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The sum-rule approach and the shell model are used to estimate the energies of Gamow-Teller (GT) giant
resonances in high-spin isomeric (HSI) states in N = Z nuclei. The newly derived energy-weighted sum rules
show that the GT resonance energies of HSI states are related to the σσττ and σσ interactions. Comparing
the results of the sum-rule approach with those of large-scale shell-model calculations for the 52Fe(12+) and
94Ag(21+) N = Z high-spin isomers, the deduced κσ , which is the strength of the σσ residual interaction in a
simple residual-interaction model, is 2.5 MeV.
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I. INTRODUCTION

A giant resonance (GR) is a collective oscillation mode of
an atomic nucleus and also a feature of quantum many-body
systems [1]. The Gamow-Teller (GT) giant resonance (GTR)
is the oscillation in the spin and isospin degrees of freedom
[2–8]. Its transition operator �σ t± is the simplest operator com-
bined from the spin �σ and isospin t operators. Because it does
not include space coordinate operators, GT transitions are
more sensitive to the spin-isospin properties of nuclear matter
than the nuclear geometrical properties. Migdal [9] predicted
so-called pion condensation, which is a candidate for phase
transitions in nuclear matter such as the interior of a neutron
star. To calibrate the interaction causing pion condensation,
many experimental studies have been performed for stable
nuclei with neutron excess [7,8]. Recently, such experimental
studies have been extended to the region of neutron-rich un-
stable nuclei [10]. Moreover, due to the similarity of the GT
transition operator to weak interactions, studies on GTR are
crucial to improve nuclear models used to predict the rates of
weak processes in astrophysics [11] as well as in experiments
such as double-β-decay searches [12].

Theoretically, in addition to the various microscopic cal-
culations developed to date [13–16], sum-rule approaches
have been employed to analyze the observed spectra [6,17–
22]. Roughly speaking, the non-energy-weighted sum rule
(NEWSR) provides a criterion for the collectivity of the
observed resonances, while the energy-weighted sum rule
(EWSR) provides a measure of the interaction strength driving
the oscillation.

On the other hand, the GTR has yet to be observed in
N = Z nuclei. This is because, in N = Z nuclei, the initial
state lacks neutron excess as a medium to propagate the oscil-
lation in the particle-hole (ph) channel. However, we recently

showed that GT transitions from high spin isomeric (HSI)
states in N = Z nuclei can create a strong collectivity [23]
because HSI states can be regarded as a mixture of two Fermi
liquids filled with nucleons with opposite spin directions and
the spin excess (i.e., the excess of one fluid to the other) can
serve as a medium to propagate the ph-channel oscillation.
We confirmed this picture using the NEWSR and the shell
model for two N = Z HSI states in 52Fe and 94Ag with spins
and parities of 12+ and 21+, respectively. These nuclei are
strongly deformed and spin-aligned along the direction of the
total spin.

In this work, we extend our approach to the EWSR and
evaluate the strength of the spin-isospin residual interactions
behind the GTR. We start from a simple Bohr-Mottelson
Hamiltonian [24] according to the method in Ref. [17]. This
Hamiltonian contains three parameters κσ , κτ , and κστ , which
represent the strengths of the residual interactions. κσ , κτ , and
κστ depend on whether the interacting nucleons are coupled
through spin (σσ ), isospin (ττ ), or both (σσττ ), respectively.
These parameters are useful for investigating the properties of
the short-range spin- and isospin-dependent parts of nuclear
interactions in nuclear medium. In addition, they are crucial
for describing nuclear weak responses such as neutrino mean-
free path [25] as well as the onset of the pion condensation in
the interiors of neutron stars [9,26,27].

Compared with the σσττ and ττ parts, the σσ part is
poorly understood but is considered to be weak compared
with the σσττ part. An empirical evidence is 1+ isospin
doublets in 12C: The T = 1 1+ state has an excitation energy
of 15.1 MeV, which is 2.4 MeV higher than the T = 0 1+
state at 12.7 MeV. Also in heavier nuclei, the weakness of
the σσ part, which is close to zero, was shown by ana-
lyzing M1 excitations [28]. On the other hand, microscopic
models whose parameters are adjusted to describe nuclear
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ground-state properties often fail to evaluate these spin-
dependent interactions [29]. This means that, in nuclear
ground states, the spin-spin correlation is hidden and difficult
to investigate. Therefore, studies on the excited states such as
GTR should be crucial to elucidate the effect of the σσ part.

Interestingly, GTR energies for HSI states are sensitive to
κσ and κστ . This is in contrast with the case of 0+ N > Z
initial states [17], where GTR energies are sensitive to κτ

and κστ . Thus, we suggest that the GTR energies from HSI
states can provide a new type of sensitivity on the spin-isospin
interaction, especially for the σσ interaction. In addition to
GT transitions, we also discuss isoscalar M1 transitions. Be-
cause the sum rules of M1 transitions are not sensitive to
the spin-isospin residual interactions, they can be used as a
reference to cancel other effects.

This work is stimulated by an experimental program,
which aims to measure GT transitions from the 52Fe(12+)
state provided as a radioactive-isotope beam [30]. To date,
there have been no experimental data on GT and isoscalar M1
giant resonances in high-spin isomers. In this work, instead
of experimental data, we compare the results of the sum-rule
approach with those obtained from shell-model calculations
and evaluate the theoretical value of the σσ interaction
strength. We use the same shell-model calculations employed
in Ref. [23] for the 52Fe(Iπ = 12+) and 94Ag(21+) HSI states.
Although the GT transition strength distributions are already
shown, the results for the isoscalar M1 transitions are shown
in this work for the first time.

