52 and 65.85 MeV correspond to the maximum and min-
imum experimental colliding energies in Refs. [10,48]. The
dotted line denotes the M3Y + repulsive potential extracted
from the sudden model [16]. A similar shallow pocket is
formed in the inner part of the potentials obtained from M3Y
+ repulsive interaction and M3Y + Pauli interactions with or
without DVE. As a result of the sudden approach, the M3Y
+ Pauli potential (solid line) has a shallower pocket than that
of potentials calculated by considering DVE (dashed lines). At
high colliding energy E = 109.52 MeV, the fusion occur more
quickly and the DVE has a weaker influence on the fusion.
The M3Y + Pauli +DVE potential at energy E = 109.52 MeV
is closer to the result of M3Y + Pauli. Along with the decrease
of colliding energies, the influence of DVE is more obvious
and a deeper pocket is generated, such as at energies E =
95.65 and 65.85 MeV. This feature is consistent with the
results of sudden model proposed by Mişicu and Esbensen
by considering the incompressibility of nuclear matter. At

FIG. 4. (a) The comparison of the Coulomb potential VC , Pauli
blocking potential VP, and nuclear potential VN between M3Y +
Pauli potential (solid line) and M3Y + Pauli + DVE potential
(dashed line) at Coulomb barrier energy E = Vb = 95.65 MeV.
(b) The comparison between M3Y + Pauli potential (solid line) and
M3Y + Pauli + DVE potential (dashed line) at energy of 109.52,
95.65, and 65.85 MeV. The dotted line denotes M3Y + repulsive
potential obtained from the sudden model [16].

above barrier energies, the density at the overlap region has
no enough time to change, corresponding to a hard nuclear
equation of state (EOS) in the sudden model [14–16], whereas
the strong density variation at deep subbarrier energies could
be described by a soft EOS and results in a deep pocket
[14–16].

The fusion cross sections calculated by M3Y + Pauli
potential with or without DVE are compared with the exper-
imental data in Fig. 5. The experimental data is taken from
the Refs. [10,48]. The parameters used in the calculations,
namely, the multipolarity and the parity of a state λπ , the
excitation energy of a state Eex, and deformation parameters
β∗ are the same as those used in Ref. [31]. In Fig. 5, the solid
line is the no-coupling calculated fusion cross sections. The
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FIG. 5. The experimental fusion cross sections for 16O + 208Pb
[10,48] fusion system compared with the CC calculations obtained
by M3Y + Pauli potential (dashed line) and M3Y + Pauli + DVE
potential (dotted line). The solid line denotes the no-coupling results
of standard M3Y potential. The insert shows the comparison of
S factors between experimental data and the results calculated by
adiabatic model (dotted line), sudden model (dashed line), and M3Y
+ Pauli + DVE approach (solid line).

results calculated by M3Y + Pauli potential with or without
DVE are denoted by dotted and dashed lines, respectively.
The experimental data at deep subbarrier energies is under-
estimated by the M3Y + Pauli potential. A good agreement
with the fusion data is obtained by the results with DVE. In
addition, the astrophysical S factor representation is shown
in the insert and it is seen that the S factor is well described
by the results of the sudden model (dashed line), adiabatic
model (dotted line), and M3Y + Pauli + DVE approach (solid
line). Because of different assumptions, the sudden model and
adiabatic model have diverse results at much deeper colliding
energies. Interestingly, an intermediate result is presented by
considering DVE.

IV. SUMMARY

In summary, we analyzed the influence of density variation
effects on fusion reactions α + 208Pb and 16O + 208Pb, es-

pecially on the fusion hindrance at deep subbarrier energies.
When the densities of two colliding nuclei overlap, the α

particle approaching the target 208Pb becomes loose due to
the strong Pauli blocking. A remarkable feature is that the
radius of α particle increases with the decrease of the distance
between the center of mass of two nuclei. By introducing the
energy dependence, we simulated a transformation process
from the sudden picture to the adiabatic picture. At above-
barrier energies, the fusion takes place so quickly that the
density of the α particle have no enough time to change,
corresponding to a sudden approximation. Conversely, an
obvious density variation effect works at deep subbarrier
energies.

Based on the α cluster structures of 16O nuclei, we intro-
duces the density variation effect of α particle into 16O +
208Pb fusion reaction. Analogous to the α particle, the radius
of projectile 16O also becomes increased appreciably after the
density overlapping. We found that the density variation effect
results in a more attractive nuclear interaction as compared to
the M3Y + Pauli potential and the significantly enhanced den-
sity variation effects make the potential pockets deeper with
the decrease of colliding energies. By considering the density
variation effects in 16O + 208Pb fusion reaction, the fusion
cross sections and astrophysical S factor at deep subbarrier
energies can be described well. In addition, a result of the
S factor between the results of sudden model and adiabatic
model is predicted below the experimental energies.

In this paper, we study the influences of density variation of
α particles and nα nuclei 16O. It will be interesting to extend
the present calculation to more complicated fusion systems.
Therefore, several further improvements are needed in the
future. For instance, owing to the extreme asymmetry of mass,
the influence of density variation of targets is neglected in
our present calculations and it may be an obvious effect in
symmetric systems, such as 64Ni + 64Ni fusion reaction. In
addition, the influences of the density variation on the CC
effects, such as the damping of coupling effect, which mainly
plays a role at deep subbarrier energies [18,49,50], should also
be taken into account next.
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