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We propose a variational calculation scheme utilizing the superposition of the angular-momentum, parity,
number projected quasiparticle vacua, that is especially suitable for applying to medium-heavy nuclei in shell-
model calculations. We derive a formula for the energy variance with quasiparticle vacua and apply the energy-
variance extrapolation to the present scheme for further precise estimation of the exact shell-model energy. The
validity of the method is presented for the shell-model calculation of 132Ba in the 50 � Z, N � 82 model space.
We also discuss the feasibility of this scheme in the case of the 150Nd in the 50 � Z � 82 and 82 � Z � 126
model space and demonstrate that its neutrinoless double-β-decay matrix element is obtained showing good
convergence.
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I. INTRODUCTION

Nuclear shell-model calculation can describe any many-
body correlations inside the valence shell on equal footing by
configuration mixing and it is one of the most powerful tools
to investigate the ground and low-lying excited states of nuclei
[1,2]. However, the number of the configurations to be consid-
ered, namely the dimension of the shell-model Hamiltonian
matrix, increases explosively depending on the model space
and the number of the active particles, and thus it hampers the
application of shell-model calculations to the medium-heavy
nuclei strictly. Several shell-model codes have been developed
for massively parallel computations to treat such a large-scale
problem [3–5]. Despite these appreciable efforts, the applica-
tion of the conventional shell-model calculation is restricted
by the limitation of available computational resources. The
current feasible M-scheme dimension of the Hamiltonian ma-
trix is O(1011), which implies that shell-model calculations
are applicable only to near-semimagic nuclei in medium-
heavy mass region.

In order to overcome this difficulty and to broaden the
applicability of the configuration-mixing framework, much
effort has been paid to develop various theoretical frame-
works to obtain shell-model solutions where the conventional
Lanczos diagonalization method cannot reach, such as the
projected shell model [6], the pair truncation [7,8], the
Monte Carlo shell model (MCSM) and its extension [9,10],
the VAMPIR approach and its variants [11,12], the hybrid
multideterminant method [13], the iterative diagonalization
algorithm [14], the correlated-basis method [15], the density
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matrix renormalization group method [16], the importance
truncated shell model [17], and the generator coordinate
method (GCM) [18]. Recently, the GCM has been intro-
duced into the in-medium similarity renormalization group
method to evaluate nuclear matrix elements for neutrinoless
double-β decay [19–21]. Note that the auxiliary-field quantum
Monte Carlo approach can be used to the configuration mixing
approach, but the realistic shell-model Hamiltonian has the
Fermion sign problem, which restricts its application to the
practical shell-model calculation severely [22–24].

Among them, the MCSM is one of the most successful
schemes and has been applied to various mass regions [9,10].
The MCSM wave function is expressed as a linear combi-
nation of the angular-momentum and parity projected Slater
determinants, which are determined by the variational and
stochastic ways to minimize the projected energy. Introduc-
ing the energy-variance extrapolation method to the MCSM
provides us with the more precise estimation of the exact
shell-model energy than the upper limit of variational method
[25]. The MCSM has been quite successful in p f -shell nuclei
[9,26,27], the nuclei around the island of inversion [28–30], an
ab initio approach to light nuclei [31,32], and several medium-
heavy nuclei [33–35]. However, in the study of medium-heavy
nuclei where the density of single-particle states per energy
increases and the pairing correlation becomes important [36],
a large number of the Slater determinants for the MCSM wave
function are required in principle to describe pair-correlated
many-body wave functions, which often makes the precise
estimation of exact shell-model physical quantities problem-
atic. In order to treat such pairing correlation more efficiently,
we introduced the pair-correlated basis state to the MCSM in
Ref. [37], although only schematic interactions can be treated
in this method.
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In the present work, we introduce quasiparticle vacua as
a replacement of Slater determinants of the MCSM to treat
various correlations including pairing correlations efficiently.
We perform the variational calculation to minimize the energy
after the angular-momentum, parity, and number projections
and superposition. Hereafter, we call this scheme the quasi-
particle vacua shell model (QVSM). In the same way as the
MCSM framework [25], we can introduce the energy-variance
extrapolation to overcome the variational limit. Note that
the importance of the variation after the number projection
was discussed in the context of the Hartree-Fock-Bogoliubov
method in Ref. [38], and variation after angular-momentum
and parity projections was achieved in the VAMPIR
approach [11].

The evaluation of the nuclear matrix element (NME) of
the neutrinoless double-β (0νββ) decay is one of the most
interesting issues in nuclear structure physics [39,40]. The
shell-model calculation is an important model to estimate the
NME precisely since various many-body correlations can be
included on an equal footing in the shell-model wave function
[41–45]. In the present work, we demonstrate that the QVSM
is useful also to estimate the NME.

