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Role of continuum in nuclear direct reactions with one-neutron halo nuclei:
A one-dimensional model
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Background: The problem of the scattering of a one-neutron halo nucleus by another nucleus might involve an
extremely complicated solution, particularly when breakup and rearrangement channels are to be considered.
Purpose: We construct a simple model to study the evolution of a single-particle wave function during the
collision of a one-dimensional potential well by another well.
Method: Our one-dimensional model provides the essential three-body nature of this problem, and allows for a
much simpler application and assessment of different methods of solution. To simplify further the problem, we
assume that the potential well representing the projectile moves according to a predetermined classical trajectory,
although the internal motion of the “valence” particle is treated fully quantum mechanically. This corresponds
to a semiclassical approach of the scattering problem, applicable in the case of heavy projectile and target.
Different approaches are investigated to understand the dynamics involving one-body halo-like systems: the
“exact” time-dependent solution of the Schrödinger equation is compared to a numerical continuum-discretized
coupled-channels (CC) calculation presenting various model cases including different reaction channels.
Results: This framework allows us to discuss the reaction mechanism and the role of the continuum, the inclusion
of which in the CC calculation results to be crucial to reproduce the exact solution, even when the initial and
final states are well bound.
Conclusions: The dynamical situations under study can be linked to analogous problems solved in a three-
dimensional (3D) CC framework, so the present model provides a simple tool to understand the main challenges
experienced in the usual 3D models with the treatment of the continuum.
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I. INTRODUCTION

One of the most relevant research lines in contemporary
nuclear physics is the investigation, both experimentally and
theoretically, of nuclei under extreme conditions and, in par-
ticular, nuclei far from the stability valley. Along this line,
truly enticing and sometimes striking novel nuclear structure
phenomena are being observed. In particular, these so-called
exotic nuclei present low proton or neutron separation energy,
short lifetime, and a radius which noticeably deviates from
the A1/3 dependence of stable nuclei, a fact that is related
to a skin or a halo structure [1,2]. The excess of neutrons
or protons also leads to a different arrangement which is
generally described as deformation: this is indicated by new
single-particle character of states and new magic numbers
related to new shell closure [3,4]. Because of the large spa-
tial separation between the center of mass and the center of
charge, in presence of an external electric field low-energy
electric dipole excitations can result, as well as very clear
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cluster effects [5]. Examples of exotic systems are nuclei with
large neutron excess, with the barely bound outermost ones
creating an extended density distribution, referred to as a halo.
There can be different kinds of halo systems: a nucleus with
one valence neutron is for example 11Be, whereas 8B is an
isotope presenting a one-proton halo.

Nowadays, measuring the properties of such nuclei is the
goal of the main experimental nuclear facilities around the
world [6,7]. Due to their short lifetimes targets of such nuclei
are not feasible, so they cannot be studied by usual spec-
troscopic techniques. Thus, the challenge to measure nuclei
on the drip lines has triggered the development of radioac-
tive nuclear beams [8]. Most of our present knowledge of
stable and exotic nuclei stems from the analysis of nuclear
direct reactions. Direct reactions are characterized by different
channels—elastic and inelastic scattering, transfer of nucleons
between the colliding nuclei, and breakup (i.e., excitation
to positive energy states)—and they will feed a particular
channel in a way that depends sensitively on its character
[9]. In particular, inelastic scattering excites collective states
strongly; one-neutron transfer probes the single-particle char-
acter of states; two-nucleon transfer goes preferentially to
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states that exhibit strong pairing correlations; pairing could
also be tested via multinucleon transfer, as well as clustering;
the role of the continuum is investigated through breakup
reactions.

From a theoretical point of view, the conventional theories
valid for the description of stable nuclei have difficulties to
describe exotic systems, thus indicating the necessity to im-
prove them and include the description of the new phenomena
taking place at the limits of stability, taking into account the
new features. The theoretical description of halo nuclei is
strongly characterized by its weakly bound nature: the valence
nucleons are so weakly bound that the addition of any cor-
relation to the simple mean field model inevitably involves
the inclusion of the continuum in the system description. For
this reason the description of their structure or dynamics is
more involved, even considering inert cores. Direct reactions
are usually studied applying coupled-channels (CC) calcula-
tions; in the case of processes involving exotic systems the
continuum discretized coupled-channels (CDCC) description
is applied [10–13]. However, it is often difficult to model the
continuum, e.g., when transfer or breakup channels are dom-
inant [14–16]. Time-dependent approaches are often used to
disentangle the reaction mechanism (see, e.g., Refs. [17–20])
and following this line we construct a simple framework to
study the physics of nuclear direct reactions with heavy ions,
and in particular to understand how the continuum impacts on
the reaction. To better focus on our aim, our model is kept
as simple as possible: we consider “semiclassical” motion,
and reduce the problem to one dimension. This allows us to
concentrate on the study of the role of the continuum in a more
systematic and generalized way (varying the mean field prop-
erties of the colliding nuclei and the quantum representation of
the continuum), and to test CC techniques directly comparing
the results to the solution of the time-dependent Schrödinger
equation.

So, we consider the problem of one particle [21], initially
bound in a one-dimensional potential well (the “target” T ),
subject to an external field, which is also represented by a
potential well (the “projectile” P), and which moves in one
dimension according to a predetermined classical equation of
motion. This situation describes schematically the collision
between two nuclei, each one modeled by a potential well,
and it permits us to understand the mechanisms which govern
a nuclear reaction by following the evolution of the wave
function associated to the particle. Initially, since we assume
the particle to be a valence nucleon of the target, it coincides
with an eigenstate of the target potential well. During the
reaction the particle will feel the interaction with the incident
nucleus, i.e., the projectile potential well. Depending on the
parameters characterizing the reaction, the particle will more
likely remain in its initial state (elastic scattering), jump to
an excited bound level of the target (inelastic scattering),
be transferred to a bound level of the other nucleus, or it
could leave the initial nucleus and escape to the continuum
(breakup). As a consequence, the particle wave function will
change, according to the probability to excite the different
reaction channels.

