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The calculable R-matrix theory has been formulated successfully for regular boundary conditions with
vanishing radial wave functions at the coordinate origins [P. Descouvemont and D. Baye, Rep. Prog. Phys.
73, 036301 (2010)]. We generalize the calculable R-matrix theory to the incoming-wave boundary condition
(IWBC), which is widely used in theoretical studies of low-energy heavy-ion fusion reactions to simulate the
strong absorption of incoming flux inside the Coulomb barriers. The generalized calculable R-matrix theory also
provides a natural starting point to extend eigenvector continuation (EC) [D. Frame et al., Phys. Rev. Lett. 121,
032501 (2018)] to fusion observables. The 14N + 12C fusion reaction is taken as an example to validate these new
theoretical tools. Both local and nonlocal potentials are considered in numerical calculations. Our generalizations
of the calculable R-matrix theory and EC are found to work well for IWBC.
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I. INTRODUCTION

The calculable R-matrix theory provides a powerful frame-
work to solve the Schrödinger equations in regular boundary
conditions [1–4], where radial wave functions vanish at the
coordinate origins and can take different asymptotic forms in
different problems. The calculable R-matrix theory divides the
configuration space into internal and external regions by the
channel radius. Compared to the internal region, physics in
the external region gets simplified thanks to the negligibility
of short-range interactions therein, and external wave func-
tions are known explicitly up to a few coefficients. The Bloch
operator is often adopted to match internal and external wave
functions continuously at the channel radius [5]. The resultant
Bloch-Schrödinger equations are then solved by, e.g., the vari-
ational method. In nuclear physics, the calculable R-matrix
theory has been used successfully to study bound states, res-
onant states, elastic/inelastic scatterings, transfer reactions,
breakup reactions, and fusion reactions. See Refs. [6–13] for
some recent works.

The incoming-wave boundary condition (IWBC) plays a
fundamental role in modern theoretical studies of low-energy
heavy-ion fusion reactions [14–16]. Consider the Schrödinger
equation [

− 1

2μ

d2

dr2
+ L(L + 1)

2μr2
+ VC (r) − E

]
χL(r)

= −
{

VN (r) χL(r),∫
dr′ W (L)

N (r, r′) χL(r′),
(1)
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with L being the orbital angular momentum, μ being the
two-body reduced mass, E > 0 being the reaction energy in
the center-of-mass (CM) frame, VC (r) = ZPZT e2/r being the
Coulomb potential, VN (r) and W (L)

N (r, r′) being the local and
nonlocal nuclear potentials, and χL(r) being the radial wave
function. IWBC is given by

χL(r) ∼ TL(E ) exp

[
−i

∫ r

rabs

dr′ kL(r′)
]
, 0 � r � rabs, (2)

= H (−)
L (η, kr) − SL(E )H (+)

L (η, kr), r � rc. (3)

Here, rabs is the absorption radius inside the Coulomb
barrier, rc is the channel radius chosen to be so large
that the nuclear interaction and antisymmetrization be-
tween the target and the projectile become negligible in
the external region, k = √

2μE is the relative momen-
tum at r → ∞, kL(r) is the relative momentum at r �
rabs, η is the Sommerfeld parameter, H (∓)

L (η, kr) are the
incoming/outgoing Coulomb-Hankel functions, and SL(E )
and TL(E ) are the S- and transmission-matrix elements. The
relative momentum kL(r) could be estimated by kL(r) =√

