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Ab initio benchmarks of neutrinoless double-β decay in light nuclei with a chiral Hamiltonian

J. M. Yao ,1,* A. Belley ,2,3,4,† R. Wirth ,1,‡ T. Miyagi ,2 C. G. Payne,2,4,§ S. R. Stroberg ,5

H. Hergert ,1,6 and J. D. Holt 2,3

1Facility for Rare Isotope Beams, Michigan State University, East Lansing, Michigan 48824-1321, USA
2TRIUMF, 4004 Wesbrook Mall, Vancouver, British Columbia V6T 2A3, Canada

3Department of Physics, McGill University, 3600 Rue University, Montréal, Quebec H3A 2T8, Canada
4Department of Physics and Astronomy, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada

5Department of Physics, University of Washington, Seattle, Washington 98195, USA
6Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824-1321, USA

(Received 16 October 2020; accepted 14 December 2020; published 21 January 2021)

We report ab initio benchmark calculations of nuclear matrix elements (NMEs) for neutrinoless double-β
(0νββ) decays in light nuclei with mass numbers ranging from A = 6 to A = 22. We use the transition
operator derived from light-Majorana neutrino exchange and evaluate the NME with three different methods:
two variants of in-medium similarity renormalization group (IMSRG) and importance-truncated no-core shell
model (IT-NCSM). The same two plus three nucleon interaction from chiral effective field theory is employed,
and both isospin-conserving (�T = 0) and isospin-changing (�T = 2) transitions are studied. We compare our
resulting ground-state energies and NMEs to those of recent ab initio no-core shell model and coupled-cluster
calculations, also with the same inputs. We show that the NMEs of �T = 0 transitions are in good agreement
among all calculations, at the level of 10%. For �T = 2, relative deviations are more significant in some nuclei.
The comparison with the exact IT-NCSM result allows us to analyze these cases in detail, and indicates the
next steps toward improving the IMSRG-based approaches. The present study clearly demonstrates the power of
consistent cross checks that are made possible by ab initio methodology. This capability is crucial for providing
meaningful many-body uncertainties in the NMEs for the 0νββ decays in heavier candidate nuclei, where
quasiexact benchmarks are not available.

DOI: 10.1103/PhysRevC.103.014315

I. INTRODUCTION

Double-β decay is a second-order weak transition which
manifests itself in the “low-energy” environment of atomic
nuclei as two neutrons in a parent nucleus (A, Z) decaying
into two protons in a daughter nucleus (A, Z + 2) via the
emission of two electrons, with or without accompanying
two-neutrino emission. This corresponds to the two decay
modes: two-neutrino double-β (2νββ) decay and neutrinoless
double-β (0νββ) decay, respectively. The 2νββ decay mode
[1] is allowed in the standard model of particle physics and
has been observed in several atomic nuclei with half-lives
ranging from 1019–1021 years [2]. In contrast, 0νββ decay is
a hypothetical lepton-number-violating process forbidden in
the standard model of particle physics [3]. The hunt for 0νββ

decay is of particular importance, as its observation would
demonstrate the Majorana nature of neutrinos and provide a
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key ingredient for generating the matter-antimatter asymme-
try in the Universe. Currently, the best half-life lower limit
(>1025 years) is achieved in the experiments on 136Xe [4,5],
76Ge [6], and 130Te [7]. The null 0νββ decay signal from
current experiments provides a constraint on the upper limits
of effective neutrino mass 〈mββ〉 if the decay is mediated by
the exchange of light-Majorana neutrinos. In this scenario, the
next-generation ton-scale experiments with half-life sensitiv-
ity up to 1028 years after a few years of running are expected to
provide a definite answer on the mass hierarchy of neutrinos
based on our current knowledge on the nuclear matrix element
(NME) M0ν of 0νββ decay.

Accurate theoretical values of the NMEs are vital for the
design and interpretation of future experiments. Based on the
standard light-Majorana neutrino-exchange mechanism, vari-
ous nuclear models have been applied to compute the NMEs
of candidate 0νββ decays [8–25]. The discrepancy among
predictions is up to a factor of about 3, causing an uncertainty
at the level of an order of magnitude in the half-life for a
given value of the neutrino mass. Resolving this discrepancy
has been one of the most significant objectives in the nuclear
theory community [26–29].

A first-principles calculation of the NMEs of candidate
0νββ decays is crucial as the theoretical uncertainty from
both many-body wave functions and transition operators
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must be under control. This calculation is tremendously
challenging, if not impossible, for quasiexact many-body
approaches. It is, however, within the reach of some ab ini-
tio methods with systematically improvable approximations,
such as coupled-cluster (CC) theory [30] and the in-medium
similarity renormalization group (IMSRG) [31], where the
computational complexity scales polynomially with nuclear
size. Within this framework, three ab initio methods, i.e.,
the in-medium generator coordinate method (IM-GCM) [32],
valence-space IMSRG (VS-IMSRG) [33], and CC theory
with singles and doubles plus leading-order triples excitations
(CCSDT1) [34], have recently been used to calculate the
0νββ-decay NME of 48Ca, or those of even heavier candi-
dates 76Ge and 82Se [33], starting from a two nucleon plus
three nucleon (NN + 3N) interaction constructed from chiral
effective field theory (EFT), where the same transition oper-
ator derived from the light-Majorana neutrino exchange was
adopted. For a recent summary of these results, see Ref. [35].
Since there is no exact solution or experimental data available
that can be used to validate the NMEs of candidate decays,
synthetic benchmarks, i.e., 0νββ decays that are energetically
forbidden or occur in competition with single β decay, may
provide a unique way of cross checking among different ab
initio methods. Fortunately, light nuclei are within the reach of
several quasiexact approaches, the results of which are valu-
able to validate the adopted many-body approximations and
the usefulness of the cross-checking strategy among different
ab initio methods.

Following this philosophy, significant progress has been
made in the calculation of the NMEs of 0νββ decays in a
set of light nuclei using nuclear wave functions from sev-
eral many-body approaches. In Refs. [36,37], the NMEs for
6,8,10He and 10,12Be were calculated with a quantum Monte
Carlo (QMC) method based on the NN interaction AV18 [38]
and the 3N interaction IL7 [39]. The same QMC calcula-
tion was later carried out based on the local Norfolk chiral
NN + 3N potentials [40] for the NMEs of He6 and Be12

[41]. In Ref. [42], the NME for 6He was calculated with
a no-core shell model (NCSM) [43] based on a similarity
renormalization group (SRG)–softened chiral NN interaction
[42]. In Ref. [34], the NMEs of 6,8,10He, 14C, and 22O were
also calculated with the NCSM based on a chiral NN + 3N
interaction.

In this paper, we present ab initio calculations of the
NMEs of 0νββ decay (including both �T = 0 and �T = 2
transitions) in several light nuclei with mass number ranging
from A = 6 to A = 22 using two variants of the IMSRG—
the VS-IMSRG [44–46] and the IM-GCM [32,47]—and the
importance-truncated (IT) NCSM [48] starting from the same
chiral NN + 3N interaction, aiming to benchmark the possi-
ble errors in the ground-state energies and the NMEs of 0νββ

decay.
We organize the paper as follows: In Sec. II, we review the

framework of IT-NCSM very briefly. Then, we introduce the
formalism of the two IMSRG variants in detail, which provide
inputs of effective interactions and 0νββ decay operators for
subsequent conventional nuclear many-body calculations. In
Sec. III, both the ground-state energies and NMEs from the
three calculations are compared to reported calculations [34]

using the same operators, and we analyze the renormalization
effect on the distribution of the NMEs in coordinate space. A
summary and perspective are given in Sec. IV.