This paper is structured as follows: in Sec. II we detail the
model for the numerical “exact” solution (Sec. II A) as well

as the coupled-channels description (Sec. II B). In particular,
in Sec. II B, we discuss the treatment of the continuum in our
CC calculation. In Sec. III we apply our models to different
dynamical situations; finally we summarize our results and
give our conclusions in Sec. IV.

II. THE MODEL

Let us start the model description by specifying the Hamil-
tonian and the initial conditions. The system is described with
the Hamiltonian

H(x, t ) = − h̄2

2μ

∂2

∂x2
+ VT (x) + VP(x − xp(t )), (1)

where we include two potentials VT and VP, chosen with a
Woods-Saxons shape, and associated to target and to projec-
tile, respectively, and μ represents the reduced mass of the
valence particle. In our semiclassical model the target is at
rest and only the projectile potential well moves according
to a classical trajectory. We use the trajectory proposed in
Ref. [22]:

xp(t ) = x0 +
√

ρ2 + (vt )2 − ρ, (2)

that accounts for the projectile motion with fixed asymptotic
velocity v at large distances, corresponding to an asymptotic
energy EP = 1/2mv2, which determines the effective duration
of the reaction (the higher the asymptotic energy, the faster is
the reaction), and a distance of closest approach x0 between
the two centers of the potentials. This trajectory allows the
projectile to change its acceleration over the distance ρ (in
our model of the order of 2 fm), thus simulating the nuclear
interaction with the target; at t = ±∞ the trajectory tends to
a uniform motion with zero acceleration. The turning point of
the collision corresponds to t = 0 ps. Each process is divided
in τ steps, so the total duration is τdt . We determine the time
interval as dt = dx/4v, small enough to provide a stable solu-
tion for a spatial grid step length of dx = 0.2 fm at maximum
and the asymptotic energies studied in the present paper.

Upon variation of these parameters, one can simulate
different kinematical conditions due to different bombard-
ing energies and impact parameters (corresponding to partial
waves in a quantum-mechanical description), while the choice
of the parameters of the two potentials accounts for the differ-
ent masses of the colliding nuclei, the Q values of the different
final channels, as well as the possibility of simulating weak
binding conditions.

By solving separately the time-independent Schrödinger
equation for each well J = (T, P)

HJ�
J (x) = EJ�

J (x), (3)

with the Hamiltonian

HJ = − h̄2

2μ

d2

dx2
+ VJ (x), (4)

we obtain two sets of bound levels �J (x) associated to
negative eigenvalues [23] (EJ < 0), and a continuum
associated to positive energies (EJ > 0). By applying the
discretization methods detailed in Ref. [24], we can also
define a set of square-integrable functions associated to a

014604-2



ROLE OF CONTINUUM IN NUCLEAR DIRECT REACTIONS … PHYSICAL REVIEW C 103, 014604 (2021)

finite number of positive energies, the so-called discretized
continuum pseudostates. Each wave function is normalized
as

∫ |�(x)|2dx = 1.
Depending on the kind of reaction under study we will

select one of the bound levels as the initial state of our single-
particle wave function. For example, to describe a pick-up
reaction we will choose as initial state a single-particle level
in the target. In the simulations presented here we will always
choose a target wave function as the initial one.

The problem can be solved in many different ways. Two
such methods are considered and compared here. On one
hand, we consider the exact solution of the problem by numer-
ically solving the corresponding time-dependent Schrödinger
equation (Sec. II A). On the other hand, we consider an ap-
proximate solution using the coupled-channels method, which
is usually applied in solving three-dimensional scattering
problems (Sec. II B). From this comparison, we expect to get
further insight on the accuracy and limitations of the coupled-
channels approach to quantum collisions.

A. Exact time-dependent solution

In the case of the exact solution, we proceed to compute the
time evolution of the valence neutron wave function �(x, t ) by
numerically solving the time-dependent Schrödinger equation

ih̄
∂

∂t
�(x, t ) = H(x, t )�(x, t ), (5)

with the Hamiltonian (1).
The wave function � is confined within an interval con-

taining the two wells. It is calculated at fixed points with
coordinates x j separated by dx. According to Ref. [25], one
can solve the problem by using a finite-difference approx-
imation of the Hamiltonian, giving rise to the following
tridiagonal form:

H jk = − h̄2

2μdx2
(δ jk+1 + δ jk−1 − 2δ jk )

+ δ jk[VT (x j ) + VP(x j − xp(t ))], (6)

and the time evolution of the wave function is governed by the
so-called Padé approximation of the evolution operator:

�(t + dt ) =
(

1 + idt

2h̄
H

)−1(
1 − idt

2h̄
H

)
�(t ), (7)

where dt is a finite time step, and H is the matrix in Eq. (6)
at the intermediate time t + dt/2. Note that the evolution
operator is a unitary operator.

An alternative approach is to integrate the differential equa-
tion using a finite-difference method, such as the Runge-Kutta
method. For that, in this paper we make use of the routines
D02PVF and D02PCF of the NAG library [26]. Although this
solution prevents us from a complete control of the code, it
was found to be faster than the Padé method. We have also
verified that both methods lead to identical results.

