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Background: Microscopic description of spontaneous fission is one of the most challenging subjects in nuclear
physics. It is necessary to evaluate the collective potential and the collective inertia along a fission path for a
description of quantum tunneling in spontaneous or low-energy fission. In past studies of the fission dynamics
based on nuclear energy density functional (EDF) theory, the collective inertia has been evaluated with the
cranking approximation, which neglects dynamical residual effects.
Purpose: The purpose is to provide a reliable and efficient method to include dynamical residual effects in the
collective inertia for fission dynamics.
Methods: We use the local quasiparticle random-phase approximation (LQRPA) to evaluate the collective
inertia along a fission path obtained by the constrained Hartree-Fock-Bogoliubov method with the Skyrme EDF.
The finite-amplitude method (FAM) with a contour integration technique enables us to efficiently compute the
collective inertia in a large model space.
Results: We evaluate the FAM-QRPA collective inertia along a symmetric fission path in 240Pu and 256Fm. The
FAM-QRPA inertia is significantly larger than the one of the cranking approximation and shows pronounced
peaks around the ground state and the fission isomer. This is due to dynamical residual effects.
Conclusions: To describe the spontaneous or low-energy fission, we provide a reliable and efficient method to
construct the collective inertia with dynamical residual effects that have been neglected in most of EDF-based
works in the past. We show the importance of dynamical residual effects to the collective inertia. This work will
be a starting point for a systematic study of fission dynamics in heavy and superheavy nuclei to microscopically
describe the nuclear large-amplitude collective motions.
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I. INTRODUCTION

Nuclear fission [1–3] plays an important role in various
phenomena such as synthesis of superheavy elements [4,5]
and r-process nucleosynthesis in the universe [6–8]. The fis-
sion governs the existence and decay property of superheavy
nuclei. Various types of fission, such as neutron-induced fis-
sion, spontaneous fission, and β-delayed fission that involve
neutron-rich heavy and superheavy nuclei, are important in
expected environment in the r-process.

Theoretically, a microscopic description of large-amplitude
collective motions, such as nuclear fission and fusion, is one
of the challenging subjects in quantum many-body physics.
Of particular interest is quantum many-body tunneling for
spontaneous or low-energy fission and subbarrier fusion of
complex nuclei.

The most promising candidate for the microscopic ap-
proach is the self-consistent nuclear energy density functional
(EDF) theory [9,10]. It is well established that the nuclear
EDF gives a good description of ground-state properties of
nuclei in the whole nuclear chart. The EDF approaches to
the spontaneous fission have used a semiclassical description
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with the Wenzel-Kramers-Brillouin (WKB) approximation
for quantum tunneling. These studies show how the result
depends on the choice of relevant collective variables, the
collective potential energy, and the collective inertia entering
the action integral in the WKB approximation. The potential
energy has been calculated by the Hartree-Fock-Bogoliubov
method with constraints on the collective variables. On the
other hand, the collective inertia used in the previous EDF-
based works [11–15] is insufficient in the following respect:
First of all, the previous works employ the so-called cranking
approximation to the adiabatic time-dependent Hartree-Fock-
Bogoliubov (ATDHFB) method [16] to evaluate the collective
inertia. The cranking approximation neglects dynamical resid-
ual effects, especially the time-odd terms of the EDF. This
gives a big drawback, namely, the violation of the (local)
Galilean symmetry, which leads to the incorrect total mass
for the translational motion [10,17]. The rotational moments
of inertia of deformed nuclei are not properly given in the
cranking approximation [18]. In addition, the collective inertia
of the cranking approximation significantly deviates from the
one including the dynamical residual effects [19]. Irrespective
of such drawbacks, because of its simplicity, the cranking
approximation has been widely used in evaluating collective
inertia not only for fission dynamics but also for the collec-
tive Hamiltonian method [20–24]. It should be noted that the
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enhancement factors of 1.2–1.4 are often adopted to correct
the missing residual effect.

An alternative method to ATDHFB for describing large-
amplitude collective motions has been developed, called
the adiabatic self-consistent collective coordinate (ASCC)
method [25]. Based on the ASCC method, an efficient and
feasible method to construct the collective Hamiltonian has
been proposed [26]. In this method, the collective path
(subspace) is determined by the constrained HFB (CHFB)
calculation, while the collective inertia (the vibrational mass
in the vibrational kinetic Hamiltonian) is determined by local
normal modes built on CHFB states. Local normal modes are
obtained by solving local quasiparticle random-phase approx-
imation (LQRPA) equations. Dynamical residual effects with
time-odd components are self-consistently included in the
collective inertia by the LQRPA. This method, called CHFB +
LQRPA, has been applied to constructing a five-dimensional
quadrupole collective Hamiltonian for triaxial shapes with the
pairing-plus-quadrupole (P + Q) Hamiltonian [26–29], a hy-
brid model of the P + Q Hamiltonian and covariant EDF [30],
and three-dimensional quadrupole collective Hamiltonian for
axially symmetric shapes with the Skyrme EDF [31]. Those
works have shown the importance of including dynamical
residual effects with time-odd components on the description
of large-amplitude collective motion.

