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The nuclear many-body problem for medium-mass systems is commonly addressed using wave-function
expansion methods that build upon a second-quantized representation of many-body operators with respect to
a chosen computational basis. While various options for the computational basis are available, perturbatively
constructed natural orbitals recently have been shown to lead to significant improvement in many-body ap-
plications yielding faster model-space convergence and lower sensitivity to basis set parameters in large-scale
no-core shell model diagonalizations. This work provides a detailed comparison of single-particle basis sets
and a systematic benchmark of natural orbitals in nonperturbative many-body calculations using the in-medium
similarity renormalization group approach. As a key outcome we find that the construction of natural orbitals in
a large single-particle basis enables for performing the many-body calculation in a reduced space of much lower
dimension, thus offering significant computational savings in practice that help extend the reach of ab initio
methods towards heavier masses and higher accuracy.
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I. INTRODUCTION

Nuclear many-body theory has witnessed major devel-
opments over the last two decades, extending the reach of
the ab initio solution of the stationary Schrödinger equation
over a wide range of mass numbers in the nuclear chart,
covering closed- and open-shell nuclei and including ex-
otic nuclei [1,2]. This progress is mainly based on (i) the
construction of improved nucleon-nucleon (NN) and three-
nucleon (3N) interactions based on chiral effective field theory
(EFT) [3–14] and (ii) the extension of many-body theories
applicable to medium-mass nuclei [15–18]. The advances of
many-body calculations are intimately linked to the use of
wave-function expansion methods, which exhibit mild com-
putational scaling in mass number, instead of the exponential
scaling required by exact methods, resulting in the recent
milestone ab initio calculation of 100Sn [19]. In practice,
various many-body approaches exist for medium-mass nu-
clei, e.g., many-body perturbation theory (MBPT) [18,20–22],
coupled cluster (CC) theory [16,23], the in-medium similarity
renormalization group (IMSRG) [17,24,25], self-consistent
Green’s function (SCGF) theory [15,26], and nuclear lattice
simulations [27]. In particular, the recent use of nonperturba-
tive many-body approaches has generated an unprecedented
level of accuracy in medium-mass applications for a diverse
set of nuclear observables (see, e.g., Refs. [28–30]).
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All these frameworks require the introduction of a compu-
tational basis for the representation of the (second-quantized)
many-body operators. In the limit of a one-body Hilbert space
of infinite dimension, different choices of the computational
basis yield identical results. However, due to computational
limitations, in practice one is always restricted to using a finite
basis size and, consequently, the resulting observables will
depend on the underlying computational basis.

It has been realized only recently in nuclear physics that the
optimization of the single-particle basis provides a powerful
tool to stabilize many-body calculations and enables a more
reliable extraction of physical observables from large-scale
calculations [31,32]. In other fields of many-body research,
like quantum chemistry, this is much more explored and the
construction of suitable single-particle basis functions has
been an integral part of the ab initio endeavor, yielding a rich
variety of basis sets. In this work, we investigate benefits and
limitations of various single-particle bases used in the solution
of the nuclear many-body problem.

Choosing the single-particle basis in nuclear many-body
theory primarily requires addressing the following questions:

(i) What is the best choice for obtaining rapid conver-
gence with respect to the model-space size?

(ii) What is the best strategy to minimize the dependence
of physical observables on basis set parameters?

(iii) To what extent is the factorization of center-of-mass
and intrinsic motion contaminated?

In practice, optimizing with respect to all of the above
simultaneously is not possible. Historically, most many-
body calculations either employ harmonic oscillator (HO) or
Hartree-Fock (HF) single-particle states. Harmonic oscillator
basis states rigorously ensure factorization of center-of-mass

2469-9985/2021/103(1)/014321(15) 014321-1 ©2021 American Physical Society

https://orcid.org/0000-0003-0723-7724
https://orcid.org/0000-0002-0618-0685
https://orcid.org/0000-0002-6363-0056
https://orcid.org/0000-0003-0640-1801
https://orcid.org/0000-0001-8027-4076
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevC.103.014321&domain=pdf&date_stamp=2021-01-28
https://doi.org/10.1103/PhysRevC.103.014321


J. HOPPE et al. PHYSICAL REVIEW C 103, 014321 (2021)

and intrinsic degrees of freedom of the many-body wave func-
tion when combined with an Nmax truncation, as in no-core
shell model (NCSM) approaches [33,34]. However, in prac-
tice a strong dependence on the basis set parameters such as
the oscillator frequency of the confining potential is observed,
especially for heavier nuclei or for observables that are more
sensitive to the long-range part of the nuclear wave function.
This makes the extraction of such observables challenging.
Using HF orbitals based on a prior mean-field solution typi-
cally lowers the frequency dependence, while numerically still
leading to a factorization of the center-of-mass and intrinsic
wave function in large enough model spaces [35]. However,
selected nuclear observables may still show sensitivity to
the oscillator frequency in the HF basis as observed, e.g.,
for charge radii of medium-mass nuclei in IMSRG calcula-
tions [10].

Recently, applications of natural orbitals (NAT), defined as
eigenvectors of the one-body density matrix, revealed faster
model-space convergence and significantly reduced sensitiv-
ity to basis parameters in large-scale NCSM calculations [32].
Furthermore, they have been shown to drastically reduce the
required amount of three-particle-three-hole amplitudes in CC
applications [36], allowing for novel calculations with leading
triples corrections, e.g., for deformed nuclei [36] and nuclear
matrix elements of the neutrinoless double-β decay [37]. In
this work, the natural orbital basis is inspected in detail and
systematically applied in nonperturbative medium-mass stud-
ies using modern chiral interactions.

This paper is organized as follows. In Sec. II various
options of single-particle bases are shown and discussed. Sec-
tion III introduces the concept of normal ordering as well as
the impact of the reference state on the many-body formal-
ism. In Sec. IV the IMSRG approach is briefly introduced.
The different single-particle bases considered are compared
in detail in Sec. V and applied to medium-mass systems using
the IMSRG formalism in Sec. VI. Finally, we summarize and
conclude in Sec. VII.