II. AB INITIO APPROACHES

A. Hamiltonian

We employ an intrinsic nuclear A-body Hamiltonian con-
taining NN + 3N interactions from chiral EFT,

H0 =
∑
i< j

(pi − p j )
2

2mA
+

∑
i< j

V (2N )
i j +

∑
i< j<k

V (3N )
i jk

=
(

1 − 1

A

) ∑
i

p2
i

2m
− 1

A

∑
i< j

(pi · p j )

m

+
∑
i< j

V (2N )
i j +

∑
i< j<k

V (3N )
i jk , (1)

which in second-quantization form reads

H0 =
∑

pq

t p
q Ap

q + 1

4

∑
pqrs

V pq
rs Apq

rs + 1

36

∑
pqrstu

W pqr
stu Apqr

stu , (2)

where t , V , and W represent one-body, two-body, and three-
body interaction matrices, respectively. We introduce strings
of creation and annihilation operators as

Apqr...
stu... = a†

pa†
qa†

r . . . auat as, (3)

where p, q, . . . index the states of a spherical harmonic-
oscillator (HO) basis. The fit of parameters for the NN
interaction V (2N )

i j , carried out at next-to next-to next-to leading
order (N3LO) with a momentum cutoff of 500 MeV/c, is from
Entem and Machleidt [49]. We use the free-space SRG [50]
to evolve the interaction to a resolution scale of λ = 1.8 fm−1.
Following Refs. [51,52], we construct the 3N interaction V (3N )

i jk

directly, with a chiral cutoff of � = 2.0 fm−1. We refer to
the Hamiltonian that results as EMλ/�, i.e., EM1.8/2.0. See
Refs. [51,52] for details. For the 3N interaction, we discard
all matrix elements involving states with e1 + e2 + e3 > 14,
where ei = 2ni + �i is the number of oscillator quanta in
state i. The resulting NN + 3N Hamiltonian has been shown
to accurately reproduce energies up to approximately the
tin region, while systematically underpredicting charge radii
[53–55].

B. The importance-truncated no-core shell model

One of the methods we use to calculate the energy and
ground-state wave functions of the decay partners under con-
sideration is the importance-truncated no-core shell model
(IT-NCSM) [43,48,56]. We construct a basis of A-body Slater
determinants |φi〉 consisting of single-particle HO states with
oscillator frequency 	. To get a finite basis, we limit the HO
excitation energy of the basis determinants to Nmaxh̄	 relative
to the lowest configuration allowed by Pauli’s principle. In
this basis, the Hamiltonian turns into a sparse matrix H with
matrix elements Hi j = 〈φi|H0|φ j〉, and we solve the matrix
eigenvalue problem

Hc = Ec (4)
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to get an approximation to the energy and wave function of
the ground state in terms of the basis of Slater determinants,

|
〉 =
∑

i

ci |φi〉 . (5)

This approximation improves with increasing Nmax, and the
energy and wave function converge eventually.

The main challenge in NCSM calculations is the rapid
growth of the model-space dimension with both Nmax and A.
This generally limits the range of applicability of the NCSM
to p-shell nuclei. For heavier nuclei, the dimensions of the
model spaces become too large for current supercomputers to
handle before the energy converges.

To mitigate the growth, we employ an importance-
truncation scheme [48]: Many of the basis states have only
a very small coefficient ci in the expansion of the ground-state
wave function. Consequently, removing these states from the
model space only has a small effect on the ground-state wave
function and the energy. We estimate the coefficient ci without
actually solving the full eigenvalue problem via perturbation
theory: We compute the first-order correction to a reference
wave function |
ref〉,

κi = −〈φi|H |
ref〉
�Ei

= −
∑

j∈Mref

cref, j
〈φi|H |φ j〉

�Ei
. (6)

The reference wave function is the ground-state wave function
obtained from an (IT-)NCSM calculation in a reference space
Mref with smaller Nmax. The energy difference �Ei is taken
as the HO excitation energy of the configuration |φi〉. The
reduction of the model space is achieved by including only
states with |κi| � κmin.

We recover the expectation values of observables in the
full model space by extrapolating the importance threshold
κmin to zero. To that end, we perform the diagonalization for
multiple values of κmin and fit a low-order polynomial to the
sequence. The extrapolated value is obtained by evaluating
this polynomial at κmin = 0. We estimate the uncertainty of
the extrapolation by fitting polynomials of higher and lower
orders and by excluding the smallest κmin values from the fit.

C. The in-medium similarity renormalization group

1. Reference state

The basic idea of the IMSRG is to introduce a flow equa-
tion to gradually decouple a preselected reference state |�〉
from all other states [31,57,58] or to decouple the offdiag-
onal elements of the Hamiltonian that are connecting the P
valence space and the excluded Q spaces [44–46,59,60]. In the
former case, the reference state becomes the ground state of
the evolved Hamiltonian, while in the latter case, an effective
Hamiltonian in a specific valence space is obtained. For a
given reference state |�〉, we first normal-order the Hamilto-
nian (1) using the generalized normal ordering of Kutzelnigg
and Mukherjee [61–63],

H0 = E +
∑

pq

f p
q :Ap

q : + 1

4

∑
pqrs


pq
rs :Apq

rs :

+ 1

36

∑
pqrstu

W pqr
stu :Apqr

stu : . (7)

By definition, the expectation values of normal-ordered
operators, indicated by :Ap...

q...:, with respect to the reference
state are zero. Thus, the normal-ordered zero-body term cor-
responds to the reference-state energy E , which is given by

E = 〈�|H |�〉 =
∑

pq

t p
q ρ p

q + 1

4

∑
pqrs

V pq
rs ρ pq

rs

+ 1

36

∑
pqrstu

W pqr
stu ρ

pqr
stu . (8)

The matrix elements of normal-ordered one-body and two-
body terms are

f p
q = t p

q +
∑

rs

V pr
qs ρr

s + 1

4

∑
rstu

W prs
qtu ρrs

tu, (9)


pq
rs = V pq

rs +
∑

tu

W pqt
rsu ρt

u. (10)

In Eqs. (8)–(10), we have introduced the usual density matri-
ces

ρ p
q = 〈�|Ap

q|�〉 , (11a)

ρ pq
rs = 〈�|Apq

rs |�〉 , (11b)

ρ
pqr
stu = 〈�|Apqr

stu |�〉 . (11c)

Correlations within the reference state are encoded in the
corresponding irreducible density matrices (also referred to
as cumulants):

λp
q = ρ p

q , (12a)

λpq
rs = ρ pq

rs −A(
λp

r λ
q
s

) = ρ pq
rs − λp

r λ
q
s + λp

s λ
q
r , (12b)

λ
pqr
stu = ρ

pqr
stu −A(

λp
s λ

qr
tu + λp

s λ
q
t λ

r
u

)
, (12c)

where the antisymmetrization operator A generates all dis-
tinct permutations of upper indices and lower indices. For an
uncorrelated reference state, the two-body and higher body
irreducible densities vanish and we recover the usual factor-
ization of many-body density matrices into antisymmetrized
products of one-body density matrices.