Despite much evidence for the importance of dynami-
cal residual effects, no practical application based on the
ATDHFB method takes into account residual effects in the
calculation of the collective inertia. The reason is that it
requires huge numerical computations to apply directly the
ATDHFB (or LQRPA) formulas to the collective inertia in
realistic cases, due to the size of the matrices treated with
modern EDFs.

A method to efficiently solve the QRPA equations based
on linear-response theory has been developed for the EDF,
called the finite-amplitude method (FAM) [32]. In the FAM,
response functions to an external one-body field can be ob-
tained only with one-body induced densities and fields with
an iterative scheme. The FAM requires matrices with the size
of approximately N × N , while the QRPA equation requires
those with the size ≈N2 × N2, where N represents the number
of single-particle basis states. N may exceed 103 when, for
example, 20 major shells in the harmonic-oscillator basis are
used in solving deformed HFB equations. Thus, the compu-
tational cost of the FAM is significantly lower than that of
QRPA. As an alternative way of solving the QRPA equations,
the FAM has been employed in various applications [33–46].

The standard FAM formalism has been extended to the one
in terms of the momentum–coordinate (PQ) representation
[47] to treat zero-energy modes of QRPA solutions known
as spurious modes or Nambu–Goldstone (NG) modes [48,49]
associated with spontaneous symmetry breaking of the mean
field. A general method to calculate the inertia of the NG
modes was also given [47], which was applied to pairing
rotation [50,51] and to spatial rotation of axially deformed
[52] and of triaxially deformed nuclei [53]. It is important to
note that this formulation can treat imaginary solutions of the
QRPA that may appear in the LQRPA at nonequilibrium HFB
states obtained by the CHFB calculations.

The main aim of this paper is to propose a new method
to efficiently evaluate the collective inertia used in the WKB
approximation for spontaneous fission and in the vibrational
kinetic terms in the collective Hamiltonian method. The
method is based on the CHFB + LQRPA with the Skyrme
EDF. We employ the PQ representation of the FAM to ef-
ficiently solve the LQRPA equations. We extend a contour
integration approach of the FAM proposed in Ref. [38] to
compute the collective inertia associated with the most col-
lective local normal mode in the LQRPA.

This paper is organized as follows. Section II briefly
summarizes the formulations of the collective inertia in ATD-
HFB with the cranking approximation and in the LQRPA. In
Sec. III, we explain the formulation of the CHFB + LQRPA
with the FAM to calculate the collective inertia. In Sec. IV,
we present the results of the collective inertia along a mass-
symmetric fission path in 240Pu and 256Fm and compare our
results with those of the cranking approximation. Conclusions
are given in Sec. V.

II. COLLECTIVE INERTIA WITH ENERGY
DENSITY FUNCTIONAL

A. Adiabatic time-dependent Hartree-Fock-Bogoliubov method

We give a brief explanation for the collective inertia in
ATDHFB. For details, we refer to Refs. [11,15,16,19].

In ATDHFB, the collective motion of the system is as-
sumed to be described by a set of a few collective coordinates
si and the conjugate momenta. The collective coordinates are
defined as si = 〈φ(s)|ŝi|φ(s)〉, where ŝi are generators driv-
ing the collective motion. In practice, the collective subspace
|φ(s)〉 is determined by the CHFB calculation with the con-
straint on si. Most applications take ŝi as one-body operators
of multipole moments. The ATDHFB relies on the assumption
that the collective velocities of the system denoted by the time
derivative of the collective coordinates ṡi are slow enough
to make adiabatic assumption valid. The expression of the
collective inertia tensor in ATDHFB is given by

Mi j = i

2ṡi ṡ j
Tr(F i∗Z j − F iZ j∗). (1)

The matrix Z involves time-odd fields associated with time-
odd density matrices. A standard method to determine the
matrix Z requires a solution of the QRPA equation. The matrix
F is evaluated by

F i

ṡi
=U † ∂ρ

∂si
V ∗ + U † ∂κ

∂si
U ∗ − V † ∂ρ∗

∂si
U ∗ − V † ∂κ∗

∂si
V ∗, (2)

where U and V are the Bogoliubov transformation matrices
and ρ and κ are the density matrix and pairing tensor, respec-
tively. This expression includes derivatives of density matrices
with respect to the collective coordinates.