II. BASIS OPTIMIZATION

A. Rationale

While HO basis sets have been used extensively for a
long time in various many-body frameworks, they constitute
an agnostic choice with respect to any specific properties of
the target system, e.g., in terms of mass number or mean-
field effects. This can be addressed by using HF orbitals
instead. Hartree-Fock orbitals account for bulk properties of
the nucleus stemming from a variational minimization of the
ground-state energy. Observables like the energy or the ra-
dius are therefore well captured at the HF level as long as
the nuclear interaction is soft enough, and the single-particle
wave functions possess an improved radial dependence as
opposed to the Gaussian falloff of HO eigenfunctions. Proton
and neutron single-particle potentials in general differ in the
HF approach, thus accounting for mean-field contributions
induced by Coulomb and isospin-breaking effects.

Still, the HF procedure by construction only provides an
optimization of occupied single-particle states (holes) while

leaving virtual single-particle states (particles) untouched
beyond fixing the normalization.1 However, wave-function
expansion methods aim at capturing dynamic correlations
linked to particle-hole excitations, which also involve single-
particle orbitals that are not optimized by the HF approach.
Therefore, incorporating such effects in the construction of the
computational basis is key when trying to robustly determine
observables to high precision.

B. Notation

In the following, we denote second-quantized n-body (nB)
operators via

O(nB) ≡ 1

(n!)2

∑
k1··· k2n

o(nB)
k1···k2n

a†
k1

· · · a†
kn

ak2n · · · akn+1 , (1)

where the lower-case letters o(nB)
k1···k2n

represent their matrix

elements and a†
k (ak) denote the single-particle creation (anni-

hilation) operators. Normal-ordering techniques are exploited
to reexpress the operator with respect to an A-body reference
state,

Õ(nB) ≡ 1

(n!)2

∑
k1··· k2n

õ(nB)
k1···k2n

: a†
k1

· · · a†
kn

ak2n · · · akn+1 :, (2)

where strings of normal-ordered creation and annihilation
operators are denoted by colons and we use the tilde to
distinguish the reference-state normal-ordered operator and
its matrix elements from the initial one. While the specific
vacuum is absent in this notation, it will be clear from the
context what reference state we are referring to.

For the particular case of the nuclear Hamiltonian the
following notation is employed to denote its normal-ordered
contributions:

H = E0 +
∑

pq

fpq : a†
paq : +1

4

∑
pqrs

�pqrs : a†
pa†

qasar :

+ 1

36

∑
pqrstu

Wpqrstu : a†
pa†

qa†
r auat as :, (3)

where E0, f , �, and W denote the zero-, one-, two-, and three-
body matrix elements. Because the operator in Eq. (3) is in
reference-state normal order the expectation value is given by
its normal-ordered zero-body part

〈�|H |�〉 = E0, (4)

where |�〉 denotes the reference state. In the case of a
Hartree-Fock reference state |�〉 = |HF〉 this corresponds to
the Hartree-Fock mean-field energy, E0 = EHF.

1Unitary transformations applied separately to the hole and particle
space leave the HF energy invariant but impact the single-particle
energies and wave functions (see also Sec. II F).
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C. Natural orbitals

Natural orbitals are defined as the eigenbasis of the one-
body density matrix with its matrix elements given by

γpq ≡ 〈�| : a†
paq : |�〉

〈�|�〉 , (5)

where |�〉 denotes the exact ground state. The calculation of
the exact one-body density matrix requires the full solution of
the Schrödinger equation, which is out of reach beyond the
lightest systems. However, early attempts in quantum chem-
istry revealed that approximate natural orbitals can be very
useful [38,39]. Such basis sets are obtained by using an ap-
proximate many-body state |�approx〉 to obtain an approximate
one-body density matrix,

γ approx
pq ≡ 〈�approx| : a†

paq : |�approx〉
〈�approx|�approx〉 . (6)

In regions of the nuclear chart where the exact wave function
is computationally inaccessible, this provides an alternative
option for defining a basis for the many-body calculation. In
practice, a reasonable trade-off between the accuracy of the
many-body truncation for the construction of the approximate
wave function and the associated computational cost needs to
be found.

In the case where the approximate wave function is an HF
Slater determinant |HF〉 the density matrix

γ HF
pq ≡ 〈HF| : a†

paq : |HF〉
〈HF|HF〉 (7)

has the particularly simple form

γ HF =
(

1hh 0

0 0

)
, (8)

where 1hh denotes the identity in the sub-block of hole states.
As the HF state is normalized to unity, the presence of the
mean-field overlap 〈HF|HF〉 does not affect the HF density
matrix. Furthermore, the density matrix corresponds to a nor-
malized many-body state, meaning that its trace yields the
particle number of the state, i.e., tr(γ HF) = A.

For an HF reference state, the canonical orbitals, defined
as the eigenbasis of the one-body HF Hamiltonian, and the
natural orbitals based on the HF density matrix in Eq. (8)
coincide. Therefore, one must include correlations beyond
mean field in the construction of the density matrix to gain
a benefit from the natural orbitals.

D. Perturbatively improved density matrix

As discussed in the previous section, accounting for
particle-hole couplings in the density matrix is essential for
providing a more refined computational basis. The simplest
approach to including such effects is by employing a per-
turbatively corrected one-body density matrix. Following the
description in Ref. [40], the one-body density matrix up to
second order in the interaction (λ2), based on expanding the
eigenstate of the approximate wave function up to second

order in MBPT (MP2), can be written as

γ MP2 ≡ γ HF + γ (02) + γ (20) + γ (11) + O(λ3), (9)

where

γ (mn)
pq ≡ 〈�(m)| : a†

paq : |�(n)〉 (10)

is the MBPT contribution for the density matrix arising from
the bra and ket wave function corrections at orders m and n,
respectively. Terms of order λ3 or higher in the interaction are
discarded. Moreover, terms of the form γ (01)/(10) are absent
when using a canonical HF reference state due to Brillouin’s
theorem [41]. Explicit expressions for the various contribu-
tions in terms of single-particle orbitals are given by

D(hp)1
i′a′ = 1

2

∑
abi

�i′iab�aba′i

εa′
i′ ε

ab
i′i

, (11a)

D(hp)2
i′a′ = −1

2

∑
ai j

�i′ai j�i ja′a

εa′
i′ ε

a′a
i j

, (11b)

D(hh)
i′ j′ = −1

2

∑
abi

�i′iab�ab j′i

εab
i′i ε

ab
j′i

, (11c)

