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Minimal complete sets for two-pseudoscalar-meson photoproduction
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For photoproduction reactions with final states consisting of two pseudoscalar mesons and a spin-1/2 baryon,
eight complex amplitudes need to be determined uniquely. A modified version of Moravcsik’s theorem is
employed for these reactions, resulting in slightly overcomplete sets of polarization observables that are able
to determine the amplitudes uniquely. Further steps were taken to reduce the found sets to minimal complete
sets. As a final result, multiple minimal complete sets without any remaining ambiguities are presented for the
first time. These sets consist of 2N = 16 observables, containing only one triple polarization observable.
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I. INTRODUCTION

The interrelation between experiment and theory is what
drives science. In the field of hadron spectroscopy these are
the measurement of cross sections or polarization observables
and its counterpart Quantum Chromodynamics. The latter
describes the transition of the initial to the final state via
a transition matrix T . This matrix comprises the employed
model predictions to describe a certain process. Via so-called
formation experiments (i.e., γ p → ππ p) it is possible to
study the emergence of resonant states [such as �(1232),
N (1440)1/2+, N (1520)3/2−, etc. [1]].

These states can be analyzed via partial-wave analysis
(i.e., BnGa [1], MAID [2]), determining the matrix elements
of T and comparing it to the model prediction. However,
because polarization observables depend on bilinear products
of the complex amplitudes [3–5], mathematical ambiguities
arise [6]. Nevertheless, it is still possible to determine unique
solutions by employing a complete experiment analysis [7].

Such a complete experiment analysis was performed an-
alytically by Chiang and Tabakin in 1997 [6] for single
pseudoscalar meson photoproduction. A detailed proof com-
prising all the relevant cases was published recently by
Nakayama [8]. It should be noted that these complete ex-
periments are an idealization for data with no uncertainty
[9]. Although the process of single pseudoscalar meson
photoproduction can be fully described by only four com-
plex amplitudes [10], the calculations are nontrivial and
cumbersome [8] and, furthermore, quite involved ambiguity-
structures can arise.

Within this paper, the determination of complete sets of
observables is studied for the reaction of two pseudoscalar
meson photoproduction. The process can be described by
N = 8 complex amplitudes and thus allows for 64 mea-
surable polarization observables [5], which are four times
as many observables as in the case of single pseudoscalar
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meson photoproduction [6]. This results in an exponential in-
crease of complexity, for what reason the algebraic techniques
presented in Ref. [8] are no longer appropriate, although pos-
sible (see Sec. VII B). New methods should be employed, in
order to allow for an easier access to the problem of complete
sets for reactions with N > 4.

There is an already existing work on this subject by Aren-
hövel and Fix [11] from 2014. On the one hand, they used
the inverse function theorem to derive complete sets of 16
observables. The downside of this method is that the resulting
sets might locally be free of ambiguities, but not globally. On
the other hand, they used a graph theoretical approach, where
a complex amplitude is represented as a node and the bilinear
product as a connection between certain nodes. This method
yields complete sets with 25 observables. It was then shown
how to further reduce such a set to 15 observables. Although
they found sets without triple polarization observables, there
still remain quadratic ambiguities.

To overcome these difficulties arising from the remaining
discrete mathematical ambiguities, Moravcsik’s theorem [12]
is employed within this paper. This theorem allows for the ex-
traction of complete sets of observables for an arbitrary num-
ber of amplitudes. Furthermore, due to its graph-theoretical
foundation, the whole algorithm can be automated [13].

The paper is structured in the following way: The starting
point is a short recap of Moravcsik’s theorem and its modi-
fication in Sec. II. Section III introduces the 64 polarization
observables for two pseudoscalar meson photoproduction.
Within Sec. IV the actual application of Moravcsik’s theo-
rem is described and illustrated with an example. Section V
elaborates on the difficulties of the experimental determina-
tion of the polarization observables and gives an extensive
overview of already-performed measurements in two pseu-
doscalar meson photoproduction. The entire analysis results
in 5964 unique, but slightly overcomplete sets of observables.
Their characteristics are discussed in Sec. VI. Section VII
describes how to transform the slightly overcomplete sets into
minimal ones (i.e., into sets containing 2N = 16 observables).
Based on these sets as well as the already-performed measure-
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FIG. 1. Illustration of a cycle graph with eight nodes (enumer-
ated points) and edges (solid and dashed lines). Each node represents
one complex amplitude, whereas each edge connecting two nodes
represents either the real (solid) or imaginary (dashed) part of the
bilinear product of those nodes. The respective correlation to the
relative phase φi j is indicated.

ments the most promising minimal complete set is presented
in Sec. VIII. The results are summarized in Sec. IX.

II. MORAVCSIK’S THEOREM

The main points of Moravcsik’s paper [12] shall be re-
capped in a concise form. The basic assumption of the
theorem is that the moduli of the N complex amplitudes ti
are known, together with the real and imaginary parts of the
bilinear products tit∗

j . Furthermore, each complex amplitude
ti is treated as a node of a graph whereas an edge is the real
or imaginary part of the bilinear amplitude product tit∗

j con-
necting both nodes. An illustration is shown in Fig. 1. Such a
graph is said to correspond to a complete set of observables if
it fulfills the following two requirements:

(1) it is a connected graph;
(2) it has an odd number of edges which corresponds to

an imaginary part of a particular bilinear product, i.e.,
∝Im(tit∗

j ).

The first condition is related to the “consistency relation”
of the relative phases:

φ12 + φ23 + · · · + φN1 = 0, (1)

which implies a summation of relative phases between all
neighboring amplitudes ti [8]. Equation (1) has to hold in
every case, whether the considered set is fully complete or not.
The second condition is responsible for resolving the discrete
ambiguities since it holds

Im(tit
∗
j ) = |ti||t j | sin (φi j ), (2)

and that sine itself produces an ambiguity due to its periodic-
ity:

φi j → (φi j, π − φi j ). (3)

It turns out that any odd number of such “sine-type” ambigui-
ties resolves the discrete ambiguities, due to the summand π .

The generalization to any odd number is the actual modifica-
tion to Moravcsik’s theorem. A proof of the original version
of the theorem can be found in Ref. [12] and a quite detailed
proof of the modified version of the theorem is given in
Ref. [13].

The following analysis focuses on cycle graphs, i.e., con-
nected graphs where each node has degree two. As explained
in Ref. [12], “from the point of view of eliminating discrete
ambiguities” these graph types are “the most economical”
ones. Thus, only the minimal number of N bilinear products is
needed in order to eliminate all discrete ambiguities, one for
each edge.

III. POLARIZATION OBSERVABLES

The derivation of the 64 polarization observables of two
pseudoscalar meson photoproduction was first published by
Roberts and Oed [5]. The observables were defined in a
“helicity and hybrid helicity-transversity basis” [5]. For the
latter, the photon spin is still quantized along its direction of
motion. For the sake of comparability, the hybrid basis shall
be adopted in this paper. However, in order to work out the
connection between the real (imaginary) part of the bilinear
products and the relative phases φi j , it is advantageous to
rename the amplitudes:

b+
1 → t1, b+

2 → t2, b+
3 → t3, b+

4 → t4, (4)

b−
1 → t5, b−

2 → t6, b−
3 → t7, b−

4 → t8. (5)

Within Ref. [5], the observables are ordered according to the
polarization of the photon beam, which is required to measure
the respective observable. This ordering scheme is advanta-
geous from an experimental point of view; unfortunately, it
is inappropriate when studying ambiguities. Therefore, the
observables are regrouped according to their mathematical
structure, which yields eight groups. While the first group con-
sists of observables solely described by the squared moduli of
the amplitudes ti, any other group comprises equal amounts
of observables containing only cos or sin terms. The resulting
expressions for the observables are listed in Table I.

For the purpose of an easier calculation, 64 � matrices are
introduced, which can be solely described by the identity ma-
trix, as well as the three Pauli matrices (listed in Table II). This
allows us to calculate the respective observable by the bilinear
form 〈t |�|t〉 with |t〉 := (t1, t2, t3, t4, t5, t6, t7, t8), similar as in
Ref. [6]. As expected, the � matrices for each group share
the same matrix structure. Naturally, they form an orthogonal
basis and are Hermitian and unitary. Indeed, the matrices
fulfill the same properties as presented in Ref. [6] (with an
adapted prefactor in the orthogonality relation).