1. Cranking approximation

The cranking approximation neglects the time-odd fields
in the collective inertia (1). In this case, the matrix Zi can be
simply written in terms of F i and the quasiparticle energies.
The collective inertia tensor of the cranking approximation
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then reads in the quasiparticle basis

MC
i j = 1

2ṡi ṡ j

∑
μν

(
F i∗

μνF j
μν + F i

μνF j∗
μν

)
Eμ + Eν

, (3)

where Eμ and Eν are one-quasiparticle energies defined with
respect to the constrained Hamiltonian of the form of Eq. (7)
and the CHFB state |φ(s)〉 of Eq. (6).

2. Perturbative cranking approximation

Further approximation leads to the so-called perturbative
cranking approximation, where the derivatives of the densities
with respect to the collective coordinates in Eq. (2) are not
explicitly evaluated but are obtained in a perturbative manner.
The expression of the collective inertia in the perturbative
cranking approximation is given as

MPC = 1
2 [M (1)]−1M (3)[M (1)]−1, (4)

where the nth energy-weighted moment M (n) is given as

M (n)
i j =

∑
μ<ν

〈φ(s)|ŝi|μν〉〈μν|ŝ†
j |φ(s)〉

(Eμ + Eν )n , (5)

where |μν〉 are two-quasiparticle states based on the CHFB
state |φ(s)〉.

B. Constrained Hartree–Fock–Bogoliubov + local quasiparticle
random-phase approximation

Another method to evaluate the collective inertia is the
CHFB + LQRPA [26] derived from the ASCC method
[25]. Suppose that a set of N collective coordinates qi

(i = 1, . . . , N) self-consistently determined with the ASCC
method can be mapped to a set of N collective variables
sm (m = 1, . . . , N) through a one-to-one correspondence be-
tween them. In addition, we assume that the ASCC collective
subspace can be approximated by the one obtained with the
CHFB calculation with a given set of constraining operators
ŝm. The CHFB equation is given by

δ〈φ(s)|ĤM |φ(s)〉 = 0, (6)

with the constrained Hamiltonian

ĤM = Ĥ −
∑

τ=n,p

λτ N̂τ −
∑

m

λmŝm, (7)

where λn,p denote the Fermi energies for neutrons and
protons to constrain the average neutron and proton num-
bers 〈φ(s)| N̂τ |φ(s)〉 (τ = n, p) and λm are the Lagrange
multipliers of constraining 〈φ(s)|ŝm|φ(s)〉 = sm. The energy
minimization (6) leads to the CHFB state |φ(s)〉 and the col-
lective potential V (s) = 〈φ(s)|Ĥ |φ(s)〉. At each CHFB state
|φ(s)〉, the LQRPA equations,

δ〈φ(s)|[ĤM, Q̂i(s)] − 1

i
P̂i(s)|φ(s)〉 = 0, (8)

δ〈φ(s)|
[

ĤM ,
1

i
P̂i(s)

]
− �2

i (s)Q̂i(s)|φ(s)〉 = 0, (9)

are solved to determine Q̂i(s) and P̂i(s) that are local gen-
erators of collective coordinates and momenta, respectively,

defined at s. They should satisfy the weak canonicity con-
dition (19). Here, the inertial and the curvature tensors are
diagonalized to define the local normal mode. Furthermore,
in order to fix the arbitrary scale of the collective coordinate
qi, the inertia with respect to qi is set to be unity, Mi j = δi j .
�2

i (s) denotes the squared eigenfrequency of the local normal
mode. Note that the eigenfrequency of the LQRPA equations
can be imaginary [�2

i (s) < 0] at nonequilibrium CHFB states.
A criterion for selecting relevant collective LQRPA modes
from many LQRPA solutions is given in Ref. [26].

Once relevant LQRPA collective modes are selected, the
collective inertia tensor is given as follows. First, the collec-
tive kinetic energy is expressed as

T = 1

2

∑
i

q̇2
i = 1

2

∑
mn

Mmn(s)ṡmṡn, (10)

where collective inertia tensor Mmn(s) is defined by the trans-
formation of the collective coordinates qi to the collective
variables s,

Mmn(s) ≡
∑
i, j

∂qi

∂sm
Mi j

∂q j

∂sn
=

∑
i

∂qi

∂sm

∂qi

∂sn
. (11)

Second, the partial derivatives in Eq. (11) are evaluated by
using the local generator P̂i(s) of the LQRPA solution as

∂sm

∂qi
= ∂

∂qi
〈φ(s)|ŝm|φ(s)〉

= 〈φ(s)|
[

ŝm,
1

i
P̂i(s)

]
|φ(s)〉, (12)

which is calculable without numerical derivatives.