This paper is organized as follows. A form of the varia-
tional wave function is introduced and the feasibility of the
variational calculations of the QVSM is discussed in Sec. II.
Section III is devoted to the extrapolation method utilizing
the energy variance in the QVSM scheme. The applicability
of the QVSM to estimate the 0νββ-decay NME is discussed
in Sec. IV. A summary and future perspectives are given
in Sec. V. Some derived equations that are required for the
present work are shown in the Appendix.

II. VARIATIONAL CALCULATION

In the QVSM, the variational wave function is defined as
a superposition of the angular-momentum, parity, and number
projected quasiparticle vacua:

∣∣�Nb

〉 =
Nb∑

n=1

J∑
K=−J

f (Nb)
nK PJπ

MK PZ
∣∣φ(π )

n

〉 ⊗ PN
∣∣φ(ν)

n

〉
, (1)

where the PJπ
MK , PZ , and PN are the angular-momentum and

parity projector, the proton number projector, and the neu-
tron number projector, respectively. |φ(π )

n 〉 (|φ(ν)
n 〉) denotes the

quasiparticle vacuum of protons (neutrons). Nb is the number
of the basis states, or the projected quasiparticle vacua. fnK is
a coefficient of the linear combination of the basis states and
determined by solving the generalized eigenvalue problem of
the (2J + 1)Nb × (2J + 1)Nb Hamiltonian and norm matrices
in the subspace spanned by the projected basis states.

The quasiparticle vacuum |φn〉 is parametrized by complex
matrices U (n)

i j and V (n)
i j as

β
(n)
k |φn〉 = 0 for any k

β
(n)
k =

∑
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(
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i + U (n)∗
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)
, (2)

FIG. 1. (a) Energy expectation values ENb of the 0+
1 (red), 2+

1

(blue), 4+
1 (green) states of 132Ba by the QVSM and the MCSM

as a function of the number of the basis states Nb. The horizontal
dotted lines show the exact shell-model energies. (b) The 0+

1 , 2+
1 ,

4+
1 energies of 132Ba obtained by the conventional Lanczos method

with t = 2 truncation, by that with t = 4 truncation, by the exact
calculation without truncation, by the MCSM with 50 basis states,
and by the QVSM with 20 basis states are shown from left to right.

where βk denotes a quasiparticle annihilation operator and c†
i

is the creation operator of the single-particle orbit i [46]. Note
that we do not assume any symmetry for this state.

As Nb increases from 1, the variational parameters U (Nb)

and V (Nb) are determined at every Nb so that the energy
expectation value after the projections and superposition,
ENb = 〈�Nb |H |�Nb〉, is minimized using the conjugate gradi-
ent method [47] iteratively. Obeying the variational principle,
ENb is the variational upper limit for the exact shell-model en-
ergy, and ENb decreases gradually as Nb is increased. We stop
this iteration when the ENb converges. Unlike the VAMPIR
approach [11,12,48], we do not include the proton-neutron
correlated pair for the quasiparticle in the present work, since
we aim at investigating neutron-rich nuclei where the Fermi
levels of the protons and neutrons are expected to be apart
from each other.

To discuss the capability of the QVSM, we perform the
shell-model calculations of 132Ba with the SN100PN inter-
action [49]. The model space is taken as the 0g7/2, 1d5/2,
1d3/2, 2s1/2, and 0h11/2 orbits both for protons and neu-
trons. Its M-scheme dimension is 2.0 × 1010, and the exact
shell-model energy was obtained by the conventional Lanczos
method with the Oakforest-PACS supercomputer employing
the KSHELL code [5].

Figure 1(a) shows the QVSM energy as a function of the
number of the basis states Nb, which is defined in Eq. (1). As
Nb increases the QVSM energy comes down and the energy
converges rapidly and approaches the exact values shown in
Fig. 1(b). Even at Nb = 1, the QVSM energy is closer to the
exact one than those of t-particle t-hole truncations and that
of the MCSM.

The solid black lines in Fig. 1(a) also show the MCSM
energy expectation values as a function of the number of the
basis states, Nb. The MCSM wave function [10] is defined
as a linear combination of the angular-momentum and parity
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projected deformed Slater determinants as

∣∣�Nb

〉 =
Nb∑

n=1

J∑
K=−J

f (Nb)
nK PJπ

MK

∣∣D(π )
n

〉 ⊗ ∣∣D(ν)
n

〉
, (3)

where |D(π )
n 〉 and |D(ν)

n 〉 are the deformed Slater determi-
nants for protons and neutrons, respectively. The number
projection is not necessary since a Slater determinant is an
eigenstate of the number operator. The Slater determinant
|Dn〉 is parametrized by the complex matrix Dn, which is
determined to minimize the energy eigenvalue in the same
way as the QVSM. Since Slater determinants cannot describe
pairing correlations efficiently, the MCSM energy converges
rather slowly in comparison with the QVSM.