IV. APPROACH

The results of Sec. II imply the following steps: One
constructs all unique graph topologies with N nodes using
combinatorial methods. A few examples of possible graphs
are shown in Fig. 2. The number of unique topologies is solely
determined by the number of nodes (or edges), i.e., for N � 3
it is N!/(2N ) [13].
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TABLE I. Definitions of the 64 polarization observables for two pseudoscalar meson photoproduction in hybrid helicity-transversity form.
Here, φi j denotes the relative phase between the complex amplitudes ti and t j . The notation used in the original paper of Roberts and Oed [5] is
also shown. The observables are classified into eight groups according to their underlying mathematical structure. The vector |t〉 has the form
(t1, t2, t3, t4, t5, t6, t7, t8) and the shape of the � matrices is outlined in Table II.

Observable Definition in terms of polar coordinates / 2 Bilinear form Roberts, Oed

OI
1

1
2 (|t1|2 + |t2|2 + |t3|2 + |t4|2 − |t5|2 − |t6|2 − |t7|2 − |t8|2) 〈t |�I

1|t〉 I�

OI
2

1
2 (|t1|2 + |t2|2 − |t3|2 − |t4|2 + |t5|2 + |t6|2 − |t7|2 − |t8|2) 〈t |�I

2|t〉 Py

OI
3

1
2 (|t1|2 − |t2|2 + |t3|2 − |t4|2 + |t5|2 − |t6|2 + |t7|2 − |t8|2) 〈t |�I

3|t〉 Py′

OI
4

1
2 (|t1|2 − |t2|2 − |t3|2 + |t4|2 − |t5|2 + |t6|2 + |t7|2 − |t8|2) 〈t |�I

4|t〉 O�
yy′

OI
5

1
2 (|t1|2 − |t2|2 − |t3|2 + |t4|2 + |t5|2 − |t6|2 − |t7|2 + |t8|2) 〈t |�I

5|t〉 Oyy′

OI
6

1
2 (|t1|2 − |t2|2 + |t3|2 − |t4|2 − |t5|2 + |t6|2 − |t7|2 + |t8|2) 〈t |�I

6|t〉 P�
y′

OI
7

1
2 (|t1|2 + |t2|2 − |t3|2 − |t4|2 − |t5|2 − |t6|2 + |t7|2 + |t8|2) 〈t |�I

7|t〉 P�
y

OI
8

1
2 (|t1|2 + |t2|2 + |t3|2 + |t4|2 + |t5|2 + |t6|2 + |t7|2 + |t8|2) 〈t |�I

8|t〉 I0

OII
c1 |t1||t3| cos(φ13) + |t2||t4| cos(φ24) + |t5||t7| cos(φ57) + |t6||t8| cos(φ68) 〈t |�II

c1|t〉 −Pz

OII
c2 |t1||t3| cos(φ13) + |t2||t4| cos(φ24) − |t5||t7| cos(φ57) − |t6||t8| cos(φ68) 〈t |�II

c2|t〉 −P�
z

OII
c3 |t1||t3| cos(φ13) − |t2||t4| cos(φ24) + |t5||t7| cos(φ57) − |t6||t8| cos(φ68) 〈t |�II

c3|t〉 −Ozy′

OII
c4 |t1||t3| cos(φ13) − |t2||t4| cos(φ24) − |t5||t7| cos(φ57) + |t6||t8| cos(φ68) 〈t |�II

c4|t〉 −O�
zy′

OII
s1 |t1||t3| sin(φ13) + |t2||t4| sin(φ24) + |t5||t7| sin(φ57) + |t6||t8| sin(φ68) 〈t |�II

s1|t〉 −Px

OII
s2 |t1||t3| sin(φ13) + |t2||t4| sin(φ24) − |t5||t7| sin(φ57) − |t6||t8| sin(φ68) 〈t |�II

s2|t〉 −P�
x

OII
s3 |t1||t3| sin(φ13) − |t2||t4| sin(φ24) + |t5||t7| sin(φ57) − |t6||t8| sin(φ68) 〈t |�II

s3|t〉 −Oxy′

OII
s4 |t1||t3| sin(φ13) − |t2||t4| sin(φ24) − |t5||t7| sin(φ57) + |t6||t8| sin(φ68) 〈t |�II

s4|t〉 −O�
xy′

OIII
c1 |t1||t2| cos(φ12) + |t3||t4| cos(φ34) + |t5||t6| cos(φ56) + |t7||t8| cos(φ78) 〈t |�III

c1 |t〉 −Pz′

OIII
c2 |t1||t2| cos(φ12) + |t3||t4| cos(φ34) − |t5||t6| cos(φ56) − |t7||t8| cos(φ78) 〈t |�III

c2 |t〉 −P�
z′

OIII
c3 |t1||t2| cos(φ12) − |t3||t4| cos(φ34) + |t5||t6| cos(φ56) − |t7||t8| cos(φ78) 〈t |�III

c3 |t〉 −Oyz′

OIII
c4 |t1||t2| cos(φ12) − |t3||t4| cos(φ34) − |t5||t6| cos(φ56) + |t7||t8| cos(φ78) 〈t |�III

c4 |t〉 −O�
yz′

OIII
s1 |t1||t2| sin(φ12) + |t3||t4| sin(φ34) + |t5||t6| sin(φ56) + |t7||t8| sin(φ78) 〈t |�III

s1 |t〉 Px′

OIII
s2 |t1||t2| sin(φ12) + |t3||t4| sin(φ34) − |t5||t6| sin(φ56) − |t7||t8| sin(φ78) 〈t |�III

s2 |t〉 P�
x′

OIII
s3 |t1||t2| sin(φ12) − |t3||t4| sin(φ34) + |t5||t6| sin(φ56) − |t7||t8| sin(φ78) 〈t |�III

s3 |t〉 Oyx′

OIII
s4 |t1||t2| sin(φ12) − |t3||t4| sin(φ34) − |t5||t6| sin(φ56) + |t7||t8| sin(φ78) 〈t |�III

s4 |t〉 O�
yx′

OIV
c1 |t1||t4| cos(φ14) + |t2||t3| cos(φ23) + |t5||t8| cos(φ58) + |t6||t7| cos(φ67) 〈t |�IV

c1 |t〉 Ozz′

OIV
c2 |t1||t4| cos(φ14) + |t2||t3| cos(φ23) − |t5||t8| cos(φ58) − |t6||t7| cos(φ67) 〈t |�IV

c2 |t〉 O�
zz′

OIV
c3 |t1||t4| cos(φ14) − |t2||t3| cos(φ23) + |t5||t8| cos(φ58) − |t6||t7| cos(φ67) 〈t |�IV

c3 |t〉 Oxx′

OIV
c4 |t1||t4| cos(φ14) − |t2||t3| cos(φ23) − |t5||t8| cos(φ58) + |t6||t7| cos(φ67) 〈t |�IV

c4 |t〉 O�
xx′

OIV
s1 |t1||t4| sin(φ14) + |t2||t3| sin(φ23) + |t5||t8| sin(φ58) + |t6||t7| sin(φ67) 〈t |�IV

s1 |t〉 Oxz′

OIV
s2 |t1||t4| sin(φ14) + |t2||t3| sin(φ23) − |t5||t8| sin(φ58) − |t6||t7| sin(φ67) 〈t |�IV

s2 |t〉 O�
xz′

OIV
s3 |t1||t4| sin(φ14) − |t2||t3| sin(φ23) + |t5||t8| sin(φ58) − |t6||t7| sin(φ67) 〈t |�IV

s3 |t〉 −Ozx′

OIV
s4 |t1||t4| sin(φ14) − |t2||t3| sin(φ23) − |t5||t8| sin(φ58) + |t6||t7| sin(φ67) 〈t |�IV

s4 |t〉 −O�
zx′

OV
c1 |t1||t5| cos(φ15) + |t2||t6| cos(φ26) + |t3||t7| cos(φ37) + |t4||t8| cos(φ48) 〈t |�V

c1|t〉 −Ic

OV
c2 |t1||t5| cos(φ15) + |t2||t6| cos(φ26) − |t3||t7| cos(φ37) − |t4||t8| cos(φ48) 〈t |�V

