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229mTh isomer from a nuclear model perspective
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The physical conditions for the emergence of the extremely low-lying nuclear isomer 229mTh at approximately
8 eV are investigated in the framework of our recently proposed nuclear structure model. Our theoretical
approach explains the 229mTh-isomer phenomenon as the result of a very fine interplay between collective
quadrupole-octupole and single-particle dynamics in the nucleus. We find that the isomeric state can only appear
in a rather limited model space of quadrupole-octupole deformations in the single-particle potential, with the
octupole deformation being of a crucial importance for its formation. Within this deformation space the model-
described quantities exhibit a rather smooth behavior close to the line of isomer–ground-state quasidegeneracy
determined by the crossing of the corresponding single-particle orbitals. Our comprehensive analysis confirms
the previous model predictions for reduced transition probabilities and the isomer magnetic moment, while
showing a possibility for limited variation in the ground-state magnetic moment theoretical value. These findings
prove the reliability of the model and suggest that the same dynamical mechanism could manifest in other
actinide nuclei giving a general prescription for the search and exploration of similar isomer phenomena.
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I. INTRODUCTION

Well supporting the current strong emphasis on interdisci-
plinary research, a unique extremely low-lying 229mTh isomer
at approximately 8 eV [1–4] obviously disregards the recog-
nized low-energy border of nuclear physics firmly stepping on
atomic physics territory. Although another low-lying nuclear
excitation in 235U also approaches this limit with an order
of magnitude larger energy of 76 eV [5], currently 229mTh
attracts much more interest since its energy lies in the range
of accessibility of present vacuum ultraviolet (VUV) lasers
capable to handle the wavelength of 150 nm (≈8 eV). With a
relatively narrow width and excellent stability, this transition
appears to be of a practical interest for a diverse commu-
nity beyond nuclear physics, involving atomic, laser, plasma
physics, metrology, cosmology and others, posing a number
of puzzling problems and raising hopes for possible advanced
applications. The main interest is related to a new frequency
standard based on laser access and stabilization of this tran-
sition with sufficient accuracy through contemporary laser
(frequency comb or other) techniques. This has been often
referred to in the literature as a “nuclear clock” [6–8]. Such

*nminkov@inrne.bas.bg
†Adriana.Palffy-Buss@fau.de

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI. Open
access publication funded by the Max Planck Society.

a nuclear clock is expected to have a better or at least compa-
rable accuracy to the currently developed atomic clocks. This
entails a rich variety of possible 229mTh-based applications
such as the precise determination of temporal variations in
fundamental constants [9–12], the development of nuclear
lasers in the VUV range [13], detection improvements in satel-
lite and deep space navigation, gravitation waves, geodesy,
precise analysis of chemical environment and others.

Towards the aforementioned applications, recent experi-
ments have confirmed the existence of the isomer [14] and
have determined the isomer mean half-life in neutral Th
atoms [15]. Furthermore, the magnetic-dipole moment μ of
the nuclear isomeric state (IS) was determined for the first
time through laser spectroscopy experiments [16,17] provid-
ing the value of μIS = −0.37 (6)μN . Then, three very recent
experiments proposed newly updated values for the isomer
energy, EIS = 8.28 (17) eV [3] (from internal-conversion elec-
tron spectroscopy), EIS = 8.30 (92) eV [4] (by determining
the transition rates and energies from the above level at 29.2
keV) and EIS = 8.10 (17) eV [18] (from a microcalorimetric
determination of absolute γ -ray energy differences).

These advances, although not yet reaching the accuracy
needed for a nuclear clock, pose new challenges and inspire
new studies of the 229mTh problem from the nuclear structure
side. 229Th belongs to the light actinide nuclear mass region
known for the presence of enhanced collectivity and shape
dynamic properties suggesting a complicated interaction be-
tween the collective motion of the even-even core and the
individual motion of the single neutron. The single-particle
(s.p.) states of the latter determine the 229Th ground state
(GS) with Kπ = 5/2+ and the IS with Kπ = 3/2+ based
on the 5/2[633] and 3/2[631] s.p. orbitals. Here, π denotes
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the parity and K refers to the projection of the total nuclear
angular momentum on the body-fixed principal symmetry
axis of the system, respectively. We use the usual Nilsson
notation K[Nnz�] with N , nz, and � being the asymptotic
Nilsson quantum numbers [19]. Although it is intuitively clear
that the entire nuclear structure dynamics should essentially
influence the appearance and the properties of the isomer,
only limited work has addressed this aspect in the past. Thus,
predictions for the B(M1) and B(E2) reduced 3/2+ → 5/2+
transition probabilities have been made in Refs. [20,21] using
the quasiparticle-plus-phonon model [22] without particular
focus on the isomer properties. Furthermore, in Refs. [23,24]
estimates were made for the isomer B(M1) transition rate
using the Alaga branching ratios [25], and for the IS magnetic
moment μIS based on the Nilsson model [26]. The obtained
value μIS = −0.076μN essentially differs from the recently
available experimental value of −0.37 (6)μN [16].

Understanding the physical mechanism behind the 229mTh
phenomenon requires a thorough investigation of the interplay
of all involved collective and s.p. degrees of freedom, and
identification of all structure effects which could allow the
appearance of an excitation in the eV energy scale. Since
the latter is beyond reach for the accuracy of nuclear models
generally speaking, the implementation of such a task would
require the application of a sophisticated theoretical method
which can provide the necessary conclusion by juxtaposing
results and information gained from different perspectives
and observables such as energies, transition probabilities, and
magnetic moments. Motivated by the considerations above
we have recently put forward a complete nuclear-structure
model approach that takes into account the axial quadrupole-
octupole (QO) (pear-shape) deformation modes typical for
the nuclei in the actinide region both in the collective and
s.p. degrees of freedom of the nucleus [27]. The formalism
involves in the even-even nuclear core, the so-called coher-
ent QO model, describing collective axial quadrupole and
octupole vibrations with equal oscillation frequencies nona-
diabatically coupled to the rotation motion [28–31], while
the odd-nucleon motion is described within a deformed shell
model (DSM) including reflection-asymmetric Woods-Saxon
potential [32] and pairing correlations of Bardeen-Cooper-
Schrieffer (BCS) type with blocking of the unpaired nucleon
orbital [33]. The odd-nucleon motion is coupled to the col-
lective motion by a Coriolis interaction taken into account
through perturbation theory. The model spectrum has the form
of quasi-parity-doublet bands built on the ground and excited
quasiparticle (q.p.) states. In this scheme the IS appears as a
q.p. bandhead of an excited quasi-parity-doublet. The model
framework allows a rather complete and intrinsically consis-
tent spectroscopic treatment of the nucleus including its IS.

Based on this model description we were able in Ref. [27]
to predict the B(M1) and B(E2) reduced probabilities for the
IS 3/2+ → 5/2+ transition. For B(M1) we have provided the
limits of 0.006–0.008 Weisskopf units (W.u.), well below the
earlier deduced values of 0.048 W.u. [23,24] and 0.014 W.u.
[21], corroborating the experimental difficulties to observe
radiative isomer decay [34–36]. For the electric-quadrupole
B(E2) transition probability we have determined the limits of
B(E2) = 20−30 W.u. At the same time, the energy spectrum

and several available data on other transition rates were de-
scribed with reasonable accuracy. In the subsequent work [37]
we have calculated the magnetic moment of the IS, μIS and of
the GS, μGS, by taking into account attenuation effects in the
spin and collective gyromagnetic factors, without changing
the model parameters originally adjusted in Ref. [27]. The
result for μIS in the range from μIS = −0.25μN to −0.35μN

is in rather good agreement with the recent experimental
values (−0.3)−(−0.4) [17] and −0.37(6) [16]. On the other
hand, μGS was obtained in the range μGS = 0.53μN –0.66μN ,
overestimating the latest reported and older experimental val-
ues of 0.360(7)μN [38] and μGS = 0.45μN [39], respectively,
and being in agreement with an earlier theoretical prediction
μGS = 0.54μN based on the modified Woods-Saxon potential
[40]. Our model analysis in Ref. [37] showed that the Coriolis
K-mixing interaction lowers μGS pushing it towards the ex-
perimental values, while its effect on μIS is negligible due to
the circumstance that the Kπ = 3/2+ IS has no mixing partner
with angular momentum Iπ = 3/2+ in the GS band.

These results raise several important questions to our un-
derstanding of the 229mTh problem from the nuclear structure
perspective, which we address in this work. (i) To which
extent does the shape dynamics play a role for the emergence
of such a nuclear structure phenomenon as the tiny energy dif-
ference between the IS and the GS? (ii) What is the degree of
arbitrariness in the choice of parameters providing the model
predictions? The basic input in DSM are the quadrupole β2

and octupole β3 deformations, which determine the s.p. or-
bitals on which the GS and IS are formed. It is, therefore,
important to identify the regions in the (β2, β3) deformation
space of DSM which provide a relevant model treatment of
the isomer and the overall spectroscopic properties of the
nucleus. To clarify this question, in this work we perform
DSM calculations on a grid in a wide range in the QO de-
formation space covering the regions of physical relevance
for a nucleus in the actinide mass region around 229Th. A
next question that we address is (iii) whether by including the
experimental GS and IS magnetic moment values in the model
fits made for different pairs of DSM QO deformations, a better
reproduction of μGS could be achieved? How would the model
predictions for the other spectroscopic quantities and in par-
ticular for B(M1) and B(E2) change? Finally, (iv) is 229mTh
a unique phenomenon appearing by chance, or the considered
dynamical mechanism could provide the presence of similar
not yet observed phenomena in other nuclei? In this work we
aim to provide answers to these questions, prove the degree of
reliability of the model predictions, and clarify details of the
mechanism which governs the appearance of the IS.