At the end of the time evolution, when t = t f , we can
compute the final probabilities for each reaction channel by
projecting the final wave function �(x, t f ) onto the corre-
sponding ith eigenstates of each well obtained by solving

Eq. (4) for each potential (target bound states J = T for
elastic and inelastic, projectile bound states J = P for transfer
channels):

Pelastic = ∣∣〈�T
i=g.s.(x)

∣∣�(x, t f )
〉∣∣2

, (8)

Pinelastic = ∣∣〈�T
i �=g.s.(x)

∣∣�(x, t f )
〉∣∣2

, (9)

Ptransfer = ∣∣〈�P
i (x − xp(t f ))

∣∣�(x, t f )
〉∣∣2

. (10)

We can also evaluate the breakup probability either by direct
subtraction,

Pbreakup = 1 − Pelastic − Pinelastic − Ptransfer, (11)

or by projecting the final wave function onto a complete set of
continuum states ϕ(k, x) depending on the asymptotic wave

number k = ±
√

2μE
h̄2 :

Pbreakup =
∫

dE

√
μ

2Eh̄2 P (k) =
∫

dk|〈ϕ(k, x)|�(x, t f )〉|2.
(12)

In one dimension, for each positive energy there are two
degenerate continuum wave functions with momentum k, one
incoming from the left and the other from the right. For
each energy we consider the symmetric and antisymmetric
combinations of the momentum normalized continuum wave
functions [24,27].

B. Approximate solution within the coupled-channels method

The same problem can be solved with the so-called
coupled-channels method, which is a popular framework used
to describe quantum collision problems in atomic, molecular,
and nuclear physics. For this calculation we follow the for-
mulation of Ref. [22], and we take into account two finite
sets of wave functions, related to the target and the pro-
jectile potentials: �T

j (x) and �P
j (x), of NT and NP states,

respectively. For collisions among tightly bound systems, the
basis expansion is usually restricted to bound states of the
projectile and target systems. However, when one of them
is weakly bound, it is important to include also continuum
states. For that, it is convenient to use a discrete represen-
tation of square-integrable functions, as those discussed in
Ref. [24] (we will discuss in more detail the inclusion of
the continuum in coupled-channels method in Sec. II B 1).
Moreover, they are defined in a one-dimensional spatial grid,
the origin of which corresponds to the center of the target
potential, which also corresponds to the laboratory frame. A
different choice, like the center-of-mass frame of reference in
which the two potentials are moving, would have implied a
careful treatment of target and projectile wave functions due
to the noncovariance of the Schrödinger equation [19,27]. In
addition, these two bases are nonorthogonal so we will solve
this problem introducing the dual bases ωJ

j (x, t ), as explained
in Refs. [22,27–30]. They are, respectively, associated to each
well and conjugated to the channel wave functions of each
potential, through the definition〈

�I
m

∣∣ωJ
n

〉 = δI,Jδn,m, (13)

where I, J = T, P and n, m = 1, 2, . . . , N(T,P).
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In the CC approach, the wave function describing the entire
system is expressed as a combination of target and projectile
states:

�(x, t ) =
NT∑
j=1

cT
j (t )�T

j (x) +
NP∑
j=1

cP
j (t )�P

j (x − xp(t )), (14)

and the solution of the problem is reduced to the determination
of the time evolution of the coefficients cJ

j (t ) from the finite
set of coupled differential equations:

ih̄
dcT

j (t )

dt
=

∑
cT

k (t )
〈
ωT

j

∣∣V P
∣∣�T

k

〉 + ∑
cP

k (t )
〈
ωT

j

∣∣V T
∣∣�P

k

〉
,

ih̄
dcP

j (t )

dt
=

∑
cT

k (t )
〈
ωP

j

∣∣V P
∣∣�T

k

〉 + ∑
cP

k (t )
〈
ωP

j

∣∣V T
∣∣�P

k

〉
,

(15)

where the bases functions and potentials related to T and P
depend on (x) and (x − xp(t )), respectively. These equations
are solved with the initial conditions cP

j (t = −∞) = 0 and
cT

j (t = −∞) = δi, j , where i indicates one of the bound states
in the target potential well.

To derive Eqs. (15), we first insert Eq. (14) of the total wave
function �(x, t ) into the time-dependent Schrödinger Eq. (5),
thus obtaining

∑
j

ih̄
dcT

j (t )

dt
�T

j (x) +
∑

j

ih̄
dcP

j (t )

dt
�P

j (x − xp(t ))

=
∑

j

cT
j [H(x, t ) − HT (x)]�T

j (x)

+
∑

j

cP
j [H(x, t ) − HP(x − xp(t ))]�P

j (x − xp(t )) (16)

where HJ is the Hamiltonian corresponding to the potential
well J = T, P of Eq. (4), and H is the Hamiltonian of the full
system presented in Eq. (1).

In problems involving different mass partitions, one
may use the so-called prior and post representations of
the Hamiltonian, depending on whether one considers the
projectile-target combination of the initial or final states; by
definition they have to give the same results. Equations (14)
and (15) are constructed in prior representation. In post repre-
sentation we can expand the system wave function on the dual
basis:

�(x, t ) =
∑

n

c̃T
n (t )ωT

n (x) +
∑

n

c̃P
n (t )ωP

n (x − xp(t )), (17)

and, following a derivation similar to the one given for the
prior representation, we obtain the corresponding set of cou-
pled equations:

ih̄
dc̃T

n (t )

dt
=

∑
c̃T

m(t )
〈
�T

n

∣∣V P
∣∣ωT

m

〉 + ∑
c̃P

m(t )
〈
�T

n

∣∣V P
∣∣ωP

m

〉
,

ih̄
dc̃P

n (t )

dt
=

∑
c̃T

m(t )
〈
�P

n

∣∣V T
∣∣ωT

m

〉 + ∑
c̃P

m(t )
〈
�P

n

∣∣V T
∣∣ωP

m

〉
,

(18)

where the bases functions and potentials related to T and P
depend on (x) and (x − xp(t )), respectively. From the total
wave function �(x, t ), we can also extract amplitudes for ex-
citation and transfer in post and prior representations through
the expressions

c̃I
n(t ) = 〈

ωI
n

∣∣�〉
,

cI
n(t ) = 〈

�I
n

∣∣�〉
. (19)