c2|t〉 −Pc
y

OV
c3 |t1||t5| cos(φ15) − |t2||t6| cos(φ26) + |t3||t7| cos(φ37) − |t4||t8| cos(φ48) 〈t |�V

c3|t〉 −Pc
y′

OV
c4 |t1||t5| cos(φ15) − |t2||t6| cos(φ26) − |t3||t7| cos(φ37) + |t4||t8| cos(φ48) 〈t |�V

c4|t〉 −Oc
yy′

OV
s1 |t1||t5| sin(φ15) + |t2||t6| sin(φ26) + |t3||t7| sin(φ37) + |t4||t8| sin(φ48) 〈t |�V

s1|t〉 −Is

OV
s2 |t1||t5| sin(φ15) + |t2||t6| sin(φ26) − |t3||t7| sin(φ37) − |t4||t8| sin(φ48) 〈t |�V

s2|t〉 −Ps
y

OV
s3 |t1||t5| sin(φ15) − |t2||t6| sin(φ26) + |t3||t7| sin(φ37) − |t4||t8| sin(φ48) 〈t |�V

s3|t〉 −Ps
y′

OV
s4 |t1||t5| sin(φ15) − |t2||t6| sin(φ26) − |t3||t7| sin(φ37) + |t4||t8| sin(φ48) 〈t |�V

s4|t〉 −Os
yy′

OVI
c1 |t1||t7| cos(φ17) + |t2||t8| cos(φ28) + |t3||t5| cos(φ35) + |t4||t6| cos(φ46) 〈t |�VI

c1 |t〉 Pc
z

OVI
c2 |t1||t7| cos(φ17) + |t2||t8| cos(φ28) − |t3||t5| cos(φ35) − |t4||t6| cos(φ46) 〈t |�VI

c2 |t〉 −Ps
x

OVI
c3 |t1||t7| cos(φ17) − |t2||t8| cos(φ28) + |t3||t5| cos(φ35) − |t4||t6| cos(φ46) 〈t |�VI

c3 |t〉 Oc
zy′

OVI
c4 |t1||t7| cos(φ17) − |t2||t8| cos(φ28) − |t3||t5| cos(φ35) + |t4||t6| cos(φ46) 〈t |�VI

c4 |t〉 −Os
xy′

OVI
s1 |t1||t7| sin(φ17) + |t2||t8| sin(φ28) + |t3||t5| sin(φ35) + |t4||t6| sin(φ46) 〈t |�VI

s1 |t〉 Ps
z

OVI
s2 |t1||t7| sin(φ17) + |t2||t8| sin(φ28) − |t3||t5| sin(φ35) − |t4||t6| sin(φ46) 〈t |�VI

s2 |t〉 Pc
x

OVI
s3 |t1||t7| sin(φ17) − |t2||t8| sin(φ28) + |t3||t5| sin(φ35) − |t4||t6| sin(φ46) 〈t |�VI

s3 |t〉 Os
zy′

OVI
s4 |t1||t7| sin(φ17) − |t2||t8| sin(φ28) − |t3||t5| sin(φ35) + |t4||t6| sin(φ46) 〈t |�VI

s4 |t〉 Oc
xy′

OVII
c1 |t1||t6| cos(φ16) + |t2||t5| cos(φ25) + |t3||t8| cos(φ38) + |t4||t7| cos(φ47) 〈t |�VII

c1 |t〉 Pc
z′

OVII
c2 |t1||t6| cos(φ16) + |t2||t5| cos(φ25) − |t3||t8| cos(φ38) − |t4||t7| cos(φ47) 〈t |�VII

c2 |t〉 Oc
yz′

OVII
c3 |t1||t6| cos(φ16) − |t2||t5| cos(φ25) + |t3||t8| cos(φ38) − |t4||t7| cos(φ47) 〈t |�VII

c3 |t〉 Ps
x′

OVII
c4 |t1||t6| cos(φ16) − |t2||t5| cos(φ25) − |t3||t8| cos(φ38) + |t4||t7| cos(φ47) 〈t |�VII

c4 |t〉 Os
yx′
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TABLE I. (Continued.)

Observable Definition in terms of polar coordinates / 2 Bilinear form Roberts, Oed

OVII
s1 |t1||t6| sin(φ16) + |t2||t5| sin(φ25) + |t3||t8| sin(φ38) + |t4||t7| sin(φ47) 〈t |�VII

s1 |t〉 Ps
z′

OVII
s2 |t1||t6| sin(φ16) + |t2||t5| sin(φ25) − |t3||t8| sin(φ38) − |t4||t7| sin(φ47) 〈t |�VII

s2 |t〉 Os
yz′

OVII
s3 |t1||t6| sin(φ16) − |t2||t5| sin(φ25) + |t3||t8| sin(φ38) − |t4||t7| sin(φ47) 〈t |�VII

s3 |t〉 −Pc
x′

OVII
s4 |t1||t6| sin(φ16) − |t2||t5| sin(φ25) − |t3||t8| sin(φ38) + |t4||t7| sin(φ47) 〈t |�VII

s4 |t〉 −Oc
yx′

OVIII
c1 |t1||t8| cos(φ18) + |t2||t7| cos(φ27) + |t3||t6| cos(φ36) + |t4||t5| cos(φ45) 〈t |�VIII

c1 |t〉 −Oc
zz′

OVIII
c2 |t1||t8| cos(φ18) + |t2||t7| cos(φ27) − |t3||t6| cos(φ36) − |t4||t5| cos(φ45) 〈t |�VIII

c2 |t〉 Os
xz′

OVIII
c3 |t1||t8| cos(φ18) − |t2||t7| cos(φ27) + |t3||t6| cos(φ36) − |t4||t5| cos(φ45) 〈t |�VIII

c3 |t〉 −Os
zx′

OVIII
c4 |t1||t8| cos(φ18) − |t2||t7| cos(φ27) − |t3||t6| cos(φ36) + |t4||t5| cos(φ45) 〈t |�VIII

c4 |t〉 −Oc
xx′

OVIII
s1 |t1||t8| sin(φ18) + |t2||t7| sin(φ27) + |t3||t6| sin(φ36) + |t4||t5| sin(φ45) 〈t |�VIII

s1 |t〉 −Os
zz′

OVIII
s2 |t1||t8| sin(φ18) + |t2||t7| sin(φ27) − |t3||t6| sin(φ36) − |t4||t5| sin(φ45) 〈t |�VIII

s2 |t〉 −Oc
xz′

OVIII
s3 |t1||t8| sin(φ18) − |t2||t7| sin(φ27) + |t3||t6| sin(φ36) − |t4||t5| sin(φ45) 〈t |�VIII

s3 |t〉 Oc
zx′

OVIII
s4 |t1||t8| sin(φ18) − |t2||t7| sin(φ27) − |t3||t6| sin(φ36) + |t4||t5| sin(φ45) 〈t |�VIII

s4 |t〉 −Os
xx′

TABLE II. Definition of the 64 � matrices in terms of the well-known Pauli matrices in combination with the Kronecker product. The gray
shaded cells within the column “Shape-class” correspond to the nonzero matrix entries.