This work is structured as follows: Section II reviews
the model formalism in a self-contained form together with
details on its application to the 229mTh problem. In Sec. III
results from the calculations in the QO deformation space of
the DSM with the corresponding behavior of the IS energy,
B(M1), B(E2) transition rates, and the IS and GS magnetic
moments are presented and discussed. In Sec. IV we sum-
marize our analysis and conclude on the reliability of the
suggested model mechanism. We thereby provide our updated
theoretical predictions for all discussed observables and an-
swer the questions formulated above.
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II. QUADRUPOLE-OCTUPOLE CORE PLUS
PARTICLE MODEL

A. Hamiltonian

The model Hamiltonian of axial QO vibrations and rota-
tions coupled to the s.p. motion with Coriolis interaction and
pairing correlations can be written in the form [27]

H = Hs.p. + Hpair + Hqo + HCoriol. (1)

Here Hs.p. is the single-particle (s.p.) DSM Hamilto-
nian with the Woods-Saxon potential for fixed axial
quadrupole, octupole and higher multipolarity deformations
(β2, β3, β4, β5, β6) [32] providing the s.p. energies EK

sp with
given value of the projection K of the total and s.p. angular-
momentum operators Î and ĵ, respectively on the intrinsic
symmetry axis. Hpair is the standard BCS pairing Hamiltonian
[33] which together with Hs.p. determines the quasiparticle
(q.p.) spectrum εK

qp = [(EK
sp − λ)2 + �2]1/2, with the chemical

potential λ and the pairing gap � determined as shown in
Ref. [41]. Furthermore, Hqo describes the oscillations of the
even-even core with respect to the quadrupole β̃2 and octupole
β̃3 axial deformation variables mixed through a centrifugal
(rotation-vibration) interaction [28,29]. Its spectrum is ob-
tained in an analytical form by assuming equal frequencies for
the quadrupole and octupole oscillations. The latter are known
as the coherent QO mode (CQOM) and will be discussed
in more detail in Sec. II B. Here inafter, we distinguish the
CQOM collective (dynamical) variables β̃2 and β̃3 from the
fixed DSM deformation parameters β2 and β3 considered in
this work (see Sec. II B for clarification).

Returning to the total Hamiltonian in Eq. (1), HCoriol in-
volves the Coriolis interaction between the even-even core
and the unpaired nucleon [29]. It is treated as a perturbation
with respect to the remaining part of Hamiltonian (1) and then
incorporated into the collective QO potential of Hqo defined
for a given angular momentum I , parity π , and s.p. bandhead
projection Kb, leading to a joint effective term [42]

HIKb
qo = − h̄2

2B2

∂2

∂β̃
2
2

− h̄2

2B3

∂2

∂β̃
2
3

+ 1

2
C2β̃

2
2 + 1

2
C3β̃

2
3

+ X̃ (Iπ , Kb)

d2β̃
2
2 + d3β̃

2
3

. (2)

Here, B2 (B3), C2 (C3), and d2 (d3) are quadrupole (oc-
tupole) mass, stiffness, and inertia parameters, respectively.
The function X̃ (Iπ , Kb) determines the centrifugal term in
which the Coriolis mixing is taken into account and has the
form:

X̃ (Iπ , Kb)

= 1

2

⎡⎢⎢⎣d0 + I (I + 1) − K2
b + (−1)I+ 1

2

(
I + 1

2

)
a(π,πb)

1
2

δKb,
1
2

−A
∑
ν �=b

(Kν= 1
2 ,Kb±1)

[̃
a(π,πb)

KνKb
(I )
]2

ε
Kν
qp − ε

Kb
qp

⎤⎥⎥⎦, (3)

where d0 determines the collective QO potential origin, A
is the Coriolis mixing strength defined in Ref. [42], and the
sum is performed over q.p. states with energies εKν

qp above the
Fermi level. For the sum we consider in our numerical calcu-
lations ten mixing orbitals. The quantity a(π,πb)

1/2 = ππba(πb)
1
2 − 1

2

represents the decoupling factor for the case Kb = 1/2 while
the quantities ã(π,πb)

KνKb
(I ) stand for the Coriolis mixing factors

given by

ã(π,πb)
KνKb

=

⎧⎪⎪⎨⎪⎪⎩
√

(I − Kb)(I + Kb + 1)a(πb)
KνKb

, Kν = Kb + 1
√

(I + Kb)(I − Kb + 1)a(πb)
KbKν

, Kν = Kb − 1

ππb(−1)(I+ 1
2 )
(
I + 1

2

)
a(πb)

1
2 − 1

2

, Kν = Kb = 1
2 ,

(4)

with

a(πb)
KνKb

= Pb
KνKb

N (πb)
Kν

N (πb)
Kb

〈F (πb)
Kν

∣∣ ĵ+∣∣F (πb)
Kb

〉
= Pb

KbKν

N (πb)
Kb

N (πb)
Kν

〈F (πb)
Kb

∣∣ ĵ−∣∣F (πb)
Kν

〉
. (5)

The latter involve matrix elements of the s.p. operators ĵ± =
ĵx ± i ĵy between the parity-projected components of the s.p.

wave functions F (πb)
Kb

of the bandhead state and the admix-

ing state F (πb)
Kν

. Each s.p. wave function is obtained in the
DSM [32] as an expansion in the axially deformed harmonic-
oscillator basis |Nnz��〉 (with � + � = K),

FK =
∑
Nnz�

CK
Nnz�

|Nnz��〉. (6)

In the case of reflection asymmetry (β3 �= 0) the wave func-
tion has a mixed parity and can be decomposed as FK =∑

πsp=±1 F
(πsp)
K = F (+)

K + F (−)
K , with the s.p. parity given by

πsp = (−1)N = ±1. The action of the s.p. parity operator
π̂sp gives π̂spFK = F (+)

K − F (−)
K , and for the parity-projected

parts one has π̂spF (±)
K = ±F (±)

K . In our approach the projec-
tion is made with respect to the experimentally assigned good
parity πb of the bandhead s.p. state (see below). It is clear
that, in the presence of octupole deformation each s.p. orbital
is characterized by an average (expectation) value of parity
determined as [43]

〈π̂sp〉 =
∑
Nnz�

(−1)N
∣∣CK

Nnz�

∣∣2, (7)

with the expansion coefficients calculated in the DSM. The
quantity 〈π̂sp〉 takes values in the interval −1 � 〈π̂sp〉 � +1
in dependence on the octupole β3 and quadrupole β2 defor-
mations entering the DSM.

The quantity N (πb)
K = [〈F (πb)

K |F (πb)
K 〉] 1

2 in Eq. (5) is
a parity-projected normalization factor, whereas Pb

Kν′ Kν
=

U b
Kν′U

b
Kν

+ V b
Kν′V

b
Kν

involves the BCS occupation factors. The
index b corresponds to the blocked s.p. orbital on which
the collective spectrum is built. Since the BCS procedure
is performed separately for each (blocked) bandhead orbital,
the overlap integrals and the matrix elements between states
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built on different bandhead orbitals involve the average of
both separate occupation factors Pbb′

Kν′ Kν
= 1

2 (Pb
Kν′ Kν

+ Pb′
KνKν′ ).

The occupation factors U and V and the q.p. energies εK
qp are

obtained by solving the BCS gap equation as done in Ref. [41]
with the pairing constant G = GN (GP) for neutron (proton)
subsystems of N protons and Z neutrons determined as [19]

GN = 1

N + Z

(
g0 − g1

N − Z

N + Z

)
,

GP = 1

N + Z

(
g0 + g1

N − Z

N + Z

)
. (8)

Here the pairing parameter g0 is considered to vary between
the values g0 = 17.8 MeV, used in Ref. [41] for the DSM plus
BCS calculations in the actinide region, and g0 = 19.2 MeV
suggested in Ref. [19] for rare-earth nuclei, while g1 is con-
sidered to vary around the value g1 = 7.4 MeV used in both
references cited above.

B. Model solution, spectrum, and wave functions

The spectrum which corresponds to the Hamiltonian (1)
represents QO vibrations and rotations built on a q.p. state
with K = Kb and parity πb. It is obtained in two steps. First,
the s.p. and q.p. energy levels and wave functions are ob-
tained through a DSM plus BCS calculation performed for
fixed β2- and β3-parameter values of the s.p. Woods-Saxon
potential, providing the odd-nucleon energy contribution to
the bandhead, εKb

qp , and the Coriolis mixing factors ã, Eq. (4),
in the centrifugal part X̃ , Eq. (3), of the QO Hamiltonian
(2). In the second step, the collective QO vibration-rotation
energies and wave functions are obtained through the solution
of the Schrödinger equation for the two-dimensional potential
in the collective β̃2 and β̃3 variables of Hamiltonian (2). In the
following we address in more detail this second step.

In the general case of arbitrary values of the Hamiltonian
parameters B2, B3, C2, C3, and d2, d3, the solution of the
Schrödinger equation in β̃2 and β̃3 has to be obtained numeri-
cally. A transformation of variables introduces the ellipsoidal
“radial” and “angular” coordinates, respectively,

η =
[

2
(
d2β̃

2
2 + d3β̃

2
3

)
d2 + d3

] 1
2

, φ = arctan

(
β̃3

β̃2

√
d3

d2

)
, (9)

such that

β̃2 = pη cos φ, β̃3 = qη sin φ, (10)

with

p =
√

d/d2, q =
√

d/d3, d = 1
2 (d2 + d3). (11)

An analytical solution for the spectrum of Hqo can be found
for a specific set of parameters, when assuming coherent
QO oscillations (the so-called coherent QO mode, CQOM)
with a frequency ω = √

C2/B2 = √
C3/B3 ≡ √

C/B. Then,
the two-dimensional potential in Hamiltonian (2) obtains a
shape with an ellipsoidal equipotential bottom in the space
of the collective deformation variables β̃2 and β̃3 [28]. This
allows a separation of the ellipsoidal variables and a reduction
of the problem to the one-dimensional Schrödinger equation

for an analytically solvable potential of Davidson type in the
radial variable η. The motion with respect to this potential cor-
responds to a “soft” QO vibration mode without fixed minima
in β̃2 and β̃3. These should not be confused with the fixed β2-
and β3- deformations in the s.p. Woods-Saxon potential of the
DSM. The CQOM approach has been successfully applied to
QO spectra of even-even and odd mass nuclei [28–31].