For comparison, Fig. 1(b) shows the energies obtained
by the QVSM, the MCSM, and the conventional Lanczos
diagonalization method in truncated spaces. The conventional
Lanczos method was performed with the truncated space re-
stricting up to t-particle t-hole excitations across the Z = N =
64 shell gap from the filling configuration. The truncation
scheme is taken as t = 2 (2.3 × 108 M-scheme dimension),
t = 4 (3.4 × 109 M-scheme dimension), and the full space
without truncation for the exact energy. The t = 2 (t = 4)
energy is 2.3 MeV (0.7 MeV) higher than the exact one. The
rightmost part of Fig. 1(b) shows the results of the MCSM
with Nb = 50 and the QVSM with Nb = 20. The MCSM
result overcomes the truncated results, but it is still 440 keV
higher than the exact one and the MCSM underestimates the
excitation energies 100 keV. The QVSM agrees with the exact
one quite well within 50 keV. This small gap between the
QVSM and exact ones can be filled by the energy-variance
extrapolation method, which will be discussed in the next
section.

While the QVSM converges as a function of Nb faster
than the MCSM, the computational cost of the QVSM with
the same Nb is heavier than that of the MCSM because of
the necessity of the number projection. In practice, the total
computational of the QVSM whose result is shown in Fig. 1
is about ten times heavier than that of the MCSM. Even
considering such difference, the QVSM is more efficient than
the MCSM in the 132Ba case since the QVSM energy with
Nb = 1 is already lower than the MCSM energy with Nb = 50.

For proving the feasibility of the QVSM to treat the non-
yrast states and other physical quantities, we performed the
variational calculations to obtain the lowest three 0+ and 2+
states of 132Ba. We performed the variational calculations so
that the summation of the lowest three energy expectation
values is minimized. Figure 2(a) shows the excitation ener-
gies of the 0+

2 , 0+
3 , 2+

1 , 2+
2 , and 2+

3 states as a function of
the number of the basis states Nb. The extrapolation proce-
dure is not required since these excitation energies converge
quite rapidly at Nb � 10 and agree with the exact values.
Figures 2(b) and 2(c) show the quadrupole moments and the
square root of the B(E2) transition probabilities with the ef-
fective charges (ep, en) = (1.5, 0.5)e. These observables also
show good convergence patterns and converge at Nb � 10.
Note that although B(E2; 0+

1 → 2+
2 ) and B(E2; 0+

1 → 2+
3 ) are

quite small in comparison with the large B(E2; 0+
1 → 2+

1 )
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FIG. 2. (a) Excitation energies of the 0+
2 and 0+

3 states (red
dashed lines), and 2+

1 , 2+
2 , and 2+

3 states (blue solid lines) of 132Ba
against the number of the basis states Nb. (b) Quadrupole moments
of the 2+

1 , 2+
2 , and 2+

3 states. (c) Square root of the B(E2) transition
probabilities from the ground state to the 2+

1 , 2+
2 , and 2+

3 states. The
triangles at the rightmost side denote the exact values.

value, these three B(E2) values converge rapidly at the same
pace.

III. ENERGY VARIANCE EXTRAPOLATION

The variational calculation discussed in the previous sec-
tion gives us only the variational upper limit to the exact
shell-model energy. In order to estimate the exact energy more
precisely, we here introduce the extrapolation method employ-
ing the energy variance. The energy-variance extrapolation
was proposed in condensed matter physics [50], and was in-
troduced to the nuclear shell-model calculations in Ref. [51].
Since then it was applied to various schemes [17,25,52–54].

The energy variance of the variational wave functions is
defined as

〈�H2〉Nb = 〈
�Nb

∣∣H2
∣∣�Nb

〉 − 〈
�Nb

∣∣H ∣∣�Nb

〉2
. (4)
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FIG. 3. Variance-energy plot of 132Ba. The red circles, blue tri-
angles, and green diamonds denote the energy expectation values
against the energy variance of the 0+

1 , 2+
1 , and 4+

1 states, respectively,
obtained by the QVSM. The dashed curves are drawn to be fitted
for the last 12 points of the QVSM results with a second-order
polynomial. and their y intercepts are the extrapolated values. The
left panel shows the exact shell-model energies.

A formula to compute the energy variance in the quasiparticle
vacua is shown in Appendix A 3. By utilizing the fact that
the energy variance is zero if |�Nb〉 is the exact shell-model
eigenstate, the variance expectation value is not only an in-
dicator for the approximation, but also can be used for the
estimation of the exact energy eigenvalue by extrapolation.
As Nb increases, the QVSM wave function approaches the
exact one and the corresponding variance approaches zero.
In the extrapolation scheme, we plot the energy ENb against
the variance 〈�H2〉Nb , which is called a variance-energy plot
hereafter. On the plot, as Nb increases the point is expected
to approach the y axis, namely 〈�H2〉Nb = 0, gradually. The
extrapolated energy is the y intercept of the curve fitted for
these points.