2. Flow equations

The IMSRG decoupling procedure is realized by in-
troducing a set of unitary transformations U (s) onto the
Hamiltonian,

H (s) = U (s)H0U
†(s), U (0) = 1, (13)

where s is the so-called flow parameter. The operator U (s)
represents a continuous set of unitary transformations that
drive H0 to a specific form, e.g., by eliminating certain matrix
elements or minimizing its expectation value with respect to
unitary transformations [58]. Taking the derivative d/ds of
both sides of Eq. (13) yields the flow equation

dH (s)

ds
= [η(s), H (s)], (14)
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where we have introduced the anti-Hermitian generator of the
transformation,

η(s) ≡ dU (s)

ds
U †(s). (15)

The flow equation (13) turns into a set of coupled ordi-
nary differential equations (ODEs), derived from Eq. (14), for
f , 
, . . . [31,57]. Instead, however, one can solve a similar
flow equation for the unitary transformation operator U (s),

dU (s)

ds
= η(s)U (s). (16)

Formally, the solution can be written in terms of the S-ordered
exponential

U (s) = S exp
∫ s

0
ds′η(s′), (17)

which is shorthand for the Dyson series expansion of U (s).
As demonstrated first in Ref. [64], the flow equation for the
unitary operator can be reformulated using the Magnus expan-
sion, which stipulates that the Dyson series can be resummed
into a proper exponential,

U (s) ≡ e	(s). (18)

The flow equation for U (s) then turns into one for the anti-
Hermitian operator 	(s),

d	(s)

ds
=

∞∑
n=0

Bn

n!
[	(s), η(s)](n), (19)

where we define nested commutators as

[	(s), η(s)](0) = η(s), (20a)

[	(s), η(s)](n) = [	(s), [	(s), η(s)](n−1)], (20b)

and the {Bn}n�0 = {1,−1/2, 1/6, 0, . . . } are the Bernoulli
numbers. As discussed in Ref. [64], the reformulation of the
IMSRG via the Magnus expansion has two major advantages.
First, the anti-Hermiticity of 	(s) guarantees that U (s) is
unitary throughout the flow, even when low-order numerical
ODE solvers are used to integrate Eq. (19). Second, it greatly
facilitates the evaluation of observables. In the traditional
approach, we would need to solve flow equations for each
additional operator simultaneously with Eq. (14) because of
the dynamical nature of the generator, while 	(s) allows us
to construct arbitrary evolved operators by using the Baker-
Campbell-Hausdorff (BCH) formula:

O(s) = e	(s)Oe−	(s) =
∞∑

n=0

1

n!
[	(s), O](n). (21)

In what follows, we introduce the notation O for the evolved
operator O(s) as s → ∞.

D. Marrying the IMSRG with conventional
many-body approaches

In order to apply the IMSRG to 0νββ-decay NME, the
calculation of which needs the ground-state wave functions
of two nuclei, we marry it with conventional many-body ap-
proaches, i.e., the generator coordinate method (GCM) and

valence-space shell model. To avoid dealing with the difficulty
of having two different unitary transformations separately for
initial and final nuclei as discussed in Ref. [47], only one
single unitary transformation is introduced in the IMSRG
starting from a common reference state for both nuclei, which
provides effective operators as inputs for subsequent conven-
tional many-body approaches. In this work, all the operators
are truncated up to normal-ordered two-body (NO2B) terms.
The IMSRG under the NO2B approximation is referred to as
IMSRG(2) subsequently.

1. IM-GCM

In the IM-GCM, the reference state |�〉 of the IMSRG(2)
is an ensemble of states for both the initial and final nuclei in
the decay, which are obtained by projecting the lowest-energy
quasiparticle vacua for each nucleus onto good angular mo-
mentum and particle number if not mentioned explicitly. The
IMSRG(2) starting from such a general multireference state or
ensemble is referred to as MR-IMSRG(2) [65], in which the
two- and three-body irreducible densities in (12) are retained.
We choose the Brillouin generator [58] for η(s), which is
essentially the gradient of the energy. The MR-IMSRG(2)
evolution yields a unitary transformation that transforms all
the operators, which are then used as inputs of a subsequent
GCM calculation.

The GCM is a general matrix-diagonalization method for
carrying out configuration-mixing calculations in the sense
that the nuclear many-body wave function is expanded in
terms of a set of nonorthogonal basis functions, which are gen-
erated by the coordinates Qi [66] associated with the multipole
moments that characterize nuclear shapes [9,14,15], pairing
amplitudes [19,67,68], or rotational frequency [69] depending
on whether or not they are relevant for the physics of inter-
est. The choice of Qi defines a model space of many-body
configurations whose dimension is usually much smaller than
NCSM spaces, since many types of (collective) correlations
are already built into the basis functions. Here, the basis
functions are chosen as axially deformed quasiparticle vacua
with projection onto particle numbers (N, Z) and angular
momentum J ,

|NZJ, β2〉 = PN,Z PJ |�(β2)〉 . (22)

The ground-state wave functions of the initial and final nuclei
with spin parity Jπ = 0+ are constructed as

|
(0+
1 )〉 =

∑
β2

f J=0(β2) |NZJ = 0, β2〉 . (23)

The states |�(β2)〉 labeled by axial deformation parame-
ter (Qi = β2) are a set of quasiparticle vacua determined
from variation after particle-number projected Hartree-Fock-
Bogoliubov (HFB) calculations with a constraint on the
nuclear mass quadrupole deformation

Q20 = 〈�(β2)|r2Y20|�(β2)〉 , (24)

where β2 = 4πQ20/(3AR2), R = R0A1/3, and R0 = 1.2 fm.
The mixing weight f J (β2) is determined from the vari-

ational principle, which leads to the Hill-Wheeler-Griffin
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(HWG) equation [66]∑
β ′

2

[HJ (β2, β
′
2) − EJNJ (β2, β

′
2)] f J (β ′

2) = 0, (25)

where the norm (O = 1) and Hamiltonian (O = H) kernelsN
andH are defined as

OJ (β2, β
′
2) = 〈NZJ, β2|O|NZJ, β ′

2〉 . (26)

The solution of the HWG equation provides both the energies
and wave functions for the ground states of nuclei involved in
the 0νββ-decay calculation.

It is worth pointing out that the IMSRG(2) and GCM
are complementary to each other in the description of nu-
clear correlations. The former turns out to be powerful to
capture dynamic correlations, but ill suited for collective cor-
relations [70]. In contrast, the latter is successful for the
studies of nuclear large-amplitude collective motions [71], but
inappropriate for low-lying states of spherical nuclei if the
configurations of noncollective excitations are not included
explicitly. We refer to the combination of the MR-IMSRG(2)
and GCM as the IM-GCM. This approach has already been
applied to calculate the NME for 48Ca based on a phenomeno-
logical shell-model Hamiltonian [47] and a chiral NN + 3N
interaction [32].

2. VS-IMSRG

In the VS-IMSRG(2), we decouple the interaction within
a valence space from the remaining configuration space, and
then diagonalize the transformed Hamiltonian exactly in the
former. To this end, we split the single-particle model space
into core (c), valence particle (v), and nonvalence particle (q)
orbitals. The actual shell-model calculation for a nucleus with
A nucleons is an exact diagonalization of the Hamiltonian
matrix in a subspace of the Hilbert space that is spanned by
configurations of the form

|v1 . . . vAv
〉 ≡ a†

v1
. . . a†

vAv
|�Ac〉 , (27)

where |�Ac〉 is the wave function for a suitable core with Ac

nucleons and the Av valence nucleons are distributed over
the valence orbitals vi in all allowed ways. The matrix rep-
resentation of the Hamiltonian in the space spanned by these
configurations is

〈v′
1 . . . v′

Av
|H |v1 . . . vAv

〉
= 〈�Ac |av′

Av
. . . av′

1
Ha†

v1
. . . a†

vAv
|�Ac〉 . (28)

Previous studies [45,46] have shown that using the core
wave function |�Ac〉 as reference neglects important con-
tributions from the valence-space 3N interaction. Using an
ensemble of Slater determinants with the mass number expec-
tation value set to the mass number A of the target nucleus
(instead of the single core determinant |�Ac〉) as reference
has proven advantageous. Hence, we obtain the reference
ensemble by solving the HF equations for the target nucleus
in the equal-filling approximation where occupation numbers
of m substates of partially filled orbitals are set to equal values
between 0 and 1. The irreducible density matrices of this
ensemble vanish by construction [45,46].