The quadrupole and octupole semiaxes β̃sa
2 and β̃sa

3 of the
ellipsoidal CQOM potential bottom are defined for even-even
nuclei as [30]

β̃sa
λ (I ) = [2X (I )/dλCλ]1/4, λ = 2, 3, (12)

with the centrifugal factor X (I ) = [d0 + I (I + 1)]/2. For an
odd-A nucleus the expression for the semiaxes takes the form

β̃sa
λ (Iπ , Kb) = [2X̃ (Iπ , Kb)/dλCλ]1/4, λ = 2, 3, (13)

with X̃ (Iπ , Kb) determined in Eq. (3). Comparing the expres-
sions of X (I ) and X̃ (Iπ , Kb) it becomes clear that for the
odd-nucleus the semiaxes β̃sa

λ=2,3(Iπ , Kb) in Eq. (13) differ
from the semiaxes β̃sa

λ (I ) (12) of the original even-even core
CQOM potential because here the X̃ (Iπ , Kb) factor includes
the additional term (−K2

b ) as well as the Coriolis mixing and
decoupling contributions from the single nucleon. The CQOM
potential semiaxes obey the relation [30]

β̃sa
3

β̃sa
2

= 1√
2p2 − 1

, (14)

with p defined in Eq. (11) determining the relative contribu-
tion of the quadrupole and octupole collective modes in the
coherent QO motion. We note that the value p = 1 corre-
sponds to equal values of both semiaxes, i.e., to a circle form
of the CQOM potential bottom. In terms of the coherence as-
sumption concept this means that both the quadrupole β̃2 and
octupole β̃3 deformation modes enter the collective CQOM
motion with the same weight. This case will be discussed later
in the paper and is exemplified in Figs. 4 and 5.

Despite the missing single (β̃2, β̃3) minimum in the CQOM
potential, the collective QO states of the system are still char-
acterized by the so-called dynamical deformations determined
by the density maxima of the QO vibration wave function.
Explicitly, the CQOM QO vibration wave function is given
by [28,30]

�
πqo
nkI (η, φ) = ψ I

nk (η)ϕ
πqo
k (φ), (15)

where the radial part

ψ I
nk (η) =

√
2c�(n + 1)

�(n + 2s + 1)
e−cη2/2(cη2)sL2s

n (cη2) (16)

involves generalized Laguerre polynomials in the variable η,
with s = (1/2)[k2 + bX̃ (I, K )]1/2 and c = √

BC/h̄, the latter
having the meaning of a reduced QO oscillator frequency, and
�(z) denotes the Gamma function. The angular part in the
variable φ appears with a positive or negative parity πqo of
the collective QO mode as follows:

ϕ+
k (φ) =

√
2/π cos (kφ), k = 1, 3, 5, . . . , (17)

ϕ−
k (φ) =

√
2/π sin (kφ), k = 2, 4, 6, . . . . (18)
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The maxima of the density |�πqo
nkI |2 → |�πqo

nkI (β̃2, β̃3)|2
calculated in the (β̃2, β̃3) space pin down the dynamical
deformation values [30]. Strictly speaking, the dynamical de-
formation is defined by the expectation value of the square
of the corresponding multipole (deformation) operator in the
CQOM state, but considering the density maximum is enough
to locate its position in the (β̃2, β̃3) space. The positions of
these maxima are situated outside of the potential bottom
ellipse and move further out with increasing angular momen-
tum. They essentially characterize the collective dynamical
behavior of the nucleus in the presence of a coherent mode.
This will be illustrated in Sec. III B for the present model
application in 229Th. It will be seen that the CQOM dynami-
cal deformations appearing in the overall collective spectrum
of the nucleus are reasonably correlated with the intrinsic
Woods-Saxon DSM QO deformations.

We should stress here, however, that the dynamical QO
deformations in CQOM do not need to ultimately coincide
or even to be close to the fixed Woods-Saxon deformations
β2 and β3 of the DSM. Imposing artificially such a con-
straint would deprive the overall algorithm of the capability
to incorporate the individual (separate) dynamic properties
of the collective and s.p. degrees of freedom (carried by the
available data) and, therefore, of the possibility to plausibly
reproduce the interaction between them. The present model
formalism does not put a constrain on both potentials but
rather leaves them to independently feel, as much as pos-
sible, the corresponding physical conditions which govern
the nuclear collective and intrinsic motions and their very
fine interplay. As will be seen in the following Sec. II E, in the
case of 229mTh, the DSM deformations β2 and β3 determine
the hyperfine (from the nuclear point of view) conditions
for the appearance of the Kπ = 3/2+ isomer while the dy-
namical CQOM deformations in the (β̃2, β̃3)-space reflect the
conditions imposed by the overall collective spectrum which
complement the microscopic isomer-formation mechanism.

By taking the analytical CQOM solution together with the
result of the DSM plus BCS calculation, the QO core plus
particle spectrum built on the given q.p. bandhead state is
obtained in the form [27]

E tot
nk (Iπ , Kb) = εKb

qp + h̄ω[2n + 1 +
√

k2 + bX̃ (Iπ , Kb)].

(19)

Here b = 2B/(h̄2d ) has the meaning of a reduced inertia pa-
rameter, while n = 0, 1, 2, . . . and k = 1, 2, 3, . . . stand for
the radial and angular QO oscillation quantum numbers, re-
spectively, with k odd (even) for the even-parity (odd-parity)
states of the core [28,29]. The levels of the total QO core plus
particle system, determined by the given n and pair of k(+) and
k(−) values for the states with Iπ=+ and Iπ=−, respectively,
form a split doublet with respect to the parity, called a quasi-
parity-doublet [29,31].

The corresponding wave functions can be constructed in
three steps. First, the quadrupole-octupole vibration wave
function of the CQOM is calculated according to Eq. (15).
Second, we can construct the unperturbed QO core plus

particle wave function [31,42]:

�π,πb

nkIMK (η, φ, θ ) = 1

N (πb)
K

√
2I + 1

16π2
�ππb

nkI (η, φ)
[
DI

MK (θ )F (πb)
K

+ππb(−1)I+K DI
M−K (θ )F (πb)

−K

]
, (20)

where DI
MK (θ ) are the rotation (Wigner) functions and

�ππb

nkI (η, φ) are the QO vibration functions (15) with πqo =
ππb. In Eq. (20) the relevant part F (πb)

K = F (+)
K or F (−)

K of the
s.p. wave function FK given in Eq. (6) is taken by projecting
the latter with respect to the experimentally assigned band-
head parity πb = + or −, thus providing a good parity of the
total core-plus-particle wave function.

Finally, the Coriolis perturbed wave function �̃ ≡ �̃π,πb

nkIMKb

corresponding to Hamiltonian (1) with the spectrum (19) is
obtained in the first order of perturbation theory and has the
form

�̃ = 1

ÑIπKb

[
�π,πb

nkIMKb
+ A

∑
ν �=b

CIπ
KνKb

�π,πb

nkIMKν

]
, (21)

where Kν = Kb ± 1, 1
2 , the expansion coefficients read

CIπ
KνKb

= ã(π,πb)
KνKb

(I )

ε
Kν
qp − ε

Kb
qp

, (22)

while the normalization factor is given by

Ñ2
IπKb

= 〈
�̃π,πb

nkIMKb

∣∣�̃π,πb

nkIMKb

〉
= 1 + 2A

∑
ν �= b

Kν = Kb = 1
2

CIπ
KνKb

δKνKb

Pb
KνKb

N (πb)
Kν

N (πb)
Kb

〈F (πb)
Kν

∣∣F (πb)
Kb

〉

+ A2
∑

ν1,2 �= b
Kν1 ,ν2 = Kb ± 1, 1

2

CIπ
Kν1 Kb

CIπ
Kν2 Kb

δKν1 Kν2

×
Pb

Kν1 Kν2

N (πb)
Kν1

N (πb)
Kν2

〈F (πb)
Kν1

∣∣F (πb)
Kν2

〉
. (23)

C. Electric and magnetic transition rates

Expressions for the reduced B(E1), B(E2), and B(E3)
probabilities for transitions between states with energies given
by Eq. (19) and Coriolis perturbed wave function given by
Eq. (21) are derived by using the electric transition operators
in the general form

Qμ(Eλ) =
√

2λ + 1

4π (4 − 3δλ,1)
Q̂λ0

∑
ν

Dλ
μν,

λ = 1, 2, 3, μ = 0,±1, . . . ,±λ, (24)

with the explicit form of the operators Q̂λ0 given by Eqs. (31)–
(33) in Ref. [30].

The expression for the B(M1) reduced transition proba-
bility was obtained by using the standard core plus particle
magnetic-dipole (M1) operator [e.g. see Eq. (3.61) in
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Ref. [33] ] written as

M̂1 =
√

3

4π
μN [gR(Î − ĵ) + gsŝ + gl l̂], (25)

after taking it in the intrinsic frame. The operators ŝ and l̂ in
Eq. (25) correspond to the s.p. spin and orbital momenta and
ĵ = l̂ + ŝ. The quantities gs and gl are the spin and orbital
gyromagnetic factors, respectively, and gR is the collective
gyromagnetic factor. The orbital factor is gl = 0 (1) for neu-
trons (protons), while the spin factor is taken as gs = qsgfree

s ,
with gfree

s = −3.826 (5.586) for neutrons (protons) [33]. The
quantity qs is an attenuation factor usually supposed to be
qs = 0.6–0.7, taking into account spin-polarization effects
[44]. The collective gyromagnetic factor gR is often associated
with the ratio gR = Z/(Z + N ), with Z and N being the proton
and neutron numbers, respectively, adopted on the basis of the

liquid-drop-model [45]. However, it is known that, in most de-
formed nuclei, gR is lowered with respect to this ratio by 20%–
30% or more [46,47], with the attenuation being explained
by the influence of the pairing interaction on the collective
moment of inertia [48–50]. Therefore, in Ref. [37] we have
introduced the relevant quenching factor qR such that gR =
qRZ/(Z + N ), showing that, on the basis of several earlier the-
oretical and experimental analyses, it can be taken for 229Th
as low as qR ≈ 0.6. Below it will be seen that both attenuation
factors qs and qR play an important role in the model predic-
tion of the B(M1) transition rates and magnetic moments and
their consideration with further slightly lower values may shed
more light on the 229Th formation mechanism.