This paper is organized as follows. In Sec. II, the EWSRs
and NEWSRs for GT and isoscalar M1 transitions from
high-spin isomers are shown. In Sec. III, the relation of the
resonance energies and the spin-isospin interactions is de-
duced. Shell-model calculations for 52Fe and 94Ag high spin
isomers are used to estimate κσ in Sec IV, which is followed
by a discussion and summary in Secs. V and VI, respectively.

II. SUM RULES

A. Gamow-Teller transition

According to Ref. [23], we consider the Gamow-Teller
transition operators, which are given as

Ô±
ν =

∑
α

σν (α)t±(α), (1)

where ν = ±1, 0 and α is the index of nucleons. Here, the
ν = 0 direction of the spin operators is the direction of the to-
tal spin of the high-spin states in their intrinsic frame. The HSI
states considered herein are highly deformed prolate shapes
and the direction of the total spin is along the symmetry axis.

The transition operator with ν changes the quantum number
K (i.e., the projection of the total spin I onto the axis) by
	K = ν.

We evaluate the energy-weighted sum rules for these oper-
ators as

S(1)(σνt±) =
∑

f

(E f − Ei )|〈 f |Ô±
ν |i〉|2, (2)

where i and f are the initial and final states, E f − Ei is the
excitation energy from i to f , and the summation runs over all
the final states. Using the Hamiltonian of the system, H , these
sum rules can be written as

S(1)(σνt±) = 〈i|(Ô±
ν )†[H, Ô±

ν ]|i〉. (3)

Hence

S(1)(σ−1t±) + S(1)(σ+1t±) = 〈i|DCT [H, Ô±
±1]|i〉, (4)

2S(1)(σ0t±) = 〈i|DCT [H, Ô±
0 ]|i〉, (5)

2S(1)(σt±) =
∑

ν

〈i|DCT [H, Ô±
ν ]|i〉, (6)

where DCT [A, B] is the double commutation relation,

DCT [A, B] = [B†, [A, B]]. (7)

Following Ref. [17], we select a simple Hamiltonian [24]
as

H = T + V, (8)

where T is the kinetic energy of each nucleon and can be
ignored because it commutes with the transition operators. V
is taken as a separation interaction model, which is expressed
by

V = 1

2A

∑
α,α′

∑
ξ

κξ Iξ (α, α′) +
∑

α

κlsl (α) · s(α), (9)

where Iξ (α, α′) is the two-body operators for two different
nucleons (α, α′) and is defined as

Îξ (α, α′) = {τ(α) · τ(α′), σ(α) · σ(α′), σ(α) · σ(α′)τ(α)

· τ(α′)}, (10)

and ξ is τ , σ , στ labeling the isospin, spin, and spin-isospin
channels, respectively. The second term in Eq. (9) is the one-
body spin-orbit (ls) potential, and κls represents its strength.
Here, we introduce one-body orbital-angular-momentum l (α)
and spin operators s(α). In the same manner as σ, the l and s
operators each have directions of ν = ±1, 0. Consequently,

S(1)(σ−1t±) + S(1)(σ+1t±) = 1

2A

∑
ξ

κξ

∑
α,α′

〈i|DCT [Iξ (α, α′), Ô±
±1]|i〉 +

∑
α

κls〈i|DCT [l (α) · s(α), Ô±
±1]|i〉, (11)

2S(1)(σ0t±) = 1

2A

∑
ξ

κξ

∑
α,α′

〈i|DCT [Iξ (α, α′), Ô±
0 ]|i〉 +

∑
α

κls〈i|DCT [l (α) · s(α), Ô±
0 ]|i〉, (12)

S(1)(σt±) =
∑

ν

S(1)(σνt±). (13)
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For the one-body part, we find that

〈i|DCT [l (α) · s(α), Ô±
±1]|i〉 = −2〈i|l0(α)s0(α)|i〉, (14)

〈i|DCT [l (α) · s(α), Ô±
0 ]|i〉 = −2〈i|l (α) · s(α) − l0(α)s0(α)|i〉. (15)

To reduce the two-body part to a simpler form, we use two
properties of the double commutators based on symmetry.
First, the two-body isospin interaction part, DCT [Iτ , Ô±

ν ],
vanishes because the initial ground state has the isospin of
zero. Second, the sum of spin, isospin, and isospin-spin double
commutators is canceled out [see Eq. (B2)]. Hence, the exci-
tation energy due to the two-body interaction is zero when the
coupling constants κσ = κτ = κστ . These properties are ex-
plained in Appendix B. Thus, the two-body parts of Eqs. (11)
and (12) are simplified as

1

2A
(κσ − κστ )

∑
α,α′

〈i|DCT [Iσ (α, α′), Ô±
ν ]|i〉. (16)

For ν = ±1, we find [see Eq. (A18)] that

DCT [Iσ (α, α′), Ô±
ν ]

= −{σ(α) · σ(α′) + σ0(α)σ0(α′)}
×{2 − τ(α) · τ(α′) + τ0(α)τ0(α′)}
+1

2
{σ±1(α)σ∓1(α′) − σ∓1(α)σ±1(α′)}

×{τ±(α)τ∓(α′) − τ∓(α)τ±(α′)}. (17)

This equation also holds for the case of α = α′, and the
isospin-dependent terms vanish for the T = 0 initial state.
Consequently, the two-body part is

