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Comparing different density-matrix expansions for long-range pion exchange
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Empirical energy density functionals (EDFs) are generally successful in describing nuclear properties across
the table of nuclides. But their limitations motivate using the density-matrix expansion (DME) to embed long-
range pion interactions into a Skyrme functional. Recent results on the impact of the pion were both encouraging
and puzzling, necessitating a careful re-examination of the DME implementation. Here we take the first steps,
focusing on two-body scalar terms in the DME. Exchange energies with long-range one-pion contributions are
well approximated by all DME implementations considered, with preference for variants that do not truncate
at two derivatives in every EDF term. The use of the DME for chiral pion contributions is therefore supported
by this investigation. For scalar-isovector energies it is important to treat neutrons and protons separately. The
results are found to apply under broad conditions, although self-consistency is not yet tested.
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I. INTRODUCTION

Empirical energy density functionals (EDFs) successfully
describe nuclear bulk properties and some spectroscopic fea-
tures throughout the known table of nuclides, except for the
lightest nuclei. Various parametrizations are available, includ-
ing Skyrme, Gogny, Fayans, and relativistic functionals [1,2].
Each have of order ten parameters that are determined by fits
to selected nuclei. Despite the phenomenological successes of
empirical EDFs, greater accuracy is desired, e.g., for r-process
nucleosynthesis [3,4] and the description of single-particle
energies [5], but analyses suggest that the standard EDF forms
have reached an accuracy limit [5–7]. Recasting EDFs as
effective field theories (EFTs) would offer guidance for more
accurate functionals, as well as greater control of their un-
certainties and limits (e.g., toward the driplines), and would
fill a gap in the tower of EFTs describing strong interaction
phenomena [8].

The effort to adapt EFT methods to EDFs is complemen-
tary to the applications of chiral EFT to an expanding range
of nuclei using ab initio many-body methods [9–11]. Chiral
EFT builds on free-space internucleon interactions, while the
EDFs and their extensions efficiently embody the emergent
phenomena of nuclear saturation, pairing, low-lying collec-
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tive excitations, and fission in a low-resolution many-body
framework [8,12]. However, a key question in formalizing an
EFT for EDFs is the role of the pion as a long-range degree
of freedom. The pion is missing in practice from empirical
EDFs, but is it needed to reach greater accuracy for bulk prop-
erties or describing dripline physics? To address this question,
a semi-phenomenological hybrid approach to include pion
physics based on the density-matrix expansion (DME) has
been pursued in Refs. [13–16] (see Ref. [8] for an overview
of other approaches).

The DME was introduced by Negele and Vautherin in
their seminal papers, Refs. [17,18], as a more sophisticated
alternative for approximating one-body density matrices than
the simple Slater approximation [19]. It allows one to ap-
proximate the nonlocal one-body density matrix (OBDM) in
terms of quasilocal densities by factorizing the nonlocality
into universal functions. Applying it to the expression for the
exchange energy in Hartree-Fock (HF) theory facilitates its
calculation and clarifies how phenomenological zero-range
Skyrme interactions are connected to the underlying nuclear
forces. While several other DME variants have been sub-
sequently developed (see Sec. II B), a consistent extension
beyond HF in many-body perturbation theory (MBPT) is not
yet available [20].

The components of the HF-OBDM for a single particle
species (neutrons or protons; identified by q), ρq(x1, x2), can
be written in terms of self-consistent HF orbitals as

ρq(x1σ1, x2σ2) =
Aq∑

i=1

φ∗
q,i(x2σ2)φq,i(x1σ1), (1)
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with the sum running over occupied single-particle states and
Aq denoting the corresponding nucleon number. To apply a
DME, the OBDM is commonly split into Hermitian scalar and
vector parts [13], respectively, denoted by ρq and sq,

ρq(x1, x2) = 1
2 [ρq(x1, x2) + sq(x1, x2) · σ], (2)

with

ρq(x1, x2) ≡ Trσ [ρq(x1, x2)], (3)

sq(x1, x2) ≡ Trσ [ρq(x1, x2)σ], (4)

where the trace is in spin space only and σ are the spin Pauli
matrices.

In the recent hybrid approach [13–16], a simplified phase-
space-averaging DME [13,21] is used to determine an EDF
based on the long-range parts of free-space nucleon-nucleon
(NN) and three-nucleon (3N) interactions from chiral EFT at
the HF level. These terms are combined with a conventional
Skyrme EDF whose parameters are subsequently refitted.
The underlying idea is that the Skyrme coupling constants
capture the contributions from short-range physics and corre-
lations from higher orders in MBPT, like contact interactions
in an EFT [14,15]. The direct use of long-range interac-
tions in a low-resolution EDF is justified by the observation
that renormalization-group (RG) evolution only modifies the
short-distance physics [13].

In practice, the direct (Hartree) terms are treated exactly
while the DME is applied to the exchange (Fock) contribu-
tions [16]. The rationale for only applying the DME to the
Fock contributions is twofold. First, from a purely technical
standpoint, the exact treatment of the NN Hartree contribu-
tion is relatively straightforward since the direct Coulomb
contribution is already treated exactly in most EDF imple-
mentations. Second, and more importantly, the falloff of the
nonlocality in the Hartree and Fock contributions behaves
differently [17], and can result in large errors in self-consistent
calculations that treat both direct and exchange terms via the
DME. For the Fock contribution, the scale of nonlocality is
relatively independent of direction and is set by the local
Fermi momentum. In contrast, the nonlocality in the Hartree
term depends strongly on direction, which is not captured in
DME treatments that use angle averaging. EDFs obtained in
this fashion have a much more involved density dependence
than conventional Skyrme EDFs.

When including terms up to next-to-next-to-leading order
in the chiral expansion, the hybrid-approach EDFs con-
structed in Ref. [16] show a significantly improved description
of experimental binding energies compared to a conventional
Skyrme EDF. While these results are encouraging, the details
are puzzling: first, the inclusion of 3N forces breaks this
trend, and second, at leading order, which naively might be
expected to have the biggest effect, no overall improvement
is found. This is particularly surprising as the leading-order
NN one-pion exchange constitutes the interaction with the
longest range in the chiral expansion and hence is supposedly
the most difficult to be correctly described by a conventional
(zero-range) Skyrme pseudopotential.

There could be several reasons for this behavior, including
potentially suboptimal choices for the DME used to determine

contributions to the functional from the exchange term. There-
fore, we begin here to compare different DMEs, focusing in
particular on the accurate reproduction of the Fock energy
due to long-range pion exchange. This paper constitutes a first
step towards improving the accuracy of DMEs based on chiral
interactions.

At this stage, we restrict our analysis to the scalar parts of
the OBDM as they contribute the most to the HF energy. The
vector parts as well as the more involved DME choices in the
3N sector will be considered in future work. We also isolate
the role of the DME by performing non-self-consistent tests
only, with a self-consistent implementation into a full EDF
planned for a later stage.

In Sec. II, we review the different choices to be made in
formulating a DME that we explore. This includes the choice
of the momentum scale in DMEs, different choices for the
auxiliary functions (� functions), expanding in single-particle
vs. center-of-mass coordinates, as well as isoscalar/isovector
vs. neutron/proton DMEs. Section III surveys results for dif-
ferent implementations, using different sets of orbitals for a
range of closed-shell nuclei. We compare in detail the perfor-
mance of the DME for the OBDM, as well as for integrated
quantities, focusing on the contributions from the long-range
pion exchange. In particular, our results point to the improved
performance of full-square DMEs and of using DMEs for
neutron/proton contributions instead of the isoscalar/isovector
formulation. Our summary and outlook are given in Sec. IV.