2μ[E − L(L+1)
2μr2 − VN (r) − VC (r)] for the local potential and

kL(r) =
√

2μ[E − L(L+1)
2μr2 −W LE

N (r) −VC (r)] for the nonlocal

potential, with W LE
N being some local equivalence of the non-

local potential (see Sec. III). IWBC is different from regular
boundary conditions which impose χL(r) = 0 at r = 0. It is
widely used in nuclear fusion problems to simulate the strong
absorption of incoming flux inside the Coulomb barriers and
has become one of the standard ansatzes to calculate fusion
observables. Compared with the regular-boundary-condition
approach to nuclear fusion reactions, IWBC is often regarded
as more predictive in the sense that no extra imaginary optical
potential is needed.
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In this work, the generalized calculable R-matrix theory
is proposed to solve the Schrödinger equations in IWBC.
Besides the academic interest to enlarge the applicable scope
of the calculable R-matrix theory, it provides a unified
framework for both local and nonlocal potentials in nuclear
fusion studies. Nonlocal potentials have important applica-
tions in nuclear physics dating back to Perey and Buck in
the 1960s [17] and were revived in recent years [18–26].
Nucleus-nucleus nuclear interactions are intrinsically nonlo-
cal in coordinate space thanks to the antisymmetrization effect
and model-space truncations [27,28]. Moreover, modern real-
istic interactions of nucleons based on chiral effective field
theory are generally nonlocal [29–31], which might also con-
tribute to nonlocality in nucleus-nucleus potentials. Nonlocal
potentials have been adopted by some authors to study low-
energy heavy-ion fusion reactions. References [32–35] study
fusion problems with nonlocal potentials in the framework
of the Wentzel-Kramers-Brillouin approximation. References
[36,37] solve the Schrödinger equations with nonlocal com-
plex optical potentials in regular boundary conditions. As far
as we know, there are few publications on how to solve the
Schrödinger equations with nonlocal potentials and IWBC
exactly. The popular implementation of IWBC in the CCFULL

code [14] is based on the modified Numerov method [38]
and deals with local potentials only. It is not easy to extend
the method to nonlocal potentials. Our generalized R-matrix
theory fills this gap and gives a valuable opportunity to study
the impacts of nonlocal potentials in nuclear fusion reactions.

The generalized calculable R-matrix theory also provides
a natural starting point to extend eigenvector continuation
(EC) [39], a variational emulator for bound-state observables,
to fusion observables. EC is characterized by choosing basis
functions from the Hamiltonian eigenstates at selected train-
ing points in the parameter space. It has been shown to be
a reliable and efficient tool in uncertainty quantification and

global sensitivity analysis [39–44], where model evaluations,
sometimes computationally expensive, have to be carried out
for a large number of times at different points in the parameter
space. An ongoing direction of EC is to extend the method to
reaction observables. Recently, some progress has been made
for scattering observables via the Kohn variational principle
[45]. Generally speaking, the calculable R-matrix theory and
its generalizations provide a comprehensive roadmap to ex-
tend EC from bound-state observables to other structural and
reaction observables, not limited to fusion observables. Here,
we just focus on fusion observables for concreteness.

The remaining parts are organized as follows. In Sec. II,
our generalizations of the calculable R-matrix theory and EC
are presented. In Sec. III, numerical reliability of these meth-
ods is examined in detail by studying the 14N + 12C fusion
reaction. Conclusions are given in Sec. IV. The natural units
h̄ = c = 1 are adopted in this work.

II. THEORETICAL FORMALISM

A. The generalized calculable R-matrix theory

We divide the configuration space into three parts: the “ab-
sorption region” [0, rabs], the “internal region” [rabs, rc], and
the “external region” [rc,∞). See Fig. 1 for an illustration. In
the absorption and internal regions, both the nuclear potential
VN (r) and the Coulomb potential VC (r) are sizable, while in
the external region the nuclear potential becomes negligible
and only the Coulomb potential predominates. Absorption
and external wave functions in the absorption and external
regions are given by IWBC in Eqs. (2) and (3), which should
be matched continuously to internal wave functions in the
internal region.