4
κστ − κσ

A

〈
i
∣∣(S · S + S2

0

)∣∣i〉, (18)

where S is the sum of the spin operators for all the nucleons

S =
∑

α

s(α) =
∑

α

σ(α)/2, (19)

and S0 is the projection onto the z direction. As a result,

S(1)(σ−1t±) + S(1)(σ+1t±) =〈i|DCT
[
H, Ô±

±1

]|i〉
= 4

κστ − κσ

A

〈
i
∣∣S · S + S2

0

∣∣i〉
− 2κlσ 〈i|

∑
α

l0(α)s0(α)|i〉.
(20)

Similarly, for ν = 0,

S(1)(σ0t±) = 4
κστ − κσ

A

〈
i
∣∣S · S − S2

0

∣∣i〉
− 2κlσ 〈i|

∑
α

{l (α) · s(α) − l0(α)s0(α)}|i〉.
(21)

We also find that

S(1)(σt±) =
∑

ν

S(1)(σνt±)8
κστ − κσ

A
〈i|S · S|i〉

− 2κlσ 〈i|
∑

α

l (α) · s(α)|i〉.
(22)

Now we evaluate the NEWSR, which is defined as

S(0)(σνt±) =
∑

f

|〈 f |Ô±
ν |i〉|2. (23)

According to Ref. [23], in the ν = ±1 channels, there is a
relation that

S(0)(σ−1t±) − S(0)(σ+1t±) = 2〈i|S0|i〉. (24)

This relation corresponds to the so-called Ikeda’s sum rule for
GT transitions from N > Z nuclei [6].

It is interesting to represent NEWSRs using spin operators,
similar to the handling in Ref. [31]:

S(0)(σ−1t±) + S(0)(σ+1t±) = 2〈i|(Sn − Sp)2 − (
Sn

0 − Sp
0

)2|i〉,
(25)

S(0)(σt±) = 2〈i|(Sn − Sp)2|i〉, (26)

S(0)(σ0t±) = 2〈i|(Sn
0 − Sp

0

)2|i〉. (27)

Here Sn and Sp are the total spin operators for neutrons and
protons, respectively. In Eq. (19), the nucleon index α runs
over only either neutrons or protons. Thus, NEWSRs reflect
the spin and isospin structures of the initial states. Details
of the derivation of these three equations are described in
Appendix C.

B. Isoscalar M1 transition

For isoscalar M1 transitions, we consider the transition
operator

Ôν =
∑

α

σν (α). (28)

The M1 transition operator commutes with the two-body
operators of Iξ . Therefore,

S(1)(σ−1) + S(1)(σ+1) = −4κls〈i|
∑

α

l0(α)s0(α)|i〉, (29)

S(1)(σ0) = −4κls〈i|
∑

α

{l · s − l0(α)s0(α)}|i〉,

(30)

S(1)(σ ) = −4κls〈i|
∑

α

l (α)s(α)|i〉. (31)

The NEWSRs have properties of

S(0)(σ−1) − S(0)(σ+1) = 4〈i|S0|i〉, (32)
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TABLE I. α and β coefficients.

Mode α β

Total 〈i|S2|i〉/〈i|(Sn − Sp)2|i〉 〈i|S2|i〉/〈i|(Sn − Sp)2|i〉
ν = 0 〈i|S2

0 |i〉/〈i|(Sn
0 − Sp

0 )2|i〉 〈i|S2 − S2
0 |i〉/2〈i|(Sn

0 − Sp
0 )2|i〉

|ν| = 1 〈i|S2 − S2
0 |i〉/〈i|(Sn − Sp)2 − (Sn

0 − Sp
0 )2|i〉 〈i|S2 + S2

0 |i〉/2〈i|(Sn − Sp)2 − (Sn
0 − Sp

0 )2|i〉

S(0)(σ−1) + S(0)(σ+1) = 4
〈
i
∣∣S2 − S2

0

∣∣i〉, (33)

S(0)(σ) = 4〈i|S2|i〉, (34)

S(0)(σ0) = 4
〈
i
∣∣S2

0

∣∣i〉. (35)

Unlike the case of the GT transition, the NEWSRs reflect
only the spin structures of the initial states. Using Eqs. (32)
and (33), it can be shown that

S(0)(σ+1) = 2
〈
i
∣∣S2 − (

S2
0 + S0

)∣∣i〉. (36)

Next we consider a special case where the transitions in the
	K = +1 direction are completely blocked due to the excess
of the spin-up liquid with respect to the spin-down liquid, as

discussed in Ref. [23]. Using Eq. (36) gives〈
i
∣∣S2

∣∣i〉 = 〈
i
∣∣(S2

0 + S0
)∣∣i〉. (37)

This means that the total spin is aligned with the z direction.
Additionally,〈

i
∣∣S2 − S2

0

∣∣i〉 = 〈
i
∣∣(Sn − Sp

)2 − (
Sn

0 − Sp
0

)2∣∣i〉 (38)

because 〈
i
∣∣Sn · Sp − Sn

0Sp
0

∣∣i〉 = 〈
i
∣∣Sn

+1Sp
−1

∣∣i〉
= 0.