II. DENSITY-MATRIX EXPANSIONS

A. Overview

For the following discussion we switch from single-particle
coordinates x1 and x2 to relative and center-of-mass coordi-
nates defined by

r ≡ x1 − x2 and R ≡ 1
2 (x1 + x2), (5)

and write ρq(R; r) as a shorthand for ρq(R + r/2, R −
r/2) = ρq(x1, x2). A naive approximation for the scalar part
of the OBDM, which factorizes its nonlocality, is given by a
Taylor expansion about R truncated at order nmax,

ρq(R; r) ≈
nmax∑
n=0

1

n!

( r
2

· ∇12

)n
ρq(R1, R2)

∣∣∣∣∣
R1=R2=R

, (6)

where ∇12 = (∇1 − ∇2) and ∇1 (∇2) acts on R1 (R2). How-
ever, this approximation performs poorly at large values of
r, for which the OBDM is expected to vanish. The lat-
ter condition can be enforced by multiplying each term of
the Taylor expansion by a function πnmax

n (kr) that vanishes
faster than 1/rn for large r (using notation similar to that in
Refs. [22,23]):

ρq(R; r) ≈
nmax∑
n=0

πnmax
n (kr)

n!

( r
2

· ∇12

)n
ρq(R1, R2)

∣∣∣∣∣
R1=R2=R

.

(7)

Here we have introduced the momentum scale k, which deter-
mines the fall-off in the off-diagonal direction of the OBDM.
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If we further impose

πnmax
n (x) = 1 + O(xnmax−n+1), (8)

then the first nmax terms of the quasilocal approximation
Eq. (7) match the first nmax terms of the Taylor series of
ρq(R; r). Specifically, the mth term in the Taylor expansion
of Eq. (7) is proportional to

(r · ∇12)mρq(R1, R2) for m � nmax,

(rk)m−n(r · ∇12)nρq(R1, R2) for m > nmax.

The most well-known example of such approximations is
the Slater approximation [19], which is often used in calcu-
lations of the Coulomb exchange energy [1]. It includes only
the n = 0 term in Eq. (7) and is given by

ρq(R; r) ≈ 3 j1(kFr)

kFr
ρq(R), (9)

where ji(x) is a spherical Bessel function of the first kind and
the local density reads

ρq(R) ≡ ρq(R; 0). (10)

The momentum scale,

kF ≡ kq
F(R) ≡ [3π2ρq(R)]

1/3
, (11)

is the local density approximation for the Fermi momentum.
The Slater approximation has the special feature that it be-
comes exact in the limit of homogeneous infinite nuclear
matter (INM).

Several other approximations to the density matrix are
built around the Slater approximation by adding correction
terms that vanish in INM. This can be expressed nicely by
regrouping certain terms in Eq. (7) yielding (using notation
similar to Refs. [13,21])

ρq(R; r) ≈
nmax∑
n=0

�n(kr)

n!
rα1 · · · rαnPα1...αn

n (R). (12)

Here and in the following, a summation over repeated
Greek indices denoting spatial components is implied. The
� functions are normalized according to �n(0) = 1, and
the quasilocal density combinations Pα1...αn

n (R) are chosen
such that the Taylor expansions of the exact ρq(R; r) and of
Eq. (12) agree up to order nmax (as before). Then all terms
of Eq. (12) except for the zeroth vanish in nuclear matter
if �0(x) = 3 j1(x)/x and k → kF in that limit. We refer to
approximations with these properties as density-matrix expan-
sions (DMEs) around the INM limit.

Different DME variants differ in their choices of momen-
tum scales k and in their � functions. As the Taylor series
of Eq. (12) is supposed to match the exact ρq(R; r) only up
to order nmax, the higher-order terms in the � functions can
be chosen rather unrestrictedly. These choices can lead to
significantly varying convergence behaviors with respect to
nmax [24].

In general DMEs perform well at smaller r values and
degrade as r increases, but even then, they are superior to
straightforward truncations of the derivative expansion of the
density matrix, Eq. (6). Additionally, one may expect that

DMEs reproduce the exact OBDM better in the interior of a
typical nucleus (so for small R) than in the nuclear surface be-
cause there the resemblance to INM is worse and the omitted
higher-order terms are more relevant.

The notation of Eq. (12) has the advantage that the �

functions do not depend on the truncation order nmax unlike
the πnmax

n functions used in Eq. (7). However, the notation is
somewhat abstract. To make it a bit more explicit we give here
as an example the general expression of a second-order DME
(i.e., a DME with nmax = 2):

ρq(R; r) ≈ �0(kr)ρq(R) + i�1(kr)rα jq,α (R)

+ �2(kr)

2
rαrβ

[
1

4
∇α∇βρq(R) − τq,αβ (R)

+ 1

5
δαβk2ρq(R)

]
, (13)

where the components of the current density and kinetic den-
sity tensor are given by

jq,α (R) ≡ − i

2
∇12,αρq(R1, R2)

∣∣∣
R1=R2=R

, (14)

τq,αβ (R) ≡ ∇1,α∇2,βρq(R1, R2)|R1=R2=R. (15)

Finally, we note that the scalar part of the OBDM typically
only has a minor dependence on the direction of the nonlo-
cality r [17,21]. Therefore, often DMEs are formulated using
an angular average with respect to r. This leads to the simpler
expression

ρq(R; r) ≈
nmax∑
n=0

′ �n(kr)

n!(n + 1)
rnPn(R), (16)

where the prime indicates that the sum only runs over even
values of n (as the angular average cancels all odd-n terms).

Continuing with our example from above we obtain for a
DME of order nmax = 2:

ρq(R; r) ≈ �0(kr)ρq(R) + �2(kr)

6
r2

×
[

1

4
∇2ρq(R) − τq(R) + 3

5
k2ρq(R)

]
, (17)

with the kinetic density

τq(R) ≡ τq,αα (R). (18)

B. Considered DME variants

Several approximations to the OBDM have been developed
in the past. In this work, we explore DMEs with nmax � 2.
The quasilocal densities appearing in such approximations
are those known from standard second-order Skyrme EDFs.
Higher-order DMEs could be useful in the context of higher-
order Skyrme-like EDFs [25] as they have the potential to
be more accurate, see Refs. [24,26] for related studies. The
considered cases are listed with their respective references
in Table I. Although a couple of them do not use �0(x) =
3 j1(x)/x, hence not reproducing the correct INM limit, see
Table I, we still refer to all of them as DMEs.
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TABLE I. DME variants investigated in this work. For each
DME the order nmax, the expansion momentum scale k, and the
� functions for the scalar parts of the OBDM are given. For the
definitions of kF, kFC, and G(x,Y ), see Eqs. (11), (19), and (20),
respectively. J4(x) is the fourth (cylindrical) Bessel function of the
first kind. An asterisk (∗) indicates that the marked � function does
not need to be specified as the corresponding term vanishes. The sixth
column (INM) shows whether the specified DME reproduces the
exact OBDM for nuclear matter. The last column (II) indicates if the
DME-approximation to the OBDM obeys integrated idempotency.
See text for details.