In the calculable R-matrix theory, the Schrödinger equation
in Eq. (1) is promoted to the Bloch-Schrödinger equation

[
− 1

2μ

d2

dr2
+ L(L + 1)

2μr2
+ L(rc) − L(rabs) + VC (r) − E

]
χ int

L (r) = [L(rc) − L(rabs)]χ ext
L (r)

−
{

VN (r) χ int
L (r),∫ rc

rabs
dr′ W (L)

N (r, r′) χ int
L (r′),

(4)

with L(R) = 1
2μ

δ(r − R) d
dr being the Bloch operator. It is easy to verify that − 1

2μ
d2

dr2 + L(rc) − L(rabs) is Hermitian in the

internal region [rabs, rc]. Besides, the continuity of wave functions imposes χ int
L (rabs) = χ ext

L (rabs) and χ int
L (rc) = χ ext

L (rc).
The Bloch-Schrödinger equation in Eq. (4) could be solved by the variational method with χ int

L (r) = ∑N
n=1 cn(E )ϕn(r). The

transmission matrix element TL(E ) and the S-matrix element SL(E ) are obtained by solving the linear equations
N∑

n=1

Cmn(E ) cn(E ) = 1

2μ

{
kϕm(rc)

[
H (−)′

L (η, krc) − SL(E )H (+)′
L (η, krc)

]+ iTL(E )kL(rabs)ϕm(rabs)
}
, (5)

N∑
n=1

ϕn(rabs) cn(E ) = TL(E ), (6)

N∑
n=1

ϕn(rc) cn(E ) = H (−)
L (η, krc) − SL(E )H (+)

L (η, krc), (7)

with

Cmn(E ) =
(

ϕm

∣∣∣∣− 1

2μ

d2

dr2
+ L(L + 1)

2μr2
+ L(rc) − L(rabs) + VC (r) − E

∣∣∣∣ϕn

)
+

{
(ϕm|VN (r)|ϕn),(
ϕm

∣∣W (L)
N (r, r′)

∣∣ϕn
)
.

(8)
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FIG. 1. The trisection of the configuration space in the generalized calculable R-matrix theory for IWBC. In the absorption and internal
regions, both the nuclear and Coulomb potentials are sizable, while in the external region, only the Coulomb potential is sizable. The nuclear
potential is taken to be the local potential VN (r) for simplicity. The trisection of the configuration space works similarly for nonlocal potentials.

Here, the large parentheses denote the inner product
over the internal region [rabs, rc], i.e., (φ|O|ψ ) =∫ rc

rabs
dr φ(r)O(r)ψ (r). In the calculable R-matrix theory, it is

often convenient to use the Lagrange functions {LN
i (r)} [46]

as variational basis functions (see the Appendix). Noticeably,
the Lagrange functions used here are a bit different from
the ordinary Lagrange functions LN

i (r) ∝ r − rabs defined
in the same interval [rabs, rc]. The latter always satisfy
LN

i (r) = (−1)N+i r−rabs
�rxi

√
xi(1 − xi )�r PN [(2r−rabs−rc )/�r]

r−xi�r−rabs
, with

PN (x) being the Legendre polynomial of order N and
�r = rc − rabs. This means that any finite combination of
the ordinary Lagrange functions becomes exactly zero at the
absorption radius and violates IWBC by construction. As a
result, the matching between the wave functions in absorption
and internal regions cannot be handled properly with the
ordinary Lagrange functions. In comparison, the Lagrange
functions defined in the Appendix give nonzero values at the
absorption radius and thus are better suited to matching the
wave functions in the absorption and internal regions. The
numerical calculations in Sec. III show explicitly that the
Lagrange functions defined in the Appendix are suitable for
our purpose. There are other choices for the variational basis
functions. For example, we have checked that the Gaussian
basis functions ϕn(r) = exp(−νnr2) could be used as the
basis functions as well. However, the corresponding matrix
elements have to be calculated by numerical integration,
except in some specific cases. This makes the Gaussian basis
functions numerically less convenient than the Lagrange
functions. As shown in the Appendix, all the relevant matrix
elements could be calculated analytically with the Lagrange
functions, which is an important advantage in numerical
calculations. The above theoretical formalism might turn out
to be a bit similar to the R-matrix propagation method [47],
but it has different theoretical motivations and application
scenarios. With the transmission matrix element TL(E ), the
fusion cross section is given by

σfus(E ) =
Lmax∑
L=0

σL(E ) = π

k2

Lmax∑
L=0

(2L + 1)PL(E ), (9)

PL(E ) = kL(rabs)

k
|TL(E )|2, (10)

with Lmax being the maximal partial-wave angular momentum
taken into account. The resultant uncertainties are referred to
as truncation errors.