Figure 3 shows the variance-energy plot of the QVSM
wave functions of 132Ba, which are the same as the case in
Fig. 1. The last 12 points are used for the second-order poly-
nomial fit. The extrapolated values, which are the y intercepts
of the fitted lines, and the exact shell-model energies agree
with each other quite well within a 10-keV difference.

Figure 4 shows variance-energy plots of the QVSM and
the MCSM, whose wave functions are the same as the case of
Fig. 2. While the left panel shows the exact shell-model en-
ergies the y intercepts of the fitted curves are the extrapolated
values of the QVSM results. The extrapolated energies and
the exact shell-model energies obtained by the conventional
Lanczos method agree quite well within a 20-keV difference.

One of the major achievements of the MCSM is to reveal
the exotic structure of neutron-rich nuclei around 68Ni [27].
For further comparison of the QVSM and the MCSM, we
show the variance-energy plot of the 68Ni with the A3DA
interaction [27] and the model space consisting of the p f
shell, 0g9/2, and 1d5/2 orbits in Fig. 5. The M-scheme dimen-
sion of this system is 5.2 × 1015, which is beyond the current
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FIG. 4. Variance-energy plot of 132Ba. The red circles (blue trian-
gles) denote the lowest three 0+ (2+) states obtained by the QVSM.
The black open circles (triangles) denote the energies and energy
variances of the 0+ (2+) states of the MCSM. The dashed curves are
drawn to be fitted for the last 20 points of the QVSM results with a
second-order polynomial. and their y intercepts are the extrapolated
values. The left panel shows the exact shell-model energies.

feasibility of the conventional Lanczos method even now. The
points of the MCSM and the points of the QVSM show a
similar tendency. Although the QVSM with the 30 basis states
provides us with the lower variational energy than that of the
MCSM with the 120 basis states, the MCSM is advantageous
in terms of the computation time since the number projection
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FIG. 5. Variance-energy plot of 68Ni with the A3DA interaction
[27]. The red filled circles, blue filled triangles, and green filled
diamonds are the QVSM results of the 0+

1 , 2+
1 , and 4+

1 states, re-
spectively. The QVSM is obtained with Nb = 30. The black symbols
are the corresponding MCSM results with 120 basis states. The solid
lines denote the fitted curves by a first-order polynomial for the last
13 QVSM points.
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is not needed for the MCSM. According to our numerical ex-
periments, the MCSM is more efficient for lighter nuclei such
as p f -shell nuclei, while the QVSM is expected to be more
efficient and to converge faster in medium-heavy mass region
beyond the N = Z = 50 gap such as 132Ba. The feasibility and
application of the QVSM to 150Nd and the evaluation of its
0νββ-decay NME will be discussed in the next section.

IV. NEUTRINOLESS DOUBLE-β DECAY-MATRIX
ELEMENTS

Here we focus on the convergence property of a NME of
0νββ decay in the QVSM and the MCSM. The 0νββ-decay
NME with the closure approximation is obtained as

M0ν = 〈0+
f |Ô|0+

i 〉 = M0ν
GT − g2

V

g2
A

M0ν
F + M0ν

T , (5)

where Ô is the operator to annihilate two neutrons and create
two protons with neutrino potential. M0ν

GT , M0ν
F M0ν

T denote
the Gamow-Teller type, Fermi-type, tensor-type terms classi-
fied according to spin structure of the operator, respectively
[40]. |0+

i 〉 and |0+
f 〉 are the ground states of the parent and

daughter nuclei. gV and gA are vector and axial-vector cou-
pling constants and are taken as 1.0 and 1.27, respectively.
In the present work, a factor of short-range correlation for
the NME is omitted for simplicity and the average energy of
the closure approximation is taken from the empirical formula
Eav = 1.12

√
A MeV [55].

As a benchmark test, we perform the shell-model calcu-
lation of 76Ge and 76Se with JUN45 interaction [56] with
the model space consisting of the 0 f5/2, 1p3/2, 1p1/2, and
0g9/2 orbits both for protons and neutrons and evaluate the
0νββ-decay NME. Since the M-scheme dimension of 76Se
is 6.8 × 108, the exact shell-model value is obtained by the
conventional Lanczos method more easily than the case of
132Ba.

Figure 6 shows the NME obtained by the MCSM against
the number of the basis states Nb. The MCSM calculation is
performed up to Nb = 150. The NME of the MCSM shows
quite slow convergence as a function of the number of the
basis states and the extrapolation using the MCSM results
to the exact solution seems to be difficult. Since a 0νββ-
decay NME is sensitive to pairing correlations [43,44,57],
the QVSM scheme is expected to be advantageous over the
MCSM. To evaluate the NME using the linear combination of
quasiparticle vacua as a wave function was also discussed in
the context of the generator coordinate method [19–21,58,59].