Due to post-prior symmetry, the amplitudes in the two repre-
sentations are related by

c̃T
n (t ) = cT

n (t ) +
∑

m

〈
�T

n

∣∣�P
m

〉
cP

m(t ),

c̃P
n (t ) = cP

n (t ) +
∑

m

〈
�P

n

∣∣�T
m

〉
cT

m(t ). (20)

The probabilities to populate the different final channels are
defined as

PJ
j = ∣∣cJ

j (t f )
∣∣2

(21)

in the prior representation, or as

P̃J
j = ∣∣c̃J

j (t f )
∣∣2

(22)

in the post representation. The index j denotes a label to the
quantum number of the final state in one of the two wells.

Because of the nonorthogonality of the basis states, the
sum of these “probabilities” is not conserved during the colli-
sion. If we instead define the probabilities by

PJ
j = Re

{[
cJ

j (t f )
]∗

c̃J
j (t f )

}
, (23)

conservation of total probability is always fulfilled within the
coupled-channel formalism. This follows from the fact that
the matrix governing the time evolution of the amplitudes in
the post representation is minus the Hermitian conjugate of the
matrix that determines the time evolution of the amplitudes in
the prior representation. We shall therefore call Eq. (23) the
unitary representation of probabilities. However, there is no
guarantee that these quantities are always non-negative during
the collision.

After the collision, when all overlaps between the basis
states in the two wells vanish, the amplitudes for a given
transition are the same in the post and prior representation,
as evident from Eq. (20). This so-called post-prior symmetry
implies that the total probability is conserved once the colli-
sion is over, also in a truncated coupled-channel treatment.

Inclusion of the continuum in the coupled-channels method

In Ref. [22] only bound states were included in the bases
and, hence, breakup channels were omitted. This is possibly
justified for tightly bound systems, but not for weakly bound
ones, for which the coupling to these channels can be very
important.

In a coupled-channels scheme one cannot include the full
continuum spectrum, since these states form a continuum of
energies. Moreover, the fact that these states are not square
integrable poses numerical problems since the coupling poten-
tials become of infinite range. To overcome these difficulties,
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it is customary to resort to an approximate, discrete descrip-
tion of the continuum. To describe the breakup process in CC
a set of discretized continuum states defined on a finite spatial
range is usually included for one or more subsystems of the
reaction constituents. Even if the description of the process is
supposed to occur at the end of the reaction, when the distance
between the constituents tends to infinity, this constitutes a
nonphysical situation. In fact, a proper description of the
continuum, even if discretized, should take into account all
the fragments involved in the reaction. This is what is done in
the Faddeev formalism [31].

In time-dependent approaches, like the one we apply, to
include a proper description of the continuum is a challenge.
Here, we use the pseudostates introduced in Ref. [24]; in
particular, we discretize the continuum in an infinite square-
well basis (BOX method in Ref. [24]). We apply the same
approach as in CDCC and provide discretized continuum
pseudostates for each potential well. To include them in our
coupled-channels calculation, we should ensure that at the end
of the time evolution there is no overlap between target and
projectile bases. This is due to the fact that the two bases are
not mutually orthogonal, so while they overlap the problem
loses unitarity, as we mentioned in Sec. II B. After the reac-
tion, when the projectile is far enough for these overlaps to
vanish, the problem has restored its unitarity and we can eval-
uate the final probabilities. Thus, if we include the continuum
we need to restrict it to a small range [−xJ

b,+xJ
b ] centered in

the corresponding potential J = T,P, in order that xT
b + xP

b >

xp(t f ). A limitation of this method is that the choice of xJ
b is

done a posteriori to include the breakup component into the
continuum interval. In situations in which the breakup channel
is strongly dominant, it could become impossible to apply
this method because the continuum component of the wave
function might not be localized close to one of the potential
wells. By comparing our CC results to the exact solution
of the Schrödinger equation in this simple one-dimensional
framework, we are able to understand the limitation of this
description of the continuum.

III. NUMERICAL RESULTS: COMPARISON OF EXACT
AND APPROXIMATE METHODS

In previous works we have applied the present approach
on a variety of model cases to study different aspects of
the direct reaction mechanism, always considering bound
and weakly bound systems. In particular, we have tested the
model by varying the distance of closest approach between
the two potential wells and the Q value of the reaction in
Refs. [27,32,33], and we have studied the role of the con-
tinuum in different configurations in Refs. [27,34,35]. To
explore different kinematical situations, we have performed
further calculations. In each case, we present the exact time-
dependent solution (Sec. II A) and compare this result with
the approximate solutions obtained with the coupled-channels
calculation presented, as described in Sec. II B. The chosen
model cases have been selected to illustrate several physical
situations in which different reaction channels are favored. For
each case we have highlighted an analogous problem solved
in a three-dimensional CDCC environment, discussing the
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FIG. 1. Target (a) and projectile (b) Woods-Saxon potentials for
the case A. Their bound states are schematically depicted in corre-
spondence with their binding energy. The initial state, in this case the
target ground state, is the dashed red curve.

main challenges experienced in the 3D situation within our
simplified framework.