B. The generalized eigenvector continuation

The Bloch-Schrödinger equation in Eq. (4) could be rewrit-
ten schematically as

HE (α)χ int
L (α) = Lχ ext

L (α). (11)

Here, HE (α) and L stand for the operators acting on the
internal and external wave functions, with α being the model
parameters. The subscript “E” stresses that the operator
HE (α) depends on the reaction energy E . Let {χ int

L (αtr
i )} be

the exact internal wave functions of the Bloch-Schrödinger
equations at the training points {αtr

i } in the parameter space.
Following the philosophy of EC, we construct the variational
emulator χ int

L (αte
	) for the test point αte

	:

χ int
L (αte

	) =
NEC∑
i=1

ci χ
int
L (αtr

i ). (12)

The coefficients {ci} and fusion observables are obtained by
solving Eqs. (5)–(7) with the EC basis functions {χ int

L (αtr
i )}.

III. NUMERICAL RESULTS

We take the 14N + 12C fusion reaction as a proof-of-
concept example to test our generalizations of the calculable
R-matrix theory and EC. Both local and nonlocal potentials
are used to describe nuclear interactions between 14N and 12C.
The local nuclear potential VN (r) is taken to be the Woods-
Saxon form

VN (r) = − V0

1 + exp[(r − R0)/a]
, (13)

while the nonlocal nuclear potential WN (r, r′) is taken to be
the Perey-Buck form [17]

WN (r, r′) = VN [(r + r′)/2]
exp[−(r − r′)2/β2]

π3/2β3
. (14)

Here, β = β0/Ared denotes the range of nonlocality [48], with
β0 = 0.85 fm being the range of nonlocality from neutron
scattering [17] and Ared being the reduced mass number in
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FIG. 2. (a) Theoretical fusion cross sections of the 14N + 12C fusion reaction at different reaction energies in the CM frame given by
the generalized calculable R-matrix theory for the local potential in Eq. (13) (solid red line) and the nonlocal potential in Eq. (14) (dashed
pink line). The parameters are given by V0 = 60 MeV, R0 = 1.206(A1/3

T + A1/3
P ) fm, a = 0.5 fm in Eq. (16). N � 20 and N � 100 Lagrange

functions are used in the numerical calculations for local and nonlocal potentials, respectively. The dark red points are the experimental data
from Ref. [49]. (b) Absolute values of the relative errors of the fusion cross sections given by the generalized calculable R-matrix theory with
the local potential. The benchmark values to calculate relative errors are given by the generalized calculable R-matrix theory with N = 200
Lagrange functions. (c) Absolute values of the relative errors of the fusion cross sections given by the generalized calculable R-matrix theory
with the nonlocal potential. N = 400 Lagrange functions are used to calculate the benchmark values.

fusion problems. Expanding WN (r, r′) in partial waves, we
have

W (L)
N (r, r′) =VN [(r + r′)/2]

×4rr′ exp[−(r2 + r′2)/β2]

π1/2β3
iL

(
2

β2
rr′

)
. (15)

iL(z) is the modified spherical Bessel function of the
first kind. The relative momentum kL(r) in Eq. (2) is

estimated by kL(r)=
√

2μ[E − L(L+1)
2μr2 − VN (r) − VC (r)]

and kL(r)=
√

2μ[E − L(L+1)
2μr2 − W LE

N (r) − VC (r)] for

local and nonlocal potentials, respectively. W LE
N (r) =

exp {−μβ2

2 [E − VC (r) − W LE
N (r)]}VN (r) is the local

equivalence of the Perey-Buck potential WN (r, r′) [17].
In numerical calculations, we take the absorption radius
to be rabs = A1/3

P + A1/3
T for all the partial waves. This is

slightly different from the CCFULL convention where rabs

is taken to be the local minimum of the total two-body
potential (including the centrifugal potential) inside the
Coulomb barrier. We have verified explicitly that these

two choices give fusion cross sections numerically close to
each other. The maximal partial-wave angular momentum
is taken to be Lmax = 10. Such a truncation gives rise to
the truncation errors in theoretical results. It is important
to distinguish them from numerical errors from solving
the Bloch-Schrödinger equations. Our numerical codes
are written by using arbitrary-precision arithmetic. They
inevitably become less efficient than numerical codes written
in double precision. But, they allow us to handle the so-called
“ill-conditioned” matrices in a more straightforward way,
without introducing extra nuggets by hand to regularize these
matrices [45]. It thus helps us better understand our new
theoretical tools.