The following common form of the expressions for both
types T of the electric (T = E ) and magnetic (T = M) transi-
tion with multipolarity λ between initial (i) and final ( f ) states
was derived [27]

B(T λ; πbi IiπiKi → πb f I f π f Kf ) = RT λδ
π

b f πbi [(1 + π f πi(−1)λδT,E )/2]
1

Ñ2
I f π f Kf

Ñ2
IiπiKi

[
δKf KiC

If Kf

IiKiλ0

P
b f bi

Kf Ki
Mπ

b f πbi

Kf Ki

N (πb f )
Kf

N (πbi )
Ki

+ AC
If Kf

IiKf λ0

∑
ν �= i

Kν = Ki ± 1, 1
2

δKf Kν
CIiπi

KνKi

P
b f

Kf Kν
Mπ

b f πbi

Kf Kν

N (πb f )
Kf

N (πbi )
Kν

+ AC
If Ki

IiKiλ0

∑
ν �= f

Kν = Kf ± 1, 1
2

δKνKiC
If π f

KνKf

Pbi
KνKi

Mπ
b f πbi

KνKi

N (πb f )
Kν

N (πbi )
Ki

+ A2
∑

ν ′′ �= f
Kν′′ = Kf ± 1, 1

2

∑
ν ′ �= i

Kν′ = Ki ± 1, 1
2

δKν′′ Kν′C
If Kν′′
IiKν′λKν′′−Kν′C

If π f

Kν′′ Kf
CIiπi

Kν′ Ki

P
b f bi

Kν′′ Kν′ M
π

b f πbi

Kν′′ Kν′

N (πb f )
Kν′′ N (πbi )

Kν′

]2

, (26)

where the factor

RT λ=Eλ = 2λ + 1

4π (4 − 3δλ,1)
R2

λ(πbi nikiIi → πb f n f k f I f ) (27)

involves integrals on the radial and angular variables in CQOM [see Eqs. (35)–(41) and Appendixes B and C in Ref. [30] ] and

RT 1=M1 = 3

4π
μ2

N (28)

involves the nuclear magneton μN . Also here,

Mπ
b f πbi

Kf Ki
=
{〈F (πb f )

Kf

∣∣F (πbi )
Ki

〉
for T = E[

(gl − gR)KiδKf Ki

〈F (πb f )
Kf

∣∣F (πbi )
Ki

〉+ (gs − gl )
〈F (πb f )

Kf

∣∣ŝ0|F (πbi )
Ki

〉]
, for T = M,

(29)

where ŝ0 is the z component of the spin operator in spher-
ical representation. The factors CI2K2

I1K1λμ in Eq. (26) are
Clebsch-Gordan coefficients. The integrals in Eq. (27) de-
pend on the model parameters c, defined below Eq. (16),
and p, Eq. (11), both determining the electric transition
probabilities [30].

The reduced transition probability expression (26) contains
first-order and second-order K-mixing effects. First-order
mixing terms practically contribute with nonzero values only
in the cases Ki/ f = Kν = 1/2, i.e., when a Ki/ f = 1/2 band-
head state is mixed with another Kν = 1/2 state present
in the considered range of admixing orbitals. A second-
order mixing effect connects states with �K = 1, 2 and
allows different combinations of |Ki − Kf | � 2 which provide

respective nonzero contribution of the Coriolis mixing to
the transition probability. In this way the present formalism
provides nonzero transition probabilities between states with
different K values despite the axial symmetry assumed in both
CQOM and DSM parts of Hamiltonian (1). We stress that, al-
though often disregarded in the literature, it is only through the
Coriolis mixing that the M1 and E2 isomer decay channels for
229mTh are rendered possible within the model discussed here.

D. Magnetic moment

The described model formalism allows us to obtain the
magnetic-dipole moment in any state of the quasiparity dou-
blet spectrum characterized by the Coriolis perturbed wave
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function �̃IMKb (21). The magnetic moment is determined by

the matrix element μ =
√

4π
3 〈�̃IIKb |M̂10|�̃IIKb〉, where M̂10

is the zeroth spherical tensor component of the operator M̂1,
Eq. (25), taken after transformation into the intrinsic frame
(see Chapter 9 of Ref. [47]). Thus we obtain the following
expression for the magnetic moment in a state with collective
angular momentum I and parity π built on a q.p. bandhead
state with K = Kb and π = πb:

μ = μN gRI + 1

I + 1

1

Ñ2
IπKb

⎡⎢⎢⎢⎢⎢⎢⎣Kb
Mπb

KbKb

N (πb)
Kb

+ 2AKb

∑
ν �= b

Kν = Kb = 1
2

δKνKbC
Iπ
KνKb

Pb
KνKb

Mπb

KνKb

N (πb)
Kν

N (πb)
Kb

+ A2
∑

ν1,2 �= b
Kν1 ,ν2 = Kν

= Kb ± 1, 1
2

δKν1 Kν2
KνCIπ

Kν1 Kb
CIπ

Kν2 Kb

Pb
Kν1 Kν2

Mπb

Kν2 Kν1

N (πb)
Kν1

N (πb)
Kν2

⎤⎥⎥⎥⎥⎥⎥⎦, (30)

with Mπb

KμKν
≡ Mπb,πb

KμKν
being defined in Eq. (29) (T = M) and

all other quantities being already defined above. We note that
the complete expression would involve an additional decou-
pling term applying for the case of Kb = 1/2 appearing after
transforming the M̂1 operator (25) into the intrinsic frame
[47]. Here we do not take it into account in Eq. (30), since
in the present application of the model to 229Th no K = 1/2
bandheads appear. The second and the third term in the brack-
ets of Eq. (30) take into account the influence of the Coriolis
mixing on the magnetic moment. In fact, the second term
only applies for Kb = 1/2, but we keep it for consistency with
the B(Eλ) and B(M1) expressions (26). Thus, in the present
application of the model only the third term is important for
the Coriolis mixing in the magnetic moment.

One can easily check that in the case of missing Coriolis
mixing Eq. (30) appears in the usual form of the particle-rotor
expression, e.g., Eq. (3.62) in Ref. [33], in which the intrinsic
gyromagnetic ratio gK is

gKb = 1

Kb

1[
N (πb)

Kb

]2

〈F (πb)
Kb

∣∣gs · � + gl · �
∣∣F (πb)

Kb

〉
. (31)

Equation (31) still takes into account the circumstance that in
the case of nonzero octupole deformation we have to apply the
projected and renormalized s.p. wave function as explained
below Eq. (20). In the case of missing octupole deformation
(nonmixed s.p. wave function), Eq. (31) reduces to the stan-
dard “reflection-symmetric” expression (3.63) in Ref. [33]. In
this way the present model expression for the magnetic-dipole
moment in Eq. (30) is consistent with the relevant limiting
cases.

E. Model application in 229Th

The CQOM plus DSM-BCS model framework described
above contains a number of parameters that are determined
according to the physical conditions which govern the struc-
ture and dynamics of the nucleus 229Th and to the available
experimental data. These parameters are the two already dis-
cussed Woods-Saxon DSM QO deformations β2 and β3, the
five CQOM parameters, namely, the QO oscillator frequency
ω, the reduced inertia factor b in Eq. (19), the parameter d0 in
Eq. (3), and the parameters c and p from Eqs. (16) and (11),
respectively, entering Eq. (27), the Coriolis mixing constant
A, and the two pairing parameters g0 and g1 entering Eq. (8).
As will be detailed below, the first two (Woods-Saxon DSM
QO deformation) parameters are determined in a region of
the deformation space providing ultimate DSM conditions for
the formation of the 229mTh isomer. The pairing constants
are fixed for the overall study to values in a range typical
for the adjacent regions of nuclei. Finally, the five CQOM
parameters and the Coriolis mixing constant are adjusted in
a fitting procedure to quantitatively reproduce the positive-
and negative-parity levels of 229Th with energy below 400
keV as well as the available experimental data on transition
rates and magnetic moments at each particular Woods-Saxon
DSM QO deformation. As explained in Sec. II B, the five
CQOM parameters also determine the shape of the collective
potential and the corresponding dynamical deformations in
the (β̃2, β̃3) space. The rather fine parameter determination
procedure described here is based on the following physical
assumptions:

(1) The considered part of the spectrum consists of two
quasi-parity-doublets: a yrast one, based on the Kb =
5/2+ GS corresponding to the 5/2[633] s.p. orbital and
a nonyrast quasi-parity-doublet, built on the isomeric
Kb = 3/2+ state corresponding to the 3/2[631] orbital.
Both orbitals are very close to each other providing
a quasidegeneracy of the GS and IS. This condition
primary depends on the choice of the quadrupole β2

and octupole β3 deformation parameters in DSM and
on the BCS pairing contribution in the q.p. energy of
both states.