(39)

C. Relation between the Gamow-Teller
and isoscalar M1 transitions

Combining the GT and M1 EWSs can cancel the effect of
the one-body spin-orbit part of the Hamiltonian as

S(1)(σ−1t±) + S(1)(σ+1t±) − 1

2

{
S(1)(σ−1) + S(1)(σ+1)

} = 4
κστ − κσ

A

〈
i
∣∣S2 + S2

0

∣∣i〉,
(40)

S(1)(σ0t±) − 1

2
S(1)(σ0) = 4

κστ − κσ

A

〈
i
∣∣S2 − S2

0

∣∣i〉,
(41)

S(1)(σt±) − 1

2
S(1)(σ) = 8

κστ − κσ

A
〈i|S2|i〉. (42)

The right-hand sides of the above equations can be written as
combinations of the NEWSRs of the M1 transition. Thus, the
κστ − κσ values can be derived from the sum-rule values.

III. AVERAGE EXCITATION ENERGIES OF
GAMOW-TELLER AND M1 TRANSITIONS

We define the average excitation energies for the GT tran-
sition using the sum rules as

E total
GT = S(1)(σt±)/S(0)(σt±), (43)

E ν=0
GT = S(1)(σ0t±)/S(0)(σ0t±), (44)

E |ν|=1
GT = S(1)(σ−1t±) + S(1)(σ+1t±)

S(0)(σ−1t±) + S(0)(σ+1t±)
. (45)

Similarly, the average excitation energies for the M1 transi-
tion, E total

M1 , E ν=0
M1 , and E |ν|=1

M1 are defined.

The above-defined GT and M1 average energies are related
as

Emode
GT − αEmode

M1 = 4
κστ − κσ

A
β, (46)

where the coefficients α and β depend on the mode repre-
sented by the superscript “mode” (i.e., total, ν = 0, or |ν| = 1)
and are summarized in Table I.

In the special case where the σ+1 transitions are fully
blocked, for the |ν| = 1 channel,

α = 1, (47)

β = 〈i|2S2
0 + S0|i〉

〈i|2S0|i〉 , (48)

using Eqs. (37) and (38). If S0 is a good quantum number of
the Hamiltonian and large,

β ∼ 〈i|S0|i〉. (49)
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FIG. 1. (top) Gamow-Teller transition strength distributions from
the 52Fe(12+) initial state calculated by the shell model in the full
p f -shell-model space with the GXPF1J [32] effective interaction.
Transition strengths are averaged by a Lorentzian weighting function
with a width of 0.5 MeV. The excitation energy is defined from the
initial state. The quenching factor is not adapted. (bottom) Same as
the top but for the isoscalar M1 transitions from the 52Fe(12+) state.

Then the average energy relation is rewritten as

E ν=−1
GT − E ν=−1

M1 = 4
κστ − κσ

A
〈i|S0|i〉. (50)

This relation is analogous to the average energy relation de-
rived in Ref. [17] for N > Z 0+ nuclei.

IV. GAMOW-TELLER AND ISOSCALAR M1
TRANSITIONS FROM 52Fe AND 94Ag

Figures 1 and 2 show the strength distributions for the GT
and M1 transitions from the 52Fe(12+) and 94Ag(21+) states,
respectively. The calculated transition strengths are averaged
by a Lorentzian weighting function with a width of 0.5 MeV
and the excitation energy is defined from the HSI states.

As discussed in Ref. [23], the GT transition-strength distri-
butions exhibit narrow bumps around 10 MeV. Approximately
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FIG. 2. Same as Fig. 1 but for the transitions from the
94Ag(21+) initial state. In the shell-model calculation, the
(2p1/2, 1g9/2, 1g7/2, 2d5/2 ) shell-model space and a modified
PIGD5G3 [33] interaction are employed.

70% of the total strengths are concentrated in these bumps,
which means the collectivity is strong. The thick solid,
dashed, and dotted curves are components corresponding to
transitions from the initial state with a total spin of I to the
final states with I ′ = I − 1, I , I + 1, respectively.

The M1 transition-strength distributions have bumps
around 7 MeV. The large peaks at 0 MeV correspond
to the elastic channel (i.e., the transitions between the
HSI states in the I ′ = I channel). The energy split be-
tween 0 MeV and the bumps around 7 MeV corre-
spond to the spin-orbit splittings. The strengths are frag-
mented and the collectivity behind the M1 transitions is
weak.

In the shell-model calculations, normal GT and M1 tran-
sition operators σt± and σ are employed. The transition
strengths are given for I ′, BI ′ . On the other hand, the tran-
sition operators used in our sum-rule approach are σνt±
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TABLE II. Sum-rule values for the GT and M1 transitions from the 52Fe(12+) HSI state.

Total I ′ = I − 1 I ′ = I I ′ = I + 1 	K = −1 	K = 0 	K = +1

GT S0 9.024 4.470 3.112 1.442 4.859 2.966 1.199
S1 (MeV) 95.740 46.708 34.864 14.169 50.770 33.538 11.433

M1 S0 30.563 8.539 18.545 3.479 9.282 19.317 1.964
S1 (MeV) 136.493 58.718 52.393 25.382 63.824 51.441 21.228

and σν . The transition strengths for each 	K = ν, B	K , are
derived as

B	K=−1 = 2I + 1

2I − 1
BI ′=I−1, (51)

B	K=0 = I + 1

I
BI ′=I − 2I + 1

I (2I − 1)
BI ′=I−1, (52)

B	K=+1 = BI ′=I+1 − 1

I
BI ′=I + 1

I (2I − 1)
BI ′=I−1. (53)

Tables II and III summarize the sum-rule values obtained.
Among 	K = −1, 0, and 1, the 	K = +1 component has

the smallest amount of strength because transitions in the σ+1

direction are blocked, as discussed in Ref. [23]. However,
the blocking effect is not perfect and 	K = +1 has a finite
amount. This is because the total spin operator is not a good
quantum number of the Hamiltonian and the relation 〈S2〉 =
〈S2

0 + S0〉 cannot be realized in Eq. (36).
Using the properties of NEWSRs [see Eqs. (24)–(27) and

(32)–(35)], we derive the expectation values of the spin opera-
tors, which are summarized in Table IV. Here, the expectation
values for the spin operator S0 are obtained from the GT
and M1 transition strengths independently, but have the same
value. This means that the projection of the strengths onto 	K
is exact.