We first calculate the fusion cross sections of the 14N + 12C
fusion reaction by using the generalized calculable R-matrix
theory on a Lagrange mesh. We take

V0 =60 MeV, R0 =1.206(A1/3
T +A1/3

P ) fm, a=0.5 fm,

(16)

for both the local and nonlocal potentials. The channel radius
is taken to be rc = 20 fm unless otherwise mentioned. In
Fig. 2(a), the fusion cross sections are presented for both
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FIG. 3. Absolute values of the relative errors of the fusion cross sections in the 14N + 12C fusion reaction given by the generalized EC.
The EC basis functions are taken to be the exact internal wave functions at (a) NEC = 6 training points V0 = 45, 65, . . . , 125, 145 MeV
and (b) NEC = 10 training points V0 = 45, 55, . . . , 125, 135 MeV. The test points are taken to be V0 = 40, 60, . . . , 220, 240 MeV. X is the
abbreviation of V0 = X MeV.

the local and nonlocal potentials, along with experimental
data from Ref. [49]. For the local and nonlocal potentials,
we take the numbers of Lagrange functions to be N � 20
and N � 100, respectively. One can see that the theoretical
results from the local and nonlocal potentials are almost in-
distinguishable in practice. This could be inferred from the
tiny range of nonlocality β ≈ 0.13 fm used in the nonlocal po-
tential, which suppresses nonlocality significantly and makes
the nonlocal potential nearly diagonal in r-r′ space. Such a
“singular” nonlocal potential might be less interesting from
the physical viewpoint. But, it turns out to be a technical
challenge for numerical calculations and provides an ideal
playground to test the robustness of the generalized calculable
R-matrix theory, as well as our numerical implementations in
arbitrary precision. It is found that more than 100 Lagrange
functions are needed for numerical convergence in the case of
the nonlocal potential, and our arbitrary-precision codes give
reliable numerical results. We also test our numerical codes
for mild nonlocal potentials with larger ranges of nonlocality.
It is found that much fewer Lagrange functions are needed
for moderate precision goals in these cases. In Figs. 2(b)
and 2(c), we calculate relative errors = (theoretical results −
benchmark results)/benchmark results of the generalized cal-
culable R-matrix theory for different numbers of Lagrange
functions. For the local potential, it is found that the rela-
tive errors of the N = 20, 50, 100 results are around 0.01,
10−10, and 10−25, respectively, with the benchmark results
taken at N = 200. Similarly, for the nonlocal potential, it
is found that the relative errors of the N = 100, 200, 300
results are around 0.01, 10−8, and 10−15, respectively, with
the benchmark results taken at N = 400. These results show
that the generalized calculable R-matrix theory generally gets
convergent quickly with respect to the increasing numbers
of Lagrange functions. We would like to emphasize that the
relative errors here are the numerical errors from solving the
Bloch-Schrödinger equations and do not include the trunca-
tion errors from the partial-wave truncations. The latter are
found to be around 10−8–10−3 for E ∈ [3, 10] MeV.