Γ-matrices Definition Shape-class

ΓI
1 σ3 ⊗ I2 ⊗ I2

ΓI
2 I2 ⊗ σ3 ⊗ I2

ΓI
3 I2 ⊗ I2 ⊗ σ3

ΓI
4 σ3 ⊗ σ3 ⊗ σ3

ΓI
5 I2 ⊗ σ3 ⊗ σ3

ΓI
6 σ3 ⊗ I2 ⊗ σ3

ΓI
7 σ3 ⊗ σ3 ⊗ I2

ΓI
8 I2 ⊗ I2 ⊗ I2

ΓII
c1 I2 ⊗ σ1 ⊗ I2

ΓII
c2 σ3 ⊗ σ1 ⊗ I2

ΓII
c3 I2 ⊗ σ1 ⊗ σ3

ΓII
c4 σ3 ⊗ σ1 ⊗ σ3

ΓII
s1 −I2 ⊗ σ2 ⊗ I2

ΓII
s2 −σ3 ⊗ σ2 ⊗ I2

ΓII
s3 −I2 ⊗ σ2 ⊗ σ3

ΓII
s4 −σ3 ⊗ σ2 ⊗ σ3

ΓIII
c1 I2 ⊗ I2 ⊗ σ1

ΓIII
c2 σ3 ⊗ I2 ⊗ σ1

ΓIII
c3 I2 ⊗ σ3 ⊗ σ1

ΓIII
c4 σ3 ⊗ σ3 ⊗ σ1

ΓIII
s1 −I2 ⊗ I2 ⊗ σ2

ΓIII
s2 −σ3 ⊗ I2 ⊗ σ2

ΓIII
s3 −I2 ⊗ σ3 ⊗ σ2

ΓIII
s4 −σ3 ⊗ σ3 ⊗ σ2

ΓIV
c1 I2 ⊗ σ1 ⊗ σ1

ΓIV
c2 σ3 ⊗ σ1 ⊗ σ1

ΓIV
c3 −I2 ⊗ σ2 ⊗ σ2

ΓIV
c4 −σ3 ⊗ σ2 ⊗ σ2

ΓIV
s1 −I2 ⊗ σ2 ⊗ σ1

ΓIV
s2 −σ3 ⊗ σ2 ⊗ σ1

ΓIV
s3 −I2 ⊗ σ1 ⊗ σ2

ΓIV
s4 −σ3 ⊗ σ1 ⊗ σ2

Γ-matrices Definition Shape-class

ΓV
c1 σ1 ⊗ I2 ⊗ I2

ΓV
c2 σ1 ⊗ σ3 ⊗ I2

ΓV
c3 σ1 ⊗ I2 ⊗ σ3

ΓV
c4 σ1 ⊗ σ3 ⊗ σ3

ΓV
s1 −σ2 ⊗ I2 ⊗ I2

ΓV
s2 −σ2 ⊗ σ3 ⊗ I2

ΓV
s3 −σ2 ⊗ I2 ⊗ σ3

ΓV
s4 −σ2 ⊗ σ3 ⊗ σ3

ΓVI
c1 σ1 ⊗ σ1 ⊗ I2

ΓVI
c2 −σ2 ⊗ σ2 ⊗ I2

ΓVI
c3 σ1 ⊗ σ1 ⊗ σ3

ΓVI
c4 −σ2 ⊗ σ2 ⊗ σ3

ΓVI
s1 −σ2 ⊗ σ1 ⊗ I2

ΓVI
s2 −σ1 ⊗ σ2 ⊗ I2

ΓVI
s3 −σ2 ⊗ σ1 ⊗ σ3

ΓVI
s4 −σ1 ⊗ σ2 ⊗ σ3

ΓVII
c1 σ1 ⊗ I2 ⊗ σ1

ΓVII
c2 σ1 ⊗ σ3 ⊗ σ1

ΓVII
c3 −σ2 ⊗ I2 ⊗ σ2

ΓVII
c4 −σ2 ⊗ σ3 ⊗ σ2

ΓVII
s1 −σ2 ⊗ I2 ⊗ σ1

ΓVII
s2 −σ2 ⊗ σ3 ⊗ σ1

ΓVII
s3 −σ1 ⊗ I2 ⊗ σ2

ΓVII
s4 −σ1 ⊗ σ3 ⊗ σ2

ΓVIII
c1 σ1 ⊗ σ1 ⊗ σ1

ΓVIII
c2 −σ2 ⊗ σ2 ⊗ σ1

ΓVIII
c3 −σ2 ⊗ σ1 ⊗ σ2

ΓVIII
c4 −σ1 ⊗ σ2 ⊗ σ2

ΓVIII
s1 −σ2 ⊗ σ1 ⊗ σ1

ΓVIII
s2 −σ1 ⊗ σ2 ⊗ σ1

ΓVIII
s3 −σ1 ⊗ σ1 ⊗ σ2

ΓVIII
s4 σ2 ⊗ σ2 ⊗ σ2

014607-4



MINIMAL COMPLETE SETS FOR … PHYSICAL REVIEW C 103, 014607 (2021)

1

2

8

3

4 5

6

7

1

2

3

4 5

6

7

8

1

2

4

3

8

7

5

6

FIG. 2. Examples of graph topologies. Only three out of 2520
unique cycle graphs with eight nodes are shown.

In a second step, all possible edge configurations which
yield a complete set of observables are constructed. An exam-
ple is shown in Fig. 1. This is done for each unique topology.
The total number of possible edge configurations can be cal-
culated by

∑N
k=1

(N
k

)
for all odd k � N .

The final step involves the mapping from bilinear forms
to the actual observables. Referring again to the example in
Fig. 1, the overall question is which combinations of ob-
servables can be solely described by these bilinear products
(given that all amplitudes are known)? Considering Table I,
the following relations are evident:

sin (φ12) 	→ {
OIII

s1 ,OIII
s2 ,OIII

s3 ,OIII
s4

}
, (6)

sin (φ34) 	→ {
OIII

s1 ,OIII
s2 ,OIII

s3 ,OIII
s4

}
, (7)

sin (φ56) 	→ {
OIII

s1 ,OIII
s2 ,OIII

s3 ,OIII
s4

}
, (8)

sin (φ78) 	→ {
OIII

s1 ,OIII
s2 ,OIII

s3 ,OIII
s4

}
(9)

sin (φ14) 	→ {
OIV

s1 ,OIV
s2 ,OIV

s3 ,OIV
s4

}
, (10)

sin (φ58) 	→ {
OIV

s1 ,OIV
s2 ,OIV

s3 ,OIV
s4

}
, (11)

sin (φ27) 	→ {
OVIII

s1 ,OVIII
s2 ,OVIII

s3 ,OVIII
s4

}
, (12)

cos (φ36) 	→ {
OVIII

c1 ,OVIII
c2 ,OVIII

c3 ,OVIII
c4

}
. (13)

Thus, the complete set of observables which corresponds to
the graph configuration shown in Fig. 1 is

{
OI

1,OI
2,OI

3,OI
4,OI

5,OI
6,OI

7,OI
8,

OIII
s1 ,OIII

s2 ,OIII
s3 ,OIII

s4 ,OIV
s1 ,OIV

s2 ,OIV
s3 ,OIV

s4 ,

OVIII
s1 ,OVIII

s2 ,OVIII
s3 ,OVIII

s4 ,OVIII
c1 ,OVIII

c2 ,OVIII
c3 ,OVIII

c4

}
. (14)

In general one needs to add the observables which are solely
described by moduli in order to fix the moduli of the complex

TABLE III. The 64 observables are grouped into eight categories
according to the polarization needed to measure these observables
(beam B, target T , and recoil R). The notation used in the origi-
nal paper of Roberts and Oed [5] is used for the observables. The
observable I0 corresponds to the unpolarized cross section.

Category Subcategory Observables

I0

B Bl Is, Ic

B� I�

T Px, Py, Pz

R Px′ , Py′ , Pz′

BT BlT Ps
x, Ps

y, Ps
z, Pc

x, Pc
y, Pc

z

B�T P�
x , P�

y , P�
z

BR BlR Ps
x′ , Ps

y′ , Ps
z′ , Pc

x′ , Pc
y′ , Pc

z′
B�R P�

x′ , P�
y′ , P�

z′
T R Oxx′ ,Oxy′ ,Oxz′ ,Oyx′ ,Oyy′ ,Oyz′ ,Ozx′

Ozy′ ,Ozz′

BT R BlT R Os
xx′ ,Os

xy′ ,Os
xz′ ,Os

yx′ ,Os
yy′ ,Os

yz′ ,Os
zx′

Os
zy′ ,Os

zz′
Oc

xx′ ,Oc
xy′ ,Oc

xz′ ,Oc
yx′ ,Oc

yy′ ,Oc
yz′ ,Oc

zx′
Oc

zy′ ,Oc
zz′

B�T R O�
xx′ ,O�

xy′ ,O�
xz′ ,O�

yx′ ,O�
yy′ ,O�

yz′ ,O�
zx′

O�
zy′ ,O�

zz′

amplitudes ti (see Sec. II). In this case, these are the group I
observables, as shown in Table I. Thus, Eq. (14) accounts for
a total of 24 observables.

The same result can be obtained by using the relation:

t∗
j ti = 1

8

64∑

α=1

�α
i jOα, (15)

where α is an index running through the observables listed in
Table I and the � matrices as listed in Table II. Equation (15)
is derived by using Oα = ∑8

i, j=1 t∗
i �α

i jt j in combination with

the completeness relation of the � matrices
∑64

α=1 �α
ai�

α
jb =

8δabδi j .