DME nmax k �0(x) �2(x) INM II

Slater [19] 0 kF
3 j1(x)

x
- � �

PSA [13,21] 2 kF
3 j1(x)

x

3 j1(x)

x
�

NV [17,18] 2 kF
3 j1(x)

x

105 j3(x)

x3
� �

SVCK [31] 2 kF
3 j1(x)

x

945 j4(x)

x4
� �

DT [24] 2 kF
3 j1(x)

x
exp

(
− x2

16

)
�

CB [28,32] 2 kFC
3 j1(x)

x
∗ �

BZ [32] 2 kFC
96J4(

√
2x)

x4
∗

Gaussian 2 kFC exp
(
− x2

10

)
∗

[32,33]

MG [34] 2 kFC G(x, 21.5) ∗

Additionally, we restrict ourselves to angular-averaged
DMEs as given in Eqs. (16) and (17). Hence, we only list
�0(x) and (where applicable) �2(x) in Table I. Lifting this
restriction has the potential for better accuracy, too [24]. The
DMEs considered here all use as their momentum scales
either the standard local density approximation to the Fermi
momentum as defined in Eq. (11)1 or an alternative introduced
in Ref. [28] which is given by

kFC ≡ kq
FC(R) ≡

{
5

3ρq(R)

[
τq(R) − 1

4
∇2ρq(R)

]}1/2

. (19)

With the latter choice the second-order term in Eq. (17) van-
ishes identically and �2(x) does not need to be specified.
Thus, using this momentum scale can be viewed as incorporat-
ing the second-order contribution into the zeroth-order term.
Additionally, it coincides with the regular Fermi momentum
in nuclear matter, hence not changing the corresponding limit.
However, in principle, the term enclosed in square brackets
in Eq. (19) can become negative and thus kFC imaginary.
This is clearly unphysical and can lead to diverging exchange

1See Ref. [27] for phenomenological adjustments of this momen-
tum scale.

energies. In practice we find that kFC is almost always real,
which has been also found in molecular systems [29,30]. None
of the systems considered in this work produces imaginary
values for kFC, but for future applications one should be aware
of the possibility.

We now proceed to give a few remarks regarding some of
the considered DME variants, for more details on the variants
we refer the reader to the references listed in Table I:

(1) We employ the PSA-DME in the simplified version
described in Ref. [13] (also called INM-DME [21]).
This is the variant that has been used in Ref. [16]
to enrich a Skyrme-like EDF with density-dependent
coupling functions originating from long-range parts
of chiral NN+3N interactions.

The full PSA-DME takes the anisotropy of the local
momentum distribution into account, leading to a more
complicated expansion momentum scale. The authors
of Refs. [13,21] note that the anisotropy is especially
pronounced in the surface of the nucleus and hence
consider it only for the vector part of the OBDM which
sharply peaks there.

The envelope of the PSA-DME �2 function falls
off like 1/r2 for large r, meaning that it falls off just
too slow to yield a density matrix that vanishes in the
large-r limit. As we will see later, this is not an issue
for approximating exchange energies from finite-range
forces, but it can be one in other situations.

(2) The NV-DME is the “original” DME as formulated by
Negele and Vautherin [17,18], on which subsequent
DME developments build. For NV-DME, the authors
of Ref. [23] showed that replacing the � functions by
exponentials having the same low-order dependence
on the argument leads to almost indistinguishable re-
sults when applied to the exchange energy arising from
the Gogny D1S interaction [35].

(3) In the DT approach we use the INM limit for the model
density (ρ̄t

v in Ref. [24]) and set the parameter a to
the same value as in Ref. [24], a = 4/kF. Note that the
DT-DME, unlike the other variants, has originally been
formulated without the angular averaging we use here.

(4) A whole class of DMEs based on the momentum
scale kFC was developed by Bhaduri and Zaifman
in Ref. [32] (recovering also the CB- and Gaussian
DMEs). Here, we refer to the particular version rated
best by them as BZ-DME.

(5) It has been argued that the Gaussian approximation is
favored by information theory as it is based on the
least biased phase-space distribution function subject
to yielding the correct density and kinetic density dis-
tributions [36].

In addition to the version used here, the Gaussian
approximation has been developed in a form that uses
the kinetic density tensor and the density’s Hessian
matrix instead of their scalar counterparts in Eq. (19)
[37], effectively amounting to using a momentum scale
tensor kFC,αβ (R).
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(6) In the original construction [34], the modified Gaus-
sian (MG) approximation uses

�0(x) = G(x,Y ) ≡
(

1 − x2

Y

)
e−( 1

10 − 1
Y )x2

. (20)

The value of the parameter Y > 10 then depends
on the considered system and is obtained by
enforcing that the approximated density matrix fulfills
the integrated-idempotency constraint (as described
below). This leads to the equation

1

Aq

∫
dR

ρq(R)2

kq
FC(R)3 = 2

π3/2

(
1

5
− 2

Y

)3/2

×
[

1− 3
Y
5 − 2

+ 15

4
(

Y
5 − 2

)2

]−1

,

(21)

which gets solved numerically for Y .
We observe in our calculations that the resulting

values of Y do not vary much throughout the whole
mass range of nuclei, thus we do not employ a spe-
cific value of Y for each nucleus. Instead, we always
consider a value of Y = 21.5, which we obtained as an
average over neutrons and protons in the nuclei con-
sidered in Sec. III. The resulting energies are almost
indistinguishable.

(7) A modification of the Gaussian approximation similar
in spirit to the MG approach has been proposed in
Ref. [38]. This approximation uses kFC and

�0(x) =
√

1 + ax4 exp(−x2/10), (22)

with a getting determined via the integrated-
idempotency constraint. In our calculations the impact
of this modification was minor, improving the results
in the isovector sector but worsening them in the
isoscalar case. For this reason we do not consider this
approximation here.

The OBDM is idempotent [39,40], i.e., ρq = ρ2
q, which in

coordinate-space representation explicitly reads

ρq(x1σ1, x2σ2) =
∑
σ3

∫
dx3 ρq(x1σ1, x3σ3)ρq(x3σ3, x2σ2).

(23)

In the following, we will use the matrix notation for the
OBDM for brevity. By setting x1 = x2 and noting that the
OBDM is Hermitian,

ρq(x1, x3)† = ρq(x3, x1), (24)

Eq. (23) implies that the integrated, spin-summed version is
normalized to the nucleon number

Aq = 1

2

∫
dx1dx3 [|ρq(x1, x3)|2 + |sq(x1, x3)|2]. (25)

As this paper only deals with the scalar part of the OBDM
we check this constraint for the considered DMEs for the case

of spin-saturated nuclei where sq(R; r) ≡ 0 in the approxi-
mation that the single-particle wave functions of spin-orbit
partners are identical [21]. To this end the square of the
absolute value of the scalar part of the OBDM (hereafter
referred to as density-matrix square) is calculated according
to the usual prescription [24,30] that is neglecting terms of
higher-than-second order [in agreement with the truncation
order of Eq. (17)]:

|ρq(R; r)|2 ≈ �0(kr)2ρq(R)2 + �0(kr)�2(kr)

3
r2ρq(R)

×
[

1

4
∇2ρq(R) − τq(R) + 3

5
k2ρq(R)

]
. (26)

We call this the truncated square of the density matrix. When
calculating the square in this way only the Slater approx-
imation as well as the NV- and SVCK-DMEs fulfill the
integrated-idempotency constraint, Eq. (25), exactly. In con-
trast, the PSA-DME violates this constraint maximally: in this
case the right-hand side of Eq. (25) is infinite. We should also
point out that the original version of the MG approximation
obeys Eq. (25) by construction and our modification only
leads to a minor deviation.

In Table I we summarize the integrated idempotency re-
sults, which for some of the considered DME variants were
already given in Refs. [21,30,41], and also list which DMEs
yield the correct INM limit.