We then explore the parameter space of the 14N + 12C
fusion reaction with the generalized EC. EC and its gen-
eralizations have been shown to be useful for quantifying
theoretical uncertainties and analyzing global sensitivity in
bound-state and scattering problems. Our generalized EC
aims to extend the method to low-energy heavy-ion fusion
reactions. The local potentials in the Woods-Saxon form are
adopted to validate the generalized EC. Numerical calcula-
tions with the nonlocal potentials in the Perey-Buck form are
similar but more time-consuming. We treat V0 as the free pa-
rameter and take its value between 40 and 240 MeV. Two sets
of training points are examined, i.e., training set (a) with six
training points at V0 = 45, 65, . . . , 125, 145 MeV and training
set (b) with ten training points at V0 = 45, 55, . . . , 125, 135
MeV. In Fig. 3, we plot the absolute values of the relative
errors of the fusion cross sections given by the generalized EC
at the test points V0 = 40, 60, . . . , 220, 240 MeV. In Fig. 3(a),
the relative errors of the fusion cross sections are found to
be ≈10−3–0.4 for training set (a) and depend strongly on
the test points. In general, relative errors at the interpolating
points V0 = 60, . . . , 100, 120 MeV are much smaller than
those at the extrapolating points V0 = 40, 160, . . . , 220, 240
MeV. In other words, the generalized EC shows better per-
formance for interpolation than extrapolation. In Fig. 3(b),
we increase the EC basis size from NEC = 6 to NEC = 10.
The relative errors get decreased systematically for all the test
points and are found to be around 10−10 to 10−2. Once again,
the generalized EC gives better results for the interpolating
points.

We also calculate the fusion cross sections at different
channel radii. The local potential in Eqs. (13) and (16) is
used. For concreteness, we take the reaction energy E = 5
MeV and the channel radius rc between 20 and 1000 fm. A
channel radius as large as 1000 fm is certainly not necessary
for the 14N + 12C fusion reaction. But it gives a valuable
chance to explore the advantages and limitations of our gen-
eralizations of the calculable R-matrix theory and EC. Also,
there are important cases where channel radii as large as
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FIG. 4. Theoretical results for the local potential in Eqs. (13) and (16) at different channel radii between 20 fm and 1000 fm: (a) the fusion
cross sections given by the generalized R-matrix theory with N = 20, 50, 100, 200, 400, 800 Lagrange functions and (b) absolute values of the
relative errors of fusion cross sections given by the generalized EC with NEC = 6, 10 EC basis functions at the same training points as Fig. 3.

≈1000 fm are indispensable to get physically meaningful
results (e.g., Refs. [50–53]), and our experience with large
channel radii could be helpful. The numerical results are given
in Fig. 4. In Fig. 4(a), the fusion cross sections are given
by the generalized calculable R-matrix theory with N = 20,

50, 100, 200, 400, 800 Lagrange functions at the channel radii
rc ∈ [20, 1000] fm. It is found that, the larger the channel
radius is, the more Lagrange functions are needed to achieve
numerical convergence. For example, 20, 100, 800 Lagrange
functions are needed for the channel radii rc = 20, 100, 1000
fm, respectively. In Fig. 4(b), the fusion cross sections are
given by the generalized EC from the same NEC = 6, 10 train-
ing points as Fig. 3. The EC basis functions {χ int

L (αtr
i )} are

taken to be the exact solutions of the Bloch-Schrödinger equa-
tions at each channel radius, and the relative errors of fusion
cross sections from the generalized EC are found to be about
2 × 10−4 and 2 × 10−9 for NEC = 6 and 10, respectively,
which remain stable over the whole channel-radius interval
[20,1000] fm. Noticeably, to achieve similar numerical preci-
sion at large channel radii, the total number of basis functions
needed in the generalized EC is significantly smaller than that
in the generalized calculable R-matrix theory. This contributes
to the higher numerical efficiency of the generalized EC in
scanning the parameter space than the generalized calculable
R-matrix theory, especially at large channel radii. Also, it is
interesting to note that in our cases the relations between
the internal wave functions and the EC basis functions [i.e.,
Eq. (12)] learned at the small channel radii remain valid ap-
proximately at the large channel radii. Explicit calculations
show that {ci} at different channel radii are indeed numerically
close to each other. In other words, the generalized EC works
out universal relations among the internal wave functions at
different points in the parameter space. These relations remain
valid even when the channel radius is enlarged from 20 to
1000 fm and the internal region is inflated by a factor of more
than 50 along the radial direction. This is drastically different
from the generalized R-matrix theory plus the Lagrange func-
tions, where the relations between the internal wave functions
and the Lagrange functions are by no means universal and
change significantly at different channel radii.