(2) Both quasi-parity-doublets correspond to coherent
QO vibrations and rotations with the same radial-
oscillation quantum number n = 0, the lowest possible
angular-oscillation number k(+) = 1 for the positive-
parity sequences and one of the few lowest possible
k(−) = 2, 4, 6 values for the negative-parity states [see
Eq. (19) and the text below it]. Hereinafter we consider
only the lowest k(−) = 2 value in the both quasi-
parity-doublets. This suggests completely identical
QO vibration modes superposed on both GS and IS.
The vibration modes alone obviously do not cause any
mutual displacement of the two quasi-parity-doublets,
but the term K2

b in the centrifugal expression X̃ (Iπ , Kb)
in Eq. (3) does. It directly mixes the collective energy
with the bandhead and downshifts the Kb = 5/2+ level
sequences with respect to the Kb = 3/2+ ones. This
term affects the mutual displacement of IS and GS
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and, therefore, plays a role in the finally observed
quasidegeneracy effect.

(3) The Coriolis mixing affects the total spectrum and the
IS-GS displacement as well through the corresponding
perturbation sum in Eq. (3). As realized in Ref. [37],
the mixing directly affects the Ib, Kb = 5/2+ GS which
gets an admixture from the I = 5/2+ state of the IS-
based band, whereas the Ib, Kb = 3/2+ IS remains
unmixed due to the missing I = 3/2+ counterpart in
the yrast (GS) band. The corresponding effect of the
Coriolis mixing in the GS is that it lowers the value of
the GS magnetic moment. On the other hand it raises
the B(M1) and B(E2) transition probabilities.

The assumptions above sketch the mechanism which may
lead to the formation of a quasidegenerate pair of 5/2+ GS and
3/2+ IS in 229Th. We see that the very fine interplay between
the involved collective and s.p. degrees of freedom is directly
governed by the Woods-Saxon DSM QO deformations β2 and
β3, the pairing strength determined by the parameters g0 and
g1 in Eq. (8), and the Coriolis mixing strength determined by
the parameter A in Eq. (3). The remaining CQOM parameters
ω, b, d0, c, and p influence the isomer energy through the over-
all fit of the energy spectrum, transition rates, and magnetic
moments. Within the above physical mechanism, the 3/2+ IS
of 229Th appears as an essentially s.p., i.e., microscopic, effect,
the energy and electromagnetic properties of which, however,
are formed under the influence of the collective dynamics of
the nucleus.

In Ref. [27] the above algorithm was applied through sev-
eral steps, including the choice of β2 and β3 in DSM based on
information available for neighboring even-even nuclei (see
the beginning of next section), tuning of the pairing constants
in BCS to reach a rough proximity of GS and IS and sub-
sequent fine adjustment of the collective CQOM parameters
together with the K-mixing constant A to obtain overall model
description and predictions. It was demonstrated that, at the
expense of a minor deterioration of the agreement between
the overall theoretical and experimental spectrum, one can
exactly reproduce the IS energy of about 8 eV. Of course, such
a refinement is of little practical significance since it is be-
yond the genuine accuracy provided by any nuclear structure
model.

Few comments regarding the results in the next section
should be given here in advance. We remark that some model
parameters are not completely independent regarding partic-
ular physical observables. Thus, the change in the IS-GS
displacement due to variation in the DSM QO deformations
could be compensated by variations in the pairing constants
or the K-mixing constant A. Therefore, one of the important
issues to be clarified is the extent to which the different model
parameters are correlated in the problem and how we can
constrain them to reach most unambiguously the correct so-
lution. Our numerical study showed that, if we fix the pairing
parameters in Eq. (8) to the values of g0 = 18.805 MeV and
g1 = 7.389 MeV, which were tuned in the model description
in Ref. [27], the further analysis and drawn conclusions also
apply for the pairing strengths adopted in Refs. [19] and
[41]. Therefore, hereinafter we use the above fixed g0 and g1

parameter values while directing our study to the examination
of the QO deformation space of the DSM. Another point is
that, in Ref. [37], the IS and GS magnetic moments were
predicted without taking their experimental values into the
model adjustment procedure. In the present work we include
the magnetic moments into the fitting procedure by consid-
ering all observables in the fit analysis (energies, transition
rates, and magnetic moments) on the same footing. We also
investigate to what extent the gyromagnetic quenching factors
qs and qR can be reasonably varied for the reproduction of the
GS and IS magnetic moments. This analysis aims to reduce
the arbitrariness in the model predictions for the 229Th IS
properties.

III. NUMERICAL RESULTS AND DISCUSSION

A. Determination of the deformed shell model
deformation space

The Woods-Saxon DSM shape parameters β2 and β3

represent a basic input of our model and their values are
decisive for the model predictions. Hereafter under “QO
deformations and/or parameters” we will understand these
two quantities unless otherwise specified. In Ref. [27] the
quadrupole-deformation parameter β2 was chosen by varying
it between the experimental values 0.230 and 0.244 avail-
able for the neighboring even-even nuclei 228Th and 230Th,
respectively [51]. Simultaneously, the octupole-deformation
parameter β3 was varied to obtain the GS and IS orbitals
very close to each other, with leading 5/2[633] and 3/2[631]
components in the respective s.p. wave-function expansions
given in Eq. (6), and with positive average values of the parity
〈πsp〉 > 0 from Eq. (7) in both s.p. states. We note that the
chosen interval for the octupole deformation was at that time
solely relying on model estimates. However, in the meantime
we have found out that this range is also supported by an
independent microscopic result. In Ref. [52] self-consistent
relativistic Hartree-Bogoliubov model calculations with the
universal energy density functional DD-PC1 [53] predict a
rather deep total-energy minima for β3 between 0.1 and 0.2
in the neighboring even-even nuclei 228Th and 230Th.

In this study we identify the (β2, β3) deformation space
which could provide a relevant model description of the
229mTh isomer similar to the one obtained in Refs. [27,37]
which had considered the values β2 = 0.240 and β3 = 0.115.
To this end we have performed DSM calculations on a grid
in the ranges 0.2 � β2 � 0.26 and 0 � β3 � 0.15, which are
supposed to include the QO deformations physically relevant
for a nucleus in the mass region of 229Th. At each point of the
grid we obtain the K value and the average parity 〈πsp〉 for the
last occupied s.p. orbital, which is supposed to determine the
GS and for the next (first) nonoccupied orbital, candidate for
the IS. Note that the calculation does not involve the collective
(CQOM) part of the model and the only entering parameters
are the two Woods-Saxon DSM deformations.

The result of this calculation is shown in Fig. 1.
Figures 1(a) and 1(b) present in color coding the (β2, β3)
areas in which different K values appear for the GS and IS
orbitals, respectively. For the GS orbital the K = 5/2 value
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FIG. 1. K values for the (a) GS and (b) IS s.p. orbitals and the respective average parities (c), (d) 〈πsp〉 appearing in the DSM within the
space of quadrupole and octupole deformations. The regions of relevant deformations providing the correct KGS = 5/2 and KIS = 3/2 values
with 〈πsp〉 > 0 are delimitated by thick contour lines. The thinner black line in panel (a) maps the relevant border of the KIS = 3/2 region from
panel (b).

appears in two (yellow) regions, while for the IS the K = 3/2
value appears in one narrow (blue) region. The intersection
of the K = 5/2 GS and K = 3/2 IS subspaces coincides with
the blue K = 3/2 region for the IS and depicts the (β2, β3)
region in which the DSM provides the required 5/2[633] and
3/2[631] orbitals for the GS and IS, respectively. Further-
more, considering the information from Figs. 1(c) and 1(d),
one can identify in a similar way the regions with positive
and negative average values of the parity in the GS and IS
orbitals, respectively. By retaining only the 〈πsp〉 > 0 areas
for both orbitals, one ends up with a rather limited (β2, β3)
region given by the thick triangle contour in the four plots.
This region includes all QO deformations from the considered
space which are relevant within the DSM regarding the current
experimental information and theoretical interpretation of the
Kπ = 3/2+ isomer in 229Th. Hereinafter we call this region
our “model deformation space.”

Based on the above result, we can draw the following
important conclusion: Considering the long-adopted K value
and parity of the 229mTh IS, our DSM prediction shows that
this isomer can only exist at essentially nonzero octupole
deformation of the s.p. potential. More precisely, one can say
that the coexistence of the Kπ = 3/2+ IS together with the
Kπ = 5/2+ GS requires the presence of nonzero octupole
deformation, as seen from Fig. 1(a). In fact, our more ex-
tended calculations in the QO deformation grid show that,
for β2 < 0.2, the (yellow) range of coexisting Kπ = 5/2+ GS
and Kπ = 3/2+ IS orbitals goes down and further reaches
the β3 = 0 line. However, this occurs around β2 ∼ 0.1, which
is far beyond the deformation limits typical for this mass
region. Thus, we can conclude that the octupole deformation
appears to be of a crucial importance for the formation of
the 229mTh isomer according to the present knowledge on the
corresponding GS and IS angular momenta and parities.
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FIG. 2. Average parity 〈πsp〉 in the (a) GS and (b) IS s.p. orbitals appearing in DSM within the model-defined QO deformation space.

Furthermore, we note that the deformation values (β2 =
0.240, β3 = 0.115) used in Refs. [27,37] appear close to the
lowest vertex of the investigated DSM deformation space. The
relatively small area of this space suggests a reasonable degree
of arbitrariness in the model conditions imposed in the studies
of Refs. [27,37] regarding the choice of QO deformation.
Moreover, the deformation region determined in this work
appears to be consistent with the corresponding areas of the
QO minima in the energy surfaces of 228Th and 230Th obtained
in the relativistic Hartree-Bogoliubov model calculations [52].
Nevertheless, the precise determination and prediction of the
229mTh isomer properties as well as the deeper understanding
of the mechanism governing its formation requires a more
detailed examination of the model descriptions obtained for
various deformations fixed in the outlined model space. In the
following our study is focused on this task.