V. DATABASE FOR TWO PSEUDOSCALAR MESON
PHOTOPRODUCTION

As already mentioned, 64 observables can be measured
for two pseudoscalar meson photoproduction using the full
three-body kinematics of the reaction. These observables can
be organized into three groups: single, double, and triple
polarization observables, which require either the use of a
polarized beam B, a polarized target T , a recoil polarimeter
R, or a combination of the three. Table III gives an overview
of all the observables of each category. In addition to the
unpolarized cross section I0, there are three observables in
each single polarization observable category (B, T ,R), nine
in each double polarization observable category (BT , BR,
and T R) and 27 observables in the triple polarization observ-
able category (BT R).

The description of the full three-body kinematics requires
five independent variables [14]. In this context, two planes,
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the reaction plane and the decay plane, are often used [14,15].
While the reaction plane is defined by the incoming photon
and one of the outgoing particles, the decay plane is spanned
by the other two outgoing particles. The angle between the
reaction and the decay plane is called φ∗. Integrating over
φ∗ makes it possible to treat the three-body final state as a
two-body final state, resulting in a reduced number of observ-
ables. In this case, the observables correspond to observables
known from single meson photoproduction [7], e.g., category
B reduces to Ic = 	, category T to Py = T , category R to
Py′ = P (this observable can be also measured as a double
polarization observable −Pc

y [5]), and category BT to Ps
x = H ,

Ps
z = G, P�

x = F , and P�
z = E [5].

In the case of single pseudoscalar meson photoproduction,
quite a lot measurements were performed to determine single
and double polarization observables. An extensive overview
over the performed measurements, on the basis of the SAID

database [16], was brought together recently by Ireland,
Pasyuk, and Strakovsky [17].

A similar database does not exist yet for double pseu-
doscalar meson photoproduction. Thus, for the first time,
an extensive overview of measurements of polarization ob-
servables for double pseudoscalar meson photoproduction is
presented in Table IV.

By far the most measurements where performed for the re-
action γ p → pπ0π0 because the reaction has the least amount
of nonresonant background amplitude contributions compared
with other isospin channels [1]. The most common observable
is the unpolarized cross section I0, followed by the beam
asymmetries Is, Ic, and I�. Even a few double polarization
observables in quasi-two-body kinematics were measured,
i.e., E and H . Until now, no triple polarization observables
were extracted, as it is experimentally challenging to measure
the polarization of a recoiling particle [18,19] in addition to a
polarized beam and a polarized target.

However, a few words of caution are in order. One might
get the impression of a huge existing database with plenty of
data. It should be kept in mind that the data entries span more
than half a century, thus including data with lower-performing
experimental setups in comparison with the latest published
polarization observables data. The collection consists mainly
of measurements concerning the unpolarized cross section I0

(roughly 60%). Taken as a whole, the current database is not
sufficient for an experimental verification of a complete exper-
iment analysis. This issue is further discussed in Sec. VIII for
experimentalists. But also for theoreticians using phenomeno-
logical models to fit and interpret the data, it is challenging
and necessary to check the different data sets for consistency
between different experiments and to deal with the systematic
uncertainties of the data.

VI. RESULTS FOR N = 8

For N = 8 one has 2520 unique cycle graphs, each with
128 unique edge configurations, as explained in Sec. IV.
Hence, there exist in total 128 × 2520 = 322 560 edge config-
urations which yield a complete set of observables. However,
the resulting sets are not all linearly independent.

The whole algorithm was implemented in Mathematica
[56], but can just as easily be implemented in other languages
such as JULIA [57]. Filtering out the redundant sets, one is
left with 5964 unique sets of observables. The length of the
sets varies between the topologies as well as between different
edge configurations. To be exact, it varies between a total of
24 and 40 observables.

Without loss of generality, the further analysis focuses on
the 392 distinct sets with 24 observables. A numerical anal-
ysis was performed which showed that these sets are indeed
complete. The applied algorithm is described in Appendix.

Further characteristics of the minimal sets according to
Moravcsik involve the following:

(i) Each set inhibits at least five triple polarization observ-
ables.

(ii) The sets are constructed from four or five different
shape classes.

However, these sets are slightly overcomplete since each
observable depends on more than one bilinear product.
According to current knowledge [11,13], a truly minimal
complete set consists of 2N observables. Thus the task re-
mains to reduce the slightly overcomplete sets by eight
observables while retaining completeness.

VII. REDUCTION TO MINIMAL SETS OF 2N

A. Numerical calculation

The smallest complete sets, which emerge from the modi-
fied version of Moravcsik’s theorem, have a length of 24 (for
N = 8). Eight of these observables cannot be omitted, namely,
the group I observables, as discussed in Sec. IV. From the
remaining 16 observables one constructs all possible subsets
containing eight observables, which amounts to

(16
8

) = 12 870
distinct sets.

In principle this is done for all sets with a length of
24, leading to just over five million minimal, complete set
candidates. This number can be further reduced by ≈0.7%,
by noting that sets containing only one or two distinct ob-
servable groups (apart from group I) do not correspond to
a connected graph and thus do not form a complete set.
There are also a few cases in which three distinct observable
groups (apart from group I) are not able to form a connected
graph, i.e., {II,III,IV}, {II,V,VI}, {II,VII,VIII}, {III,V,VII},
{III,VI,VIII}, {IV,V,VIII}, and {IV,VI,VII}.

However, due to the enormous number of possible candi-
date sets, just a minor excerpt was analyzed for this paper. The
sets of interest are checked for completeness via a numerical
analysis. The employed algorithm is described in Appendix.

So far, 4185 unique truly minimal sets of length 2N = 16
have been found. There are two major differences to the
slightly overcomplete sets with 24 observables. On the one
hand, all sets found are constructed from exactly four different
shape classes. On the other hand, truly minimal complete
sets exist with a minimal number of triple polarization ob-
servables, namely only OI

4 = O�
yy′ from group I. Hence, this

observable has to be included in every set as explained in
Sec. II.
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TABLE IV. A collection of polarization observable measurements for two pseudoscalar meson photoproduction. Hint: We do not
distinguish the datasets according to the kinematical variable and whether is differential or total cross-section data. Further details can be
found in the cited references.

Observable Energy range Elab
γ Facility Reference Year of publication

γ p → pπ 0π 0

I0 309–792 MeV TAPS at MAMI Härter et al. [20] 1997
I0 309–820 MeV TAPS at MAMI Wolf et al. [21] 2000
I0 200–820 MeV TAPS at MAMI Kleber et al. [22] 2000
I0 300–425 MeV TAPS at MAMI Kotulla et al. [23] 2004
I0 309–800 MeV CB/TAPS at MAMI Zehr et al. [24] 2012
I0 309–1400 MeV CB/TAPS at MAMI Kashevarov et al. [25] 2012
I0 432–1374 MeV CB/TAPS at MAMI Dieterle et al. [26] 2015
I0 400–800 MeV DAPHNE at MAMI Braghieri et al. [27] 1995
I0 400–800 MeV DAPHNE at MAMI Ahrens et al. [28] 2005
I0 309–820 MeV TAPS at MAMI, CB at ELSA Sarantsev et al. [29] 2008
I0 400–1300 MeV CB at ELSA Thoma et al. [30] 2008
I0 ≈750–2500 MeV CBELSA/TAPS at ELSA Thiel et al. [31] 2015
I0, 	 600–2500 MeV CB/TAPS at ELSA Sokhoyan et al. [1] 2015
I0, 	 650–1450 MeV GRAAL Assafiri et al. [32] 2003
	 650–1450 MeV CB at ELSA Thoma et al. [30] 2008
I� 560–810 MeV CB/TAPS at MAMI Krambrich et al. [33] 2009
I� ≈600–1400 MeV CB/TAPS at MAMI Oberle et al. [34] 2013
I� 550–820 MeV CB/TAPS at MAMI Zehr et al. [24] 2012
E , σ1/2, σ3/2 ≈431–1455 MeV CB/TAPS at MAMI Dieterle et al. [35] 2020
Px, Py, T, H, P 650–2600 MeV CBELSA/TAPS at ELSA Seifen et al. [14] 2020
Ic, Is 970–1650 MeV CB/TAPS at ELSA Sokhoyan et al. [1] 2015