A. Case A

We start with the simplest case of a well-bound target in
which we observe a dominance of elastic and inelastic chan-
nels. The target and projectile potentials are depicted in Fig. 1
with their respective bound-state wave functions. The lowest
state in the target is chosen as initial state for this reaction; its
wave function is shown as a dashed red curve in Fig. 1. The
projectile follows the trajectory (2) with an asymptotic veloc-
ity of 0.1 × c, which corresponds to an asymptotic energy of
5.0 MeV. The reduced mass for this system is 1.001 amu; the
time evolution is divided in τ = 2510 steps.

In Fig. 2 we present the exact wave-function squared value
at different moments of the time evolution. One can see that
a small component of the system wave function is transferred
and remains bound to the projectile potential well as it moves
away after the collision.

In Table I we present the results obtained by solving the
problem using different approaches and different bases.

In particular, they correspond to the following, as shown in
Table I.

TABLE I. Final probabilities for the model case A obtained with
the exact and the coupled-channels methods.

Exact CC(1) CC(2) CC(3) CC(4)

Elastic 86.1% 89.8% 89.4% 74.1% 84%
Inelastic 9.8% 10.1% 10.3% 18.4% 11.6%
Transfer g.s. 2.5% 6.8% 2.3%
Transfer 1 0.8% 0.56% 1.9%
Breakup 0.7% 0.3% 0.13%
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FIG. 2. Model case A, with the exact squared total wave function
at different times and a zoom for x > 20 fm in the inset. Target and
projectile potential wells position is indicated by the labels xT and
xP, respectively. The elapsed time for each frame is also indicated:
this process is composed by 2510 time steps; the turning point t = 0
ps occurs at step 1255.

(1) Exact: Calculation done by solving numerically the
time-dependent Schrödinger Eq. (5). The different results rep-
resent the probability for the valence neutron to remain in the
ground state (elastic) or to directly excite the corresponding
bound states of the two potential wells (inelastic and transfer)
or to excite continuum states (breakup).

(2) CC(1): Coupled-channels calculation in which only the
two target bound states are included.

(3) CC(2): Coupled-channels calculation using target bound
levels plus the first ten continuum pseudostates obtained in a
range equal to the maximum radius of the grid.

(4) CC(3): Coupled-channels calculation including only tar-
get and projectile bound states.

(5) CC(4): Coupled-channels calculation including target
and projectile bases composed by bound and five continuum
pseudostates calculated in a [−20; 20]-fm range centered in
the respective potential. It corresponds to an energy cutoff in
the continuum of 4 MeV.

By comparing the results of Table I, we note that the
coupled-channels calculation without transfer and continuum
channels, i.e., CC(1), reproduces rather well the elastic and
inelastic probabilities. This is a consequence of the dominance
of the elastic channel and, to a lesser extent, the inelastic
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FIG. 3. Final exact wave function (solid red line) and final CC(4)

wave function (dotted blue line). The projectile potential is placed at
xP(t f ) = 65 fm.

channel in this case. Including the breakup (CC(2)) channel
alone does not improve the result, because it is not possible to
describe the transfer in this configuration. Interestingly, a cal-
culation with elastic, inelastic, and transfer channels (CC(3)) is
not enough to reproduce the expected values, even if those are
the dominant channels in this case. By including all possible
channels simultaneously (CC(4)) we obtain a fine agreement
with the numerical solution.

In Fig. 3, we compare the final exact wave function (solid
red line), already reported in the upper panel of Fig. 2(d), to
the wave function obtained from calculation CC(4) using the
final coupled-channels coefficients in Eq. (14) (dotted blue
line). We observe a quite good agreement between the two
results, the slight differences being due to the overestimation
of the excitation of the first excited states of both target and
projectile wells by the CC calculation. To further understand
the role of continuum states in this process, we construct
the exact momentum-normalized bases ϕ(k, x) for the two
potential wells. We then calculate the probability as a function
of the momentum P (k) following Eq. (12). The results are
displayed in Fig. 4: the exact (solid red) and CC(4) (dashed
blue) final wave functions from Fig. 3 have been projected
onto the target and projectile exact continuum in the upper
and lower panels, respectively. We can notice how the “pro-
jectile continuum” plays a more relevant role than the “target
continuum”, and also how well the CC(4) calculation works
in this case. For the target continuum we observe that the
coupled-channels calculation does not reproduce accurately
the structure observed at lower momenta. Anyway, as already
observed, the total strength is negligible with respect to the
role of the other well. It should be noticed that the incident
energy of 5 MeV corresponds to a threshold of k = 0.49 fm−1;
the excitation slightly exceeds this limit probably due to the
nonconservation of energy in semiclassical descriptions [36].

This case is ideally described within the CC method,
given the dominance of the elastic channel. Many authors
have found an excellent agreement with elastic and transfer
experimental cross sections, provided that breakup channels
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FIG. 4. Breakup probabilities as a function of the momentum
in the continuum. The upper and lower panels correspond to the
projection on target and projectile states, respectively. Solid red
lines indicate the exact final wave function, while dashed blue lines
indicate the CC(4) final one.

are properly included in the CDCC calculation (see, e.g.,
Refs. [13,37–39]). Also, some authors have suggested that
continuum-continuum couplings have a strong influence in the
complete and incomplete fusion reaction for weakly bound
nuclei [40–42]. The present model case confirms the crucial
role of the continuum, and contributes to demonstrate that
even if the system under study is well bound and the breakup
component is negligible, the inclusion of continuum states can
be essential to get a proper description of the reaction. In this
situation in which the breakup component is not dominant,
to include two sets of continuum states, each one related to
one potential well, allows us to obtain a result in agreement
with the expected exact one. So, this treatment of the con-
tinuum could constitute an acceptable approximation in these
conditions.