We use the IMSRG(2) evolution to decouple the config-
urations (27) from states that involve excitations of the core
and from states containing nucleons in nonvalence particle
states. The ensemble reference has trivial many-body corre-
lations, so we can work in the quasi-single-reference limit
with noninteger occupation numbers. We achieve the desired
decoupling using the arctangent generator for η(s) [46] in two
steps: First, we decouple the core from all excitations, just
like in a ground-state calculation. In a subsequent step, we
additionally decouple the valence space from all excitations to
the excluded space. The final valence-space Hamiltonian after
re-normal-ordering with respect to the core1 can be written as

H = E +
∑
viv j

f vi
v j

:Avi
v j

: + 1

4

∑
viv j

vkvl



viv j
vkvl :Aviv j

vkvl : , (29)

where the explicitly shown terms are the core energy, single-
particle energies, and two-body matrix elements that are used
as input for a shell-model diagonalization. The solutions of
that diagonalization are given by

|
n〉 =
∑

v1,...,vAv

C(n)
v1...vAv

a†
v1

. . . a†
vAv

|�Ac〉 , (30)

and they are related to the eigenstates of the initial Hamilto-
nian (up to truncation errors) by

|
n〉 = U †(∞) |
n〉 . (31)

More details can be found in a recent review paper [46].

E. The nuclear matrix elements of 0νββ decay

1. Bare transition operator

Based on the light-Majorana neutrino-exchange mech-
anism, we can derive the transition operator which in
long-wavelength approximation for the outgoing electrons
and without the recoil effect of the final nucleus, is given by
[72–78]

O0ν = 4πR

g2
A(0)

∫∫
d3r1d3r2

∫
d3q

(2π )3

eiq·r12

q

×
∑

m

J†
μ(r1) |m〉 〈m|Jμ†(r2)

q + Em − (EI + EF )/2
, (32)

where R = R0A1/3 is introduced to make the NME dimension-
less, r12 = r1 − r2, and q is the momentum transferred from
leptons to hadrons. The closure approximation is adopted,
namely, the excitation energies of all possible intermediate
states |m〉 are replaced by an estimate “average” value Ed =
〈Em〉 − (EI + EF )/2 and the summation over these states can
be eliminated by making use of the relation

∑
m |m〉 〈m| = 1,

where EI , EF are the energies of the initial and final nu-
clear states, respectively. As a consequence, the summation
of products of one-body matrix elements is approximated as
one simple two-body matrix element. An empirical formula

1The re-normal-ordering step is not strictly necessary, but it makes
the resulting interaction compatible with standard shell-model codes.
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value Ed = 1.12A1/2 MeV proposed by Haxton and Stephen-
son [79] is adopted for the average excitation energy. Since
the average value of q is around 1/〈r12〉 ≈ 100 MeV, which
is much larger than the average nuclear excitation energy
(10–20 MeV) for long-ranged two nucleon processes, the
closure approximation is accurate at the 10–20% level, as
demonstrated in Refs. [80–82].

The one-body charge-changing nucleon current operator
J†

μ(r) is employed,

J†
μ(r) = ψ̄ (r)

[
gV (q2)γμ − gA(q2)γμγ5

− igM (q2)
σμν

2mp
qν + gP(q2)qμγ5

]
τ+ψ (r), (33)

where ψ is the nucleon field operator, mp is the proton mass,
τ+ is an isospin raising operator with the nonzero matrix
element 〈p|τ+|n〉 = 1, and σμν = i

2 [γμ, γν] with γi being a
four-component Dirac matrix. The higher order (N2LO in the
power counting of the chiral EFT) corrections to the one-body
current operator are taken into account using the momentum-
dependent form factors gV (q2), gA(q2), gM (q2), and gP(q2),
which in the zero momentum transfer limit are the vector,
axial vector, weak magnetism, and induced pseudoscalar cou-
pling constants, respectively. The single-nucleon form factors
are chosen as

gV (q2) = gV (0)
(
1 + q2/�2

V

)−2
, (34a)

gA(q2) = gA(0)
(
1 + q2/�2

A

)−2
, (34b)

gM (q2) = gV (q2)
(
1 + κ1

)
, (34c)

gP(q2) = gA(q2)

(
2mp

q2 + m2
π

)
, (34d)

where gV (0) = 1, gA(0) = 1.27, the anomalous nucleon
isovector magnetic moment is κ1 = μ(a)

n − μ(a)
p = 3.7, and the

cutoff values are �V = 0.85 GeV and �A = 1.09 GeV.
The nonrelativistic reduction form of the transition opera-

tor O0ν in (32) is adopted in the present calculations. Previous
studies have shown that relativistic corrections are approxi-
mately 5% for this operator [14,15]. The transition operator
is recast into three parts: Fermi (F ), Gamow-Teller (GT ), and
tensor (T ),

O0ν = O0ν
F + O0ν

GT + O0ν
T

= H0ν
F,0(r12)τ+

1 τ+
2 + H0ν

GT,0(r12)σ1 · σ2τ
+
1 τ+

2

+ H0ν
T,2(r12)[3(σ1 · r̂12)(σ2 · r̂12) − σ1 · σ2]τ+

1 τ+
2

(35)

with r̂12 = r12/|r12|. The neutrino potentials are given by

H0ν
α,L(r12) = 2R

πg2
A(0)

∫ ∞

0
dq q2 hα (q2)

q(q + Ed )
jL(qr12), (36)

where α is the index for F , GT , or T , respectively. The
function jL(qr12) is the spherical Bessel function of rank L.
The operators hα are

hF (q2) = −g2
V (q2) (37)

for the Fermi part (L = 0),

hGT (q2) = g2
A(q2) − 2

3

q2

2mp
gA(q2)gP(q2)

+ 1

3

q4

4m2
p

g2
P(q2) + 2

3

q2

4m2
p

g2
M (q2) (38)

for the GT part (L = 0), and

hT (q2) = 2

3

q2

2mp
gA(q2)gP(q2) − 1

3

q4

4m2
p

g2
P(q2)

+ 1

3

q2

4m2
p

g2
M (q2) (39)

for the tensor part (L = 2).
The above transition operator is essentially2 the same as

that in Ref. [75] and consistent with the operator [83] derived
from chiral EFT based on the light-Majorana neutrino-
exchange mechanism, which was adopted in the recent ab
initio QMC calculation [36], except for their choice of Ed = 0
in (32). We neglect the newly discovered LO contact operator
[84], the extra parts of N2LO corrections [83] that cannot
be absorbed into parametrizations of the single-nucleon form
factors, and the two-body weak currents [85,86] that appear at
N3LO in the chiral EFT. Even though our adopted transition
operator is not derived consistently with the chiral interaction,
it does not change the conclusions that we will draw from our
benchmark calculations because the same strong and weak
operators are used in all the many-body calculations. In ad-
dition, this facilitates a direct comparison with the results of
Ref. [34].