III. FINITE-AMPLITUDE METHOD FOR
COLLECTIVE INERTIA

In this work, we use the LQRPA method to evaluate the
collective inertia along a fission path. Since it is computa-
tionally hard to solve the LQRPA equations for deformed
nuclear shapes with the Skyrme EDF, we employ the FAM
to efficiently solve the LQRPA equations. In this section, we
explain our method to obtain the expression of the collective
inertia based on the FAM and LQRPA.

A. Finite-amplitude method

Here, the FAM is recapitulated. The details of its derivation
can be found in Refs. [32,34]. The FAM equations can be
expressed in the quasiparticle basis as

(Eμ + Eν − ω)Xμν (ω) + δH20
μν (ω) = −F 20

μν , (13a)

(Eμ + Eν + ω)Yμν (ω) + δH02
μν (ω) = −F 02

μν , (13b)

where Xμν (ω) and Yμν (ω) are the FAM amplitudes at a given
frequency ω, and δH20(02)

μν and F 20(02)
μν are two-quasiparticle

components of one-body induced field δĤ and an external
field F̂ , respectively. The FAM equations (13) are iteratively
solved at each ω until converged X and Y amplitudes are
obtained. Complex frequency ω is usually used with the imag-
inary part corresponding to a smearing width. Only one-body
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quantities (induced densities and induced fields) are necessary
to solve the FAM equations.

The FAM strength function is given from converged X and
Y amplitudes as

S(F̂ , ω) =
∑
μ<ν

[
F 20∗

μν Xμν (ω) + F 02∗
μν Yμν (ω)

]
. (14)

Taking the frequency ω real and positive, the transition
strength distribution is given as

dB(F̂ , ω)

dω
≡

∑
i(�i>0)

|〈i| F̂ |0〉|2δ(ω − �i ) = − 1

π
ImS(F̂ , ω),

(15)

where |0〉 is the QRPA vacuum and |i〉 ≡ Ô†
i |0〉 is a

state of the QRPA normal mode of excitation with the
eigenfrequency �i.

The relation between the FAM strength function (14) and
the QRPA transition strength |〈i|F̂ |0〉|2 between the ground
state and a QRPA eigenstate |i〉 is given as [38]

S(F̂ , ω) = −
∑

i(�i>0)

( |〈i|F̂ |0〉|2
�i − ω

+ |〈0|F̂ |i〉|2
�i + ω

)
. (16)

B. Finite-amplitude method in the
momentum-coordinate representation

In Ref. [47], the FAM in the PQ representation of the
QRPA was formulated to investigate the NG modes and the
Thouless–Valatin inertia of the NG modes. In this section, we
summarize the formulation of the FAM in the PQ representa-
tion.

In the PQ representation of the QRPA, the coordinate and
the conjugate momentum operators, Q̂i and P̂i, which are both
Hermitian, are constructed from the QRPA phonon operators
(Ôi, Ô†

i ) as

Q̂i =
√

1

2Mi�i
(Ôi + Ô†

i ), (17)

P̂i = 1

i

√
Mi�i

2
(Ôi − Ô†

i ), (18)

where Mi is the inertia parameter. The operators Q̂i and P̂i

fulfill the following commutation relations:

〈0| [Q̂i, P̂j] |0〉 = iδi j,

〈0| [Q̂i, Q̂ j] |0〉 = 〈0| [P̂i, P̂j] |0〉 = 0, (19)

which guarantee the orthogonality among different normal
modes, however, their scale is still arbitrary as (αQ̂i, α

−1P̂i ).
In the present study, this scale is fixed by imposing the addi-
tional condition, Mi = 1. Then, these correspond to solutions
of Eqs. (8) and (9).