D(pp)
a′b′ = 1

2

∑
ai j

�a′ai j�i jb′a

εa′a
i j εb′a

i j

, (11d)

where the labels i, j, k, . . . (a, b, c, . . .) correspond to single-
particle states occupied (unoccupied) in the reference determi-
nant, i.e., the HF state in our case. The matrix elements �pqrs

are given in the HF basis, thus corresponding to an HF par-
titioning in the MBPT expansion of the density matrix [21].
Furthermore, the shorthand notation

εab
i j ≡ εi + ε j − εa − εb (12)

is used, with εp ≡ fpp denoting the HF single-particle energy
of orbital p. Consequently, the MP2 density matrix is given by

γ MP2 =
(

γ hh γ hp

γ ph γ pp

)
, (13)

where the hole-particle and particle-hole blocks are nonzero
and given by

γ hp = D(hp)1 + D(hp)2 = (γ ph)ᵀ, (14)

and the hole-hole and particle-particle blocks by

γ hh = γ HF + D(hh), (15a)

γ pp = D(pp), (15b)

respectively. Note that in contrast to the HF density matrix,
the MP2 density matrix contains particle-particle and particle-
hole couplings as shown for 16O in Fig. 1. Since∑

i

D(hh)
ii +

∑
a

D(pp)
aa = 0, (16)

the second-order density matrix still fulfills the trace normal-
ization condition tr(γ MP2) = A as in the HF case.

In practice, the construction of the MP2 density matrix is
realized using a spherically constrained scheme, i.e., enforc-
ing angular-momentum conservation throughout the initial HF
solution and the following MBPT calculation. Specifically, the
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FIG. 1. Correlated one-body proton density matrix γ MP2 in the
HF basis for 16O in an emax = 4 model space using the next-to-
next-to-next-to-leading order (N3LO) 450 interaction based on the
N3LO NN potential from Ref. [8] with N3LO 3N forces constructed
in Ref. [9]. The first three proton orbitals are occupied in the
16O reference state, while the remaining ones are unoccupied. The
perturbative corrections beyond HF can be seen in the diagonal
particle-particle contributions and the off-diagonal particle-hole and
hole-particle contributions. Note that for this N = Z nucleus the
neutron density matrix is very similar.

single-particle orbitals are then characterized by the quantum
numbers n, l , j, and t , which are (2 j + 1)-fold degenerate.
Here n is the radial quantum number, l the orbital angular
momentum, j the total angular momentum, and t the isospin
projection. In actual calculations, we truncate the single-
particle states at e � emax, with quantum numbers e = 2n + l .

Consequently, the resulting MP2 density matrix is block
diagonal in the quantum numbers l jt as only states with
different radial quantum number n couple. The diagonaliza-
tion of the MP2 density matrix is performed in sub-blocks
to ensure symmetry conservation. The resulting eigenvectors
and eigenvalues correspond to the transformation coefficients
from the HF to the NAT basis and the occupation numbers of
the natural orbitals, respectively.

E. Basis transformation

The natural orbital states are obtained as linear combina-
tions of the HF states, mixing radial excitations only:

|nαp〉NAT =
∑

n′

NATC
αp

nn′ |n′αp〉HF, (17)

where αp is a collective index for the quantum numbers lp, jp,
and tp and NATC

αp

nn′ denotes the expansion coefficients in the
HF basis obtained by the diagonalization, i.e.,

HF〈n′αp|nαp〉NAT = NATC
αp

nn′ , (18)

where the m projection of the total angular momentum is
suppressed since the transformation coefficients and single-

FIG. 2. Occupation numbers np of the single-particle proton or-
bitals for the HF and NAT basis in 16O, using the 1.8/2.0 EM
interaction [5] and an oscillator frequency h̄ω = 16 MeV. We show
results for two model-space truncations emax = 2 and emax = 10 in
the NAT basis construction. As for Fig. 1, the occupations of the
neutron orbitals are nearly identical.

particle states do not depend on it as long as rotational
symmetry is enforced. By expanding the HF states in the HO
basis, we can also express the natural orbital states in the HO
basis:

|nαp〉NAT =
∑
n′n′′

NATC
αp

nn′
HFC

αp

n′n′′ |n′′αp〉HO

=
∑

n′′

NAT/HFC
αp

nn′′ |n′′αp〉HO, (19)

where the coefficients NAT/HFC
αp

nn′′ now combine the transfor-
mation from the HO to the HF and from the HF to the NAT
basis.

Note that the set of occupation numbers for the natural
orbitals np ∈ [0, 1] obtained from the eigenvalues now leads
to a fractional filling of all orbitals, in contrast to the occu-
pation numbers np ∈ {0, 1} obtained from the HF solution.
This feature is illustrated in Fig. 2 comparing the NAT and
HF occupation numbers for an 16O reference state.

Since the reference state for the MP2 density matrix is
not a single Slater determinant due to mixing of particle-
hole excitations the occupation numbers must differ from the
mean-field picture. As discussed in the following, this also
affects the normal-ordering procedure with respect to natural-
orbital basis states.

While the employed MP2 density matrix provides a simple
approximation to the exact one-body density matrix, non-
perturbative many-body schemes can be used to refine the
approximation, e.g., a � approach in CC theory [42], dressed
propagators from Green’s function theory [43], or a fully
correlated configuration interaction (CI) calculation [44].
A balance between accuracy and computational complexity
needs to be found, and a low-order MBPT approach provides
a reasonable approximation to the one-body density matrix at
low computational cost.
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F. Intrinsic kinetic energy

The intrinsic Hamiltonian, here considered up to three-
body contributions, can be split into a kinetic part and an
interaction part,

H = T − Tcm + V (2) + V (3) = Tint + V (2) + V (3), (20)

with the intrinsic kinetic energy Tint and the two- and three-
body potentials V (2) and V (3), respectively. The intrinsic
kinetic energy is obtained by subtracting the center-of-mass
kinetic energy Tcm from the full kinetic energy T . The intrinsic
kinetic energy can be represented either as a sum of one- and
two-body operators,

T (1+2)
int =

(
1 − 1

A

) ∑
i

p2
i

2m
− 1

A

∑
i< j

pi · p j

m
, (21)

or as a pure two-body operator,

T (2)
int = 1

A

∑
i< j

(pi − p j )2

2m
. (22)

Of course, both cases are equal and can be transformed into
each other by

∑
i< j

(pi − p j )2

2m
=

∑
i< j

(
p2

i + p2
j − 2pi · p j

)
2m

= (A − 1)
∑

i

p2
i

2m
−

∑
i< j

pi · p j

m
. (23)

The one- and two-body matrix elements of the Hamiltonian
obviously differ depending on the choice of Tint. Nevertheless,
both cases result in the same HF determinant with identi-
cal total HF energy, as studied in detail in Refs. [45,46].
The HF single-particle energies are different for both choices
and can be related by a unitary transformation of the oc-
cupied single-particle states [45]. These findings are based
on the assumption of a reference state with well-defined
particle number A. For a discussion of particle-number break-
ing theories, e.g., the Hartree-Fock-Bogoliubov approach, see
Ref. [47].