Table V summarizes the α and β coefficients with the
average excitation energies. Using these values and Eq. (46),
several κστ − κσ values are deduced and presented in Table V.
In principle, all the modes of ν = ±1 and 0 should give the
same κστ − κσ value and, if the nuclear matter property is
the same, the value should be similar between the two nuclei.
However, the ν = 0 mode gives relatively larger values than
the |ν| = 1 mode. Moreover, the results for the ν = 0 mode
differ drastically between the 52Fe and 94Ag cases. This is
because this mode is insensitive to κστ − κσ . In Eq. (46), α

is large but β is small. Hence, κστ − κσ is related to the M1
average energy rather than the GT energy, although the M1
transition itself does not reflect the strengths of these spin-
isospin interactions. Thus, the κστ − κσ values given from the
ν = 0 mode have large uncertainties. On the other hand, the

results obtained from the |ν| = 1 mode agree well between
the two nuclei and the obtained values are 20.5 and 20.4 for
52Fe and 94Ag, respectively. The results for the “total” mode
are close to those for the |ν| = 1 mode but are less reliable,
due to the mixing of the ν = 0 mode. Consequently, our
recommended values are the |ν| = 1 results (i.e., κστ − κσ =
20.4 − 20.5).

V. DISCUSSIONS

Next, we deduce a κσ value by using the κστ − κσ value of
20.4 − 20.5 with a κστ value taken from another work. The
κστ values have been reported in several works [6,17–21]. All
the values are around 20 MeV. In any cases, the present κστ −
κσ values are slightly smaller than κστ by a few MeV. This
means that κσ is a few 10% smaller than κστ and has the same
sign or a very small negative value. Taking the κστ value of 23
MeV from Ref. [6], we estimate κσ as 2.5 MeV.

Additionally, κστ − κσ can be derived from the isospin
doublets in 12C (i.e., T = 0 and T = 1 1+ states at 12.7 and
15.1 MeV, respectively). Employing the same Hamiltonian
and the Tamm-Dancoff approximation, one can show that

E (T = 1, 1+) − E (T = 0, 1+) = 2

(
4

3

)2
κστ − κσ

A
. (54)

Here, we consider the excitations from the ground state to
the two levels occurring within only the 1p-1h configuration
and the p shell. The fraction of 4/3 corresponds to the transi-
tion matrix elements. The obtained κστ − κσ value is 8 MeV.
This value gives a lower limit of κστ − κσ . In the present
approximation, the matrix element is overestimated because
the strength fragmentation is not considered. Therefore, the
κστ − κσ value, 20.4 − 20.5, is consistent with the known
energy levels of the 12C T = 0 and T = 1 1+ states.

Microscopically, the spin-isospin interactions represented
by κs originate from the short-range parts of the NN interac-
tion in a nuclear medium. In nuclear matter, these short-range
parts control the onset of pion condensation [9]. κσ can
be translated into the so-called Landau-Migdal parameter g0

TABLE III. Sum-rule values for the GT and M1 transitions from the 94Ag(21+) HSI state.

Total I ′ = I − 1 I ′ = I I ′ = I + 1 	K = −1 	K = 0 	K = +1

GT S0 10.924 5.435 3.885 1.604 5.700 3.799 1.425
S1 (MeV) 107.444 53.006 39.901 14.543 55.586 39.154 12.704

M1 S0 38.932 10.303 25.186 3.443 10.806 25.870 2.256
S1 (MeV) 171.419 79.504 63.856 28.059 83.382 62.926 25.111
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TABLE IV. Expectation values of spin operators for the 52Fe(12+) and 94Ag(21+) HSI state.

Nuclide 〈S2〉 〈
S2

0

〉 〈S0〉M1 〈(Sn − Sp)2〉 〈(
Sn

0 − Sp
0

)2〉 〈S0〉GT

52Fe(12+) 7.641 4.829 1.829 4.512 1.483 1.830
94Ag(21+) 9.733 6.468 2.137 5.462 1.899 2.137

[8,9,26] using the following relation:

κσ = g0

(
f 2
π

m2
π

ρ0γ

)
, (55)

where ρ0 is the nuclear matter density (ρ0 = 0.17 fm−3),
f 2
π /m2

π = 392 MeV fm3, and γ is the attenuation factor due
to the surface effect. Here the γ value is set to 0.5 [18].
The present value of κσ = 2.5 MeV gives g0 = 0.075. We
derived this relation according to Ref. [18] [see Eqs. (29),
(30), (43), and (44) therein]. We note that the definitions of
κs in Ref. [18] differ from ours by a factor of mass number
A. The present value is close to zero and much smaller than
the prediction based on the framework of the Brueckner the-
ory, which includes three-body forces, ≈0.41 [34]. Here we
divided their value of G0 ≈ 0.82 by a factor of two according
to the difference of the definition of the Landau-Migdal pa-
rameters. Our value of g0 is consistent with that in Ref. [28],
g = 0.05 ± 0.10. Here we take into account the difference of
the normalization factor C0 [8]: Our normalization factor is
f 2
π

m2
π

= 392 MeV fm3 as seen in Eq. (55), while their normal-

ization factor is π2

M pF
= 300 MeV fm3. In their definition, our

g0 value corresponds to g = 0.098.
Next we considered uncertainties in our results. One is

that the Hamiltonian, which was assumed to be the starting
point of the sum-rule approach, is very simple. In studies
of N > Z 0+ nuclei, the energy difference between GT and
Fermi transitions has large fluctuations. This is because the
simple form of the Hamiltonian does not consider the nuclear
structures of individual nuclei. Instead, the average of indi-
vidual nuclei follow the systematics based on the sum-rule
approach [21]. Similarly, for HSI states, such fluctuations may
be averaged through systematics.

The other uncertainty is the shell-model interactions. These
interactions, GXPF1J and PIGD5G3, fit experimental data. In
both cases, the data on the σσ interaction are scarce, although
the energy levels of the high-spin isomers are reproduced [23].
Therefore, it is also possible that the spin residual interactions
in the calculations differ from reality. Systematic data on GTR
in high-spin isomers are required to clarify these uncertainties.

VI. SUMMARY

We derive a new energy-weighted sum rule for the GT
and isoscalar M1 transitions from high-spin isomers in N =
Z nuclei. The average energy derived from the sum rule is
compared with the shell-model calculation performed with
modern effective interactions in a large model space. From the
comparison, κστ − κσ is derived as 20.4–20.5 MeV. Assuming
a κστ value of 23 MeV, the strength of the spin residual
interaction κσ is deduced as 2.5 MeV. The present approach
can evaluate the short-range part of the spin residual inter-
action, which is important to describe the onset of the pion
condensation in nuclear matter.
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APPENDIX A: DOUBLE COMMUTATORS

In this section, the double commutator relations used in
the text are derived. For this purpose, instead of the present
transition operator of Eq. (1), we introduce operators defined
as

Ô(θ,φ) =
∑

α

θ · σ(α)φ · τ(α), (A1)

where θ and φ are three-dimensional vectors. We define

DCTξ (θ′,φ′, θ,φ) = [Ô†(θ′,φ′), [Îξ , Ô(θ,φ)]]. (A2)

Then

DCT [Îξ , Ô±
ν ] = ∇−ν

θ′ ∇ν
θ ∇∓

φ′∇±
φ DCTξ (θ′,φ′, θ,φ). (A3)

Here ∇ν
θ s are the derivative operators with respect to θ and are

defined as

∇±1
θ = 1√

2

(
d

dθx
± i

d

dθy

)
, (A4)

TABLE V. Average excitation energies, α and β coefficients, and strengths of spin-isospin interactions.

Nuclide Mode Emode
GT (MeV) Emode

M1 (MeV) α β κστ − κσ (MeV)
52Fe(12+) Total 10.609 4.466 1.693 1.693 23.4

ν = 0 11.306 2.663 3.256 0.948 36.1
|ν| = 1 10.268 7.563 0.928 2.058 20.5

94Ag(21+) Total 9.836 4.403 1.782 1.782 26.2
ν = 0 10.306 2.432 3.405 0.860 55.3
|ν| = 1 9.584 8.306 0.917 2.274 20.4
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TABLE VI. Summary of the derivative forms of the S and T
functions for the spin part. First column indicates derivative operators
D̂. Here, the indexes of nucleons, α and α′, are omitted. In this table,
the first operator has an index of α and the second α′. For the isospin
channel, the spin operator σ can be replaced with τ and the variables
θ and θ ′ with φ and φ′.

D̂ D̂Seven
σσ D̂T even

σσ D̂Sodd
σσ

∇±1
θ′ ∇∓1

θ
σ·σ+σ0σ0

2
2−σ·σ+σ0 ·σ0

2
σ±1σ∓1−σ∓1σ±1

2

∇0
θ′∇0

θ σ · σ − σ0σ0 1 − σ0 · σ0 0

∇θ′∇θ 2σ · σ 3 − σ · σ 0

and

∇0
θ = d

dθ0
, (A5)

while ∇±
φ s are derivative operators with respect to φ and are

defined as

∇±
φ = 1

2

(
d

dφx
± i

d

dφy

)
, (A6)

and

∇z
φ = d

dφz
. (A7)

First we derive DCTστ . We find that

DCTστ (θ′,φ′, θ,φ) = 8Seven
σσ (θ′, θ)T even

ττ (φ′,φ)

+ 8Seven
ττ (φ′,φ)T even

σσ (θ′, θ)

+ 16Sodd
σσ (θ′, θ)Sodd

ττ (φ′,φ)

− 8Sodd
σσ (θ′, θ)U odd

τ (φ′,φ)

− 8Sodd
ττ (φ′,φ)U odd

σ (θ′, θ)

− 8U even
σ+τ (θ′, θ,φ′,φ). (A8)

Except for the last term, each term is the product of a function
of (θ′, θ) and that of (φ′,φ). Each function includes either spin
or isospin operators labeled with the subscripts of σσ or ττ .
Due to the separation of the variables and operators, once we
have the derivative of each function, DCT [Îσσ , Ô±

ν ] can be
easily calculated. The superscripts of the functions indicate
whether the functions are even or odd with respect to the
exchange of two nucleons (i.e., the exchange between α and
α′). Each product is even.