Using two-quasiparticle components Pi
μν and Qi

μν of the
operators P̂i and Q̂i, the FAM X and Y amplitudes are

given as

Xμν (ω) =
∑

i

1

ω2 − �2
i

[( − iωPi
μν + �2

i Qi
μν

)
qi(F̂ )

+ (
Pi

μν + iωQi
μν

)
pi(F̂ )

]
, (20a)

Yμν (ω) =
∑

i

1

ω2 − �2
i

[(
iωPi∗

μν − �2
i Qi∗

μν

)
qi(F̂ )

+ ( − Pi∗
μν − iωQi∗

μν

)
pi(F̂ )

]
, (20b)

where pi(F̂ ) and qi(F̂ ) are defined as

pi(F̂ ) ≡ 〈0| [P̂i, F̂ ] |0〉 =
∑
μ<ν

(
Pi∗

μνF 20
μν − Pi

μνF 02
μν

)
, (21)

qi(F̂ ) ≡ 〈0| [Q̂i, F̂ ] |0〉 =
∑
μ<ν

(
Qi∗

μνF 20
μν − Qi

μνF 02
μν

)
. (22)

The FAM strength function (14) is then rewritten as

S(F̂ , ω) =
∑
μ<ν

[
F 20∗

μν Xμν (ω) + F 02∗
μν Yμν (ω)

]

=
∑

i

1

ω2 − �2
i

[|pi(F̂ )|2 + �2
i |qi(F̂ )|2 + ω ri(F̂ )],

(23)

with a real quantity

ri(F̂ ) ≡ i[q∗
i (F̂ )pi(F̂ ) − qi(F̂ )p∗

i (F̂ )]. (24)

The FAM X (ω) and Y (ω) amplitudes (20) and the FAM
strength function (23) are defined in the whole complex
plane ω except for ω = ±�i. They are well defined even
with the presence of the NG modes (�2

i = 0) and the imag-
inary solutions (�2

i < 0) which can appear in the LQRPA at
nonequilibrium CHFB states.

C. Collective inertia with finite-amplitude method plus contour
integration technique

For simplicity, in this paper, we assume only one collective
coordinate q, and then adopt the isoscalar quadrupole moment
ŝ = Q̂20 = √

16π/5
∑A

i=1 r2
i Y20(r̂i ) as the constraint. For the

LQRPA calculation, we adopt the same operator for the ex-
ternal field F̂ = Q̂20. Then, by transforming the scale of the
coordinate from q to s = 〈φ(s)| Q̂20 |φ(s)〉, the expression of
the collective inertia (11) becomes

M ≡ dq

ds

dq

ds
, (25)

with dq/ds = (ds/dq)−1 and

ds

dq
= 〈φ(s)|

[
Q̂20,

1

i
P̂i

]
|φ(s)〉

= ipi(Q̂20). (26)

We will see below that pi(Q̂20) is pure imaginary, leading to
real ds/dq. We select the normal mode i which has the largest
value of |pi(Q̂20)|2 among the low-lying eigenmodes.

The remaining task is the calculation of pi(F̂ ) = pi(Q̂20)
in the FAM. From Eqs. (17) and (18), Pi and Qi are given in
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terms of the forward and backward amplitudes of the QRPA
normal modes, X i and Y i, as

Pi
μν = i

√
�i

2

(
X i

μν + Y i
μν

)
, (27)

Qi
μν =

√
1

2�i

(
X i

μν − Y i
μν

)
. (28)

Note that we set Mi = 1. When the QRPA matrices are
real, we may choose X i

μν and Y i
μν real. This leads to

real Qi
μν and pure imaginary Pi

μν . In the present case, the
external-field operator F̂ = Q̂20 is Hermitian and their two-
quasiparticle components are real, namely, F 02 = F 20∗ =
F 20. Thus, qi(F̂ ) = 0 and pi(F̂ ) = −p∗

i (F̂ ) (pure imaginary)
hold according to Eq. (22). Then, the FAM strength function
(23) becomes

S(F̂ , ω) =
∑

i

1

ω2 − �2
i

|pi(F̂ )|2. (29)

Since the right-hand side of Eq. (29) has first-order poles at
ω = ±�i, we obtain the following expression using Cauchy’s
integral formula,

1

2π i

∮
Ci

ωS(F̂ , ω)dω = 1

2
|pi(F̂ )|2, (30)

where the contour circle Ci in the complex energy plane is
chosen to encircle only the pole ω = �i. The strength func-
tions, S(F̂ , ω), at different values of ω are obtained as Eq. (14)
with an iterative solution of Eq. (13).

The eigenfrequency �i can be also obtained by combining
Eq. (30) with the following contour integration:

1

2π i

∮
Ci

S(F̂ , ω)dω = 1

2�i
|pi(F̂ )|2. (31)

The expressions (30) and (31) can be used for both real and
pure imaginary eigenfrequencies.