We end this section by noting that all of the considered
DMEs can be re-expressed in an orbital-free form by assum-
ing some relation τ (ρ,∇ρ, . . . ) and in a completely local
form by assuming [τ − 1

4∇2ρ](ρ), e.g., see Ref. [38]. This
could be useful for applications to other types of EDFs than
Skyrme EDFs but requires further study.

C. Square of the density matrix

In time-reversal-invariant systems the scalar part of the
OBDM is real so that its Hermiticity boils down to

ρq(R; r) = ρq(R; −r), (27)

hence the current density jq,α (R) vanishes [42]. Thus, in
these cases the conventional, truncated way of calculating
the density-matrix square, Eq. (26), which was obtained by
averaging the density matrix with respect to the orientation
of r and then squaring it, has the feature of being identical
to the expression one obtains from first squaring the density
matrix [as given by Eq. (13)] and then performing the angular
average, i.e.,

〈ρq(R; r)〉2
�r

= 〈ρq(R; r)2〉
�r

. (28)

Here 〈. . . 〉�r indicates averaging over the direction of r. How-
ever, for certain DME variants Eq. (26) also possesses the
undesirable characteristic of yielding a negative-valued square
for some values of R and r.

Figure 1 contains an example of such behavior: We show
the density-matrix square for neutrons in 132Sn as a function
of the nonlocality r for two values of R, 5 fm (just in the
surface of the nucleus, see Fig. 2) and 6.7 fm (quite far into the
surface of the nucleus). The underlying single-particle orbitals
are generated from a self-consistent HF calculation using the
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FIG. 1. Normalized density-matrix square for two values of R in
132Sn for different DMEs. The underlying orbitals are obtained from
a self-consistent HF calculation with the SLy4-EDF.

SLy4-EDF [43]. In addition to the exact square in solid black,
Fig. 1 includes the Slater approximation and the NV-DME as
defined in Table I. For R = 6.7 fm, where the second-order
correction is much larger (relative to the zeroth-order term),
the NV-DME significantly underestimates the value of the
square and becomes negative for 2.8 fm � r � 5.9 fm.

Therefore, we additionally employ an alternative approach
for squaring the density matrix. It was briefly investigated in
Ref. [28] and consists in considering the full square of the
angle-averaged density matrix, Eq. (17) (hence the approxi-
mation cannot get negative):

ρq(R; r)2 ≈
{
�0(kr)ρq(R) + �2(kr)

6
r2

×
[

1

4
∇2ρq(R) − τq(R) + 3

5
k2ρq(R)

]}2

. (29)

Whereas this equation is not in agreement with the truncation
order of Eq. (17) and thus contains some but not all of the
fourth-order terms, it effectively shifts the region where the
DME approximation is poor to larger r values compared to
the previously applied truncated squaring prescription. This
can be seen in the lower panel of Fig. 1, where this ap-
proach is labeled as NV2. Such behavior can turn out useful
when approximating expressions where the large-r behavior
is damped, e.g., exchange energies from finite-range forces as

FIG. 2. Isoscalar density distributions of selected closed-shell
nuclei. Solid lines correspond to orbitals from a self-consistent HF
calculation with the SLy4-EDF, dashed lines correspond to orbitals
from an isotropic HO with h̄ω = 10 MeV, and dash-dotted lines
correspond to orbitals obtained from a self-consistent HF calculation
with the 1.8/2.0 (EM) interaction [57].

considered in Sec. III. In the following we refer to the same
treatment of the square for PSA-, SVCK-, and DT-DMEs as
PSA2-, SVCK2-, and DT2-DMEs, respectively. The other in-
vestigated DME variants have no contribution from �2, hence
Eqs. (26) and (29) yield identical results in those cases.

We note that this treatment of the square makes the DMEs
no longer fulfill the integrated idempotency. In addition, the
statement that squaring and angular averaging commute is no
longer true:

〈ρq(R; r)〉2
�r

�= 〈ρq(R; r)2〉
�r

. (30)

In the particular case of the PSA-DME the truncated squaring
approach yields a density-matrix square that vanishes for large
r, but the PSA2-DME does not (see also the related remark
in Sec. II B). We also note that while still being constructed
from the standard quasilocal Skyrme densities, the full-square
DME variants lead to EDFs with more than two derivatives in
some terms (as do all DMEs with the kFC momentum scale).

D. Expansion coordinates

Up until now we have expanded the density matrices in the
relative coordinate r around the center of mass R. However,
other choices are possible. It is useful to choose the expansion
point to be located on the line connecting the two positions
of interest, x1 and x2. Then, the nonlocality can be fully
expressed in terms of only one coordinate, r. This is generally
not possible when dealing with 3N forces, e.g., see Ref. [15],
and constitutes one of the reasons why applying a DME for
such interactions is much more involved. Here we deal only
with NN forces and are thus able to express the nonlocality
only in terms of r. We refer to the general expansion point in
between x1 and x2 as

va ≡ ax1 + (1 − a)x2, (31)
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where a ∈ [0, 1] determines the exact expansion point. For
a = 1/2 one recovers the center of mass R used in the previ-
ous sections and for a = 0 the expansion is about the position
of the second particle. For this expansion point the analogous
expression to Eq. (13) for a DME of order nmax = 2 reads

ρq(va; r) ≡ ρq(va + (1 − a)r, va − ar)

≈ �0(kr)ρq(va)

+ �1(kr)rα

[(
1

2
− a

)
∇αρ(va) + i jq,α (va)

]

+ �2(kr)

2
rαrβ

[(
1

2
− a + a2

)
∇α∇βρq(va)

+ (1 − 2a)i∇α jq,β (va) − τq,αβ (va)

+ 1

5
δαβk2ρq(va)

]
. (32)

Averaging over the direction of r yields

ρq(va; r) ≈ �0(kr)ρq(va)

+ �2(kr)

6
r2

[(
1

2
− a + a2

)
∇2ρq(va)

+ (1 − 2a)i∇ · jq(va) − τq(va) + 3

5
k2ρq(va)

]
,

(33)

which simplifies to Eq. (17) when a = 1/2.
For a �= 1/2, angular averaging and squaring do not com-

mute even for time-reversal-invariant systems. Both for the
truncated and the full squaring prescription,

〈ρq(va; r)〉
�r

〈ρq(va; r)∗〉
�r

�= 〈|ρq(va; r)|2〉
�r

, (34)

as a term proportional to (∇ρq)2 is missing on the left-hand
side of Eq. (34).

Nevertheless, Eq. (33) and an accordingly adjusted mo-
mentum scale kq

F(va) were used in Ref. [30] in time-reversal-
invariant molecular systems with the NV-DME, and a = 0
was found to lead to a much improved reproduction of the
exact Coulomb exchange energies compared to the usual a =
1/2 choice. An optimization routine gave basically the same
value (a = 0.00638) as the best fit for their considered sys-
tems [30]. While we are able to reproduce a similar behavior
in our test systems when using the Coulomb interaction, we do
not see this improvement for one-pion exchange, see Sec. III E
for details.

Moreover, it is not clear how to extend the DME variants
that use kFC to a = 0 because for �2 to not contribute one
needs an adjusted momentum scale,

k̃q
FC(x2) ≡

{
5

3ρq(x2)

[
τq(x2) − 1

2
∇2ρq(x2)

]}1/2

(35)

(note the prefactor 1/2 instead of 1/4 in front of ∇2ρq). This
k̃q

FC is often imaginary [30], which is unphysical and can lead
to diverging exchange energies. For these reasons we only
consider DMEs about R in the following (except for Sec. III E
as noted).