The definitions of the functions are as follows: Seven
σσ , T even

σσ ,
and Sodd

σσ are defined using products of σ(α) and σ(α′) matrices
as

Seven
σσ (θ′, θ) = θ′ · θσ(α) · σ(α′) − θ′ · σ(α)θ · σ(α′) + θ · σ(α)θ′ · σ(α′)

2
, (A9)

T even
σσ (θ′, θ) = θ′ · θ − θ′ · σ(α)θ · σ(α′) + θ · σ(α)θ′ · σ(α′)

2
, (A10)

Sodd
σσ (θ′, θ) = θ′ · σ(α)θ · σ(α′) − θ · σ(α)θ′ · σ(α′)

2
. (A11)

Seven
ττ , T even

ττ , and Sodd
ττ have the same forms as Seven

σσ , T even
σσ , and

Sodd
σσ , respectively, but the variables of (θ′, θ) and the operators

(σ(α), σ(α′)) are replaced with (φ′,φ) and (τ(α), τ(α′)).
U odd

σ , U odd
τ , and U even

σ+τ are defined as

U odd
σ = i(θ′ × θ) · (σ(α) − σ(α′)), (A12)

U odd
τ = i(φ′ × φ) · (τ(α) − τ(α′)), (A13)

U even
σ+τ = (θ′ × θ) · σ(α)(φ′ × φ) · τ(α′)

+ (φ′ × φ) · τ(α)(θ′ × θ) · σ(α′). (A14)

These include only first-order terms of spin-isospin matrices.
Using the same functions, DCTσ and DCTτ are derived as

DCTσ (θ′,φ′, θ,φ) = −8Seven
σσ (θ′, θ)T even

ττ (φ′,φ)

−8Sodd
σσ (θ′, θ)Sodd

ττ (φ′,φ)

+8Sodd
σσ (θ′, θ)U odd

τ (φ′,φ)

+4U even
σ+τ (θ′, θ,φ′,φ), (A15)

DCTτ (θ′,φ′, θ,φ) = −8Seven
ττ (φ′,φ)T even

σσ (θ′, θ)

− 8Sodd
σσ (θ′, θ)Sodd

ττ (φ′,φ)

+ 8Sodd
ττ (φ′,φ)U odd

σ (θ′, θ)

+ 4U even
σ+τ (θ′, θ,φ′,φ). (A16)

Next we derive DCT [Îi, Ô±
ν ] using Eq. (A3). It is clear that

∇−ν

θ′ ∇ν
θ U odd

σ (θ′, θ) = ∇∓
φ′∇±

φ U odd
τ (τ ′, τ )

= ∇−ν

θ′ ∇ν
θ ∇∓

φ′∇±
φ U even

σ+τ (θ′, θ,φ′,φ)

= 0. (A17)

This is because the cross products, θ′ × θ and φ′ × φ in
these functions vanish with the derivatives. As summarized in
Tables VI and VII, only the derivatives of Seven

σσ , T even
σσ , and Sodd

σσ

and its isospin counterparts remain.

TABLE VII. Same as Table VI but for the isospin part.

D̂ D̂Seven
ττ D̂T even

ττ D̂Sodd
ττ

∇±
φ′∇∓

φ
τ·τ+τ0τ0

4
2−τ·τ+τ0 ·τ0

4
τ±τ∓−τ∓τ±

8

∇0
φ′∇0

φ
τ·τ−τ0τ0

4
1−τ0 ·τ0

4 0

∇φ′∇φ
τ·τ
2

3−τ·τ
4 0
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For the operator Ô±
ν , using Eq. (A3) and Tables VI and VII

gives

DCT [Iσ (α, α′), Ô±
ν ] = −8∇−ν

θ′ ∇ν
θ Seven

σσ ∇∓
φ′∇±

φ T even
ττ

−8∇−ν

θ′ ∇ν
θ Sodd

σσ ∇∓
φ′∇±

φ Sodd
ττ

= −{σ(α) · σ(α′) + σ0(α)σ0(α′)}
×{2 − τ(α) · τ(α′) + τ0(α)τ0(α′)}
−1

2
{σ±1(α)σ∓1(α′) − σ∓1(α)σ±1(α′)}

×{τ±(α)τ∓(α′) − τ∓(α)τ±(α′)}.
(A18)

APPENDIX B: PROPERTIES OF DOUBLE
COMMUTATORS

In this section, we show three properties of the double
commutators used in the text.

First, from Eqs. (A8), (A15), and (A16),

DCTσ + DCTτ + DCTστ = 0. (B1)

Hence,

∑
ξ

DCT [Îξ , Ô±
ν ] = 0. (B2)

Second,

−16∇−1
θ′ ∇+1

θ ∇∓
φ′∇±

φ Sodd
σσ Sodd

ττ

= DCT [Îσ , Ô±
+1] − DCT [Îσ , Ô±

−1], (B3)

and

−16∇−ν

θ′ ∇ν
θ ∇−

φ′∇+
φ Sodd

σσ Sodd
ττ

= DCT [Îτ , Ô+
ν ] − DCT [Îτ , Ô−

ν ]. (B4)

Due to spin and isospin symmetries, the expectation values of
the right-hand sides of Eqs. (B3) and (B4) should equal zero
for states with a total spin of zero and those with a total isospin
of zero. Therefore, these odd terms do not contribute to the
case where either the total spin or the total isospin of the initial
state is zero. In other words, they have to be considered in a
system with both isospin and spin excesses such as neutron-
rich high-spin isomeric states.