γ p → pπ+π−

I0 400–800 MeV DAPHNE at MAMI Braghieri et al. [27] 1995
I0 400–800 MeV DAPHNE at MAMI Ahrens et al. [36] 2007
I0 370–940 MeV LNF Carbonara et al. [37] 1976
I0 800–1100 MeV NKS at LNS Hirose et al. [38] 2009
I0 500–4800 MeV CEA Crouch et al. [39] 1964
I0 ≈560–2560 MeV SAPHIR at ELSA Wu et al. [40] 2005
I0 ≈895–1663 MeV CLAS at JLAB Golovatch et al. [41] 2019
I� 575–815 MeV CB/TAPS at MAMI Krambrich et al. [33] 2009
I� 502–2350 MeV CLAS at JLAB Strauch et al. [42] 2005
I� 1100–5400 MeV CLAS at JLAB Badui et al. [43] 2016

γ p → pπ 0η

I0 ≈930–2500 MeV CB/TAPS at ELSA Gutz et al. [15] 2014
I0 ≈1070–2860 MeV CB at ELSA Horn et al. [44] 2008
I0 950–1400 MeV CB/TAPS at MAMI Kashevarov et al. [45] 2009
I0 1000–1150 MeV GeV-γ at LNS Nakabayashi et al. [46] 2006
I0, 	 ≈930–1500 MeV GRAAL Ajaka et al. [47] 2008
	 970–1650 MeV CBELSA/TAPS at ELSA Gutz et al. [48] 2008
	 ≈1070–1550 MeV CB/TAPS at ELSA Gutz et al. [15] 2014
Ic, Is 970–1650 MeV CBELSA/TAPS at ELSA Gutz et al. [49] 2010
Ic, Is ≈1081–1550 MeV CB/TAPS at ELSA Gutz et al. [15] 2014

γ p → nπ+π 0

I0 300–820 MeV TAPS at MAMI Langgärtner et al. [50] 2001
I0 ≈325–800 MeV CB/TAPS at MAMI Zehr et al. [24] 2012
I0 400–800 MeV DAPHNE at MAMI Braghieri et al. [27] 1995
I0 400–800 MeV DAPHNE at MAMI Ahrens et al. [51] 2003
I� 520–820 MeV CB/TAPS at MAMI Krambrich et al. [33] 2009
I� ≈550–820 MeV CB/TAPS at MAMI Zehr et al. [24] 2012

γ n → nπ 0π 0

I� ≈600–1400 MeV CB/TAPS at MAMI Oberle et al. [34] 2013
I0, 	 ≈600–1500 MeV GRAAL Ajaka et al. [52] 2007
I0 ≈430–1371 MeV CB/TAPS at MAMI Dieterle et al. [26] 2015
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TABLE IV. (Continued.)

Observable Energy range Elab
γ Facility Reference Year of publication

γ n → pπ−π 0

I0 ≈370–940 MeV LNF Carbonara et al. [37] 1976
I0 ≈450–800 MeV DAPHNE at MAMI Zabrodin et al. [53] 1997
I0 ≈500–800 MeV DAPHNE at MAMI Zabrodin et al. [54] 1999

γ n → nπ+π−

I0 370–940 MeV LNF Carbonara et al. [37] 1976
γ p → pK+K−

I0 3000–3800 MeV CLAS at JLAB Lombardo et al. [55] 2018
I� 1100–5400 MeV CLAS at JLAB Badui et al. [43] 2016

In total, 69 sets with only one triple polarization observable
have been found. All of them are shown in Table V. Hence,
these are the most promising ones when it comes to the exper-
imental verification of Moravcsik’s theorem.

B. Algebraic phase-fixing method

In the following, the phase-fixing approach first developed
by Nakayama in a treatment of single-meson photoproduction
(i.e., for N = 4 amplitudes) [8] is adapted to two meson pho-
toproduction. Thus it is possible, although tedious, to derive
minimal complete sets of observables with algebraic methods.

Since the full mathematical derivation is quite exten-
sive, all mathematical details are given in the Supplemental
Material [58].

One starts by combining, i.e., adding or subtracting, the
observables within one shape-class in such a way that the
result only depends on two relative phases. By doing this, a
“decoupled” shape-class is formed. See also Table VI.

In that way, one establishes a mathematical similarity with
the shape-classes in single-meson photoproduction [8,13]. For
shape-class II this would be

IIa : OII
s1 + OII

s2,OII
s3 + OII

s4,OII
c1 + OII

c2,OII
c3 + OII

c4, (16)

IIb : OII
s1 − OII

s2,OII
s3 − OII

s4,OII
c1 − OII

c2,OII
c3 − OII

c4. (17)

The algebraic approach shown here works out only in case
the observables are selected from very particular combina-
tions of four decoupled shape-classes.

More precisely, it has to be possible to establish a “consis-
tency relation” [cf. Eq. 1] among the relative phases belonging
to all the involved decoupled shape-classes. A necessary and
sufficient condition for this can be formulated in terms of the
graph constructed from the relative phases (cf. Sec. II): the
latter graph has to be a cycle graph.

There exist 40 possible combinations of four decoupled
shape classes fulfilling these requirements and which have the
following general form:

{Xa, Xb, Y, Z}. (18)

Two examples are shown in Fig. 3, and a complete list can
be found in the Supplemental Material [58]. The following
derivation holds for all combinations of shape-classes of the
form given in Eq. (18).

The following discussion focuses on the example case

{IIa, IIb, VIb, VIIIa}. (19)

For the remaining 39 cases, the derivation proceeds analo-
gously.

For the example case (19), the consistency relation reads
(cf. Table VI)

φ13 + φ24︸ ︷︷ ︸
IIa

+φ57 + φ68︸ ︷︷ ︸
IIb

= φ18 + φ27︸ ︷︷ ︸
VIIIa

−φ35 − φ46︸ ︷︷ ︸
VIb

. (20)

According to Nakayama [8], the “phase-fixing” procedure
starts by picking a particular combination of observables from
the considered combination of shape-classes, i.e., from Eq. 19.
In general, one picks two observables from shape-class Xa,
two from Xb and one observable each from two different
shape-classes selected from the 12 remaining. For the case
at hand, these are two observables from shape-class IIa, two
from IIb, one from VIb, as well as one from VIIIa. For
any selection of observables which has this pattern, one has
to work out the remaining discrete phase-ambiguities which
exist for the associated relative phases. For each combination
of possible discrete ambiguities, the consistency relation (20)
then has to be evaluated. In case the consistency relations of
such a combination are all linearly independent [8,13], the
considered set of observables is complete.

The way forward is analogous to that done in Ref. [8]. A
detailed description on how to determine all possible discrete

1

3

5

72

4

6

8

{IIa,IIb,VIb,VIIIa}

1

2

6

7

3

4

8

5
{Va,Vb,IIIa,IVb}

FIG. 3. Examples are shown for graph topologies which imply
the possibility for a consistency relation (cf. the relative phases listed
in Table VI).
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TABLE V. Truly minimal sets consisting of 2N = 16
observables with the minimal number of triple polarization
observables, i.e., just OI

4 = O�
yy′ . Group I observables

{I�, Py, Py′ ,O�
yy′ ,Oyy′ , P�

y′ , P�
y , I0} are not explicitly shown

because they are common to all complete sets. The notation used is
analogous to that of Roberts and Oed [5].