III. RESULTS AND DISCUSSION

We now proceed to apply the different DME variants dis-
cussed in Secs. II B and II C to the nonlocal densities in
the exchange energy arising from a local NN interaction in
coordinate space. This energy is given by [15,44]

Wex = −1

2
Trστ

12

∫
dR dr ρ(1)(R; −r)ρ(2)(R; r)

× 〈r|V (1⊗2)|r〉 Pστ
12 , (36)

where the index 1 (2) denotes on which part of the two-body
product space the OBDMs and the potential V act, i.e., 1 (2)
refers to the spin and isospin space of “particle 1” (“particle
2”), Trστ

12 denotes a trace over the whole product space, and

Pστ
12 ≡ Pσ

12Pτ
12 = 1 + σ1 · σ2

2

1 + τ1 · τ2

2
(37)

is the two-particle spin and isospin exchange operator, with
isospin Pauli matrices τ. The OBDMs in Eq. (36) are those of
the whole system and can be split similarly to Eq. (2),

ρ(R; r) = 1
4 [ρ0(R; r) + ρ1(R; r)τz

+ s0(R; r) · σ + s1(R; r) · στz], (38)

where we assumed that the single-particle states do not mix
neutrons and protons. The scalar-isoscalar, scalar-isovector,
vector-isoscalar, and vector-isovector parts are given by

ρ0(R; r) ≡ Trστ [ρ(R; r)], (39)

ρ1(R; r) ≡ Trστ [ρ(R; r)τz], (40)

s0(R; r) ≡ Trστ [ρ(R; r)σ], (41)

s1(R; r) ≡ Trστ [ρ(R; r)στz]. (42)

Isoscalar and isovector quantities are sums and differences of
the corresponding neutron and proton quantities, e.g.,

ρ0(R; r) = ρn(R; r) + ρp(R; r), (43)

ρ1(R; r) = ρn(R; r) − ρp(R; r), (44)

which are treated separately when expanded with a DME.
After breaking up the nonlocal densities as in Eq. (38) the
exchange energy reads

Wex = − 1

32
Trστ

12

∫
dR dr

[
ρ0(R; −r) + ρ1(R; −r)τ (1)

z

+ s0(R; −r) · σ (1) + s1(R; −r) · σ (1)τ (1)
z

]
× [

ρ0(R; r) + ρ1(R; r)τ (2)
z + s0(R; r) · σ (2)

+ s1(R; r) · σ (2)τ (2)
z

] 〈r|V (1⊗2)|r〉 Pστ
12 . (45)

Depending on the spin and isospin structure of the interaction,
different bilinears of the OBDM parts survive in Eq. (45) after
carrying out the traces.

To test the different DMEs we insert these approximations
into Eq. (45) and compare the resulting energies to the exact
exchange energy. Before we can do that we need to specify
both the system (which enters the OBDMs) and the interac-
tion. Let us start with discussing the latter. As stated earlier,
we restrict ourselves to NN interactions in this work because
the inclusion of 3N forces involves dealing with two relative
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coordinates in the OBDMs (instead of one), which means that
even more approximations and choices need to be considered.
This study will be carried out in future work.

DMEs are naturally formulated in coordinate space. Thus,
using them together with momentum-space interactions re-
quires explicitly evaluating a Fourier transform (e.g., see
Refs. [44,45]) which hinders linking observations with the
form of the � functions. For coordinate-space interactions a
Fourier transform is not necessary and the analysis is more
straightforward. Therefore, we consider only interactions for-
mulated in coordinate space.

As DMEs are less accurate for large values of the relative
distance r, a good description of the exchange energy arising
from long-range interactions is particularly challenging. The
interactions used in Ref. [16] to enrich a Skyrme EDF are de-
termined from chiral EFT. In this scheme, the interaction with
the longest range is one-pion exchange, which appears already
at leading order (LO) in the chiral expansion, meaning that
it should be particularly relevant according to the underlying
power counting. Investigating one-pion exchange is also inter-
esting because the inclusion of this term in Ref. [16] did not
improve the functional’s reproduction of experimental binding
energies (unlike for higher order, shorter-range terms).

The one-pion exchange piece with the longest range is de-
scribed by a central Yukawa interaction, which in coordinate
space reads

〈r|V (1⊗2)|r〉 = W LO
S (r)σ1 · σ2τ1 · τ2, (46)

with the radial dependence

W LO
S (r) ≡ m3

π

12π

(
gA

2Fπ

)2 e−mπ r

mπ r
, (47)

where we use gA = 1.29, Fπ = 92.4 MeV, and mπ =
138.03 MeV for the axial-vector coupling constant, the pion
decay constant, and the pion mass, respectively [46]. To reg-
ularize the interaction it is multiplied with a local regulator
function f (r),

W LO
S (r) → W LO

S (r) f (r). (48)

While other coordinate-space regulator forms are available,
e.g., see Ref. [47], we choose here [46,48,49]

f (r) = 1 − exp

(
− r4

R4
0

)
, (49)

where the spatial cutoff R0 specifies up to which value of r
the short-distance part of the potential is smoothly cut off. We
first consider R0 = 1.2 fm. While regulators are not needed at
the HF level, they suppress large short-distance contributions
[50,51] that would otherwise have to be absorbed into the
Skyrme parameters and enable us to smoothly turn on the
long-distance interactions.

The tensor part of one-pion exchange has a shorter range
than the central piece and its exchange energy involves only
the vector part of the OBDM, so we do not consider it
here. Applying a DME to the short-range piece of one-
pion exchange (whether described by a smeared-out delta
function or an actual one) works very well because of its
short range. In a scheme where a proper delta function is

used all DME variants even yield the same (exact) func-
tional with density-independent couplings as in a Skyrme
EDF.

Inserting Eq. (46) into Eq. (45) yields for the W LO
S ex-

change energy

Wex = −1

8

∫
dR dr

[
9|ρ0(R; r)|2 − 3|ρ1(R; r)|2

− 3|s0(R; r)|2 + |s1(R; r)|2]W LO
S (r) f (r). (50)

We consider the first two terms (which depend on the scalar
parts of the OBDM) and refer to them as the scalar-isoscalar
energy W0,

W0 ≡ −9

8

∫
dR dr |ρ0(R; r)|2W LO

S (r) f (r), (51)

and scalar-isovector energy W1,

W1 ≡ 3

8

∫
dR dr |ρ1(R; r)|2W LO

S (r) f (r). (52)

The question we want to investigate now is how well do the
different DME variants of Secs. II B and II C approximate
these energies.

In this work, we compare different DMEs with the
same single-particle orbitals generated from a self-consistent
HF calculation employing the SLy4 parametrization of the
Skyrme EDF [43] without pairing. This enables a clean
comparison, but we point out that the orbitals used are not
self-consistent with the EDF and DME. The HF equations are
solved using the code HFBRAD [52], which works directly on a
spherical coordinate-space grid. The step size is set to 0.1 fm.
Reducing the step size to 0.025 fm changes the obtained total
energies of the HF calculation at most in the per-mill regime.
This precision is sufficient for the present application. We
made sure the code and the implementation of the outputted
orbitals into our DME routines work as intended by compar-
ing against results obtained with orbitals from HOSPHE [53]
and HFODD [54]. The DME implementations themselves were
benchmarked against the second-order results of Ref. [24],
the LO results of Ref. [15], and the one-pion-exchange Fock
expressions of Refs. [55,56]. We consider in total 11 closed-
shell nuclei, ranging from light to heavy and from N = Z to
very asymmetric: 16O, 24O, 40Ca, 48Ca, 54Ca, 56Ni, 60Ni, 80Zr,
100Sn, 132Sn, and 208Pb. All of these nuclei are closed-shell,
hence their ground states are treated as being time-reversal
invariant and �1 does not contribute even without the
angular-average approximation. For three example nuclei the
isoscalar density distributions are displayed as solid lines in
Fig. 2.