The partitioning of the kinetic energy operator also affects
the construction of the natural orbital basis. By employ-
ing T (2)

int the initial Hamiltonian (before normal ordering) no
longer has a one-body part, and the two-body matrix elements
in the construction of γ MP2 [see Eqs. (11a)–(11d)] differ from
the ones obtained by using the one- plus two-body form of the
kinetic energy, resulting in altered transformation coefficients
and NAT occupation numbers. The partitioning also changes
the single-particle energies, further changing the resulting
γ MP2.

In general, we apply the intrinsic kinetic energy operator of
Eq. (21) with a one- and two-body part for the IMSRG calcu-
lations performed in this work. However, in the following we
additionally study the impact of using a pure two-body kinetic
energy operator T (2)

int .

III. NORMAL ORDERING

The concept of normal ordering facilitates the formulation
of Wick’s theorem [48] and defines an in-medium optimized
representation of the operator [49]. For this reason, it is com-
monly employed in many-body frameworks applied to nuclei
and nuclear matter. In the following, we first address the
formal details of working with a correlated reference state.

A. Multireference formulation

When employing a perturbatively improved one-body den-
sity matrix the associated reference state is no longer a single
Slater determinant. Consequently, the notion of normal order-
ing needs to be extended to cope with the multiconfigurational
character of the vacuum. Such an extension can be naturally
addressed in terms of the generalized Mukherjee-Kutzelnigg
normal ordering [50]. Even though this scheme is not numer-
ically benchmarked in this work, it is still worth anticipating
the additional complications that arise from a multireference
treatment of the MP2 density matrix.

For simplicity, we neglect three-body contributions in the
following analysis and start from an arbitrary many-body op-
erator O containing up to two-body contributions:

O ≡ O(0B) + O(1B) + O(2B). (24)

Performing the normal ordering of the operator O in Eq. (24)
with respect to a non-product-type vacuum yields [51]

õ(0B) = o(0B) +
∑

pq

o(1B)
pq γpq + 1

4

∑
pqrs

o(2B)
pqrsγpqrs, (25a)

õ(1B)
pq = o(1B)

pq +
∑

rs

o(2B)
prqsγrs, (25b)

õ(2B)
pqrs = o(2B)

pqrs, (25c)

involving one- and two-body density matrices γpq and γpqrs,
respectively. The two-body density matrix, which contributes
to the zero-body part of the normal-ordered operator, is given
by

γpqrs ≡ 〈�| : a†
pa†

qasar : |�〉
〈�|�〉 (26)

and can be decomposed into a factorized part of products of
one-body operators and an irreducible two-body part λpqrs,

γpqrs = (γprγqs − γpsγqr ) + λpqrs. (27)

The appearance of λpqrs is a consequence of the reference state
being no longer of mean-field character.2 In the following,
the irreducible two-body part is discarded for simplicity and a
mean-field-like approximation is employed:

γpqrs ≈ γprγqs − γpsγqr . (28)

2In practice, such states are obtained, e.g., from particle-number-
broken and -restored Hartree-Fock-Bogoliubov vacua [52] or small-
scale CI diagonalizations [53].
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Equation (28) is exact as long as a many-body state of product
type is used.3 While in principle it is straightforward to derive
two-body density matrices in MBPT, the factorized approx-
imation is expected to provide a reasonably good choice for
basis optimization.

Considerable simplifications are obtained by working in
the natural orbital basis, i.e.,

γpq = npδpq, np ∈ [0, 1], (29)

where the lack of a well-defined particle-hole picture means
the occupation numbers are no longer zero or one. Expres-
sions for the normal-ordered matrix elements in Eq. (33) are

õ(0B) = o(0B) +
∑

p

o(1B)
pp np + 1

4

∑
pq

o(2B)
pqpqnpnq, (30a)

õ(1B)
pq = o(1B)

pq +
∑

r

o(2B)
prqrnr, (30b)

õ(2B)
pqrs = o(2B)

pqrs, (30c)

now involving single-particle summations running over the
full one-body Hilbert space for the summation indices p, q,
and r instead of hole orbitals only, a consequence of the
smeared-out Fermi distributions in the occupation numbers
np, as shown in Fig. 2.

B. Single-reference case

In the simplest case, a single Slater-determinant reference
state is employed in the many-body expansion,

|�〉 =
A∏

i=1

a†
i |0〉, (31)

where {a†
i } denotes the single-particle creation operators in

the computational basis. For the occupation numbers of the
individual orbitals one has

np =
{

1 if p is a hole state
0 if p is a particle state.

(32)

Performing the single-reference normal ordering with respect
to the reference state in Eq. (31), the corresponding normal-
ordered matrix elements of the operator are obtained as [49]

õ(0B) = o(0B) +
∑

i

o(1B)
ii + 1

2

∑
i j

o(2B)
i ji j + 1

6

∑
i jk

o(3B)
i jki jk, (33a)

õ(1B)
pq = o(1B)

pq +
∑

i

o(2B)
piqi + 1

2

∑
i j

o(3B)
pi jqi j, (33b)

õ(2B)
pqrs = o(2B)

pqrs +
∑

i

o(3B)
pqirsi, (33c)

õ(3B)
pqrstu = o(3B)

pqrstu, (33d)

3Approximating a two-body density matrix from one-body density
matrices is closely related to the approach followed in SCGF theory,
where higher-order Green’s functions are typically factorized prod-
ucts of one-body Green’s functions, thus neglecting their irreducible
higher-body contributions [43].

where the labels i, j indicate hole states occupied in the refer-
ence state |�〉. In Eqs. (33a)–(33d) three-body contributions
are explicitly included. In practice, the normal-ordered two-
body (NO2B) approximation is employed [54,55], where the
residual three-body part, Eq. (33d), is discarded to lower the
computational complexity.