A direct consequence of the location of the model space at
nonzero octupole deformation is that the GS and IS s.p. or-
bitals provided by the DSM always appear with mixed parity
which has to be projected in the total core plus particle wave
function, as seen in Eq. (20), and implemented in the model
procedure applied in Ref. [27]. The average parity 〈πsp〉 of
both orbitals calculated from Eq. (7) as a function of the QO
deformations within the model space is illustrated in Fig. 2.
The results show that, while in the GS, the quantity 〈πsp〉
varies within the limits 0.37–0.46, in the IS the parity mixing
is even much stronger with 〈πsp〉 varying between 0 and 0.14.
The black side of the triangle in Fig. 2(b) corresponds to the
(left) border of the space where the average parity of the IS
turns from positive to negative values. This result shows that
the mechanism governing the formation of the isomer is even
more complicated due to the fine parity-mixed structure of
the s.p. wave functions and the accordingly applied projection
procedure.

Other important quantities delivered by the DSM are the
s.p. and q.p. energies for the IS orbital determined with re-
spect to the corresponding energies in the GS orbital, E sp

3/2+ =
E3/2+

sp − E5/2+
sp and Eqp

3/2+ = ε
3/2+
qp − ε

5/2+
qp . The lowering of the

q.p. energy with respect to the s.p. energy can be controlled
through additional tuning of the pairing constants, as shown
in Ref. [27]. However, as argued at the end of Sec. II E,
here we use the g0 and g1 values fixed in Ref. [27], focusing
our analysis on the deformation dependencies. In Fig. 3 both
E sp

3/2+ and Eqp
3/2+ for the IS are plotted as functions of β2 and

β3. As expected, they show an identical dependence but with
different nominal values. In addition, along the right side of
the triangle the q.p. and s.p. content of the isomer energy
goes to zero, i.e., the two orbitals, 5/2[633] and 3/2[631]
mutually degenerate. This is an important limit of the model
deformation space. In fact the black lines in Fig. 3 correspond
to the crossing of both orbitals when leaving the model space
to enter the blue area with K = 3/2 in Fig. 1(a) and the lower
K = 5/2 (yellow) area in Fig. 1(b), a situation in which the
GS appears with Kπ = 3/2+ and the IS obtains Kπ = 5/2+.
The proximity to this line from the model space interior deter-
mines the degree of the q.p. quasidegeneracy effect. For the
pair of QO deformations (β2, β3) = (0.240, 0.115) adopted
in Refs. [27,37], the 3/2+ q.p. energy yields Eqp

3/2+ = 2.196
keV. We note that this is not the final IS energy in which
additional contributions take a part, as explained in Sec. II E.
The upper side of the triangle corresponds to the crossing of
the Kπ = 3/2+ orbital with a Kπ = 7/2− orbital with leading
component 7/2[743] [see red area in Fig. 1(b)]. It is not of a
particular interest from the isomer-formation point of view.

B. Coherent quadrupole-octupole model fits in the deformed
shell model deformation space

At this point we are ready to examine the behavior of the
model description and prediction for the physical observables
of interest within the DSM deformation space. We are espe-
cially interested in the corresponding behavior of the B(M1)
and B(E2) IS transition rates and of the IS and GS magnetic
moments μGS and μIS. To this end we have performed full
model fits by adjusting the five CQOM parameters, ω, b, d0,
c, p and the Coriolis mixing constant A with respect to the
experimental quasi-parity-doublet spectrum, the available
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FIG. 3. (a) S.p. and (b) q.p. energy (in keV) of the 3/2+ isomer orbital with respect to the 5/2+ GS orbital appearing in DSM within the
model-defined space of QO deformations. The q.p. energy is obtained with pairing parameters g0 = 18.805 MeV and g1 = 7.389 MeV used
in Eq. (8). See text for further explanations.

transition rates and magnetic moments at each point of the
deformation space grid with the pairing constants fixed as de-
scribed above. Thus, for each pair of Woods-Saxon DSM QO
deformations we obtain the full spectroscopic description of
the nucleus storing the quantities of interest for our systematic
analysis presented below.

The five adjusted CQOM parameters show a smooth
behavior along the deformation space with values consistent
with those obtained in Ref. [27]. We therefore refrain from ad-
dressing further numerical details here. We note however that
the parameter p defined in Eq. (11) is close to unity (p ≈ 1)
throughout the entire DSM (β2, β3)-model space. This
parameter indicates the relative contribution of the quadrupole
and octupole modes in the CQOM. Thus, according to
Eq. (14), all parameter fits lead to a practically circular bottom
of the CQOM potential with β̃sa

2 ≈ β̃sa
3 , showing that the

model describes the collective quasi-parity-doublet structure
of the 229Th spectrum with equal weights of the quadrupole
β̃2 and octupole β̃3 deformation modes. Considering the DSM
deformation parameters β2 = 0.240 and β3 = 0.115 used in
Ref. [27], we obtain for the 5/2+ GS and 3/2+ IS states values
between 0.12 and 0.17 for the two equal β̃sa

2,3 semiaxes (which
define the circle radius of the CQOM potential bottom).

Inspection of the odd-nucleon contribution to β̃sa
2,3 deter-

mined in Eq. (13) through Eq. (3) at (β2, β3) = (0.240, 0.115)
shows that, in the case of 229Th, the Coriolis mixing causes
a negligible decrease in β̃sa

2,3 compared with the core case,
Eq. (12), while a considerable decrease is caused by the
term (−K2

b ). Thus while in the core + particle case the GS
β̃sa

2,3 = 0.122, for the core only [without the term (−K2
b )]

these values become 0.149. Similarly, in the isomeric state
the core + particle β̃sa

2,3 = 0.121, while in the core case the
semiaxes values rise to 0.132. Figure 4 illustrates the CQOM
QO wave-function densities |�πqo

nkI (β̃2, β̃3)|2 from Eq. (15) for
the Iπ = 5/2+ GS and its negative-parity counterpart 5/2−
obtained with the parameters of the CQOM fit at (β2, β3) =

(0.240, 0.115). For simplicity we have only taken into account
the (−K2

b ) term in X̃ (Iπ , Kb) dropping the negligible Coriolis
mixing term. The wave-function density was calculated for the
quenching parameter set (qs, qR) = (0.6, 0.6). The dynamical
deformations are indicated by the positions of the density
maxima in the figure. We see that, in the two states, these
deformations appear outside of the potential bottom circle.
Furthermore, the dynamical deformation parameters are not
coinciding with the DSM (β2, β3) parameters, confirming the
discussion in Sec. II B on the distinction between dynamical
deformation parameters in the CQOM and the DSM defor-
mation parameters. We also note that the CQOM potential
bottom semiaxes β̃sa

2,3 (the red circles) do not change between
the positive- and negative-parity counterparts in the quasi-
parity-doublet since the Coriolis mixing term only mixes
states with the same (bandhead) parity. This situation, how-
ever, would be different in a spectrum build on the Kb = 1/2
bandhead (which is not present for the case of 229Th) where
the decoupling term in X̃ (Iπ , Kb) in Eq. (3) would act in
opposite directions on the semiaxes lengths of the opposite-
parity counterparts.

We have checked that the density plots for the Iπ = 3/2+
IS and its 3/2− quasi-parity-doublet counterpart (not given
here) look very similar to those in Fig. 4. To investigate the ef-
fect of higher angular-momentum values, we show the CQOM
QO wave-function densities for the I = 15/2± states of the
yrast quasi-parity-doublet in Fig. 5. The CQOM potential
semiaxes β̃sa

2,3 and the corresponding dynamical deformations
considerably increase with angular momentum, reaching at
I = 15/2± values larger than 0.2. This shows that the dynam-
ical deformation is responsible for the higher-energy part of
the spectrum, which otherwise would not be felt by the s.p.
potential. We may conclude that the model algorithm rather
carefully takes into account also the influence of the collective
dynamics at the higher angular momenta, which reflects on the
overall deformation characteristics of the CQOM potential.
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FIG. 4. The CQOM QO wave-function density |�πqo
nkI (β̃2, β̃3)|2 from Eq. (15) as a function of β̃2 and β̃3 for the Iπ = 5/2+ GS (with

k = 1) and 5/2− state (with k = 2) of the yrast quasi-parity-doublet in 229Th. We use here the DSM + CQOM fit with qs = qR = 0.6 and the
Woods-Saxon DSM deformation parameters (β2, β3) = (0.240, 0.115). The upper panels represent three-dimensional plots while the lower
panels illustrate the corresponding projected two-dimensional contour plots. The CQOM potential bottoms defined by the semiaxes β̃sa

2,3 are
shown as red circles.

FIG. 5. The same as Fig. 4 (lower panels), but for the Iπ = 15/2+ and 15/2− yrast quasi-parity-doublet states of 229Th. Note the
considerable increase in the QO semiaxes and the corresponding expansion of the dynamical-deformation peak positions in the space of
the collective CQOM variables β̃2 and β̃3.
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FIG. 6. Energy rms values in keV for the GS (yrast) and IS
(excited) bands together obtained by the model fit on a grid within
the model-defined QO deformation space. We use qs = qR = 0.6.
The open star indicates the location of the deformations (β2, β3) =
(0.240, 0.115) adopted in Refs. [27,37].

Finally, special attention is given below to the behavior of
the Coriolis mixing constant A which, as already mentioned,
plays an important role in the formation of the IS energy and
electromagnetic properties. The calculations were repeated
for four pairs of (qs, qR) values of the quenching factors con-
sidered for the spin and collective gyromagnetic rates. As the
analysis of magnetic moments made in Ref. [37] suggests the
need of rather strong attenuation of the latter, here we consider
qs and qR with slightly lower values compared with the lowest
pair (qs, qR) = (0.6, 0.6) considered in Ref. [37]. Thus, in the
present calculations, the gyromagnetic quenching factors were
allowed to be as small as (qs, qR) = (0.55, 0.45). Although
the experimental value of the isomeric energy is obviously

FIG. 7. Isomer energy EIS obtained by the model fits on a model-defined QO deformation space grid for two different combinations of qs

and qR. The open star indicates the location of the deformations (β2, β3) = (0.240, 0.115) adopted in Refs. [27,37]. The circle indicates the set
(β2, β3) = (0.240, 0.111) situated closer to the degeneracy line.

out of reach for the model accuracy, we also consider its
theoretical prediction E (3/2+)IS in order to see how the model
fits “feel” its tiny energy scale as well as to assess accordingly
the relevance of the overall model description for the different
deformations within the model space.