In the following subsections we first consider the scalar-
isoscalar energy in Sec. III A and then the scalar-isovector
energy in Sec. III B, followed by an analysis regarding the use
of a single species-independent momentum scale in Sec. III C.
In Secs. III D and III E we discuss the dependence of the
results on the considered orbitals and on the employed inter-
action and expansion coordinates, respectively. We finish each
subsection with a summary of the main take-away points.
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FIG. 3. First panel: exact scalar-isoscalar exchange-energy integrand obtained for a regularized Yukawa interaction in 132Sn. Other panels:
differences of DME approximations of this integrand and the exact integrand itself. In every difference panel the value of the ratio of the
DME-approximated energy and the exact energy is shown in the top right corner. The underlying orbitals are obtained from a self-consistent
HF calculation with the SLy4-EDF.

A. Scalar-isoscalar energy

We begin by considering the scalar-isoscalar Yukawa
exchange-energy integrand W0, defined as

W0(R, r) ≡ 9

8

∫
d�R d�r R2r2|ρ0(R; r)|2W LO

S (r) f (r),

(53)

and pick 132Sn as our first test case. The 132Sn isoscalar
(matter) density distribution is shown in Fig. 2. The exact
integrand W0, displayed in the first panel of Fig. 3, has the
largest contributions at about r ≈ 1.5 fm over the whole R
range, which mostly reflects the nature of the regularized
interaction, and peaks at R ≈ 4.7 fm, which is close to the
peak of R2ρ0(R)2 at R ≈ 4.6 fm, the expected peak position
for an exactly separable OBDM. These features are rather well
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reproduced by the integrands that are obtained when replacing
|ρ0(R; r)|2 in Eq. (53) by its different DME approximations.
Therefore, we do not show the DME integrands themselves
but instead their differences to the exact integrand. They are
depicted in the other panels of Fig. 3: the zeroth-order Slater
approximation in the top-right panel, DMEs using kF with the
common truncated-square approach, Eq. (26), in the second
row, and with full squares, Eq. (29), in the third row, and
DMEs with kFC in the last row. The same order and grouping
is used in the other figures below.

Several trends are clearly visible from the integrand
differences in Fig. 3: The second-order DMEs (besides
the Gaussian approximation) locally reproduce the exact
integrand significantly better than the zeroth-order Slater ap-
proach, highlighting the improvement due to the inclusion of
higher-order terms. In particular, the region where relevant
deviations first occur gets shifted from r ≈ 1 fm in the Slater
case to r ≈ 1.5 fm for the other DMEs. In all cases the largest
differences arise close to or in the surface of the nucleus. This
can probably be attributed to the larger relevance of missing
higher-order terms compared to the situation in the interior of
the nucleus. Comparing the second and third rows of panels in
Fig. 3 reveals that the additional term in the full-square DMEs
is particularly relevant in the surface where it flips the sign of
the differences for r � 4 fm. Interestingly, this is not always
an improvement locally but the global scalar-isoscalar energy
W0 is always closer to the exact result for the full square than
for the truncated-squares approach due to (possibly fortuitous)
cancellations in the former case. We provide the ratio of the
DME-approximated W0 and the exact counterpart in the top-
right corner of each panel.

Regarding these global energies, all considered DME vari-
ants approximate the exact values remarkably well with
SVCK2- and MG-DMEs performing best: both yield values
that deviate less than 1% from the exact result. Somewhat
surprisingly, the Slater approximation follows next despite
the inferior quality in local reproduction of the integrand.
Again, this can be attributed to cancellations of regions
of overestimation and underestimation. We also note that
while the Gaussian approximation overestimates the integrand
throughout the nuclear interior, yielding the worst energy re-
production, it provides an extremely good description of the
integrand in the surface.

In other nuclei, the results are very similar. This can be
seen from the left panel in Fig. 4 where we show for each
DME variant the average ratio of approximated (W DME

0 ) and
exact (W exact

0 ) scalar-isoscalar energies over the 11 test nuclei
and a bar that ranges from the smallest to the largest ratio
observed. Underneath each bar the values of three individual
nuclei (corresponding to the density distributions shown in
Fig. 2) are highlighted, showing that smaller ratios (typically
corresponding to worse energy reproductions) almost always
occur for lighter nuclei.

As before, all ratios are notably close to unity and the
full-square variants of the DMEs reproduce the exact ener-
gies better than the corresponding truncated-square versions.
Additionally, the spread of the ratios is smaller for the full
squares. Again, the reproduction is particularly good for
SVCK2- and MG-DME and on average it is worst for the
Gaussian approximation.

FIG. 4. Ratios of DME-approximated and exact exchange-
energy contributions for a regularized Yukawa interaction. For every
DME variant the average over a set of nuclei is shown together with
a bar ranging from the smallest to the largest ratio observed. Below
each bar, the results for selected nuclei are given. The underlying
orbitals are obtained from a self-consistent HF calculation with the
SLy4-EDF. The left panel shows the results for the scalar-isoscalar
contributions, where 11 closed-shell nuclei are considered (see text);
the right panel shows the results for the scalar-isovector contributions
(from 6 closed-shell nuclei). In both panels the DMEs are used with
separate momentum scales for neutrons and protons.

We find almost identical, though slightly worse, results
when approximating the NV-DME � functions with exponen-
tials as proposed in Ref. [23]. This approximation could be
useful for implementations in numerical EDF codes. For the
MG-DME the results are almost indistinguishable when using
the average value of the parameter Y = 21.5 as done here
and when using specific values for each nucleus based on the
integrated-idempotency constraint as described in Sec. II B.

In summary, using DMEs to approximate the scalar-
isoscalar energies W0 works remarkably well for the con-
sidered closed-shell systems and the investigated Yukawa
interaction. The dependence on orbitals and interaction is
investigated in Secs. III D and III E, respectively. Refined im-
provement from few-percent accuracy for some DME variants
to the 1% level can be realized by switching to full-square
DMEs or other variants, in particular to SVCK2- and MG-
DME.

B. Scalar-isovector energy

The right panel of Fig. 4 contains the ratios for the scalar-
isovector energies W1 as given by Eq. (52). Here only the
6 asymmetric nuclei (with N �= Z) in our set are considered
since the isovector energies are completely negligible for the
symmetric nuclei. For most DMEs the ratios W DME

1 /W exact
1

are further away from the ideal value of unity than in the

014325-10



COMPARING DIFFERENT DENSITY-MATRIX EXPANSIONS … PHYSICAL REVIEW C 103, 014325 (2021)

FIG. 5. First panel: exact scalar-isovector exchange-energy integrand obtained for a regularized Yukawa interaction in 132Sn. Other panels:
differences of DME approximations of this integrand and the exact integrand itself. Approximations obtained with isoscalar momentum scales
for both neutron and proton density matrices are labeled with “–k0

F” next to the abbreviated DME name. In every difference panel the value of
the ratio of the DME-approximated energy and the exact energy is shown in the top right corner. The underlying orbitals are obtained from a
self-consistent HF calculation with the SLy4-EDF.

isoscalar case. This can be understood when comparing the
shape of the isoscalar part of the OBDM, which is a bulk
quantity, to that of the isovector part, which is basically a
neutron-excess density matrix. Thus, the region contributing
the most to the isovector integral is located much closer to
the nuclear surface where omitted higher-order corrections are
expected to be more relevant. This is also clearly visible for
132Sn when comparing the scalar-isoscalar integrand W0 in
the first panel of Fig. 3 with the scalar-isovector integrand W1,
which is defined as

W1(R, r) ≡ 3

8

∫
d�R d�r R2r2|ρ1(R; r)|2W LO

S (r) f (r),

(54)

and is depicted in the first panel of Fig. 5. In addition,
the energy contributions stem on average from a larger r
value in the isovector case for all considered nuclei, which
again makes an accurate description harder when using
DMEs.