D. Numerical procedure

To prepare the CHFB states along the fission path,
we solve the CHFB equations with the two-basis method
[54,55], where during iteration the HFB Hamiltonian is di-
agonalized in a single-particle basis that converges to the
eigenstates of the mean-field Hamiltonian, called the Hartree-
Fock (HF) basis, and the local densities are constructed in
the canonical basis that diagonalizes the density matrix. The
single-particle wave functions and fields are represented in a
three-dimensional (3D) Cartesian mesh. Nuclear shapes are
restricted to have three plane reflection symmetries about the
x = 0, y = 0, and z = 0 planes. This reduces the model space
to 1/8 of the full box and can be realized by choosing the
single-particle wave functions as eigenstates of parity, z sig-
nature, and y time simplex [56–59]. This symmetry restriction
prevents us from treating asymmetric fission in the present
study. We use a numerical box of 13.2 fm for x and y directions
and 19.6 fm for z direction in x > 0, y > 0, and z > 0 in
order to express prolately deformed fissioning shapes, dis-
cretized with the mesh size of 0.8 fm for all directions. The

number of mesh points then becomes 16 × 16 × 24 = 6144.
The single-particle basis consists of 2460 neutron and 1840
proton HF-basis states to achieve the maximum quasiparticle
energy of Emax

QP ≈ 60 MeV for both neutrons and protons
in 240Pu and 256Fm. Constrained quantities are the isoscalar
quadrupole moment Q20 = 〈Q̂20〉 with 〈Q̂22〉 = 0, keeping
axially symmetric shapes. The symmetry restriction automati-
cally constrains the position of the center of mass, and 〈xy〉 =
〈yz〉 = 〈zx〉 = 0. The other even-multipole moments are not
constrained, and their values are optimized to minimize the
total energy, while the expectation values of all odd-multipole
moments are kept to be zero due to the plane reflection sym-
metries of nuclear shapes. We used the SkM∗ EDF [60] and
the contact volume pairing with a pairing window of 20 MeV
above and below the Fermi energy in the HF basis described
in Refs. [56,58] to avoid divergence in the pairing energy.
The pairing strengths are adjusted separately for neutrons and
protons in order to reproduce the empirical pairing gaps in
240Pu or in 256Fm.

We have extended our 3D FAM-QRPA code developed in
Ref. [46] to perform FAM calculations at CHFB states and
the FAM-QRPA with the contour integration. We include in
the FAM the full quasiparticle basis included in the CHFB
calculations to satisfy full self-consistency between the CHFB
and LQRPA calculations. We employ the modified Broyden
method [61] for iteratively solving the FAM equations.

To obtain the quantity |pi(F̂ )|2 by the contour integration
(30), it is necessary to know in advance an approximate posi-
tion of each QRPA pole ω = �i in the complex energy plane
for determining an appropriate contour Ci. The QRPA poles
are expected to appear as sharp peaks in the FAM strength
distribution. Therefore, we first calculate the FAM strength
distribution (15) in the low-lying states with ω2 < 16 MeV2.
For each pole, we calculate |pi(F̂ )|2 and adopt the most col-
lective mode with the largest value of |pi(F̂ )|2. A detail of
our procedure of selecting the most collective mode in the
FAM is given in the Appendix. For the integration contour,
we use a circle centered at the estimated peak frequency. The
radius is 0.05 MeV for real solutions, and 0.1 MeV for an
imaginary solution. If there are other poles close to the present
pole, we use a circle with even smaller radius. The number
of discretization points along the circle is twelve for real and
eight for imaginary solutions.

We perform numerical calculations of the FAM with a
hybrid parallel scheme. The MPI parallelization is adopted
for calculation of S(F̂ , ω) at different ω points. The FAM
iterative solution of Eq. (13) at each ω is performed by using
the OpenMP parallel calculation. It takes about 160 core hours
on Oakforest-PACS for the FAM contour integration for a
real solution at one deformation point with the present model
space.

Before we proceed, we would like to discuss the conver-
gence property of the collective inertia with respect to the
size of the model space included in the ground state. To check
the convergence property, we calculated the collective inertia
with different numbers of HF-basis states corresponding to
different Emax

QP values in the ground state. Figure 1 shows
the collective inertia as a function of neutron Emax

QP (nearly
equal to proton Emax

QP ) divided by that calculated with neutron
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FIG. 1. Collective inertia as a function of Emax
QP for neutrons

divided by that with neutron Emax
QP ≈ 65 MeV for four different de-

formation points in 240Pu. Included neutron HF-basis states are 1200,
1440, 1632, 1998, 2460, and 2700 for Emax

QP ≈ 40, 45, 50, 55, 60, and
65 MeV, respectively.

Emax
QP ≈ 65 MeV as a reference value for four various defor-

mation points in 240Pu. We find that the model space with
neutron Emax

QP � 55 MeV gives a good convergence within
about less than 5% to the value with Emax

QP ≈ 65 MeV for
the four various deformation points. Therefore, as mentioned
above, we include 2460 neutron and 1840 proton HF-basis
states corresponding to Emax

QP ≈ 60 MeV in our calculations.
Note again that we do not introduce in the FAM calculations
the additional two-quasiparticle energy cutoff, which has been
usually employed to reduce the dimension of the QRPA ma-
trix.