(1) Pz Px′ Pz′ Ps
x Pc

z P�
z P�

x′ P�
z′

(2) Pz Ps
x Pc

z P�
z P�

x′ P�
z′ Oyx′ Oyz′

(3) Pz Ps
x Pc

z P�
x′ P�

z′ Oyx′ Oyz′ Ozy′

(4) Px′ Pz′ Ps
x Pc

z P�
z P�

x′ P�
z′ Ozy′

(5) Ps
x Pc

z P�
z P�

x′ P�
z′ Oyx′ Oyz′ Ozy′

(6) Px Pz Pz′ Ps
x P�

x Pc
z P�

z P�
z′

(7) Px Pz Pz′ Ps
x Pc

z P�
z′ Oxy′ Ozy′

(8) Px Pz Pz′ Ps
x Pc

z Oxy′ Oyz′ Ozy′

(9) Pz′ Ps
x P�

x Pc
z P�

z P�
z′ Oxy′ Ozy′

(10) Pz′ Ps
x P�

x Pc
z P�

z Oxy′ Oyz′ Ozy′

(11) Ps
x P�

x Pc
z P�

z P�
z′ Oxy′ Oyz′ Ozy′

(12) Pz Pc
x Ps

x Pc
z Ps

z P�
z P�

z′ Oyz′

(13) Pz Pc
x Ps

x Pc
z Ps

z P�
z′ Oyz′ Ozy′

(14) Pc
x Ps

x Pc
z Ps

z P�
z P�

z′ Oyz′ Ozy′

(15) Px Pz Px′ Ps
x P�

x Pc
z P�

z P�
x′

(16) Px Pz Px′ Ps
x Pc

z P�
x′ Oxy′ Ozy′

(17) Px Pz Px′ Ps
x Pc

z Oxy′ Oyx′ Ozy′

(18) Px′ Ps
x P�

x Pc
z P�

z P�
x′ Oxy′ Ozy′

(19) Px′ Ps
x P�

x Pc
z P�

z Oxy′ Oyx′ Ozy′

(20) Ps
x P�

x Pc
z P�

z P�
x′ Oxy′ Oyx′ Ozy′

(21) Pz Px′ Pz′ Pc
x Ps

z P�
z P�

x′ P�
z′

(22) Pz Pc
x Ps

z P�
z P�

x′ P�
z′ Oyx′ Oyz′

(23) Pz Px′ Pz′ Pc
x Ps

z Oyx′ Oyz′ Ozy′

(24) Pz Pc
x Ps

z P�
x′ P�

z′ Oyx′ Oyz′ Ozy′

(25) Px′ Pz′ Pc
x Ps

z P�
z P�

x′ P�
z′ Ozy′

(26) Pc
x Ps

z P�
z P�

x′ P�
z′ Oyx′ Oyz′ Ozy′

(27) Pz Pc
x Ps

x Pc
z Ps

z P�
z P�

x′ Oyx′

(28) Pz Pc
x Ps

x Pc
z Ps

z P�
x′ Oyx′ Ozy′

(29) Pc
x Ps

x Pc
z Ps

z P�
z P�

x′ Oyx′ Ozy′

(30) Px Pz Pz′ Pc
x P�

x Ps
z P�

z P�
z′

(31) Px Pz Pz′ Pc
x Ps

z P�
z′ Oxy′ Ozy′

(32) Px Pz Pz′ Pc
x Ps

z Oxy′ Oyz′ Ozy′

(33) Pz′ Pc
x P�

x Ps
z P�

z P�
z′ Oxy′ Ozy′

(34) Pz′ Pc
x P�

x Ps
z P�

z Oxy′ Oyz′ Ozy′

(35) Pc
x P�

x Ps
z P�

z P�
z′ Oxy′ Oyz′ Ozy′

(36) Px Px′ Pz′ Ps
x P�

x Pc
z P�

x′ P�
z′

(37) Px Ps
x P�

x Pc
z P�

x′ P�
z′ Oyx′ Oyz′

(38) Px Ps
x Pc

z P�
x′ P�

z′ Oxy′ Oyx′ Oyz′

(39) Px′ Pz′ Ps
x P�

x Pc
z P�

x′ P�
z′ Oxy′

(40) Ps
x P�

x Pc
z P�

x′ P�
z′ Oxy′ Oyx′ Oyz′

(41) Px Pz Px′ Pc
x P�

x Ps
z P�

z P�
x′

(42) Px Pz Px′ Pc
x Ps

z P�
x′ Oxy′ Ozy′

(43) Px Pz Px′ Pc
x Ps

z Oxy′ Oyx′ Ozy′

(44) Px′ Pc
x P�

x Ps
z P�

z P�
x′ Oxy′ Ozy′

(45) Px′ Pc
x P�

x Ps
z P�

z Oxy′ Oyx′ Ozy′

(46) Pc
x P�

x Ps
z P�

z P�
x′ Oxy′ Oyx′ Ozy′

TABLE V. (Continued.)

(47) Px Pc
x Ps

x P�
x Pc

z Ps
z P�

z′ Oyz′

(48) Px Pc
x Ps

x Pc
z Ps

z P�
z′ Oxy′ Oyz′

(49) Pc
x Ps

x P�
x Pc

z Ps
z P�

z′ Oxy′ Oyz′

(50) Px Pz P�
x P�

z Pc
x′ Ps

z′ Oxz′ Ozx′

(51) Px Pz Pc
x′ Ps

z′ Oxy′ Oxz′ Ozx′ Ozy′

(52) P�
x P�

z Pc
x′ Ps

z′ Oxy′ Oxz′ Ozx′ Ozy′

(53) I
c

Px P�
x Pc

y Oxx′ Oxz′ Ozx′ Ozz′

(54) I
c

Px P�
x Pc

y′ Oxx′ Oxz′ Ozx′ Ozz′

(55) Px P�
x Pc

y Pc
y′ Oxx′ Oxz′ Ozx′ Ozz′

(56) I
c

Px Pc
y Oxx′ Oxy′ Oxz′ Ozx′ Ozz′

(57) I
c

Px Pc
y′ Oxx′ Oxy′ Oxz′ Ozx′ Ozz′

(58) Px Pc
y Pc

y′ Oxx′ Oxy′ Oxz′ Ozx′ Ozz′

(59) I
c

P�
x Pc

y Oxx′ Oxy′ Oxz′ Ozx′ Ozz′

(60) P�
x Pc

y Pc
y′ Oxx′ Oxy′ Oxz′ Ozx′ Ozz′

(61) I
c

Px P�
x Pc

x′ Ps
x′ Pc

y′ Pc
z′ Ps

z′

(62) Px P�
x Pc

y Pc
x′ Ps

x′ Pc
y′ Pc

z′ Ps
z′

(63) I
c

Px Pc
y Pc

x′ Ps
x′ Pc

z′ Ps
z′ Oxy′

(64) I
c

P�
x Pc

y Pc
x′ Ps

x′ Pc
z′ Ps

z′ Oxy′

(65) I
c

P�
x Pc

x′ Ps
x′ Pc

y′ Pc
z′ Ps

z′ Oxy′

(66) P�
x Pc

y Pc
x′ Ps

x′ Pc
y′ Pc

z′ Ps
z′ Oxy′

(67) I
c

Is Pc
y Ps

y Pc
x′ Ps

z′ Oxz′ Ozx′

(68) I
c

Is Pc
x′ Pc

y′ Ps
y′ Ps

z′ Oxz′ Ozx′

(69) Pc
y Ps

y Pc
x′ Pc

y′ Ps
y′ Ps

z′ Oxz′ Ozx′

ambiguities and determining whether a set of consistency re-
lations is linear independent can be found in the Supplemental
Material [58].

The result for the discussed example can be found in
Table VII. The results shown come only from considering
the left side of Eq. 20. In general, the determination of the
discrete ambiguities of the left side is easier than that of
the right side. So, theoretically, even more combinations are
possible. Unfortunately the discussed example (19) does not
yield minimal complete sets with only one triple polarization
observable. Other combination of shape classes may yield the
desired result where the only triple polarization observable is
contained in the diagonal shape class.

TABLE VI. The 14 decoupled shape-classes IIa, IIb, ..., VIIIa,
VIIIb are listed together with their corresponding pairs of relative
phases.

IIa −→ {φ13, φ24} IIb −→ {φ57, φ68}
IIIa −→ {φ12, φ34} IIIb −→ {φ56, φ78}
IVa −→ {φ14, φ23} IVb −→ {φ58, φ67}
Va −→ {φ15, φ26} Vb −→ {φ37, φ48}
VIa −→ {φ17, φ28} VIb −→ {φ35, φ46}
VIIa −→ {φ16, φ25} VIIb −→ {φ38, φ47}
VIIIa −→ {φ18, φ27} VIIIb −→ {φ36, φ45}

014607-9
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TABLE VII. Truly minimal complete sets, consisting of 2N =
16 observables, obtained for the example discussed in Sec. VII B.
The group I observables {I�, Py, Py′ ,O�

yy′ ,Oyy′ , P�
y′ , P�

y , I0} are not
explicitly shown because they are common to all complete sets. The
notation used is analogous to that used by Roberts and Oed [5].