2. IMSRG(2)-evolved transition operator

Rewriting the two-body charge-changing transition opera-
tor O0ν in second-quantized form,

O0ν = 1

4

∑
pp′nn′

Opp′
nn′ :App′

nn′ : , (40)

where p, p′ and n, n′ are indices for protons and neutrons,
respectively, we generate the evolved operator O0ν (s) =
e	(s)O0νe−	(s) using the BCH formula truncated at the NO2B
level,

O0ν (s) = O0ν + [	(s), O0ν] + 1

2!
[	(s), [	(s), O0ν]] + · · ·

≡ 1

4

∑
pp′nn′

O
pp′

nn′ :App′
nn′ : . (41)

2The values gA(0) = 1.254 and gM (q2) = κ1gV (q2) were used in
Ref. [75]. Besides, an additional factor 1 − m2

π/�2
A was multiplied

onto gP(q2). Different from Ref. [25], we didn’t find any sign prob-
lem for the tensor terms. The change of the relative sign between
Gamow-Teller (L = 0) and tensor (L = 2) terms in Ref. [75] must
be due to the factor of iL in the plane wave expansion eiq·r12 =
4π

∑
LM iL jL (qr12)Y ∗

LM (q̂)YLM (r̂12), where YLM are the spherical har-
monics.
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For convenience, we introduce the two-body operator D(2) for
the commutator under the NO2B approximation,

D(2) = [	, O0ν](2) = [	(1), O0ν](2) + [	(2), O0ν](2)

≡ 1

4

∑
pp′nn′

(
Dpp′

nn′ (1B) + Dpp′
nn′ (2B)

)
:App′

nn′ : . (42)

The contributions involving the one-body 	(1) and two-body
	(2) parts of 	 in natural-orbital basis (i.e., λ

p
q = npδ

p
q ) are

given by

Dpp′
nn′ (1B) =

∑
p1

(
	p

p1
Op1 p′

nn′ + 	p′
p1

Opp1
nn′

)

−
∑

n1

(
	n1

n Opp′
n1n′ + 	

n1
n′ Opp′

nn1

)
(43)

and

Dpp′
nn′ (2B) = 1

2

∑
p1 p2

	pp′
p1 p2

Op1 p2
nn′ (1 − np1 − np2 )

− 1

2

∑
n1n2

Opp′
n1n2

	
n1n2
nn′ (1 − nn1 − nn2 )

+
∑
p1n1

(np1 − nn1 )
[
	

n1 p′
n′ p1

Op1 p
n1n − 	

n1 p
n′ p1

Op1 p′
n1n

+ 	n1 p
np1

Op1 p′
n1n′ − 	n1 p′

np1
Op1 p

n1n′
]
. (44)

The predominant contribution to D(2) is the two-body part
Dpp′

nn′ (2B), which can be divided into particle-particle (pp) and
hole-hole (hh) terms corresponding to the first two terms in
(43). The last term is the particle-hole (ph) term. As shown in
Sec. III, the combination of pp and hh contributions enhances
the two-body transition matrix element Opp′

nn′ , while the ph
contribution quenches the matrix element.

Since 	(s) conserves charge, no zero- or one-body terms
are generated when we evaluate the commutator (42) (induced
higher body operators are truncated), and the resulting op-
erator has the same isospin structure as the initial transition
operator itself. This means that we can use Eqs. (42)–(43) to
recursively evaluate the BCH series by replacing O0ν with the
appropriate nested commutator [	, O0ν](n).

The renormalization effect on O0ν depends on the choice of
the reference state |�〉, which controls the correlations built
into the normal-ordered basis operators and the occupation
numbers, as well as the generator η, which determines the
unitary transformation operator e	:

(1) In the VS-IMSRG, we choose the reference state as a
spherically symmetric uncorrelated ensemble of multi-
ple Slater determinants. For the calculations presented
here, we use a reference with the N and Z of the parent
nucleus. In contrast, the MR-IMSRG or IM-GCM cal-
culation uses an ensemble of two correlated states as
the reference state which has nonvanishing irreducible
density matrices entering into the normal ordering.

(2) In the VS-IMSRG, the unitary transformation operator
e	 decouples the valence-space (v) states from both
the core (c) and nonvalence particle (q) states. The

nonzero matrix elements of η (and therefore the largest
matrix elements of 	) are those leading to excita-
tions out of the core or valence orbits. In contrast,
the MR-IMSRG decouples the reference state from
its multiparticle-multihole (np-nh) excitations. The re-
sulting 	 is dominated by the matrix elements that are
connecting the reference state with low-energy excited
states.

In an exact calculation with untruncated operators, these
differences must be compensated by the changes in the trans-
formed Hamiltonian and nuclear wave functions. As shown
below, the NMEs for 0νββ decays by the two approaches
in general agree with each other with differences at the 10%
level, consistent with our expectation. Some cases show rela-
tively larger differences that can be attributed to the adopted
NO2B approximation (see the Appendix). The spread of the
results by the IMSRG(2)-based approaches and the IT-NCSM
gives an estimate of the uncertainty due to these approxima-
tions.

3. Nuclear matrix elements

The NME of ground-state to ground-state 0νββ transition
is given by

M0ν = 〈
F |O0ν |
I〉 , (45)

where |
I/F 〉 is the ground-state wave function of the initial
and final nuclei, respectively. The NME is usually decom-
posed into the contributions from the decaying pair of
neutrons coupled to a given angular momentum J ,

M0ν =
∑

J

M0ν
J , (46)

where the J component M0ν
J is determined by

M0ν
J =

∑
p�p′;n�n′

(2J + 1)√
(1 + δpp′ )(1 + δnn′ )

O
J pp′

nn′ ρ
J pp′

nn′ , (47)

with O
J pp′

nn′ being the normalized two-body matrix element of
the IMSRG-evolved transition operator, which is related to the

unnormalized two-body matrix element O
J pp′

nn′ by

O
J pp′

nn′ = O
J pp′

nn′√
(1 + δpp′ )(1 + δnn′ )

= 1√
(1 + δpp′ )(1 + δnn′ )

×
∑

mpmp′
mnmn′

〈 jpmp jp′mp′ |JM〉 〈 jnmn jn′mn′ |JM〉 O
pp′

nn′

(48)

and the two-body transition density

ρ
J pp′

nn′ = − 1√
2J + 1

〈
F |[a†
pa†

p′ ]J [ãnãn′ ]J |
I〉 . (49)

The square brackets [· · · ]J mean a coupling of two spherical
tensors to angular momentum J . We note that in the IT-NCSM
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FIG. 1. (a) Energies per nucleon (E/A) of the light nuclei from
the VS-IMSRG, IM-GCM, and IT-NCSM calculations, in compar-
ison with those from the CCSDT1 calculations [34] and with data
[89]. (b) The discrepancy of the E/A between each model calculation
and corresponding data. The gray band indicates the energy spread
within 0.3 MeV per nucleon. The error bars of IT-NCSM are for the
Nmax extrapolation uncertainties.

calculation the bare transition operator O0ν is used instead of
the evolved operator O

0ν
.

III. RESULTS AND DISCUSSION

Before showing the NMEs of 0νββ decays, we compare
the ground-state energies of initial and final nuclei from
different calculations in Fig. 1. The energies are reason-
ably reproduced in all the calculations with the discrepancy
within 0.3 MeV per nucleon, except for Be8 . The ground
state of 8Be is expected to be dominated by a two-α cluster
structure, the description of which requires configurations of
four-particle–four-hole (4p-4h) or even higher excitations [87]
and is challenging for the CCSDT1 and VS-IMSRG(2), which
underestimate the energy by about 8% and 4%, respectively.
In contrast, the IM-GCM works rather well for 8Be as the con-
figurations of np-nh excitations are relatively easier included
by mixing intrinsically large deformed mean-field states ex-
plicitly. For the sd-shell nuclei 22O and 22Ne, converging
IT-NCSM calculations is challenging [88]. The ground-state
wave function of 22Ne in the IT-NCSM calculation at Nmax =
8, the largest model space considered, has a J expectation
value of 0.9. This indicates admixture of low-lying excited
states (an artifact of the importance truncation) that could be

FIG. 2. The 0νββ-decay NMEs of the light nuclei from the VS-
IMSRG, IM-GCM, and IT-NCSM calculations, in comparison with
the results of NCSM and CCSDT1 calculations from Refs. [34,90].

the cause of the difference between the IT-NCSM and the
other results.