Nevertheless, the general trends are very similar for the
isovector and the isoscalar energies. Notable exceptions are
the BZ- and the Gaussian DME because their overestima-
tions in the nuclear interior (also reflected in them not
yielding the correct INM limit) matter less for the isovector
part.

Overall, our results show that DMEs do not perform as well
for scalar-isovector energies as for scalar-isoscalar energies,
with typical accuracies being around 10%. For the consid-

ered asymmetric nuclei the magnitude of the scalar-isovector
energies is on average only 1.3% of the scalar-isoscalar con-
tributions. Therefore, the worse accuracy in the isovector
case has no relevant effect on the total energy reproduc-
tion, though it might be important when looking at nonbulk
quantities.

C. Isoscalar expansion momentum scale

So far, the results have been obtained by expanding neutron
and proton density matrices separately as described in Sec. II
and subsequently forming the isoscalar and isovector parts
by the appropriate sums, Eqs. (43) and (44). However, this
procedure yields EDFs where the terms that are normally
isospin invariant (such as those proportional to ρ2

0 ) also con-
tain isospin-dependent parts, though their isospin symmetry is
still conserved [21]. Hence, one might want to utilize another
possibility that is to expand both the isoscalar and isovector
parts as a whole. Then Eq. (17) becomes

ρt (R; r) ≈ �0(kr)ρt (R) + �2(kr)

6
r2

×
[

1

4
∇2ρt (R) − τt (R) + 3

5
k2ρt (R)

]
, (55)

where t = 0, 1. Using different momentum scales for the
isoscalar and isovector expansions leads to additional
complications. Therefore, we follow Ref. [23] and simply use
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FIG. 6. Same as Fig. 4 without the ratios for individual nuclei.
Unlike in Fig. 4, here both panels show expansions with isoscalar
momentum scales. Note the different axis scale of this figure when
comparing to other figures.

the isoscalar variants of Eqs. (11) and (19),

k0
F(R) ≡

[
3π2

2
ρ0(R)

]1/3

, (56)

k0
FC(R) ≡

{
5

3ρ0(R)

[
τ0(R) − 1

4
∇2ρ0(R)

]}1/2

, (57)

for all OBDM parts. Then, this prescription is equivalent
to using Eq. (17) but with the same momentum scale for
both neutrons and protons. Because kn

F(C)(R) ≈ k0
F(C)(R) ≈

kp
F(C)(R) one may expect the results to not be significantly dif-

ferent for either of the momentum scales. But in the particular
case of pure isovector quantities using k0

F(R) or k0
FC(R) could

be much worse as this effectively results in approximating
the difference of neutron and proton density matrices with
a momentum scale that assumes their similarity. This can
also be viewed as employing a single-species procedure to
approximate the neutron-skin density matrix, which almost
never behaves like a single-species density matrix.

This is confirmed by the panels in the second row of Fig. 5,
which display the differences between DME-approximated
and exact scalar-isovector integrands W1. We show them for
the NV- and NV2-DMEs, both for separate neutron/proton
momentum scales and for the isovector momentum scale k0

F.
The expected much larger (local) deviations in the latter case
are clearly visible. This is similar for the other DMEs that
are not displayed and translates also to the energy ratios
W DME

1 /W exact
1 .

In the right panel of Fig. 6 we show these ratios, but unlike
in Fig. 4 here the values are obtained by using the isoscalar
variants of the momentum scales. The results are much worse
for the isoscalar momentum scale: the average ratios range
from 0.37 to 1.53 and are in all cases further away from unity
than with separate momentum scales. However, the scalar-
isoscalar energies are almost identical for isoscalar (Fig. 6)

FIG. 7. Same as Fig. 4 without the ratios for individual nuclei.
The nuclei are given in terms of orbitals from an isotropic HO with
h̄ω = 10 MeV. In both panels the DMEs are used with separate
momentum scales for neutrons and protons.

and separate momentum scales for the two species (Fig. 4).
As explained, both observations are expected.

Whether one deems using DMEs with isoscalar momentum
scales acceptable or not in light of these findings depends very
much on the case at hand. The poor accuracy of the very small
scalar-isovector energies effectively does not matter when one
is only interested in a good description of the total energies,2

but again this might not be true for isovector and differential
quantities, such as differences along isotope chains.

D. Dependence on orbitals

In this subsection we want to answer the question whether
the results reported above depend sensitively on details of
the orbitals. The orbitals used so far were obtained from
self-consistent HF calculations with the SLy4-EDF. We now
switch to orbitals from a simple isotropic harmonic oscillator
(HO) with frequency h̄ω = 10 MeV. As can be seen in Fig. 2
they are quite well suited to provide a less realistic counterpart
to the SLy4 orbitals. We consider the same 11 (6) nuclei as
before for the scalar-isoscalar (scalar-isovector) energies.

Changing back to expansions with separate momen-
tum scales for neutrons and protons we show the ratios
W DME

0 /W exact
0 and W DME

1 /W exact
1 in Fig. 7. For both scalar-

isoscalar and scalar-isovector energies the results are very
similar to the SLy4 results given in Fig. 4. The main difference
is that the spread between the smallest and the largest ratios
is typically slightly smaller in the case of HO orbitals but the
ranking of the DME variants according to the accuracy of their
Yukawa exchange energy reproduction is very similar.

As an additional check we use orbitals obtained from
spherical HF calculations employing the 1.8/2.0 (EM)

2For some DMEs the total energy reproduction is even slightly
better with the isoscalar momentum scale due to cancellations of
errors between scalar-isoscalar and scalar-isovector energies.
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FIG. 8. Ratio of DME-approximated and exact scalar-isosclar
exchange-energy contribution for a regularized Yukawa interaction.
The parameter m corresponds to the reciprocal of the interaction
range. The values are averages over 11 closed-shell nuclei obtained
from a self-consistent HF calculation with the SLy4-EDF. Density-
matrix expansions are used with separate momentum scales for
neutrons and protons and the expansions are about the two-particle
center of mass R except for the cases marked with “–x2” where
instead they are about the position of one particle. Extra points on
the left show the result at m = 0 without regulators.

interaction [57]. For selected nuclei, the corresponding
isoscalar density distributions are shown in Fig. 2. Again, the
accuracy ranking of the DMEs is virtually the same. Detailed
results for these orbitals are presented in the Supplemental
Material [58].

Overall the investigations of this section strongly indicate
that previous findings regarding the accuracy of reproducing
Yukawa exchange energies are generally true, i.e., do not
sensitively depend on orbitals.

E. Dependence on interaction

Exchange energies from interactions with shorter ranges
are expected to be better reproduced by DMEs. Our tests con-
firm such behavior. In particular, DMEs are exact in the limit
of vanishing interaction range. But what about the opposite
limit? Consider

W LO
S (m, r) ≡ m3

π

12π

(
gA

2Fπ

)2 e−mr

mπ r
, (58)

where the parameter m is the reciprocal of the interaction
range. One-pion exchange is obtained for m = mπ and the
infinite-range limit (i.e., the Coulomb interaction) for m = 0.