C. Energy description

The primary quantity providing overall information about
the relevance of the model descriptions in the different points
of the deformation space is the root-mean-square (rms) devi-
ation between the theoretical and experimental energy levels.
Its behavior as a function of the DSM QO deformation for cal-
culations made with quenching factors (qs, qR) = (0.6, 0.6) is
illustrated in Fig. 6. We indicate with an open star the loca-
tion of the deformations (β2, β3) = (0.240, 0.115), adopted
in Refs. [27,37]. The rms value obtained in this point is
about 34 keV, which is the same as the value obtained in the
original model fits performed in Ref. [27], although now the
experimental values of the magnetic moments μGS and μIS

are included in the fits. We note that the rms factor is close to
this value over a larger area of the deformation model space,
demonstrating the stability of the model solutions with the
variation of QO deformations. The upper part of the space
with large β2 and β3 values, however, appears unfavored. We
have verified that, in all regions of the space with the rms close
to 34 keV, the description of the overall energy spectrum and
the available B(M1) and B(E2) transition rates is of similar
accuracy as the one reported in Ref. [27], with the obtained
CQOM parameter values being close to those in Ref. [27] (see
Fig. 1 and Table 1 therein). We notice that in the upper-left
parts of the plot some lower rms deviations are obtained as low
as ≈30 keV, however, for these deformations the model pre-
dictions for the isomer energy are less favorable, as analyzed
below. In addition, we found (barely visible in Fig. 6) that
towards the line of the 5/2[633]–3/2[631] degeneracy the rms
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FIG. 8. B(M1) isomer transition values obtained by the model fits on a grid within the model-defined QO deformation space at four
different combinations of qs and qR. The open star indicates the location of the deformations (β2, β3) = (0.240, 0.115) adopted in Refs. [27,37].
The circle in panel (d) indicates the set (β2, β3) = (0.240, 0.111) situated closer to the degeneracy line.

factor sharply increases. As discussed below in relation to the
particular observables, this is the result of the strong increase
of the Coriolis K-mixing interaction, which largely exceeds
the perturbation theory limitation and puts a constraint on
the model description valid close to the 5/2+-3/2+ orbital
crossing.

In Fig. 7 the theoretical isomer energy values EIS ob-
tained by the model fits on the DSM QO space grid are
presented for two sets of gyromagnetic quenching values
(qs, qR) = (0.6, 0.6) and (0.55,0.45). We find that, for the first
set, the value obtained at the pair of deformations (β2, β3) =
(0.240, 0.115) is EIS ≈ 1 keV, whereas for the second set it is
EIS ≈ 0.3 keV. For the second set we choose to demonstrate
the result for one more pair of deformations from our grid
(β2, β3) = (0.2398, 0.1108), further on denoted for simplic-
ity by the rounded values (0.240, 0.111), situated closer to
the degeneracy line. There we have EIS ≈ 0.040 keV already
approaching the scale of the experimental value. We note that,
for this pair of deformations, the 3/2+ q.p. energy yields
Eqp

3/2+ = 0.188 keV.

All EIS values shown in Fig. 7 are obtained in the fitting
procedure on the same footing without particular refinement.
As already mentioned, one can easily achieve the exact ex-
perimental value of 0.008 keV through a very fine tuning
of model parameters (e.g., the K-mixing A), with a minimal
deterioration of the description in the remaining energy levels
(see also Ref. [27]). The plots in Fig. 7 show that, in the large
areas of the model space, the fits provide reasonable values
of EIS which could be renormalized to the experiment in this
manner. However, we also see that in the upper-left parts of
the plots, the EIS considerably increases up to 7–8 keV, giving
an indication that at these deformations the remoteness of the
5/2[633] and 3/2[631] orbitals (see Fig. 3) already makes it
difficult for the model mechanism to achieve quasidegeneracy.
Also, we notice a thin stripe with large EIS values along the
line of degeneracy, which obviously indicates the limitation of
the perturbation theory. Concluding this part, our analysis of
the rms factor and isomer energy values outlines certain limits
of reliability of the present model application and favors the
lower vertex of the model space around the deformation set
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FIG. 9. B(E2) isomer transition values obtained by the model fits on the model-defined QO deformation space grid at four different
combinations of qs and qR. The open star indicates the location of the deformations (β2, β3) = (0.240, 0.115) adopted in Refs. [27,37]. The
circle in panel (d) indicates the set (β2, β3) = (0.240, 0.111) situated closer to the degeneracy line.

used in Ref. [27] in reasonable proximity to the 5/2+-3/2+
orbitals’ crossing line.

D. B(M1) and B(E2) isomer transition rates

The results obtained for the isomeric B(M1; 3/2+
IS →

5/2+
GS) and B(E2; 3/2+

IS → 5/2+
GS) transition rates are illus-

trated in Figs. 8 and 9, respectively, for the four sets of
quenching factors. As in the energy analysis above, here we
mark with an open star the value obtained by the model
at the pair of QO deformations (β2, β3) = (0.240, 0.115),
adopted in Refs. [27,37], for which the original model pre-
dictions for the transition rates and magnetic moments were
made. Also, we examine the model predictions towards the
line of 5/2+-3/2+ orbitals degeneracy by considering in the
graphs of (qs, qR) = (0.55, 0.45) the pair of deformations
(β2, β3) = (0.240, 0.111) indicated by the open circle. In-
specting Fig. 8, first we observe that the overall behavior of
the B(M1; 3/2+

IS → 5/2+
GS) transition value shows an increase

with the approaching of the degeneracy line. This is due to
the circumstance that, with the decreasing distance between
both orbitals 5/2+ and 3/2+, the K-mixing effect generated
by the matrix element in Eq. (5) sharply increases and this
leads to the increase in the connecting transition rates. It
should be noted, however, that in the model procedure this
increase is counterbalanced by the adjustable parameter A,
which drops accordingly, thus preventing a deterioration of
the model description due to the excessive mixing force. This
will be discussed in more detail in the following (see Fig. 13
and related text below). Keeping in mind this clarification, we
notice in Fig. 8(d) that, while the quenching of the gyromag-
netic factors leads to a reduction of B(M1)IS to 0.005 W.u.
at (β2, β3) = (0.240, 0.115) (an effect already addressed in
Ref. [37]), the shift of the deformation towards the degen-
eration line returns the value back to 0.007 W.u., i.e., in the
original range of the prediction made in Ref. [27].

A similar behavior of the B(E2; 3/2+
IS → 5/2+

GS) transition
rate in the model deformation space is observed in Fig. 9.
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FIG. 10. GS magnetic moment values obtained by the model fits on a grid within the model-defined QO deformation space at four different
combinations of qs and qR. The open star and the circle indicate the same sets of deformations as shown in Figs. 8 and 9.

We note that here all obtained B(E2)IS values exceed the
previous prediction [27] but stay in the range of the correction
suggested in Ref. [37].

E. Ground-state and isomer magnetic moments

The calculated GS magnetic moment μGS for the four sets
of quenching factors (qs, qR) is illustrated in Fig. 10. The
overall model behavior of this quantity is such that it decreases
both with the attenuation of the gyromagnetic factors and
with the approaching of the 5/2+-3/2+ orbital-degeneracy
line. We see that, for (β2, β3) = (0.240, 0.115), it drops to
0.45μN , while with the shift of the deformations to the point
(0.240,0.111) it reaches the value of 0.43μN . The latter result
is obviously due to the increasing Coriolis mixing which re-
duces the value of μGS as has been shown already in Ref. [37].
However, it appears that, for model conditions considered
physically reasonable, this is still not sufficient to reproduce
the newer experimental value of 0.360 (7)μN [38], although

the model reproduces fairly well the earlier measured value of
0.46 (4)μN [39].

It is instructive to check here also the “bare” values of
μGS, i.e., those obtained by the pure s.p. wave function with-
out including the Coriolis mixing. Therefore, in Fig. 11 we
show the analog of Fig. 10(a) (with qs = qR = 0.6) in which
μGS is calculated in the absence of Coriolis mixing with the
K-mixing constant A = 0. In this case Eq. (30) reduces to
the terms in its first line with the second term involving the
expression of Eq. (31). Here we first see that μGS appears with
considerably larger values in the limits μGS = 0.55–0.60μN

which also show different behavior in the DSM QO space
compared with the Coriolis-mixing case. This result does not
depend on the model-parameter fit and illustrates the genuine
contribution of the QO deformation for the formation of the
GS magnetic moment of 229Th. Comparing both plots we see
that, in the pure s.p. case without Coriolis mixing, the lowest
μGS = 0.55μN value appears in the left-upper vertex of the
triangle model space, whereas in the Coriolis-mixing case the
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FIG. 11. The “bare” s.p. GS magnetic moment values obtained
without Coriolis mixing (A = 0) on a grid within the model-defined
QO deformation space with qs = qR = 0.6. The open star indicates
the location of the deformations (β2, β3) = (0.240, 0.115) adopted
in Refs. [27,37]. The full star indicates the grid point which provides
the lowest value μGS = 0.55μN .

low values (lower than the pure s.p. ones), appear in the lower
vertex of the space.

The above result leads us to the following conclusions:
The Coriolis effect causes a decrease of the nuclear magnetic
moment in the 229Th GS throughout the model deformation
space. It plays a considerable role in our approach for fixing
the GS magnetic moment through the overall model fits, al-
though this is still not enough to reproduce the latest adopted
experimental value. The appearance of essentially lower μGS

values obtained through the adjusted K-mixing constant A
compared with the corresponding pure s.p. μGS values shows
that the increase of the model-controlled Coriolis-mixing
towards the 5/2+-3/2+ orbital-degeneracy line essentially
determines the behavior of the GS magnetic moment and
dominates over the corresponding effect of changing QO
deformation on the pure s.p. μGS values. This conclusion
suggests that no considerably different result can be reached
through further variation of deformations parameters in the
DSM QO space.