The total NMEs of the 0νββ decays are compared in
Fig. 2, where the NME of the transition O22 → Ne22 by the
IT-NCSM using Nmax = 4 is taken for comparison as this cal-
culation produces correct J expectation values for the ground
states of both nuclei. Similar to the results found in Ref. [36],
the NME of the isospin-conserving transition is around 4.0
(with the GT part around 3.0 and Fermi part around 1.0), while
that of the isospin-changing transition is about an order of
magnitude smaller. For the �T = 0 transitions, we explored
the dependence on different choice of reference ensemble in
the IM-GCM calculations, and found it to be around 10% for

C14 , as indicated with an error bar. Taking into account the
uncertainty, the NME for C14 → O14 obtained with the two
variants of IMSRG are consistent. For Be10 → C10 , reference
dependence is around 5%. The result of the IT-NCSM calcu-
lation is sandwiched between the VS-IMSRG and IM-GCM
results with a discrepancy less than 10%. For 6He, this depen-
dence is negligible. For the �T = 2 transitions, the NMEs
of the CCSDT1 calculation [34] starting from a deformed
reference state (of final nucleus) are taken for comparison
in Fig. 2. It is seen that the VS-IMSRG(2) overestimates
the NME for He8 which might be due to the issue that the
collective correlation of the two-α clustering structure in Be8

is not well captured and this correlation could quench the
NME significantly. It is also shown in Ref. [34] that the choice
of the reference state to be He8 in the CCSDT1 would also
significantly overestimate the NME (which is around 0.6).
The reference-state dependence is shown again in the NME
of O22 , which is predicted to be around 0.856 or 0.279 in the
CCSDT1 calculation [90] if the reference state is chosen as

O22 or Ne22 , respectively.
The IT-NCSM calculation of the transition NME of O22 →

Ne22 shows sizable dependence on the importance thresh-
old κmin, so we perform a threshold extrapolation using a
quadratic polynomial, as shown in Figs. 3(a)–3(c). The uncer-
tainties are obtained by fitting linear and cubic polynomials to
the full set, and by fitting quadratic polynomials to everything
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FIG. 3. Threshold extrapolation of [(a)–(c)] the NME for the
0νββ decay of 22O to 22Ne, and (d) the 22Ne ground-state total
angular momentum. Finite-threshold results are marked by blue dots,
the red line is the quadratic extrapolation polynomial, and the shaded
band marks the range of different extrapolations. Note the different
scales of the panels.

except for the one or two lowest-κmin points. This gives five
fits, and we take the differences from the minimum and maxi-
mum values to the value of the first quadratic fit as uncertainty.
The extrapolated NME at Nmax = 4 is 0.394+0.026

−0.017. Figure 3(d)
shows that the total angular momentum expectation value is
also strongly dependent on the threshold, a sign of admixture
of a low-lying state with nonzero angular momentum due
to the importance truncation. Lowering the threshold rapidly
reduces the expectation value, showing that the states separate
as the truncation is relaxed toward the full model space. For
the larger Nmax, we have to employ a larger importance thresh-
old κmin = 3 × 10−5 (basis dimension 43 × 106 at Nmax = 8)
in order to keep the size of the calculation manageable. Un-
fortunately, the more severe truncation leads to an incomplete
separation of the ground state and the extrapolation gives a
nonzero J . Decreasing the threshold to improve this exceeds
the computational resources available for this study. However,
the NMEs depend weakly on Nmax so we expect only small
changes from the larger model spaces.

Next, we compare the NMEs of Fermi, Gamow-Teller, and
tensor parts as a function of the model space in VS-IMSRG,
IM-GCM, and IT-NCSM in Figs. 4 and 5 for the �T = 0
and �T = 2 transition, respectively. As expected, the tensor
contribution to the NME is generally small for the �T = 0
transitions (less than 10%). However, for the �T = 2 tran-
sition from 8He to 8Be, the tensor can contribute up to 25%
to the total NME, as the NME itself is small. The variation
of the NME with model space is mainly driven by the GT
part. For 6He, the GT matrix element decreases by about 7%

FIG. 4. The NMEs of the isospin-conserving 0νββ decays
(a) He6 → Be6 , (b) Be10 → C10 , and (c) C14 → O14 from the VS-
IMSRG, IM-GCM (left), and the IT-NCSM (right) as a function of
emax and Nmax, respectively.

and 3% when the model space increases from emax = 4 to
emax = 6 and from emax = 6 to emax = 8 respectively in the
IM-GCM calculations. For 10Be, these numbers are 24% and

FIG. 5. Same as Fig. 4, but for the isospin-changing 0νββ decays
(a) He8 → Be8 and (b) O22 → Ne22 .
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FIG. 6. The IMSRG evolution on the distribution C0ν (r12) of the
NME as a function of the relative coordinate r12 corresponding to the
transitions (a) from 6He to 6Be and (b) from 8He to 8Be from the IM-
GCM calculation, in comparison with the result from the IT-NCSM
calculations. The boundary of the shaded area indicated with dotted
and solid curves corresponds to the result using the bare and evolved
transition operators, respectively. See text for details.

4%, respectively. The spreads in the NMEs of Be10 → C10 ,
and C14 → O14 are primarily due to the GT contribution, for
reasons discussed below. We note that the NME for 6He to
6Be is comparable to the value in Ref. [42] in which only
the NN part of the interaction is taken into account in the
NCSM calculation of the nuclear wave functions. Specifically,
the NCSM with NN only and Nmax = 8 predicts M0ν = 4.304
[42], and the value by the IT-NCSM, which includes the
3N interaction, is 4.287. This seems to indicate that the 3N
interaction has a negligible impact on the predicted NME for
the transition from 6He to 6Be.

We break down the NMEs further by introducing the tran-
sition distribution function C0ν (r12), defined as

M0ν =
∫ ∞

0
dr12 C0ν (r12), (50)

with r12 = |r1 − r2| being the relative distance between the
two neutrons that are transformed into protons. Figure 6
displays C0ν (r12) for 6He and 8He from the IM-GCM and
IT-NCSM calculations, where both the evolved and bare

FIG. 7. Same as Fig. 6, but for the transition from 22O to 22Ne.

transition operators are used. The shaded area indicates the
renormalization effect in the transition operator. We see that
the shape of the functions from both calculations is simi-
lar, even though the height of the peak at short distance is
somewhat different from each other. The differences between
the two methods are most pronounced in the GT contribu-
tions. It is worth mentioning that the transition distribution
function C0ν (r12) is scale and scheme dependent [91–93] and
any attempt at a quantitative comparison requires a careful
accounting of the (IM)SRG transformations, even if both
methods start from the same operators. Thus, a direct quantita-
tive comparison of this distribution with the one obtained from
QMC calculations with the AV18+IL7 interaction in Ref. [36]
is not necessarily meaningful. Qualitatively, we see similar
global features like a single peak and the absence of nodes
in the distribution C0ν (r12) for 6He. In contrast, the C0ν (r12)
for the isospin-changing transition from 8He to 8Be has a node
around r12 = 1.5 fm. The cancellation between the long-range
and the short-range contributions produces a small transition
NME for 8He. A similar cancellation is also found in the GT
part of the transition distribution function for O22 , as shown
in Fig. 7, where the results of IT-NCSM are not plotted as
it is challenging to extrapolate the distribution function in a
way similar to what we have done in Fig. 3. It is seen that
the renormalization decreases the heights of peaks on both
positive and negative sides, leading to a negligible effect on
the total NME.

The distribution functions C0ν (r12) for 10Be and 14C are
displayed in Fig. 8. One can clearly see that the impact of
the IMSRG(2) evolution on the GT part of Be10 and C14

is significantly larger than that on He6 and He8 . This effect
is so strong that it leads to the underestimation of the GT
transition matrix element for 10Be, and an overestimation for
14C. The size of the renormalization indicates that higher order
terms are more relevant for these nuclei and their inclusion is
expected to reduce the observed discrepancies. As discussed
in the Appendix, most of the direct contribution from the
induced three-body transition operator from the commutator
[	(2), O0ν](3) to the NME has already been taken into account
in the NO2B approximation. The residual part turns out to
be negligible. However, its contribution to the commutator
[	(2), [	(2), O0ν](3)](2) reduces the total 14C NME by about
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FIG. 8. Same as Fig. 6, but for 10Be and 14C.