Figure 7 shows the NMEs obtained by the QVSM. The
NMEs of the QVSM converge quite fast and agree well with
the exact shell-model values. While the total NME of the
MCSM is too small at Nb = 1, the NMEs of the QVSM are
close to the exact one even at Nb = 1. It implies that the
efficient treatment of the pairing correlation is essential for
the estimation of the 0νββ NMEs.

We evaluate the NMEs of the 0νββ decay of 150Nd by the
QVSM and the MCSM. We adopt the Kuo-Herling interaction
[60] with the model space consisting of 0g7/2, 1d5/2, 1d3/2,
2s1/2, and 0h11/2 orbits for protons and 0h9/2, 1 f7/2, 1 f5/2,
2p3/2, 2p1/2, and 0i13/2 orbits for neutrons with the 132Sn

0 50 100 150

0

2

Nb

N
M

E

total

GT

tensor

Fermi

FIG. 6. 0νββ-decay NME of 76Ge obtained by the MCSM.
These values are shown as a function against the number of
the basis states Nb. The red, blue, green, orange lines with the
solid circles denote the total, GT-type, Fermi-type, and tensor-type
NMEs, respectively. The circles show the MCSM values with Nb =
5, 10, 15, 20, 30, 40, 50, 60, 70, 90, 120, and 150. The exact shell-
model values are shown as the triangles at the rightmost.

inert core. The M-scheme dimension of 150Nd is 2.2 × 1014,
far beyond the current limitation of the conventional Lanczos
method. 150Nd is one of nuclei whose NME has not been
evaluated by reliable shell-model calculations among major
double-β-decay nuclei used for 0νββ-decay search experi-
ments [40].

Figures 8(a) and 9(a) display the variance-energy plots of
the 0+, 2+, and 4+ states of 150Nd and 150Sm, respectively.
These are obtained by the QVSM up to Nb = 20 and by
the MCSM up to Nb = 100. At the end points of plot se-
quences, the QVSM energies are 0.3–0.8 MeV lower than the
corresponding MCSM energies, implying that these QVSM
calculations are more precise than the corresponding MCSM
calculations. The variance expectation values are smaller for
the QVSM calculations as a probe of better convergences

0 10 20 30
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2

N
M

E

total
GT

tensor

Fermi

Nb

FIG. 7. 0νββ-decay NME of the 76Ge against Nb obtained by the
QVSM. The exact values are shown as the triangles at the rightmost.
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FIG. 8. (a) Energy expectation values and (b) spectroscopic
quadrupole moments of the yrast states of 150Nd obtained by the
QVSM with Nb = 20 and the MCSM with Nb = 100 against the
energy variance. The red circles, blue triangles, and green diamonds
denote the QVSM results of the 0+, 2+, and 4+ states, respectively.
The dashed, solid, and dotted lines are the MCSM results of the 0+,
2+, and 4+ states, respectively. The effective charges are taken as
(ep, en) = (1.58, 0.85)e.

compared to the MCSM calculations. In fact, the QVSM plots
show almost linear and quite stable behaviors, being consis-
tent with the better convergence. Moreover, the 0+, 2+, and
4+ energies of the QVSM converge in similar ways among
themselves, which means that the excitation energies converge
faster as a function of Nb. The MCSM plots of the 0+, 2+,
and 4+ energies, however, approach the y axis in different
ways. Their excitation energies are evaluated at a common
value of the variance [e.g., ≈3.3 MeV2 in Fig. 8(a)] so that
the convergence of the calculation is expected to be similar
among these 0+, 2+, and 4+ states. Although their energies
are still changing at this variance, the values of the excitation
energies thus obtained are not very far from the practically
converged values of the QVSM calculations.

The continuations from the MCSM to the QVSM plots
are evident in Figs. 4 and 5. Figures 8(a) and 9(a) still show
continuations, but they are less smooth even with some gaps.
This is certainly due to much larger Hilbert spaces in the
cases of 150Nd and 150Sm. The effects of the particle-particle
interaction, including those of the pairing, are incorporated by
the optimization of the basis vectors more efficiently in the
QVSM than in the MCSM. In the former, the basis vector
is a projected quasiparticle vacuum, which is nothing but a
nucleon-pair condensation. This means that a good fraction
of the effects of the particle-particle interaction can be con-
tained within individual basis vectors. The basis vector of the
MCSM is a Slater determinant, and this property is substan-

FIG. 9. (a) Energy expectation values and (b) spectroscopic
quadrupole moments of the yrast states of 150Sm obtained by the
QVSM and the MCSM against the energy variance. See caption of
Fig. 8 for details.

tially suppressed particularly in the cases with many active
single-particle orbits. In the MCSM, therefore, the diagonal-
ization with many basis vectors is more important. This slows
down the convergence of the MCSM calculation, and also
causes less stable behaviors of the plots shown in Figs. 8(a)
and 9(a). Between 150Nd and 150Sm, the former is more de-
formed than the latter, indicating that the pairing interaction is
more important in the latter. It is then expected that the gaps
are wider in the variance-energy plot for 150Sm, and indeed
this difference appears in the comparison between Figs. 8(a)
and 9(a).