Figure 12 shows the calculated IS magnetic moment μIS

for the four sets of gyromagnetic quenching factors consid-
ered (qs, qR). We note its relatively flat behavior as a function
of the QO deformation, with a slight increase towards the
degeneracy line. Since μIS is practically not affected by
the K-mixing effect, we may claim that this dependence can
be considered as the bare effect of the changing structure
of the s.p. wave functions along the deformation space. We
see that, in all plots of Fig. 12, the lowest value of μIS ap-
pears in the left upper corner of the model space, similarly
to the “bare” (s.p.) μGS case (Fig. 11). For example, in the
case of qs = qR = 0.6, Fig. 12(a), the corresponding lowest
value μIS = −0.36μN comes closer to the experimental re-
sult. However, the model fits have shown that the lower corner
provides better predictions for μGS, and we keep our attention
on this region. Besides, for all considered quenching factors
(qs, qR), the theoretical μIS values appearing in Fig. 12 enter

the error bars of the recent experimental value of −0.37 (6)
μN reported in Refs. [16,17].

The results presented so far already reveal important de-
tails and relations characterizing the model mechanism upon
which the 229mTh isomer is formed and its spectroscopic prop-
erties develop. Obviously the proximity of the 5/2[633] and
3/2[631] s.p. orbitals plays a major role providing the overall
condition for the appearance of a low-lying excitation. Now
this is clearly quantified by all above plots. On the other hand,
it is also clear that the appearance of the isomer cannot be
due only to the orbital quasidegeneracy. The reason is that at
the distance of few eV the mixing between the two orbitals
becomes very large and pushes all related observables in un-
physical regions of magnitude. In this case the perturbation
terms in the centrifugal part, Eq. (3), of the Hamiltonian as
well as in the Coriolis perturbed wave function, Eq. (21),
collapse in a singularity. The model prevents this situation
mostly through the K2 term and K-mixing constant A in
Eq. (3), which allow us to properly situate both GS and IS,
i.e., to obtain the IS energy value as small as necessary, by
keeping the 3/2[631]–5/2[633] orbital distance aside from
the degeneracy line. In this respect one can say that the
physically adequate QO deformations are slightly aside from
this line.

The model mechanism feature described above can be seen
by following the behavior of the Coriolis mixing constant
A adjusted at each grid point in the deformation space. We
investigate this in Fig. 13 for two sets of quenching factors,
(qs, qR) = (0.6, 0.6) and (0.55,0.45). The obtained values of
A range from zero to approximately 0.5 keV. Towards the de-
generacy line, where the K-mixing matrix element in Eq. (5)
connecting the two orbitals sharply increases as they ap-
proach each other, the adjustment algorithm strongly reduces
the value of A. In this way the model “feels” the growing
magnitude of the Coriolis mixing and tries to compensate its
excessive effect on the considered observables through the
parameter A keeping them in physically meaningful ranges.
Providing this balancing role of the parameter A and having in
mind all so far obtained model patterns for the spectroscopic
observables in 229Th we can be rather confident in the con-
sistency of the analysis made and the reliability of the QO
deformation region outlined.

Finally, it is interesting to identify the degree of spin and
collective gyromagnetic factor attenuations required to repro-
duce in the present model both experimental μGS and μIS

values. This is shown in Fig. 14, where the values of each
of these quantities obtained in the model fits at (β2, β3) =
(0.240, 0.115) are given [Fig. 14(a) for μGS and Fig. 14(b) for
μIS] as functions of the quenching factors qs and qR. The black
lines denote the pairs of (qs, qR) values which provide the
corresponding μGS and μIS experimental values. The crossing
of both lines shows the point at which both magnetic moments
are reproduced together. We see that this occurs at qs ≈ 0.52
and a rather low value of qR ≈ 0.22, which corresponds to a
quite strong attenuation of the collective gyromagnetic fac-
tor. Because this quenching magnitude is hard to justify, we
conclude that the agreement between the present theoretical
model and the currently adopted experimental value of the GS
magnetic moment remains an open issue.
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FIG. 12. IS magnetic moment values obtained by the model fits on the model-defined QO deformation space grid at four different
combinations of qs and qR. The open star and the circle indicate the same sets of deformations as shown in Fig. 10.

FIG. 13. Values of the K-mixing constant A obtained by the model fits on the model-defined QO deformation space grid at two different
combinations of qs and qR. The open star and the circle indicate the same sets of deformations as shown in Fig. 10.
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FIG. 14. (a) GS and (b) IS magnetic moment values obtained by the model fits on a grid for the spin-gyromagnetic qs and rotation-
gyromagnetic qR attenuation factors. The black lines show the values that would reproduce the corresponding GS and IS experimental values.

IV. SUMMARY AND CONCLUSION

In this work we have thoroughly examined the physical
conditions for the formation of the 8 eV isomer of 229Th
according to the model mechanism suggested by our QO
vibration-rotation core plus particle approach. First, we have
determined the model deformation space encompassing the
Woods-Saxon DSM quadrupole and octupole deformations,
which allow the appearance of the GS and IS with the ex-
perimentally adopted K values and parities. We were able to
clearly identify its borders constrained by the average parity of
the isomer and the crossings of the 3/2[631] orbital on which
the IS is built with the 5/2[633] orbital of the GS as well
as with a 7/2[743] orbital. This space is rather limited and
essentially constrains the QO deformation in the s.p. potential
within the ranges 0.235 � β2 � 0.255 and 0.11 � β3 � 0.14.
These results lead us to the important conclusion that the
appearance of the Kπ = 3/2+ IS through this mechanism is
only possible in the presence of essentially nonzero octupole
deformation in the s.p. potential.

Furthermore, we have examined the dependence of the
overall DSM + CQOM model description on the QO defor-
mations within the DSM model space. Our analysis of the
CQOM fits made in Sec. III B, including the CQOM potential-
bottom semiaxes and dynamical deformations, showed that
the collective CQOM conditions under which the 229mTh
isomer is formed consistently interrelate with the relevant
conditions provided by the odd-nucleon degrees of freedom.
Under these overall conditions we obtain for all of the con-
sidered observables, B(M1; 3/2+

IS → 5/2+
GS), B(E2; 3/2+

IS →
5/2+

GS), μGS, μIS, and E (3/2+)IS a smooth behavior of the
model predictions and descriptions compared with the results
obtained for the fixed pair of Woods-Saxon DSM QO de-
formations considered in our previous works [27,37], with
the only peculiarity appearing close to the line of 5/2+-3/2+
degeneracy where the mixing of both orbitals exceeds the per-
turbation theory limits. On the other hand the corresponding

behavior of the model energy rms factors and Coriolis mixing
constant shows that descriptions obtained with values of the
above observables essentially deviating from those obtained
in Refs. [27,37] are of lower quality and/or violate the pertur-
bation limit. For the remaining descriptions we have verified
that in the limits of moderate deviations of the considered ob-
servables from the original values in Refs. [27,37], the model
is renormalizable, so that through a small variation of model
parameters and on the expense of small deteriorations of the
rms factor, we can get very similar model predictions for the
different pairs of QO deformations. Using this model feature
as well as assuming possible stronger attenuation of the spin
and collective gyromagnetic factors, we have outlined rather
narrow limits of arbitrariness in which the model values of
each of the above quantities can vary by keeping its reasonable
physical meaning and predictability.

Our main conclusion is that, within the obtained model
deformation space, the applied QO core plus particle ap-
proach provides a rather constrained prediction for the most
important 229Th energy and electromagnetic characteristics
related to the formation and manifestation of the 8 eV isomer.
This allows us to generally reconfirm the predictions initially
made in Refs. [27,37] and to summarize them with a slight
update: The B(M1) IS transition remains in the limits 0.006–
0.008 W.u. with an open possibility towards lower values
such as 0.005 W.u.; the B(E2) IS transition may be consid-
ered with slightly higher values between 30 and 50 W.u.,
compared with those in Ref. [27]; the GS magnetic moment
allows a limited possibility for variation and remains with
a model value around 0.50μN , possibly getting values as
smaller as 0.43μN−0.48μN under a stronger assumption for
the gyromagnetic factors attenuation, thus covering the old
experimental value of Ref. [39], but still overestimating the
newer one of Ref. [38]; the theoretical IS magnetic moment
firmly reproduces the recent experimental value within the
uncertainty limits reported in Refs. [16,17] and this is obtained
under all considered model conditions; and finally the model
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values for the isomer energy typically obtained around 1 keV
and below suggest that, with a small variation of parameters,
and with the expense of a minor deterioration of the other en-
ergy levels, the model can easily reproduce the experimental
value, although this is of little importance due to the over-
all limitation of the model accuracy in the energy-spectrum
description.

We note that, for all of the above quoted values, the other
model observables (energy levels and transition rates) for
which experimental data are available remain described within
the accuracy limits reported in Ref. [27]. Thus our analysis
suggests that, within the above outlined limits of arbitrariness,
the model predictions could provide reliable estimates for the
229mTh spectroscopic characteristics which could serve to the
experiment in further efforts to observe and control the yet
elusive radiative isomer transition.

Finally, the results obtained confirm the relevance of the
model mechanism emphasizing the role of the fine interplay
between nuclear collective and intrinsic degrees of freedom
as a plausible reason for the isomer formation. On this basis
we conclude that the same dynamical mechanism may govern
also in other nuclei the formation of excitations close to the

border of atomic physics energy scales. Such states may exist
being not yet observed due to experimental difficulties similar
to those encountered in 229mTh. As in this work, we give a
detailed prescription about the examination and constraining
of the physical conditions under which such a phenomenon
may emerge: it appears promising to extend the study to other
nuclei in the same or other mass regions. In this aspect the
close neighbor 231Th as well as the 235mU isomer would be
natural candidates for such a study. This could be a subject of
future work.
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