B. Case B

In this second case the initial target state is extremely
weakly bound and consequently the breakup channel is the
most relevant. The target and projectile potentials are depicted
in Fig. 5 with their respective bound-state wave functions. The
initial state is the dashed red curve corresponding to the target
bound state. The energy of this state is −0.276 MeV and its
weakly bound nature is clearly evident from the extended tail
of its wave function. The projectile follows the trajectory (2)
with an asymptotic velocity of 0.1 × c corresponding to an
incident energy of 5.0 MeV, and with a reduced mass of 1.001
amu; the time evolution is divided in τ = 4790 steps.

The evolution of the exact wave function during the colli-
sion is presented in Fig. 6. In this case, both the transfer and
the continuum components of the system wave function are
clearly evident.

The results for case B, obtained applying different meth-
ods, are presented in Table II. In particular, they correspond to
the following, as shown in Table II.
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FIG. 5. Target (a) and projectile (b) Woods-Saxon potentials for
the case B. Their bound states are schematically depicted in corre-
spondence with their binding energy. The initial state, in this case the
target ground state, is the dashed red curve.

FIG. 6. Model case B, with the exact squared total wave function
at different times. Target and projectile potential wells position is
indicated by the labels xT and xP, respectively. The elapsed time for
each frame is also indicated: this process is composed by 4790 time
steps; the turning point t = 0 ps occurs at step 2395.
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TABLE II. Final probabilities for the model case B obtained with
the exact and the coupled-channels methods.

Exact CC(1) CC(2) CC(3)

Elastic 20.94% 22.9% 21.9% 25.8%
Transfer 6.73% <10−3% 0.3%
Breakup 72.32% 77.1% 78.2% 73%

(1) CC(1): Coupled-channels calculation in which the tar-
get bound state and ten target continuum states within the
[−40; 40]-fm range are included.

(2) CC(2): Coupled-channels calculation using target and
projectile bound levels plus 50 continuum target pseudostates
obtained in a radius equal to 40 fm.

(3) CC(3): Coupled-channels calculation including target
and projectile bases composed by bound and five continuum
pseudostates calculated in a [−22; 22]-fm range centered in
the respective potential. It corresponds to an energy cutoff in
the continuum of about 4 MeV.

Including only target basis states, calculation CC(1) can-
not describe alone the three channels of this process, even
if it reproduces quite well the proportion between elastic
and breakup channels. By adding the projectile bound state
(CC(2)) the elastic channel is better reproduced, but the trans-
fer is not well accounted for. Including also the projectile
continuum improves the result (CC(3)), thus showing that in
a perturbation picture the transfer is not a one-step process,
but it is reached through successive steps involving the contin-
uum. Multistep processes in direct reactions are traditionally
inferred by CDCC calculations, and, as we have seen in the
previous section, continuum-continuum couplings play a cru-
cial role [41,43,44].

In Fig. 7 we show the final wave functions for the ex-
act (solid red), CC(1) (dashed magenta), and CC(3) (dotted
blue) calculations. Neither of the two CC wave functions
reproduces the shape of the final exact wave function, al-
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FIG. 7. Final exact wave function (solid red line), final CC(1)

wave function (dashed magenta line), and final CC(3) wave function
(dotted blue line). The projectile potential is placed at xP(t f ) =
50 fm.
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FIG. 8. Breakup probabilities as a function of the momentum
in the continuum. The upper and lower panels correspond to the
projection on target and projectile states, respectively. Solid red
lines indicate the exact final wave function, while dashed blue lines
indicate the CC(3) final one.

though their breakup probabilities are in agreement. This
is partly explained by the failure in describing the transfer
component, and, more importantly, by the spatial restriction
of the pseudostates. This is also seen in Fig. 8, where we show
the projection of the exact (solid red) and CC(3) (dashed blue)
wave functions onto the exact continuum ϕ(k, x) of target
and projectile wells (upper and lower panels, respectively).
The coupled-channels calculation does not reproduce properly
the exact result: only their magnitudes are in agreement and,
in the case of the target continuum, the main structure is
reproduced with the maximum and minimum values placed at
similar momenta. Anyway, the similar order of magnitude of
the target and projectile distributions suggests the importance
of including the continuum of all the possible subsystems of
the outgoing particles to properly describe all the reaction
channels. Moreover they emphasize the fact that, when both
the projectile and target systems are weakly bound, the choice
for the continuum representation is not obvious and might
strongly affect the final result. We notice also that, since both
bases are not mutually orthogonal, including both representa-
tions leads to overcompleteness, similar to what is done in the
Faddeev formalism [31].

To further improve the coupled-channels solution we
should add more continuum pseudostates and enlarge the
range over which they are defined. Doing so, the two bases
would overlap and we would obtain a nonunitarity solution
(as we detailed in the previous section). To avoid that, we
should let the projectile evolve further, but in this way the
continuum component of the system wave function would
get away from the two wells and none of the two continuum
representations would describe properly the process. As one
can notice, already in the CC(3) calculation a small component
of the system wave function has not been included in the
range covered by the two bases [around −30 fm in Fig. 6(d)].
Anyway, even if the exact result is not fully reproduced, the
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FIG. 9. Target (a) and projectile (b) Woods-Saxon potentials for
the case C. Their bound states are schematically depicted in corre-
spondence with their binding energy. The initial state, in this case the
target excited state, is the dashed red curve.

coupled-channels calculation allows us to infer important in-
formation about the reaction mechanism for this case, and in
particular about the transfer process. This resembles the case
involving weakly bound systems, in which breakup becomes
an important reaction channel and the CDCC description be-
comes challenging. Also in the three-dimensional case, the
discrete basis representing the projectile and/or target con-
tinuum is spatially constrained by the extension of the basis,
and hence the calculated breakup observables are expected
to be reliable only in those kinematical situations which are
sensitive to that region [45].