Figures 8(b) and 9(b) show the spectroscopic quadrupole
moments of the QVSM and the MCSM results against the
energy variance. The QVSM results show rather stable con-
vergence, while the MCSM overestimates the deformation.
The energy variances of the 0+, 2+, and 4+ states of the
Nb = 100 MCSM (namely, the left end of the MCSM lines in
the figures) are different from each other and larger than those
of the QVSM because the MCSM is inefficient to describe
the pairing correlation. The pairing correlation plays a more
important role to describe the wave function of 150Sm, which
has smaller deformation than 150Nd. It is consistent with the
fact that the variance of the 0+ state of the 150Sm is the largest
among them. On the other hand, the QVSM shows similar, sta-
ble convergence patterns for both cases because the selected
QVSM basis vectors also incorporate the effects represented
by one-body mean fields including deformed ones.

Figure 10 shows the excitation energies of 150Nd and its
daughter nucleus, 150Sm, obtained by the QVSM. The ener-
gies of the QVSM converge well as a function of Nb. The
QVSM result of the 2+ energy of the 150Nd is 240 keV, which
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FIG. 10. Excitation energies of the 2+ and 4+ states of (a) 150Nd
and (b) 150Sm as a function of the number of the QVSM basis states.

is larger than the experimental value, 130 keV. Besides, the
quadrupole moment by the QVSM is −1.2 eb, which shows
smaller deformation than the experimental value, −2.0(5) eb.
It may indicate that the larger model space is required to
describe the large quadrupole deformation of 150Nd, which is
also indicated by Refs. [35,61].

Figure 11 shows the NME of the MCSM against the
number of the basis states. The convergence of the NME
is quite slow and it is difficult to estimate the converged
value. Figure 12 shows the NME values by the QVSM.
The NMEs converge quite rapidly in contrast to the MCSM
case in Fig. 11, and these values do not change where
Nb is beyond 10 owing to the efficient description by the
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FIG. 11. 0νββ-decay NME of the 150Nd obtained by the MCSM
against the number of the basis states Nb. The red, blue, green, orange
lines with the solid circles denote the total, GT-type, Fermi-type, and
tensor-type NMEs, respectively.
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FIG. 12. 0νββ-decay NME of the 150Nd obtained by the QVSM
against the number of the basis states Nb. The red, blue, green, orange
lines with the solid circles denote the total, GT-type, Fermi-type, and
tensor-type NMEs, respectively.

quasi-particle-vacuum basis states. Although this NME value
is not conclusive since the present study overestimates the
excitation energies, it is worth comparing it with previ-
ous works briefly. The total NME of the current work is
5.2, which is about twice larger than other preceding re-
sults of the quasiparticle random phase approximation and
several other approaches [62]. The NME values given by
the latest generator-coordinate method based on the rela-
tivistic energy density functional are 5.6 [61] and 5.2 [63],
which are close to the present result. It was suggested that
the large difference between the deformations of the initial
and final states would suppress the NME [58,64,65]. Fur-
ther investigation by extending the model space is ongoing
to evaluate the effect of the large quadrupole deforma-
tion and its differences between the initial and final states
appropriately.

V. SUMMARY

We have developed a variational method after the super-
position of the fully projected quasiparticle vacua, named
the quasiparticle vacua shell model (QVSM), which is an
extension of the MCSM. We apply the energy-variance ex-
trapolation method to the QVSM and demonstrated that it
works quite well to estimate the shell-model energies of
132Ba with the SN100PN interaction. The excitation energies
and other observables such as the quadrupole moment and
B(E2) transition probabilities by the QVSM converge quite
rapidly as a function of the number of the basis states. Since
the QVSM wave function is expected to include many-body
correlations such as pairing correlations efficiently, it works
well in nuclei heavier than Sn isotopes, while the MCSM is
efficient enough in lighter-mass region such as 68Ni in terms
of computational resources.

We have demonstrated that the NME values of the
QVSM against Nb show fast convergence. The feasibil-
ity of the QVSM to evaluate the 0νββ-decay NME of
150Nd is validated. Since the shell-model result of the Kuo-
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Herling interaction overestimates the experimental 2+ and 4+
excitation energies of 150Nd and 150Sm, further investigation
is anticipated to conclude the NME values by shell-model
calculations. We also plan to evaluate the NMEs of double-
β-decay nuclei in medium-heavy mass region such as 136Xe
[66] and 100Mo, which will be used for the next-generation
0νββ-decay search experiment [67].