Because the MP2 density matrix does not correspond to a
single Slater determinant, an auxiliary many-body state |NAT〉
is constructed by filling the first A states with the highest
occupation numbers. Similar to Eq. (31) these orbitals are
filled with updated occupations ni ∈ {0, 1} to conserve the
particle-number expectation value, thus establishing a well-
defined particle-hole picture. Consequently, in the following
applications standard Slater-determinant-based codes can be
used for the many-body expansion. Note that, even though
this reference state has product-type character, the information
about the correlated density matrix is encoded in the transfor-
mation matrix from the HO to the NAT basis [see Eq. (19)]
for the one- and two-body parts of the intrinsic Hamiltonian.
By using such an auxiliary vacuum the reference-state expec-
tation value is larger than the HF expectation value since there
is no underlying variational principle, i.e.,

〈NAT|H |NAT〉 > 〈HF|H |HF〉. (34)

IV. IN-MEDIUM SIMILARITY RENORMALIZATION
GROUP

For the medium-mass applications in this work we use the
nonperturbative in-medium similarity renormalization group
approach. For a detailed discussion of the many-body formal-
ism the reader is referred to Refs. [17,24,56].

A. Formalism

In the IMSRG framework the many-body Schrödinger
equation is solved by performing a decoupling of particle-hole
excitations from the reference state by a continuous unitary
transformation U (s) parametrized in terms of a real-valued
flow parameter s,

H (s) = U (s)H0U
†(s), (35)

where H (s = 0) is the initial, i.e., unevolved, Hamiltonian.
Equation (35) can be rewritten as a first-order ordinary dif-
ferential equation (ODE) in s,

dH (s)

ds
= [η(s), H (s)], (36)

with the anti-Hermitian generator η(s) defined by the unitary
transformation.

The in-medium character of the decoupling condition is
achieved by performing the renormalization group evolu-
tion on the normal-ordered representation of the operator.
In the simplest case this is done with respect to a single
Slater determinant, as indicated in Sec. III B. At s = 0, the
normal-ordered zero-body part of the Hamiltonian is the
reference-state energy expectation value, e.g., the HF energy
in the case of the HF reference state. Over the course of the
evolution, the off-diagonal matrix elements of the Hamilto-
nian are suppressed, and the exact ground-state energy of
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the fully interacting system is given by the normal-ordered
zero-body part of the evolved Hamiltonian:

E0(s → ∞) = lim
s→∞〈�|H (s)|�〉. (37)

Solving the IMSRG flow equation absorbs the dynamic cor-
relations nonperturbatively and smoothly decouples particle-
hole excitations from the reference state.

In practice, the expansion in Eq. (36) is computationally
intractable since the repeated commutator evaluation induces
higher-body operators in each integration step, yielding up
to A-body operators when applied to an A-body system. In
the following, the IMSRG(2) approximation is used, where
all operators are truncated at the normal-ordered two-body
level. The IMSRG(2) approximation provides an accurate
truncation scheme that incorporates all MBPT corrections up
to order λ3 while resumming many higher-order contributions
in a nonperturbative way through the IMSRG flow [17]. In
medium-mass applications, the many-body uncertainty re-
lated to the IMSRG(2) approximation is estimated to be ≈2%
for ground-state energies (see, e.g., Ref. [11]), thus providing
a versatile and precise many-body scheme at moderate com-
putational cost.

In all subsequent calculations the modified normal ordering
as discussed in Sec. III B is employed, thus enabling the use of
the standard Slater-determinant-based IMSRG. Even though
various open-shell extensions have been designed and applied
within the IMSRG approach [52,53,57], this work is restricted
to closed-shell applications to provide a simple testbed for the
natural orbital basis.

B. Magnus reformulation

In this work, the Magnus formulation of the IM-
SRG [58,59] is employed, which provides direct access to
the unitary transformation U (s) in a computationally efficient
way using the parametrization

U (s) = e�(s), (38)

where �(s) is the anti-Hermitian Magnus operator. Analo-
gously to Eq. (36), an ODE for the Magnus operator can
be derived. Having the transformation matrix at hand al-
lows for the IMSRG evolution of any other operator by the
Baker-Campbell-Hausdorff formula for the many-body oper-
ator according to

O(s) = e�(s)O(s = 0)e−�(s) (39)

instead of solving an additional set of ODEs for each op-
erator. In practice, the Baker-Campbell-Hausdorff expansion
is performed using nested commutator evaluations to some
truncation level. Moreover, solving the Magnus expansion has
the advantage of allowing the use of a simpler ODE solver for
the Magnus operator without loss of accuracy.

C. Correlation effects from MP2 natural orbitals

Before discussing IMSRG applications using natural or-
bitals, it is worth addressing the interplay of the correlations
built into the MP2 density matrix and the correlations that are
resummed within the IMSRG flow.

Using a natural orbital reference determinant yields a
higher ground-state energy at s = 0 compared to an HF vac-
uum due to the variational optimization of the HF orbitals
in the space of single Slater-determinant reference states [see
Eq. (34)]. Moreover, the ground-state energy at s = ∞ using
the MP2 density matrix does not improve upon the IMSRG(2)
results obtained in any other single-particle basis. The MP2
density matrix only incorporates correlations to one-particle-
one-hole and two-particle-two-hole excitations. Within the
IMSRG(2) approximation such effects are resummed to all
orders [17] such that no improvement on the final observ-
able is expected. Once higher-body excitations are included,
additional correlations will enter the description which are
absent in the IMSRG(2) scheme. Practically, this is achieved
by including third-order terms in the MBPT expansion, i.e.,
λ3, or allowing three-body operators in the normal-ordered
Hamiltonian, thus generating additional contributions in the
first-order state correction. Both options will generate the
leading contributions to three-particle-three-hole excitations.

V. DIAGNOSTICS FOR THE DENSITY MATRIX

We begin by investigating the MP2 density matrix and the
associated NAT basis. These results allow us to gain a better
understanding of the relationship between the various compu-
tational bases and their sensitivity to the nuclear Hamiltonian
used in their construction. We focus on two sets of chiral
interactions, the N 3LO NN potential from Ref. [8] with N 3LO
3N forces constructed in Ref. [9], which in the following is
referred to as “N3LO” with the corresponding cutoff value,
and the “1.8/2.0 EM” interaction of Ref. [5].