IV. RESULTS

Mass distributions of fission fragments measured in low-
energy fission show a sudden change from asymmetric
to symmetric mass distributions when the neutron num-
ber changes. A well-known example is Fm isotopes, where
256Fm shows an asymmetric mass distribution, while 258Fm
shows that the main component of fission fragments is a
symmetric one [62,63]. Even more complicated multimode
or multichannel fission has been observed and analyzed in
the total-kinetic-energy distributions of fission fragments in
actinides [64,65]. In EDF-based studies, the fission modes
depend on the potential landscape and the collective inertia.
Since, so far, most of studies are focused on the potential
landscape, we aim at investigating effects of the collective
inertia. In this section, we take 240Pu and 256Fm as examples
to show the importance of dynamical residual effects on the
inertia. Although, in this paper, the calculation is performed
only along the symmetric fission path, we show that the resid-
ual effect on the inertia may hinder the symmetric fission
probability.

A. Collective inertia along a symmetric fission path in 240Pu

Figure 2(a) shows the collective potential energy as a
function of expectation value of quadrupole moment Q20 in

 0
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FIG. 2. (a) Potential energy (b) pairing gaps for neutrons (solid
line) and protons (dashed line) as a function of quadrupole moment
Q20 in units of barns in 240Pu.

units of barns (b) along a symmetric fission path in 240Pu
obtained from the CHFB calculation. The ground state of
240Pu is found at Q20 ≈ 30 b. The first fission barrier, the
fission isomer (local minimum), and the second fission barrier
are obtained at Q20 ≈ 55 b, Q20 ≈ 85 b, and Q20 ≈ 150 b,
respectively. We would like to note that the heights of the
first and second fission barriers would become lower if we
could include triaxial deformation for the first fission bar-
rier and octupole deformation for the second fission barrier
[66,67]. Neutron and proton pairing gaps are shown along the
fission path in Fig. 2(b). The neutron pairing gap becomes
larger at the regions near the fission barriers and smaller near
the ground state and fission isomer. The proton pairing gap
shows a moderate behavior because of the difference between
neutron and proton single-particle structures. It is known that
transition strengths of low-lying modes are affected by the
strength of pairing correlations.

Figure 3(a) shows the collective inertia obtained with the
present FAM-QRPA calculation by the filled-square solid
line. This shows two prominent peaks at Q20 ≈ 25 b and
Q20 ≈ 80 b and a sudden change near these peaks. These
states closely correspond to the ground state and the fission
isomer observed in Fig. 2(a) and to the states where pair-
ing becomes weak in Fig. 2(b). For comparison, we add in
Fig. 3(a) the collective inertia obtained by the perturbative
cranking approximation. It is clearly shown that the FAM-
QRPA inertia is larger than the perturbative cranking inertia.
We emphasize this point in Fig. 3(b), showing that the ratio
of the FAM-QRPA inertia to the perturbative cranking inertia
always exceeds unity, except at Q20 = 60 b. This indicates
that the action integral in the WKB approximation will be
significantly affected by the increase of the collective inertia
near the fission barriers. The behaviors of the two inertias are
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FIG. 3. (a) Collective inertia of the FAM-QRPA calculation
shown by the filled-square solid line, and of the perturbative cranking
approximation by the dashed line. (b) Ratio of the FAM-QRPA
inertia to the perturbative cranking inertia. (c) Squared QRPA eigen-
frequency as a function of Q20 in 240Pu.

different; the FAM-QRPA inertia shows a strong variation,
while the perturbative cranking inertia varies smoothly as Q20

increases.
We estimate the action integral in the WKB approximation

using the obtained collective inertia and potential along the
symmetric fission path. The action integral reads

S =
∫ Qout

Qin

dQ20

√
2M(Q20)[V (Q20) − E0], (32)

where Qin and Qout are the classical inner and outer turning
points, and E0 is the HFB ground-state energy. We obtain the
action integrals SFAM = 82.0 for the FAM-QRPA inertia and
SPC = 62.0 for the perturbative cranking inertia from Qin =
30 b (the ground state) to Qout = 270 b. This difference leads
to many orders of magnitude difference in the fission half-life.