In Fig. 8 we plot the scalar-isoscalar energy ratios
W DME

0 /W exact
0 for this interaction as a function of m, where

again each point is averaged over the same 11 nuclei ob-
tained from SLy4-EDF orbitals as in Secs. III A to III C. The
interaction is also regularized as before [see Eqs. (48) and
(49)]. The energy ratios are shown for m = 0, 10, 25, 50,
85, 138.03, 200, and 300 MeV. In addition, for each DME
a single additional point, which corresponds to the value at
m = 0 without regulators, is drawn on the very left. Figure 8
contains the results for Slater-, NV-, NV2-, and CB-DMEs.

The behavior for the other second-order DMEs with kF (kFC)
is similar to the NV/NV2 (CB) trends.

For large interaction ranges the DME exchange-energy
integrals, Eqs. (51) and (52), have to be carried out up to very
high r values to obtain converged results. This is especially
important for full-square DMEs because their oscillations
with significant amplitudes occur for particularly large r in
regions of small expansion momenta. For one-pion exchange
(m = 138.03 MeV) these regions are damped, but when the
interaction falls off much more slowly they contribute non-
negligibly. Thus, we calculate the integrals for m � 25 MeV
analytically without the regulator by employing a strategy
proposed in Ref. [59] and add to that the correction from the
regulator, which can easily be calculated numerically due to
its short range. Details on this procedure and the relevant ana-
lytical expressions are provided in the Supplemental Material
[58]. Note that when using an isoscalar momentum scale those
analytical integrals can also be obtained with the Mathematica
package of Ref. [60].

As expected, the NV-DME results significantly deteriorate
with increasing interaction range (i.e., decreasing m) and even
more so do the NV2-DME results. This is in agreement with
results from Ref. [28]. The worse accuracy for the full-square
variant is due to the unwanted large-r bump of the expansion
(see Fig. 1 for an example) getting probed more for larger
interaction ranges.

We consider here also DMEs around x2 as discussed in
Sec. II D, which have been reported to yield good results with
the Coulomb interaction in molecular systems [30]. These
are labeled with an additional “–x2” in Fig. 8. While they
perform worse for small ranges, the NV-DME about x2 pro-
duces much better results for large interaction ranges than
its conventional counterpart. This is despite the angle aver-
aging being performed before squaring the density matrix.
The opposite order of these two operations yields a different
expression for expansions about x2 and should also be inves-
tigated in the future. The improved energy reproduction also
holds when neglecting the regulator and agrees qualitatively
with the molecular-physics result of Ref. [30] despite the
different considered systems. This confirms the conclusion of
the previous section.

As elaborated on in Sec. II D, generalizing DMEs that
use kFC to expansions about x2 leads to complications and
hence we give the CB-DME results only about R. We observe
that the CB-DME accuracy is significantly less range depen-
dent than the second-order kF-DMEs. The performance of the
Slater approximation (which is the same for expansions about
R and x2) is even less range dependent.

We also note that for PSA- and PSA2-DME the energies are
infinite in the Coulomb limit, independent of the expansion
point, due to insufficient convergence of these DME variants,
see also the corresponding remark in Sec. II B. Depending
on the asymptotic behavior of the orbitals, the Coulomb ex-
change integrals can diverge for any full-square DME, see
Ref. [28] for an example.

The Yukawa interaction considered in the previous sub-
sections contains another length scale in addition to m: the
regulator cutoff R0, see Eq. (49). The dependence of the
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DME accuracy on R0 is straightforward. As the regulator cuts
off only short-distance parts of the interaction where DMEs
work very well, larger regulator cutoffs correspond to a worse
overall reproduction of exact exchange energies and a larger
spread of the accuracies for different systems. Detailed values
for different regulator cutoffs as well as for the EKM regulator
[47]

f (r) =
[

1 − exp

(
− r2

R2
0

)]6

(59)

are provided in the Supplemental Material [58].
There we also show results for the finite-range parts of the

Gogny D1S interaction [35], a successful phenomenological
pseudopotential that was also considered in DME studies of
Refs. [23,24]. Its finite-range parts are two Gaussians that
contribute with different signs to the exchange energy. The
resulting cancellations change the ranking of the DMEs ac-
cording to their accuracy in minor details but the overall
conclusions of this work are still valid.

Summing up, for not-too-long-range NN forces such as
one-pion exchange, DMEs around the center of mass R yield
the best results. This is not the case for the Coulomb interac-
tion where for instance in the case of the NV-DME expanding
about x2 is superior.

IV. SUMMARY AND OUTLOOK

Empirical EDFs have been broadly successful in describ-
ing nuclear properties across the table of nuclides. Recently,
EDFs have included long-range pion contributions from chi-
ral EFT with encouraging and puzzling results [16]. In this
work, we therefore have taken the first steps with a detailed
re-examination of the DME implementation. To this end, we
compared several zeroth- and second-order DMEs for scalar
parts of OBDMs, focusing on the accurate non-self-consistent
reproduction of exact Yukawa exchange energies in closed-
shell nuclei.

In general, all considered DMEs approximate the investi-
gated exchange energies very well. Of those DMEs that do
not lead to more than two derivatives in any EDF term (like
conventional Skyrme EDFs) we find best energy reproduction
for the Slater approximation, although locally it approximates
the energy integrands worse than second-order DMEs. When
allowing for EDF terms with more than two derivatives, but
still using only the standard Skyrme densities, one can also
employ the full-square DMEs. These perform better than their
truncated-square counterparts and the ones that use kFC as
their momentum scale. Overall we find best results for the
SVCK2- and MG-DMEs, although the latter yields the wrong
INM limit.

Regarding a good reproduction of scalar-isovector energies
we find that it is crucial to treat neutrons and protons sepa-
rately in DMEs. Using a single isoscalar momentum scale can
lead to results wrong by more than 50%, though the effect
on the total exchange energy is very small due to the small
absolute size of isovector contributions.

All these findings are robust in the sense that they hold
along the entire nuclear mass range, are confirmed also for less
realistic orbital shapes, and are valid for different regulators
and interaction ranges (except for very-long-range interac-
tions, see Sec. III E).

Our results put the DME applicability for long-range pion
contributions on a solid footing, showing that the different
DME choices generally lead to tolerable variations. This does
therefore not resolve the puzzles in the EDF performances
with chiral physics included.

All results in this paper are based on non-self-consistent
tests and should therefore be regarded as provisional. For
instance, it is at this stage unclear how local errors in the
reproduction of exchange-energy integrands (e.g., see Slater
approximation in Fig. 3) influence the results of the self-
consistency loop in an EDF calculation of nuclei. Hence, one
of next steps is to implement the findings of this work into
EDFs like the ones of Ref. [16]. This could also bring us
closer to answering if explicit pions are needed for higher
EDF accuracies. However, we believe the present findings
suggest the EDF improvement coming from an enhanced
DME treatment will be minor, especially considering that the
Skyrme couplings get refitted after incorporating the DME in
the approach of Ref. [16]. In general, EDF practitioners can
test the performance of the DME variant of their choice by
switching to one of the other variants discussed in this work.
If the results are quantitatively very similar, this suggests that
further EDF improvements need to come from elsewhere, and
not from DME improvements.

This paper only dealt with the application of DMEs to NN
forces. In the 3N sector, even more choices have to be made
regarding the DME and the authors of Ref. [16] report that the
inclusion of 3N forces degrades the quality of their EDFs at
every considered chiral order. In addition, we did not consider
vector parts of the OBDM, or DME terms with an odd number
of derivatives that are relevant in not-time-reversal-invariant
systems. These topics are left for future investigations.
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