Px Pz P�
x P�

z Ps
z Pc

x Os
zz′ Oc

xz′

Px Pz P�
x P�

z Ps
z Pc

x Oc
zx′ Os

xx′

Px Pz P�
x P�

z Ps
z Pc

x Oc
zz′ Os

xz′

Px Pz P�
x P�

z Ps
z Pc

x Os
zx′ Oc

xx′

Px Pz P�
x P�

z Pc
z Ps

x Os
zz′ Oc

xz′

Px Pz P�
x P�

z Pc
z Ps

x Oc
zx′ Os

xx′

Px Pz P�
x P�

z Pc
z Ps

x Oc
zz′ Os

xz′

Px Pz P�
x P�

z Pc
z Ps

x Os
zx′ Oc

xx′

Px Pz P�
x P�

z Os
zy′ Oc

xy′ Os
zz′ Oc

xz′

Px Pz P�
x P�

z Os
zy′ Oc

xy′ Oc
zx′ Os

xx′

Px Pz P�
x P�

z Os
zy′ Oc

xy′ Oc
zz′ Os

xz′

Px Pz P�
x P�

z Os
zy′ Oc

xy′ Os
zx′ Oc

xx′

Px Pz P�
x P�

z Oc
zy′ Os

xy′ Os
zz′ Oc

xz′

Px Pz P�
x P�

z Oc
zy′ Os

xy′ Oc
zx′ Os

xx′

Px Pz P�
x P�

z Oc
zy′ Os

xy′ Oc
zz′ Os

xz′

Px Pz P�
x P�

z Oc
zy′ Os

xy′ Os
zx′ Oc

xx′

Ps
z Pc

x Oxy′ Ozy′ O�
xy′ O�

zy′ Os
zz′ Oc

xz′

Ps
z Pc

x Oxy′ Ozy′ O�
xy′ O�

zy′ Oc
zx′ Os

xx′

Ps
z Pc

x Oxy′ Ozy′ O�
xy′ O�

zy′ Oc
zz′ Os

xz′

Ps
z Pc

x Oxy′ Ozy′ O�
xy′ O�

zy′ Os
zx′ Oc

xx′

Pc
z Ps

x Oxy′ Ozy′ O�
xy′ O�

zy′ Os
zz′ Oc

xz′

Pc
z Ps

x Oxy′ Ozy′ O�
xy′ O�

zy′ Oc
zx′ Os

xx′

Pc
z Ps

x Oxy′ Ozy′ O�
xy′ O�

zy′ Oc
zz′ Os

xz′

Pc
z Ps

x Oxy′ Ozy′ O�
xy′ O�

zy′ Os
zx′ Oc

xx′

Oxy′ Ozy′ O�
xy′ O�

zy′ Os
zy′ Oc

xy′ Os
zz′ Oc

xz′

Oxy′ Ozy′ O�
xy′ O�

zy′ Os
zy′ Oc

xy′ Oc
zx′ Os

xx′

Oxy′ Ozy′ O�
xy′ O�

zy′ Os
zy′ Oc

xy′ Oc
zz′ Os

xz′

Oxy′ Ozy′ O�
xy′ O�

zy′ Os
zy′ Oc

xy′ Os
zx′ Oc

xx′

Oxy′ Ozy′ O�
xy′ O�

zy′ Oc
zy′ Os

xy′ Os
zz′ Oc

xz′

Oxy′ Ozy′ O�
xy′ O�

zy′ Oc
zy′ Os

xy′ Oc
zx′ Os

xx′

Oxy′ Ozy′ O�
xy′ O�

zy′ Oc
zy′ Os

xy′ Oc
zz′ Os

xz′

Oxy′ Ozy′ O�
xy′ O�

zy′ Oc
zy′ Os

xy′ Os
zx′ Oc

xx′

VIII. IMPLICATIONS FOR EXPERIMENTALISTS

The experimental verification of complete sets, in the
framework of single pseudoscalar meson photoproduction,
was studied, for example, by Ireland [9] and Vrancx et al.
[59]. They concluded that, as soon as the data have a finite
measurement uncertainty, it might not be possible to deter-
mine unique solutions for the amplitudes in case one uses a
mathematical, minimal complete set of observables. It is be-
lieved that additional observables could resolve the ambiguity.
Thus it is important to measure more than 16 observables [9].

Observables which are relatively easy to measure rank in
the categories B, T , BT because they do not require a recoil

polarimeter. Even though they form a group of 16 observables,
they do not form a complete set, which was verified numer-
ically in this study. The measurement of some well-chosen
observables from the categories R, BR, T R, and BT R is
essential. Out of the 69 possible complete sets that require the
measurement of only one triple polarization observable and
which are listed in Table V, the sets (6), (12), (15), (27), (30),
(41), and (47) contain the minimal number of recoil polar-
ization observables, e.g., the set (15) contains the following
observables:

{
I�, Py, Py′ ,O�

yy′ ,Oyy′ , P�
y′ , P�

y , I0, Px, Pz, Px′ , Ps
x,

P�
x , Pc

z, P�
z , P�

x′
}
. (21)

Data exist for eight of these observables [I0, I�, Px, Py, Py′ ,
Oyy′ (= −Ic), Ps

x, P�
z ] for the pπ0π0 final state, albeit not hav-

ing a perfect overlap of the energy and angular ranges covered
by the different data sets (see Table IV). The remaining eight
observables could be measured in the future in three different
experiments using a linearly polarized photon beam with a
longitudinally polarized target (Pz, Pc

z), using a circularly po-
larized photon beam and a transversely polarized target (P�

x ,
P�

y ), and by employing a recoil polarimeter in addition to the
latter configuration, the observables Px′ , P�

x′ , P�
y′ , and O�

yy′ can
be obtained as well.

IX. CONCLUSION AND OUTLOOK

Within this paper, the problem of finding complete sets
for two pseudoscalar meson photoproduction was studied.
For this purpose, a slightly modified version of Moravcsik’s
theorem was applied. This method is capable of extracting
complete sets of observables in a totally automated manner.
The automation capability, easy accessibility, as well as the
adaptability for reactions with arbitrary N are the strengths of
Moravcsik’s theorem. However, it turns out that the resulting
sets from Moravcsik are slightly overcomplete since each
observable depends on more than one bilinear product. For
this reason, a numerical- as well as an algebraic method are
discussed in order to reduce these sets to minimal complete
sets containing 2N = 16 observables. The characteristics of
the minimal sets are discussed. Finally, 69 minimal complete
sets containing the minimal number of triple polarization
observables, namely only one, are presented. From these sub-
sets in combination with the extensive overview of already
performed measurements in two pseudoscalar meson pho-
toproduction, the most promising set of observables, which
could be measured in the near future, is presented.

Further studies could be performed on how Moravcsik’s
theorem should be adapted in order to yield directly minimal
complete sets. This would decrease the numerical effort enor-
mously and would make the theorem even more accessible.
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APPENDIX: ALGORITHM TO CHECK FOR
COMPLETENESS

The following algorithm was designed by Tiator [60] and
was already applied in Ref. [61]. It is used to check if a set of
observables is able to resolve continuous as well as discrete
ambiguities. The starting point is a system of multivariate
homogeneous polynomials f1(�t ), . . . , fn(�t ). The input is a
vector of N complex amplitudes ti. Without loss of general-
ity, the overall phase of the complex amplitudes is fixed by
requiring Re(t1) > 0 and Im(t1) = 0. In a next step an N-
dimensional solution vector �s is formed. It consist of 2N − 1
randomly chosen prime numbers within a certain range. These

serve as values for the real and imaginary parts of ti. Using
prime numbers and increasing the range from which they are
chosen should reduce the chance to land on a singularity in
the solution space, where the “condition of equal magnitudes
of relative phases” [8] is met.

Finally, the polynomial system

f1(�t ) = g1,

... (A1)

fn(�t ) = gn,

is constructed, where gi = fi(�s ) is a scalar quantity. The
function NSolve from Mathematica [56] is employed to solve
the algebraic system for the variables t1, . . . , tN . According
to the Wolfram Mathematica documentation [62,63]: “For
systems of algebraic equations, NSolve computes a numerical
Gröbner basis using an efficient monomial ordering, then uses
eigensystem methods to extract numerical roots.”

The system of polynomials is said to be complete if only
one solution is found which furthermore is equivalent to �s.
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