A. The “softness” of the interaction

“Soft” interactions are low-resolution interactions that
show weak coupling between low- and high-energy states.
The softness of an interaction, i.e., the degree of decoupling
between low and high momenta in the Hamiltonian, can
be varied by changing the regulator scale for Hamiltonians
constructed from an EFT as well as by applying (similar-
ity) renormalization group [(S)RG] methods to decouple or
integrate out high-momentum degrees of freedom [49,60].
Soft interactions applied in many-body methods have been
shown to improve convergence with respect to basis trunca-
tion and order in the many-body expansion. In particular, the
use of an SRG-evolved Hamiltonian is required to enable a
perturbative solution even for closed-shell systems [21]. A
Weinberg-eigenvalue analysis, which provides a metric of the
perturbativeness of an interaction, shows that the softness is
intimately linked to the SRG resolution scale [61,62].

Because the one-body density matrix is constructed from
an MBPT expansion, we expect the density matrix and the
resulting NAT basis to be more sensitive to the basis frequency
and truncation for hard interactions. For unevolved chiral po-
tentials the mean-field wave function may exhibit unphysical
properties, giving rise to an unbound HF solution. With such a
poor reference state, the many-body expansion is significantly
more complicated, in particular if perturbative techniques are
employed. The key idea of a many-body expansion is to start
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from a qualitatively correct reference state while residual dy-
namic correlation effects are brought in as (small) corrections.
This rationale is obviously broken once the mean-field ref-
erence is unbound or not under control, manifesting in final
results via, e.g., strong frequency dependence.

B. Single-particle wave functions

While the HF approach targets the optimization of the oc-
cupied single-particle states from a variational approach, the
unoccupied orbitals are left unmodified up to normalization.
Therefore, the HF basis is expected to properly describe oc-
cupied orbitals while failing for unoccupied ones. The natural
orbital basis, however, accounts for particle-hole admixtures
and therefore may qualitatively improve the description of un-
occupied states as will be tested in the following calculations.
In the following, a single-particle basis is employed including
states up to a principal quantum number emax. Additionally,
we introduce a truncation in three-body space keeping only
configurations with e1 + e2 + e3 � E3max < 3emax due to the
extensive size of three-body matrix elements.

In Fig. 3, we show the squared absolute value of the ra-
dial wave functions for different oscillator frequencies using
the HO, HF, and NAT bases. Different rows correspond to
different single-particle orbitals; only the first row (0p3/2)
corresponds to an occupied orbital. Clearly, using a HO basis
leads to strong frequency dependence in all cases, even for
the occupied 0p3/2 state. Hence, HO wave functions are ruled
out as a reliable computational basis and are not considered
further in this work. While the 0p3/2 orbitals are more robust
in the HF case as expected, unoccupied HF orbitals show
frequency dependence comparable to that of HO orbitals, a
consequence of the fact that unoccupied orbitals are not opti-
mized in the HF approach.

Switching to natural orbitals nicely resolves many of the
remaining artifacts, revealing only minor frequency depen-
dence for both occupied and unoccupied states. As the softer
1.8/2.0 EM interaction from Ref. [5] leads to much better
reproduction of ground-state energies at the HF level [63], this
also improves the quality of the MP2 density matrix. In Fig. 4,
we compare HF (left) and natural orbitals (middle) in a model
space with emax = 10 for this interaction, while additionally
benchmarking the effect of natural orbitals when going to a
larger basis size of emax = 14 (right). While the frequency
dependence for this softer interaction is much milder in the HF
case, high-lying single-particle states still significantly depend
on h̄ω. A residual frequency dependence is still seen in the
1p1/2 orbital at emax = 10 in the natural orbital basis, but this
fully vanishes when going to larger spaces of emax = 14.

In summary, properties of the HF solution strongly impact
the qualitative behavior of the natural orbital single-particle
wave functions and a bound mean-field solution is key for pro-
viding a reliable reference point for a many-body expansion.

C. Positive definiteness as diagnostic tool

The density matrix is a positive-definite operator and thus
its eigenvalues, the occupation numbers, are non-negative.
Therefore, unphysical negative occupations or occupations

FIG. 3. Squared absolute value of the radial wave function u(r)
of 16O as a function of r for different proton orbitals in the HO, HF,
and NAT bases in the first, second, and third columns, respectively.
We show results for the occupied 0p3/2 (first row) and some of the
first unoccupied orbitals (second through sixth rows) for the N3LO
450 interaction and oscillator frequencies h̄ω = 16–36 MeV. The HF
and NAT orbitals include single-particle HO states up to emax = 10
and E3max = 14.

larger than one should not show up during the diagonalization.
Previous investigations in quantum chemistry showed that the
appearance of negative occupation numbers can be linked to
a breakdown of a single-reference description and hint at the
onset of strong static correlations [66]. Therefore, we aim to
utilize occupation numbers as diagnostic and investigate their
sensitivity to the softness of the nuclear interaction. As the
HF ground-state energy is directly related to the softness of
the interaction, a correlation between the HF energy and the
size of negative occupations is expected.

Figure 5 depicts the magnitude of the negative occupa-
tions using N 3LO interactions for various cutoff values in
16,22O. In both nuclei, we observe a decrease in size for
softer interactions, as indicated by going from the harder
potentials with cutoff � = 500 MeV to � = 400 MeV, in
both the NN-only and the NN + 3N cases. Consequently, an
unbound HF solution strongly affects the appearance of un-
physical negative occupations. In general, using the two-body
form of the kinetic energy operator T (2)

kin results in smaller
negative occupations for both nuclei. We also verified that
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FIG. 4. Same as Fig. 3 but for the 1.8/2.0 EM interaction show-
ing results for the HF and NAT bases using emax = 10 in the left and
middle columns, respectively, as well as emax = 14 for the NAT basis
in the right column.

softening the interaction by a consistent SRG evolution of NN
and 3N contributions [10,67] significantly reduces the mag-
nitude of the negative occupations, eventually letting them
vanish completely. Increasing the model-space size seems to
increase the magnitude of these occupations. Moreover, the
effect is generally less pronounced for heavier nuclei, e.g.,
in 78Ni.