10%. The low-lying states of spherical nuclei are generally
dominated by noncollective configurations which are not in-
cluded explicitly in the present IM-GCM calculation. The
inclusion of noncollective configurations is expected to reduce
further the discrepancies. Indeed, we find that the inclusion of
neutron-proton isoscalar pairing fluctuations in the IM-GCM
reduces the discrepancy by about 5%. With the corrections
mentioned above, the discrepancy between the 14C NMEs by
the IM-GCM and IT-NCSM is within 10%.

Figure 9 displays the renormalization correction δOJ pp′
nn′ to

each of the normalized two-body transition matrix elements
OJ pp′

nn′ with coupled spin J = 0 in the IMSRG(2) evolution
based on the ensemble reference state of 14C and 14O, where

δOJ pp′
nn′ = O

J pp′

nn′ − OJ pp′
nn′ . (51)

This correction is generally small with a few exceptions.
For 14C, the largest change is shown in (O0ν

GT)J=0 π p1/2,π p1/2
νp1/2,νp1/2 ,

which is enhanced significantly from −0.97 to −3.57. The
enhancement is driven by the contributions of the pp and hh
terms in Eq. (43) related to the elements 	

J=0 π p1/2,π p1/2
π p3/2,π p3/2 and

	
J=0 νp1/2,νp1/2

νp3/2,νp3/2 of the Magnus operator.
A similar phenomenon is observed for the 10Be case: The

largest change occurs in the two-body transition matrix el-
ement (O0ν

GT)J=0 π p3/2,π p3/2
νp3/2,νp3/2 which is reduced from −3.12 to

−2.02. In contrast to 14C, this change is mainly contributed

FIG. 9. The renormalization effect on the normalized two-body
transition matrix element OJ=0 pp′

nn′ in the spherical HO basis with
emax = 6 and frequency h̄	 = 16 MeV in the IM-GCM calculation
based on the ensemble reference state of 14C and 14O. See text for
further details.

from the ph term in (43) related to the Magnus operator matrix
element 	

J=0 π p1/2,νp1/2
π p3/2,νp3/2 .

The renormalization effects can be understood as follows.
The IMSRG flow in the IM-GCM calculation decouples the
ground state from excitations and generates large nonzero
values for the two-body matrix elements of the 	 operator
connecting the single-particle states below and above the
Fermi surface, which are p3/2 and p1/2 states respectively in
the case of using the ensemble reference states of 10Be - 10C
and 14C - 14O. This large renormalization effect on a partic-
ular two-body matrix element must be compensated by the
changes in nuclear wave functions. However, the IM-GCM
presently underestimates (overestimates) the NME for 10Be
(14C) because of the adopted truncations in the IMSRG(2)
and GCM parts of our calculations as discussed before. Again
as discussed in the Appendix, there is about 10% reduc-
tion contributed from the induced normal-ordered three-body
transition operator and 5% reduction from the inclusion of
neutron-proton isoscalar pairing fluctuations in the GCM cal-
culation.

Finally, we compare the J component M0ν
J of the GT, Fermi

and tensor parts of the NMEs for 6He, 8He, 10Be, and 14C from
both the IT-NCSM and IM-GCM calculations in Figs. 10,
11, 12, and 13, respectively. We find a remarkable agreement
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FIG. 10. The J component M0ν
J of the GT, Fermi and tensor parts

of the NME for the decay 6He → 6Be from both IM-GCM and IT-
NCSM calculations.

in the distribution of the M0ν
J , even though the NMEs from

the IT-NCSM calculation tend to be slightly more fragmented
than those from the IM-GCM calculation. The NMEs for the
�T = 0 transitions in 6He and 14C are determined almost
purely by the J = 0 component. For others, the NMEs are
dominated by the cancellation of J = 0 and J = 2 compo-
nents. As discussed in Ref. [32] with the IM-GCM, the J = 2
component usually reflects quadrupole deformation effect.
The predicted large J = 2 component for the transition from
10Be to 10C is consistent with the observed strong electric
quadrupole transition in 10Be [94]. Figures 11 and 12 also
display the M0ν

J by the bare transition operator for 10Be and
14C. It is shown again that the renormalization effect brings
the M0ν

J in the IM-GCM closer to the results of IT-NCSM.

IV. SUMMARY

Significant progress has been made in the modeling of
the NMEs for 0νββ decays from first principles in recent
years. This achievement is mainly attributed to the tremendous
development of ab initio methods for atomic nuclei with sys-
tematically improvable approximations and the use of nuclear
Hamiltonians that are softened with SRG transformations.
The validation of the impact of these approximations on the
NMEs for 0νββ decays is an essential step toward the quan-
tification of the uncertainties in theoretically predicted NMEs
of candidate 0νββ decays.

In this paper, we have presented ab initio calculations of
the ground-state energies and the NMEs of both �T = 0

FIG. 11. Same as in Fig 10, but for the decay 8He → 8Be.

FIG. 12. The J component M0ν
J of the GT, Fermi and tensor parts

of the NME for the decay 10Be → 10C from both IM-GCM and IT-
NCSM calculations. The results of IM-GCM calculation using the
bare transition operator are also given for comparison.

and �T = 2 0νββ decays in a set of light nuclei with mass
numbers ranging from A = 6 to A = 22 with the IM-GCM,
VS-IMSRG, and IT-NCSM, starting from the same chiral
NN + 3N interaction and the same weak transition opera-
tor derived from standard light-Majorana neutrino-exchange
mechanism. The results have been discussed in compari-
son with the recently reported results with the NCSM and
CCSDT1 [34]. Our findings are summarized as follows:

(1) The ground-state energies of all the model calcula-
tions agree reasonably well with data. The discrepancy
from data is within 0.3 MeV per nucleon, except for
Be8 , which has a pronounced 2α cluster structure in

its ground state that is challenging to describe in the
VS-IMSRG(2).

(2) The NMEs of the 0νββ decays with �T = 0 are
generally located around 4.0. It turns out that the
discrepancy of the NMEs among model predictions
can be reduced to be less than 10% if the induced
normal-ordered three-body transition operator (and
neutron-proton isoscalar pairing) is considered in the
IM-GCM.

(3) An accurate description of the NMEs for the �T = 2
transitions is challenging as the values are about one
order of magnitude smaller than those for the �T = 0
transitions. The NMEs for the transitions from He8 to
Be8 and from O22 to Ne22 exhibit a feature similar

to what been found for the NME of candidate tran-
sition from Ca48 to Ti48 [32–34], i.e., the NMEs of
IM-GCM, VS-IMSRG and IT-NCSM are sandwiched
by the upper and lower boundary values from the
CCSDT1 calculations with the choice of initial and
final (deformed) state as reference state, respectively.
A fairly good agreement is shown in the results of
IM-GCM, VS-IMSRG, and IT-NCSM for O22 , and in
the results of IM-GCM, IT-NCSM, NCSM, and (the
lower boundary value of) CCSDT1 for He8 .