C. Case C

We treat now a case in which all the possible channels are
relevant: elastic, inelastic, transfer, and breakup. The target
and projectile potentials are depicted in Fig. 9 with their
respective bound-state wave functions. The initial state is rep-
resented by the red dashed curve corresponding to the first
excited state of the target. We assume that the target ground
state is Pauli forbidden and the corresponding channel should
not be included in the calculation. However, in this case
we take into account this channel, calling it “decay to g.s.”
The projectile follows the trajectory (2) with an asymptotic
velocity of 0.05 × c corresponding to an incident energy of
1.0 MeV, and with a reduced mass of 0.975 amu; the time
evolution is divided in τ = 1450 steps.

The evolution of the exact wave function during the colli-
sion is presented in Fig. 10. The initial wave function exhibits
a node, because the initial state corresponds to the first excited
state of the well. At the end of the time evolution [Fig. 10(d)]
the component related to the target is asymmetric, and so
we expect a probability to deexcite the target to its ground
state. One can also clearly identify a continuum component
[in the region around −50 fm in Fig. 10(d)], and the pres-
ence of transfer to the projectile excited state because the

FIG. 10. Model case C, with the exact squared total wave func-
tion at different times. Target and projectile potential wells position
is indicated by the labels xT and xP, respectively. The elapsed time
for each frame is also indicated: this process is composed by 1450
time steps; the turning point t = 0 ps occurs at step 725.

wave-function component which remains bound to that well
presents a node.

The results for this case are reported in Table III, and
correspond to the following calculations.

(1) CC(1): Coupled-channels calculation in which the target
and projectile bound states are included.

(2) CC(2): Coupled-channels calculation in which the tar-
get bound states and ten target continuum states within the
[−100; 100]-fm range are included.

(3) CC(3): Coupled-channels calculation using the target
and projectile bound levels plus the first ten continuum pseu-

TABLE III. Final probabilities for the model case C obtained
with the exact and the coupled-channels methods. Note that CC(3)

and CC(4) total probability exceeds 100%, as expected.

Exact CC(1) CC(2) CC(3) CC(4)

Decay to g.s. 6.7% 0.85% 23.5% 16% 3%
Elastic 29% 99.06% 44.8% 10% 84%
Transfer g.s. 1.2% 0.03% 0.6% 0.04%
Transfer 1 15.6% 0.06% 36% 0.2%
Breakup 47.5% 31.7% 44% 20%
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dostates of the target potential, obtained within a radius equal
to the maximum radius of the grid. It corresponds to an energy
cutoff in the continuum of 0.3 MeV.

(4) CC(4): Coupled-channels calculation using the target
and projectile bound levels plus the first ten continuum pseu-
dostates of the projectile potential, obtained in a range equal
to the maximum radius of the grid. It corresponds to an energy
cutoff in the continuum of 0.3 MeV.

As evident from CC(1), the inclusion of the transfer channel
bound states is not enough and one needs the inclusion of the
continuum, thus indicating that this is not a one-step process
in this case. From the CC(2) calculation we understand that
the inclusion of the target continuum allows us to reproduce
reasonably well the elastic and breakup channels, as well
as the decay to the target ground state, but of course the
transfer description is missing because the projectile basis
is not included. In this case in which all the reaction chan-
nels are relevant, both target and projectile bases including
continuum states should be considered in our approximate
calculation. However, in this case we have difficulties to ap-
ply the same method for the inclusion of the continuum in
coupled-channels calculation, as was done in the previous
cases. In case A the initial parameters were set in order to
give a very small transfer probability to the projectile states,
thus the inclusion of target states was enough to reproduce
the exact results. In case B the breakup component did not
escape quickly from the collision area, so at the end of the
time evolution it was localized around the target in an interval
that did not overlap with the projectile potential. This fact
allowed us to construct two bases, for target and projectile,
respectively, which did not overlap at the end of the calcula-
tion, thus restoring the probability unitarity. In the case under
study, the breakup channel has a strong influence because it
is traveling faster than the projectile, and its component is not
easily localizable within the spatial grid. What we propose
here is to use continuum states which are defined over all
the spatial range. This is certainly closer to what the real
continuum is (even neglecting the phase shifts due to one
of the wells), but surely will not lead to a unitary solution,
because of overlap between bound states of a potential well
and continuum pseudostates of the other. By including a few
target continuum states (CC(3)), e.g., ten pseudostates, the
deviation from unitarity is not so large, and we are still able
to reproduce all the reaction channels. The fact that the in-
clusion of projectile pseudostates (CC(4)) does not reproduce
the exact results tells us that the breakup component is mostly
influenced by the target potential. Since the projectile well is
moving, the overlap between pseudostates and bound states is
changing, so we do not expect the coefficients associated to
continuum pseudostates to converge to a fixed value without
oscillations. In Fig. 11 we show the time evolution of the prob-
abilities computed with the CC(3) calculation (dotted lines).
Each panel corresponds to a given reaction channel; from the
lowest, decay to target ground state (green), elastic scattering
(blue), transfer to projectile ground state (red), transfer to
projectile first excited state (orange), and breakup (black). The
comparison with the exact result (solid lines) is presented.
Note how the coupled-channels calculation clearly loses uni-
tarity close to the turning point at t = 0 ps. By applying this
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FIG. 11. Evolution of probability as a function of time for the
model case C. Each panel corresponds to a reaction channel indicated
in the corresponding legend. Solid lines represent the exact results;
dotted lines correspond to the results obtained with coupled-channels
calculation CC(3) which are reported in Table III.

method we observe an acceptable description of the breakup
channel probability by the coupled-channels calculation with
continuum pseudostates, that oscillates around the expected
exact value. This is also confirmed by Fig. 12, where we
show how the final wave function for the CC(3) (dashed blue)
calculation reproduces reasonably well the breakup compo-
nent of the exact one (solid red), while the CC(2) (dot-dashed
magenta) fails. However, the effect of the inclusion of two
nonorthogonal bases in the CC description of case C is evident
in Fig. 13, where the projections of the exact (solid red) and
CC(3) (dashed blue) wave functions onto the exact continuum
ϕ(k, x) of target and projectile wells (upper and lower panels,
respectively) are not in agreement.