In addition, we investigate the size of negative occupa-
tions in the case of 12C. Due to the cluster structures and
weak shell closure in 12C the quality of single-reference
many-body approaches is expected to deteriorate in compar-
ison to the doubly magic nucleus 16O. An analysis of the
single-particle spectrum revealed only a small shell gap in
the single-particle spectrum, thus significantly enhancing the
size of perturbative corrections to the MP2 density matrix
in the particle-particle and hole-hole channel [see Eqs. (11c)
and (11d)]. Consequently, highly erratic occupation numbers
were observed (not shown). Empirically, we found that the
use of T (2)

int with a slightly larger shell gap was superior to
T (1+2)

int , significantly reducing, though not fully resolving, the
large negative occupations. The results of this analysis for
the occupation numbers is also evidence for the challenges
of the single reference-state starting point for a description
of 12C.

FIG. 5. Negative occupations of the p orbitals scaled by (2 ji + 1)
in the NAT basis for 16O (top) and 22O (bottom) as a function of
the HF energy. We show results for various cutoffs with the NN-only
N 3LO EMN and NN + 3N N 3LO interactions indicated by triangles
and circles, respectively. We apply both choices for the kinetic energy
operator, T (1+2)

int (solid symbols) and T (2)
int (open symbols), and use a

model space of emax/E3max = 14/14 with h̄ω = 20 MeV. All negative
occupations arise only for high radial quantum number. Note that
there are no negative occupations for the softer NN-only EMN 400
and 420 interactions.

VI. IMSRG RESULTS

After addressing in detail properties of the single-particle
basis itself, the various choices are benchmarked for medium-
mass closed-shell systems using the IMSRG framework,
focusing on 16O, 40Ca, and 78Ni. All many-body calcu-
lations employed the publicly available IMSRG solver by
Stroberg [68].

A. Comparing the HF and NAT basis

We compare results for ground-state energies and charge
radii of 16O and 40Ca in the HF and NAT bases in Fig. 6 for
a large range of oscillator frequencies for the NN-only and
NN + 3N N 3LO 450 interactions. For the NN-only potential,
we observe nearly no change when going from the HF to
the NAT basis on this scale. Since the HF solution is bound,
bulk properties are well captured at the mean-field level and
applying the NAT basis does not yield an improvement in final
results. Both energies and radii are almost flat as a function
of h̄ω for the largest model space and rapidly converge with
model-space size in both the HF and natural orbital bases.
When 3N forces are included, the NN + 3N results similarly
to the NN-only case show almost no change from the HF to the
NAT basis, but the h̄ω dependence becomes more pronounced
for the radii.

In order to systematically understand the difference be-
tween the basis sets, we examine the converged IMSRG(2)
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FIG. 6. Ground-state energies (upper rows) and charge radii (lower rows) of 16O and 40Ca in the left and right plots, respectively, as a
function of the oscillator frequency, for the NN-only N 3LO EMN 450 (triangles) and NN + 3N N 3LO 450 (circles) interactions. We show
results for the HF and NAT bases in the left and right panels of each plot, respectively, using various single-particle truncations emax with
E3max = 14. Experimental values are taken from Refs. [64,65].

ground-state energies in greater detail. In Fig. 7, we show
the difference of the results in the HF and NAT bases as a
function of the SRG evolution scale for three closed-shell

FIG. 7. Difference of the ground-state energies in the NAT and
HF bases for 16O, 40Ca, and 78Ni as a function of the SRG resolution
scale λ using the NN-only N 3LO EMN 450 interaction and a model
space of emax = 14 with h̄ω = 20 MeV.

nuclei 16O, 40Ca, and 78Ni for the NN-only interaction. The
analysis is performed in absence of three-body interactions
to eliminate the sensitivity of the different reference states to
the NO2B approximation. For harder interactions (larger λ)
the difference is of the order of 1 MeV with the natural or-
bitals yielding stronger binding for 16O and 40Ca and slightly
weaker binding for 78Ni. Softening the potential (small λ)
significantly reduces the effect such that, eventually, only
differences of the order of tens of keV remain at λ = 1.6 fm−1.
These differences are marginally enhanced when including
3N forces; i.e., natural orbitals provide slightly more binding
compared to the HF basis and lead to a minor decrease of
the h̄ω dependence of charge radii. We emphasize again that
this NN + 3N interaction leads to an unbound HF solution,
such that the total binding has to be produced by correlation
effects during the IMSRG flow and the mean field provides
a poor reference state as discussed in Sec. V A. The minor
differences in converged energies are assumed to be driven
by induced many-body contributions that differ in HF and
natural orbital bases. A further investigation requires system-
atic evaluation of leading three-body contributions beyond the
IMSRG(2) approximation which is beyond the scope of the
present work.

In summary, we do not observe the desired independence
of the oscillator frequency in the smaller model spaces, which
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FIG. 8. Ground-state energies (upper rows) and charge radii (lower rows) of 16O and 40Ca in the left and right plots, respectively, as a
function of the oscillator frequency in the HF and NAT bases for the 1.8/2.0 EM interaction. We use a model space Mfull with eHF/NAT

max = 14
to construct the NAT basis, whereas the IMSRG calculations are performed for emax = 6, 8, 10, and 14, with E3max = 16 in both cases.
Experimental values are taken from Refs. [64,65].

one could have guessed from Fig. 3, and do not improve on
the frequency dependence in the largest model spaces shown
here compared to the HF basis.

B. Differences between NCSM and IMSRG

Given the great performance of MP2 natural orbitals in
NCSM results as shown in Ref. [32], the above results seem
surprising at first since no substantial improvement over HF
orbitals is obtained. The key difference between the IMSRG
calculations performed in this work so far and the NCSM cal-
culations is the model space in which the many-body solution
is obtained.

In the NCSM one conveniently employs an Nmax truncation
where only many-body configurations up to a given relative
excitation level are included [34]. In this case, constructing the
correlated one-body density matrix in a large single-particle
basis includes excitations that are absent from the NCSM
configuration space and, therefore, improves the frequency
dependence. On the other hand, this is inherently different
from an IMSRG application where both the reference-state
construction and IMSRG flow typically take place in the same
model space, parametrized by emax. Since the high-lying states
are included already in the initial single-particle basis for the
HF calculation, we cannot expect significant improvement for

the simplest natural-orbital-based IMSRG calculations over
HF-based IMSRG calculations.

Consequently, the key idea in the following will be the
construction of the MP2 density matrix in a large space while
solving the many-body problem in a reduced space in the pres-
ence of the full-space correlations embedded into the basis
transformation.