Last, one can show that

〈i|DCTσ |i〉 = 0 (B5)

and

〈i|DCTτ |i〉 = 0 (B6)

for an initial state with a total spin of zero and that with a total
isospin of zero, respectively.

APPENDIX C: EXPRESSION OF GAMOW-TELLER
NON-ENERGY-WEIGHTED SUM RULE

WITH TOTAL SPIN OPERATORS

In this section, we derive Eqs. (25)–(27). For simplicity, we
show Eq. (27), from which the other two equations can easily
be derived by taking into account the contributions from the x
and y directions in the same manner as z (i.e., σ0).

First we evaluate the left-hand side of Eq. (27) as

S(0)(σ0t∓) = 〈i|
∑

α

t±(α)t∓(α)|i〉

+ 〈i|
∑
α �=β

σ0(α)t±(α)σ0(β )t∓(β )|i〉. (C1)

Here the first term on the left-hand side is the transition
amplitude where the transition operator acts on the same nu-
cleon (i.e., diagonal part). In this term, the square of the σ0

operator is replaced with unity. The second term corresponds
to the nondiagonal part where two different nucleons are
involved.

Here, as the initial state |i〉, we consider a Slater determi-
nant

|i〉 = A|abcd . . .〉, (C2)

where |a〉, |b〉, etc. are single-particle-orbit wave functions and
A is the antisymmetrization operator.

The diagonal part is evaluated as

∑
a

〈a|
(

1

2
± tz

)
|a〉, (C3)

where the left-hand side is evaluated as N and Z for the σ0t−
and σ0t+ operators, respectively.

The nondiagonal part is evaluated as∑
a �=b

〈a|σ0t±|a〉〈b|σ0t∓|b〉 −
∑
a �=b

〈a|σ0t±|b〉〈b|σ0t∓|a〉

= −
∑

a ∈ p(n)
b ∈ n(p)

〈a|σ0t±|b〉〈b|σ0t∓|a〉

= −
∑
jν , j′π

〈 jν |σ0| j′π 〉〈 j′π |σ0| jν〉. (C4)

Here, the first and the other terms in the first line are due
to the antisymmetrization of the wave functions, i.e., the di-
rect and exchange terms, respectively. Because of the isospin
lower and upper operators, the direct term and the exchange
term for nucleon pairs with the same isospin direction (i.e.,
proton-proton and neutron-neutron pairs) vanish, as shown in
the second line, where the summation runs over all the proton
(neutron) wave functions for the single-particle orbit a in the
Slater determinant and over all the neutron (proton) wave
functions for b, in the case of the σ0t− (σ0t+) operator. The
last line is same as the second line but is expressed with the
single-particle-orbit wave function for neutrons and protons,
| jν〉 and | jπ 〉, respectively.
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Combining the above results, we find that

S(0) =
{

N
Z

}
−

∑
jν , j′π

〈 jν |σ0| j′π 〉〈 j′π |σ0| jν〉, (C5)

where the first term is N and Z for the cases of the σ0t− and
σ0t+ transition operators, respectively.

Next we evaluate the right-hand side of Eq. (27). The
expectation values of the total spin operators are evaluated as

〈
i
∣∣(Sn

0

)2∣∣i〉 = 1

4
N + 1

4

∑
jν , jν′

〈 jν |σ0| jν〉〈 jν ′ |σ0| jν ′ 〉

−1

4

∑
jν , jν′

〈 jν |σ0| jν ′ 〉〈 jν ′ |σ0| jν〉, (C6)

〈
i
∣∣(Sp

0

)2∣∣i〉 = 1

4
Z + 1

4

∑
jπ , jπ ′

〈 jπ |σ0| jπ 〉〈 jπ ′ |σ0| jπ ′ 〉

− 1

4

∑
jπ , jπ ′

〈 jπ |σ0| jπ ′ 〉〈 jπ ′ |σ0| jπ 〉, (C7)

〈
i
∣∣Sn

0Sp
0

∣∣i〉 = 1

4

∑
jπ , jν

〈 jν |σ0| jν〉〈 jπ |σ0| jπ 〉. (C8)

Using these properties, the right-hand side of Eq. (27) is

2
〈
i
∣∣(Sn

0 − Sp
0

)2∣∣i〉 = 1

2
(N + Z )

−1

2

∑
jν , jν′

〈 jν |σ0| jν ′ 〉〈 jν ′ |σ0| jν〉

−1

2

∑
jπ , jπ ′

〈 jπ |σ0| jπ ′ 〉〈 jπ ′ |σ0| jπ 〉

+1

2

(∑
jν

〈 jν |σ0| jν〉 −
∑

jπ

〈 jπ |σ0| jπ 〉
)2

.

(C9)

Comparing Eqs. (C5) and (C9) for T = 0 initial states
gives

S(0) = 2
〈
i
∣∣(Sn

0 − Sp
0

)2∣∣i〉, (C10)

because the last term of Eq. (C9) vanishes and the other terms
become the same as the right-hand side of Eq. (C5). Here
we are using the rotational symmetry in the isospin space
of T = 0 states. We note that the same result can be easily
obtained also from the NEWSR for στz transition operator de-
rived in Ref. [31], after taking into account the isospin-spatial
rotational symmetry between the τ±1 and τz operators.
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