In short, the present benchmark study provides evidence
that the discrepancy between NMEs for 0νββ computed with
different ab initio methods, but using the same input, can
provide a meaningful estimate of the truncation errors of the
many-body methods.
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FIG. 13. Same as in Fig. 12, but for the decay 14C → 14O.
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APPENDIX: THE INDUCED THREE-BODY 0νββ

TRANSITION OPERATOR

In this section, we assess the corrections to the NME in
IM-GCM calculation from the induced three-body transition
operator in IMSRG(2), which is composed of the NO2B term
and normal-ordered three-body (NO3B) term. The NO2B part
of the induced three-body transition operator has already been
taken into account in the NME. Here we will evaluate the
contributions from the NO3B part of the induced transition
operator. The consideration of these contributions in princi-
ple requires the extension of the IMSRG(2) to IMSRG(3),
in which all the operators are truncated up to NO3B terms.
This extension is, however, still a formidable computational

FIG. 14. Antisymmetrized Goldstone diagrams for the in-
duced three-body transition operator from the commutator T (3) =
[	(2), O0ν](3), where dashed lines with hollow dots are for the 	(2)

in the unitary transformation operator e	 and wavy lines correspond
to O0ν for the bare 0νββ transition operator. The blue, red, and
black lines with arrows are for neutrons (n), protons (p) and nucleons
(τ = n/p), respectively.

challenge [95]. Therefore, we only examine what are expected
to be the predominant contributions from the NO3B transition
operator. To this end, we rewrite the IMSRG-evolved transi-
tion operator in terms of the rank of each operator

e	O0νe−	 = O0ν + [	, O0ν](2) + 1
2! [	, [	, O0ν](2)](2) + · · ·

+ [	, O0ν](3) + 1
2! [	, [	, O0ν](3)](2) + · · · ,

(A1)

where the first line collects all the two-body operators that are
included in the IMSRG(2) framework.

The three-body terms in [	, O0ν] are generated by 	(2), so
we introduce the notation T (3) for the induced NO3B transi-
tion operator as shown diagrammatically in Fig. 14,

T (3) = [	(2), O0ν](3) = 1

36

∑
T pp′τ

nn′τ ′ :App′τ
nn′τ ′ : . (A2)

The antisymmetrized three-body matrix element T abc
def in

natural-orbital basis is given by

T abc
def =

∑
g

A(
	

ag
e f Obc

dg − Oag
e f 	

bc
dg

)
, (A3)

which is composed of nine terms given the fact that the an-
tisymmetry under exchange of b and c (and of e and f ) is
already built into 	 and O. The correction to the NME due to
T (3) reads

δM0ν (T (3) ) = 1

36

∑
T pp′τ

nn′τ ′ 〈
F | :App′τ
nn′τ ′ : |
I〉

= 1

36

∑
T pp′τ

nn′τ ′ λ
pp′τ
nn′τ ′ , (A4)

which depends on the irreducible three-body transition den-
sity λ(3),

λ
pp′τ
nn′τ ′ = ρ

pp′τ
nn′τ ′ −A

(
ρ

pp′
nn′ λ

τ
τ ′
)
. (A5)

In the above expression, ρ
pp′τ
nn′τ ′ and ρ

pp
nn′ are the three- and

two-body transition densities, and λτ
τ ′ is the one-body density
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FIG. 15. (a) The J-coupled matrix elements of irreducible three-
body transition density λ(3) against those of induced three-body
GT, Fermi, and tensor transition operator T (3)

α = [	(2), O0ν
α ](3) in

the IM-GCM for C14 , where α labels GT and Fermi respectively.
(b) Correction to the normalized matrix elements of two-body tran-
sition operator O0ν from T (3) against that from D(2) under NO2B
approximation. See text for details.

of the reference state, which conserves charge and isospin.
The formulas for the (irreducible) three-body (transition) den-
sity can be found in Refs. [47,86]. Since the irreducible
three-body transition density is generally small, the correction
δM0ν (T (3) ) is expected to be small as well.

For illustration, we compute T (3) and δM0ν (T (3) ) for C14

within the spsd model space, which is composed of six orbitals

of neutrons and protons: 0s1/2, 0p3/2, 0p1/2, 1s1/2, 0d5/2, and
0d3/2, where the predominant matrix elements of one-body
density, two-body transition density, and the irreducible three-
body transition density live.

Figure 15(a) displays the J-coupled matrix elements of λ(3)

with magnitude greater than 10−4 against those of T (3). The
λ(3) matrix elements are on the order of 10−2 while those
of the induced three-body GT transition operator range from
−1.5 to 2.0. Compared to the IMSRG(2) renormalization ef-
fect on the two-body part of the transition operator (cf. Fig. 9),
which changes the unnormalized two-body matrix elements
by up to 5.2, this is a 38% effect. However, in addition
to their small magnitude, the distributions of the three-body
matrix elements λ(3) are misaligned with those of T (3), so
that large correlation matrix elements get multiplied by small
transition matrix elements and vice versa when computing the
NME. This leads to a very small correction δM0ν (T (3) ) ≈
−2 × 10−3 for the GT transition. The contribution to the
Fermi and tensor parts is even smaller.

Next, we examine the contribution of the second term in
the second line of (A1). This term modifies the two-body
transition operator and it is given by

δO0ν = 1

2!
[	(2), [	(2), O0ν](3)](2)

= 1

2!
[	(2), T (3)](2)

≡ 1

4

∑
abcd

δOab
cd :Aab

cd : . (A6)

Considering that the irreducible two-body density λ(2) is gen-
erally much smaller than the one-body density, it is expected
to be a good approximation to consider the terms that depend
only on the one-body density. Under this approximation, we
find

δOab
cd �1

4

∑
e f g

(
	be

f gT f ga
cde + 	de

f gT f gc
abe − 	ae

f gT f gb
cde − 	ce

f gT f gd
abe

)
× (nen̄ f n̄g + n̄en f ng), (A7)

where n̄i = 1 − ni with ni ∈ [0, 1] being the occupation num-
ber of the ith single-particle state. Using the AMC package
[96], we find the J-coupled expression for the unnormalized
two-body matrix element

δOJ0 ab
cd = 1

4

∑
e f g

(nen̄ f n̄g + n̄en f ng)
∑

J1J2J123

Ĵ−1
0 Ĵ1Ĵ2

123(−1)J1+ je+1

×
(

(−1)Jb

{
ja jb J0

je J123 J1

}
	

J1 be
f g TJ123 ( f g)J1,a

(cd )J0,e
+ (−1)Jd

{
jc jd J0

je J123 J2

}
	

J1 de
f g TJ123 ( f g)J1,c

(ab)J0,e

+ (−1)J0+ jb

{
jb ja J0

je J123 J1

}
	

J1 ae
f g TJ123 ( f g)J1,b

(cd )J0,e
+ (−1)J0+ jd

{
jd jc J0

je J123 J1

}
	

J1 ce
f g TJ123 ( f g)J1,d

(ab)J0,e

)
,

(A8)

where the TJ123 (ab)J0,g
(de)J1, f is a J-coupled form of matrix ele-

ment T abg
def . We evaluate δOJ0 ab

cd for the transition from C14

to O14 and find two largest GT matrix elements which are
δO

J=0 π p1/2,π p1/2
νp1/2,νp1/2 = 0.27 and δO

J=0 π p3/2,π p3/2
νp1/2,νp1/2 = 0.49, respec-
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tively, as shown in Fig. 15(b). The size of these matrix
elements is an order of magnitude smaller than those of T (3),
as is expected for a higher order correction. Since it modifies
the two-body transition operator, the contributions from δO0ν

are not suppressed by the smallness of λ(3) and can yield a
sizable correction to the NME,

δM0ν (δO) = 1

4

∑
pp′nn′

δOpp′
nn′ ρ

pp′
nn′ . (A9)

This correction reduces the NME by 0.263 and 0.094 for the
GT and Fermi, respectively. The total NME for C14 by the IM-
GCM becomes 4.01, in better agreement with the value 4.03
of VS-IMSRG (which of course has its own T (3) corrections
to be considered), and 11% larger than the IT-NCSM value
of 3.55. The latter difference can be reduced further, to about
6%, by including neutron-proton isoscalar pairing fluctuations
in the GCM calculation.
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