C. Reduced-basis calculations from NAT/HF
constructed in full space

In the following, the initial MP2 density matrix is built in
a large single-particle basis Mfull, while a smaller subspace
Mreduced ⊆ Mfull is used for performing the IMSRG evolu-
tion. While the basis transformation is performed according
to

|nαp〉NAT =
∑

n′

NAT/HFC
αp

nn′ |n′αp〉HO, (40)

we construct a reduced basis set by keeping only a small num-
ber of the natural orbital states emax even though the density
matrix construction is performed in a large space character-
ized by eNAT/HF

max . With this approach the orthonormalization
of the individual basis states in the reduced space is still
guaranteed.
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As an example, the construction of the NAT basis states in
Eq. (40) in an eNAT/HF

max = 10 model space gives the optimized
s orbitals 0s1/2 through 5s1/2, based on the transformation of
the HO states up to the 5s1/2 orbitals. A subsequent trunca-
tion to an emax = 6 model space discards the 4s1/2 and 5s1/2

NAT orbitals after the unitary transformation. This is to be
contrasted with the construction of the emax = 6 NAT basis
in an eNAT/HF

max = 6 model space, where there are no 4s1/2 and
5s1/2 HO orbitals present in the transformation for the natural
orbital basis states.

Even though parts of the information contained in the nat-
ural orbital basis are lost during this reduction process, the
resulting matrix representation of operators in Mreduced still
contains information about the large space due to the mixing
of radial excitations up to a maximum radial quantum number
nfull included in Mfull that are otherwise not contained in
Mreduced. As a result, this approach accounts for high radial
excitations for the construction of the reduced NAT basis and
leads to a better optimization of the low-lying wave functions.
Excluding higher-lying states from Mreduced is also motivated
by the intuition that for low-resolution Hamiltonians we ex-
pect the many-body expansion to be dominated by excitations
to low-lying states.

For the following calculations, Mreduced and Mfull will be
parametrized by two values, emax for the IMSRG evolution
(in Mreduced) and eHF/NAT

max for the basis construction (in Mfull).
We employ eHF/NAT

max = 14 for the 1.8/2.0 EM interaction, cor-
responding to the radial wave functions in the last column of
Fig. 4 that show the desired frequency independence for this
soft interaction (see Sec. V A). Comparable results are ex-
pected for the consistently SRG-evolved N 3LO interactions.
We investigate the impact on ground-state energies and charge
radii by considering IMSRG calculations in various reduced
model spaces with truncations emax = 6, 8, and 10 for 16O,
40Ca, and 78Ni in Figs. 8 and 9. Constructing the NAT basis in
the full space leads to a significant reduction of the h̄ω depen-
dence for both ground-state energies and charge radii as well
as improved convergence behavior with respect to emax. The
resulting improvement is similar to what was seen in NCSM
calculations for 16O [32] with nearly frequency-independent
energies and radii, shown in the right column of the first plot
in Fig. 8.

Analogous conclusions hold for heavier nuclei, where the
convergence pattern is improved and we obtain converged
results already in smaller model spaces emax. Although we
cannot improve the results beyond the model space of eHF/NAT

max
employed for the initial transformation, we only have to
solve for the natural orbital basis once in the largest possible
eHF/NAT

max space without having to solve the computationally
more expensive IMSRG equations in the full space. Assuming
we can obtain comparable results in emax = 10 (1140 single-
particle states) using an MP2 density matrix constructed
in emax = 14 (2720 single-particle states), we save a factor
R ≈ 2–3 in single-particle dimension. Consequently, the use
of large-space natural orbitals combined with reduced-space
many-body expansions provides a computationally efficient
alternative to the full-space IMSRG calculations. Very ad-
vanced truncation schemes such as IMSRG(3) scale as N9,
where N is a measure of the size of the single-particle basis.

FIG. 9. Same as Fig. 8 but for 78Ni. Note that the experimental
ground-state energy taken from Ref. [65] is extrapolated.

Therefore, naive speedups of the order R9 ≈ 103–104 can be
anticipated. Consequently, further improving the construction
of single-particle basis sets will significantly help to advance
to heavier nuclei and higher accuracies in ab initio applica-
tions.

VII. SUMMARY AND CONCLUSIONS

In this work, we performed an extensive study of single-
particle bases in nuclear ab initio applications. We focused on
a set of natural orbitals, Hartree-Fock, and harmonic-oscillator
basis states, with natural orbitals based on a perturbatively
improved one-body density matrix. The single-particle wave
function and its dependence on the oscillator frequency as
well as the potential occurrence of negative occupations in
the NAT basis were investigated in detail. Going to suf-
ficiently large model spaces, the natural orbitals provide
frequency-independent wave functions for both occupied and
unoccupied states. A reasonable mean-field solution, prefer-
ably bound, and a lower-resolution Hamiltonian are key
factors to generate a reasonable correlated one-body density
matrix and resulting natural orbital basis. When these condi-
tions are not met, the construction of the natural orbitals does
not completely lead to the desired frequency independence
and produces states with unphysical negative occupation num-
bers. Using the two-body form of the kinetic energy decreased
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the size of the negative occupations compared to the one- plus
two-body form of the kinetic energy.

Hartree-Fock and natural orbital basis states have been
benchmarked in medium-mass applications using the IM-
SRG as a nonperturbative many-body framework. Comparing
ground-state energies and charge radii of medium-mass nu-
clei, we observed only small differences between the HF and
NAT bases for Hamiltonians with only two-body interactions
and slightly enhanced variations when three-body forces were
included. In both cases, the results came closer in agreement
by a consistent SRG evolution of NN and 3N interactions to
smaller resolution scales. Even though we did not obtain the
desired frequency-independent results by applying the NAT
basis directly, significantly improved frequency independence
and faster model-space convergence were found by construct-
ing the natural orbitals in a large model space and evaluating
a subsequent IMSRG evolution in a reduced space. This strat-
egy presents a promising improvement to advance the reach
of ab initio methods to heavier nuclei and demonstrates the

benefits of investigating the computational basis in more de-
tail.

One possibility for further exploration is the investiga-
tion of higher-body contributions and specifically how the
difference between the HF and natural orbital basis re-
sults arise. Another direction is to incorporate the natural
orbitals in a multireference approach to avoid the single
Slater-determinant approximation and fully capitalize on the
dynamic correlations included in the perturbatively improved
density matrix.
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