IV. CONCLUSIONS

IWBC assumes incoming-wave profiles near the coor-
dinate origins. It is widely used in theoretical studies of
low-energy heavy-ion fusion reactions to simulate the strong
absorption inside the Coulomb barriers. In this work, we gen-
eralize the calculable R-matrix theory and EC to IWBC. The
calculable R-matrix theory has been formulated for regular
boundary conditions and applied successfully to study various
structural and reaction problems in nuclear physics. On the
other hand, EC is a variational emulator to calculate physical
observables at different points in the parameter space. It has
been worked out for bound-state and scattering observables.
In the generalized calculable R-matrix theory, we divide con-
figuration space into three regions by the absorption radius
rabs and the channel radius rc and solve the Bloch-Schrödinger
equations for internal wave functions on the Lagrange meshes
to extract fusion observables. The generalized R-matrix the-
ory then provides a natural starting point to generalize EC
to fusion observables. As a proof of concept, we use our
generalizations of the calculable R-matrix theory and EC to
study the 14N + 12C fusion reaction. Both local and nonlocal
potentials are used in the numerical calculations. We check the
numerical reliability of our generalizations of the calculable
R-matrix theory and EC systematically. Both of them are
found to work well for IWBC.
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APPENDIX: LAGRANGE FUNCTIONS

Let {xi, λi} be the abscissae and weights associated with the Gauss quadrature on the interval [0,1] [46,54],

PN (2xi − 1) = 0, λi = 1

4xi(1 − xi )[P ′
N (2xi − 1)]2

, (A1)

with i = 1, . . . , N . Here, PN (x) is the Legendre polynomial of order N and P ′
N (x) ≡ dPN (x)/dx. The Lagrange functions {LN

i (r)}
are given by

LN
i (r) = (−1)N+i

√
xi(1 − xi )�r

PN [(2r − rabs − rc)/�r]

r − xi�r − rabs
, (A2)

with �r = rc − rabs. It is straightforward to show that LN
i (rabs + x j�r) = (�rλi)−1/2δi j . The relevant matrix elements of the

Lagrange functions are given as follows: (
LN

i |LN
j

) ≡
∫ rc

rabs

dr LN
i (r) LN

j (r) = δi j, (A3)

(
LN

i |V (r)|LN
j

) ≡
∫ rc

rabs

dr LN
i (r)V (r) LN

j (r) = δi jV (rabs + xi�r), (A4)

(
LN

i |W (r, r′)|LN
j

) ≡
∫ rc

rabs

dr
∫ rc

rabs

dr′ LN
i (r)W (r, r′) LN

j (r
′)

= �r
√

λiλ j W (rabs + xi�r, rabs + x j�r), (A5)(
LN

i

∣∣∣∣ d2

dr2

∣∣∣∣LN
j

)
≡

∫ rc

rabs

dr LN
i (r) LN

j
′′
(r)

=
⎧⎨
⎩

(N2+N+6)(xi−1)xi+2
3�r2(xi−1)2x2

i
, i = j,

(−1)i+ j
√

(xi−1)(x j−1)x j [xi (4xi−2x j−3)+x j ]

�r2(xi−1)2x3/2
i (xi−x j )2

, i = j,
(A6)

(
LN

i

∣∣∣∣δ(r − rabs)
d

dr

∣∣∣∣LN
j

)
≡

∫ rc

rabs

dr LN
i (r) LN

j
′
(r) δ(r − rabs)

= (−1)i+ j+1
√

(xi − 1)xi(x j − 1)x j[N (N + 1)x j − 1]

�r2xix2
j

, (A7)(
LN

i

∣∣∣∣δ(r − rc)
d

dr

∣∣∣∣LN
j

)
≡

∫ rc

rabs

dr LN
i (r) LN

j
′
(r) δ(r − rc)

= (−1)i+ j+1xi[N (N + 1)(x j − 1) + 1]

�r2(x j − 1)2

√
(x j − 1)x j

(xi − 1)xi
. (A8)
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