This proof-of-the-principle study opens a way to inves-
tigate the medium-heavy nuclei with configuration mixing
utilizing nuclear shell-model calculations. The application of
the present scheme to odd nuclei would be rather straightfor-
ward and is in progress.
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APPENDIX: MATRIX ELEMENTS BETWEEN DIFFERENT
QUASIPARTICLE VACUA

In this Appendix, we briefly show some equations that
are required for the QVSM scheme. Since the QVSM wave
function defined in Eq. (1) is written as a linear combination
of the projected quasiparticle vacua, we need the equations
to compute the overlap, the Hamiltonian matrix elements,
and the energy gradient between two different quasiparticle
vacua. In addition, we first derive the equation of the matrix
elements of the Hamiltonian squared for the energy-variance
extrapolation technique.

The overlap between two different quasiparticle vacua is
computed by the Neergard-Wust method [68] in the present
work for efficient computations, while a more elegant formula
employing the Pfaffian was suggested [69]. Some overlap
formulas for odd-mass case were proposed [70–72].

The shell-model Hamiltonian is defined as

H =
∑

i j

ti jc
†
i c j + 1

4

∑
i jkl

vi jkl c
†
i c†

j cl ck, (A1)

where t and v are the coefficients of the one-body and two-
body interactions, respectively. v is Hermitian (vi jkl = vkli j)
and antisymmetrized (vi jkl = −v jikl = −vi jlk = v jilk).

1. Hamiltonian matrix elements

We show equations for the energy expectation values of
the QVSM wave function. The QVSM wave function is a
linear combination of the angular-momentum, parity, number
projected quasiparticle vacua. In numerical calculations, the
angular-momentum projector is calculated as the summation
of the discretized Euler angles � = (α, β, γ ), and the parity
projection is performed utilizing the parity-conversion opera-
tor � [10]:

PJπ
MK = 1 + π�

2

2J + 1

8π2

∫
d� DJ∗

MK (�)eiαJz eiβJy eiγ Jz

�
∑

a

W JMKπ
a Ra (A2)

with

Ra = eiαaJz eiβaJy eiγaJz�(δa ),

W JMKπ
a = 2J + 1

8π2
DJ∗

MK (αa, βa, γa)π (δa )wa, (A3)

π (1) = 1
2 , π (2) = π

2 ,�(1) = 1,�(2) = �, and a =
(αa, βa, γa, δa) [10]. a and wa are a set of discretized
mesh points and its corresponding weight for the summation,
and are determined by the Gaussian quadrature [47]. The
proton number projector is also computed as

PZ = 1

2π

∫ 2π

0
eiφ(N (π )−Z )dφ �

L∑
b=1

W (Z )
b R(Z )

b , (A4)

where N (π ) denotes the proton number operator and R(Z )
b =

e2π iN (π )b/L, W (Z )
b = 1

L e−2π iZb/L . The neutron number projector
is defined in the same way as the proton case.

Thus, the coefficient of the QVSM wave function f (Nb)
iK

in Eq. (1) and its energy expectation value are obtained
by solving the generalized eigenvalue problem, or the Hill-
Wheeler-Griffin equation [73],

Nb∑
j=1

J∑
K ′=−J

(HiK, jK ′ − ENbNiK, jK ′ ) f (Nb)
jK ′ = 0 (A5)

with

HiK, jK ′ =
∑

a

W JKK ′π
a

〈
φ

(π )
i

∣∣ ⊗ 〈
φ

(ν)
i

∣∣HRa

∑
b

W (Z )
b R(Z )

b

∣∣φ(π )
j

〉 ⊗ ∑
c

W (N )
c R(N )

c

∣∣φ(ν)
j

〉
. (A6)

NiK, jK ′ =
∑

a

W JKK ′π
a

〈
φ

(π )
i

∣∣ ⊗ 〈
φ

(ν)
i

∣∣Ra

∑
b

W (Z )
b R(Z )

b

∣∣φ(π )
j

〉 ⊗ ∑
c

W (N )
c R(N )

c

∣∣φ(ν)
j

〉
. (A7)

Note that f (Nb)
iK is determined so that the resultant wave func-

tion is normalized. The number of the mesh points of the
angular-momentum, parity projector typically reaches 60000
and the matrix element for each a can be computed in parallel.
This feature is suitable for massively parallel computations.
Since the computational cost for such variation after projec-
tion is quite heavy, we utilized state-of-the-art supercomputers
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in Japan such as Fugaku and Oakforest-PACS. The developed
code is equipped with the code-tuning technique suggested in
Ref. [74].