The situation presented in this case in which all the reaction
channels are competing goes beyond the expected scope of ap-
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FIG. 12. Final exact wave function (solid red line), final CC(2)

wave function (dot-dashed magenta line), and final CC(3) wave func-
tion (dashed blue line). The projectile potential is placed at xP(t f ) =
40.5 fm.
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FIG. 13. Breakup probabilities as a function of the momentum
in the continuum. The upper and lower panels correspond to the
projection on target and projectile states, respectively. Solid red
lines indicate the exact final wave function, while dashed blue lines
indicate the CC(3) final one.

plicability of standard coupled-channels methods. In fact, this
situation resembles the case in which the distance between the
fragments following the projectile breakup (|r|) is comparable
to the target-projectile distance (|R|). The Faddeev formalism
should be better applied [31].

To obtain a proper description of the breakup we should
use a set of continuum states which takes into account the
effect of the two potential wells together. We have constructed
a set of pseudostates diagonalizing in the BOX basis the
system Hamiltonian from Eq. (1), including both potentials
at time t = t f and using the whole spatial grid. We have then
projected the final exact wave function onto this set of contin-
uum states to evaluate how they describe the breakup channel
probability. In Table IV we show this probability varying the
number of pseudostates included in the basis. Increasing N ,
the total probability tends to the exact result. We need the
contribution of a large number of states to get the proper
result.

In a time-dependent model, to include the continuum of
all the constituents at the same time one should compute
a complete basis (including bound and continuum pseu-

TABLE IV. Breakup probabilities for the model case C obtained
with the projection of the final exact wave function onto N continuum
pseudostates calculated taking into account both potential wells in
the final configuration.

N Breakup probability

30 17.8%
50 41.6%
55 43.5%
60 46.7%
62 47.3%
63 47.5%

Exact result 47.5%

dostates) for the total system at each time step. This follows
the so-called two-center method, widely used in atomic
physics and recently applied for nuclear physics calculations
[46–48].

It is worth mentioning here that a difference with respect
to the usual calculation is that in our framework we only
included real potentials: the use of an imaginary component
can account for the fusion and other excluded channels and
could solve the nonunitary issue of the present formalism.
This solution could also account for the neglected target recoil
in our model. In our model the trajectory is fixed and the target
recoil is neglected, so the energy is not conserved in these
processes. However, this is not expected to affect the result,
when the asymptotic energy is much higher than the excitation
one. In the situation shown in the last case (Sec. III C), the ex-
citation energy might be a significant fraction of the available
kinetic energy or even be of the same order. This resembles
the limitations encountered in the eikonal model [49] (which
is based on the assumption of straight projectile trajectories)
when it is applied to study reactions at low beam energy
[50–52]. Even if we used real potentials, the main conclusions
on the role of the continuum in the reaction mechanism would
remain unchanged. The description of a continuum using a
basis which takes into account the phase shift induced by only
one potential well and, more in general, the choice of the
continuum which describes only a subsystem of the reaction
constituents are not good approximations in the case of a
dominant breakup channel.

IV. CONCLUSIONS

We studied processes involving both bound and weakly
bound systems, and all the possible channels of a direct re-
action within a simple one-dimensional problem consisting
in the scattering of a particle, initially bound in a potential
well (the target), by another moving well (the projectile). An
appealing feature of this problem is that it can be solved
“exactly” using the time-dependent Schrödinger equation,
thus providing a robust benchmark for approximate methods,
such as the popular coupled-channels formalism employed in
atomic, molecular, and nuclear physics. In this framework,
we can investigate the role of the continuum, which is found
to be relevant even for situations in which the considered
particle is initially in a well-bound state. In particular, we
address the issue of the inclusion of a discretized continuum
in a coupled-channels time-dependent calculation. Continuum
waves are treated in our computational model in “mathemat-
ical” representations of nonorthogonal sets of normalizable
wave functions that reflect the phase shifts induced by each
potential well. We observe that when the breakup channel
is almost negligible with respect to the other direct reaction
channels, like our case A, this representation of the contin-
uum works well. When the breakup clearly dominates or is
competing with the other channels, like in cases B and C,
the inclusion of a set of continuum pseudostates associated
to only one of the potential wells is not enough to properly
describe the reaction. However, the spatial limitations to the
continuum might give only a partial description of the pro-
cess. So, the inclusion of the continuum in computational
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models is always an artifact, and in many cases the results
depend on how the continuum is constructed, as clearly shown
in one dimension. Therefore, the discretized continuum de-
fined taking into account both potential wells on the whole
range should be the best approximation. To take into ac-
count this configuration in a time-dependent picture in the
present formalism is, however, not possible, so we suggest
the solution of the “two-center” method [46–48]. The natural
extension of this paper would be then the development of
a continuum-discretized coupled-channels calculation within
the two-center formalism, to be compared to the exact solution
of the time-dependent Schrödinger equation.

The present framework could also be applied to the
description of direct reactions involving two-neutron halo

nuclei, e.g., to study the role of pairing between the two
valence particles. First results for the exact solution of this
process can be found in Refs. [27,53,54].
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