Hereafter, we consider only protons for simplicity. The
derivation of its extension to the proton-neutron system is
lengthy but straightforward. Since the rotated quasiparticle
vacuum R|φ〉 can be expressed as another quasiparticle vac-
uum by using the Baker-Campbell-Hausdorff formula, we
need to compute the matrix element of the Hamiltonian be-
tween two different quasiparticle vacua. Note that the f (Nb)

iK
is obtained by solving Eq. (A5) every time its basis state is
changed.

The Hamiltonian matrix element between the different
quasiparticle vacua, |φ〉 and |φ′〉, is calculated using the gen-
eralized Wick theorem [46] as

〈φ|H |φ′〉 = 〈φ|φ′〉Tr
(
tρ + 1

2�ρ − 1
2κ ′�

)
, (A8)

where the density matrix ρ and the pairing tensor κ are ob-
tained as

ρi j = 〈φ|c†
j ci|φ′〉

〈φ|φ′〉 = −Z ′(1 − Z∗Z ′)−1Z∗ (A9)

κi j = 〈φ|c jci|φ′〉
〈φ|φ′〉 = Z ′(1 − Z∗Z ′)−1 (A10)

κ ′
i j = 〈φ|c†

i c†
j |φ′〉

〈φ|φ′〉 = (1 − Z∗Z ′)−1Z∗ (A11)

Z = (VU −1)∗Z ′ = (V ′U ′−1)∗ (A12)

�ik =
∑

jl

vi jklρl j�i j = 1

2

∑
kl

vi jklκkl . (A13)

2. Energy gradient

In the QVSM scheme, we apply the conjugate gradient
method to minimize the projected energy expectation value.
The basis state |φn〉 is determined sequentially so that the
energy expectation value ENb=n is minimized. Let us con-
sider the situation that Nb − 1 basis states have already been
fixed and the variational calculation is performed with the
variational parameters of the Nbth basis state, Z (Nb), by the
conjugate gradient method, which requires the gradient of the
projected energy of the superposed quasiparticle vacua. The
energy gradient is obtained as

∂ENb

∂Z (Nb)∗ =
∑

n,KK ′

(
f (Nb)
NbK ′

)∗
f (Nb)
nK

∂
〈
φNb

∣∣
∂Z (Nb)∗

× (
H − ENb

)
PJπ

K ′K PZ |φn〉, (A14)

where the matrix element of the gradient is obtained as

∂〈φ|
∂Z∗

(
H − ENb

)|φ′〉 = 〈φ|φ′〉(U †
D(t + �)V ∗

D − V †
D (t + �)T U ∗

D

+U †
D�U ∗

D − V †
D�′V ∗

D )

− ZD〈φ′|(H − ENb

)|φ〉 (A15)

with

ZD = ((V T U ′ + U T V ′)(U †U ′ + V †V ′)−1)∗

UD = U + V ∗Z∗
DVD = V + U ∗Z∗

D.�′
kl = 1

2

∑
i j

κ ′
i jvi jkl .

(A16)

3. Energy variance

Since the energy variance is the expectation value of the
four-body operator, the computation of the energy variance is
time consuming and its efficient computation is essential for
practical applications. By utilizing the separability of H2 in
a similar way to the case of Slater determinants in Ref. [25],
a formula to compute the matrix element of the Hamiltonian
squared between two quasiparticle vacua is given as

〈φ|H2|φ′〉

= 〈φ|φ′〉
⎛
⎝1

4

∑
i jkl

(ρ ′vρ)i jkl (ρvρ ′)kli j

+ 1

4

∑
i jkl

(κ ′vκ )i jkl (κ
′vκ ) jilk −

∑
i jkl

(ρ ′vρ)i jkl (κ
′vκ ) jkli

+ 1

2
Tr

(
(ρ�t − κ�′)(ρ ′�t + κ�′)

+ (�tρ − �κ ′)(�tρ
′ + �κ ′)

− (
κ�T

t − ρ�
)
(κ ′�t − ρT �′)

− (
κ�T

t + ρ ′�
)
(κ ′�t + ρ ′T �′)

)

+
(

Tr

(
tρ + 1

2
�ρ − 1

2
κ ′�

))2
⎞
⎠ (A17)

with

ρ ′
i j = δi j − ρi j

(�t )i j = �i j + ti j

(ρ ′vρ)i jkl =
∑
a,c

ρ ′
iava jclρck

(ρvρ ′)i jkl =
∑
b,d

ρ jbvibkdρ
′
dl

(κ ′vκ )i jkl =
∑

ac

κ ′
iava jclκck . (A18)

The angular-momentum, parity, and number projections can
be applied in the same way as described in Appendix A 1.
The most time-consuming part in practical calculations is to
compute (ρ ′vρ)i jkl as

(ρ ′vρ)i jkl =
∑

a

ρ ′
ia

(∑
c

va jclρck

)
. (A19)

This is computed by the summations of the fivefold loops,
which cost far less than the case of a general four-body op-
erator demanding eightfold loops.
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