Figure 3(c) shows the eigenfrequency squared �2 of the
LQRPA solution selected as the most collective mode at each
deformation. This represents the curvature of the collective
potential, which can indeed become negative at the fission
barriers. Larger values of �2 are found at the states with larger
values of the collective inertia. As �2 becomes larger, the ratio
of the FAM-QRPA inertia to the perturbative cranking inertia

-4
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Peak frequencies
Most collective mode

FIG. 4. Squared peak frequencies identified from the FAM
strength distribution shown by the crosses as a function of Q20 in
240Pu. Eigenfrequency squared of the most collective mode is shown
by the open-circle solid line.

becomes larger. When �2 are negative, the ratio is close to
unity.

In Fig. 4, we plot the squared peak frequencies identi-
fied from the FAM strength distribution in ω2 < 16 MeV2

as a function of Q20 up to the fission isomer (Q20 � 90 b).
Note that, because of a finite smearing width (=0.01 MeV)
used in the FAM calculation, the identified peak frequencies
may slightly differ from the QRPA eigenfrequencies and may
not correspond to all the eigenfrequencies. In the figure, the
eigenfrequency squared of the most collective mode that is
used in the FAM-QRPA collective inertia is shown by the
open-circle solid line. At most regions in Q20, we find that
the most collective mode corresponds to the lowest-frequency
mode and is well separated from other peaks. On the other
hand, around the ground state (Q20 ≈ 30 b) and the fission
isomer (Q20 ≈ 85 b), where pairing becomes weak, we find
that the most collective mode appears at frequencies close
to other peaks, or at higher frequencies. The increase of
the FAM-QRPA inertia near the ground and the fission iso-
mer states is due to decrease of the quadrupole collectivity
which leads to decrease in |pi(Q̂20)|2. In fact, near the ground
state, we find that the character of the lowest frequency
mode changes from the quadrupole vibration to the pair
vibration.

It is known that QRPA eigenmodes that possess pair-
vibrational character tend to appear in low-frequency regions
when pairing becomes weak. We analyze the character of
the lowest-frequency mode at ω ≈ 1.5 MeV at Q20 = 25,
30, and 35 b by using the FAM calculation with the pair-
vibrational field as an external field. The lowest-frequency
modes at Q20 = 25, 30, and 35 b have a strong neutron pair-
vibrational character and approximately satisfy the relation
� ≈ 2�n, where �n denotes the neutron pairing gap. The
lowest-frequency modes at Q20 = 25 and 30 b are not the most

014306-7



WASHIYAMA, HINOHARA, AND NAKATSUKASA PHYSICAL REVIEW C 103, 014306 (2021)

 0

 5

 10

 15
256Fm

(a)

V
 [

M
eV

]

0.0

0.4

0.8

1.2

1.6

 0  40  80  120  160  200

(b)

P
ai

ri
ng

 g
ap

 [
M

eV
]

Q20 [b]

Neutrons
Protons

FIG. 5. Same as Fig. 2, but for 256Fm.

collective in the quadrupole Q20 nature. We also confirm this
by calculating the collective inertia for those lowest modes.

For the lowest mode, the collective inertia would be M =
0.190 MeV−1b−2 at Q20 = 25 b and M = 1.02 MeV−1b−2

at Q20 = 30 b. These values are significantly larger than the
values shown in Fig. 3(a), indicating the character change of
the lowest mode from the quadrupole vibration to the neutron
pair vibration. We note that some EDF-based studies explic-
itly take pairing fluctuations as other collective variables and
show the importance of couplings between shape and pairing
degrees of freedom in spontaneous fission [68,69] and the
collective Hamiltonian method [70]. It will be a future work
to take pairing fluctuations as other collective variables in the
CHFB + LQRPA method.

B. Comparison between the FAM-QRPA and nonperturbative
cranking inertias in 256Fm

The aim of taking the 256Fm case is to compare the
FAM-QRPA collective inertia with that of the nonperturba-
tive cranking approximation by Baran et al. in Ref. [11]. In
256Fm, it is known that reflection-symmetric and reflection-
asymmetric fission paths bifurcate at Q20 ≈ 130 b [71–73].
In Ref. [11], the collective inertia was calculated along a
reflection-symmetric fission path in Q20 < 130 b and along a
reflection-asymmetric fission path in Q20 > 130 b. As we do
not include reflection-asymmetric fission paths, we compare
the FAM-QRPA collective inertia with that in Ref. [11] along
the reflection-symmetric fission path in Q20 � 130 b.

First, we show in Fig. 5 the potential and pairing gaps along
an axial and reflection-symmetric fission path as a function
of Q20. The structure of a fission isomer at Q20 ≈ 110 b
almost vanishes due to low second fission barrier height of
about 0.4 MeV. The proton pairing vanishes in Q20 � 130 b.
These properties are consistent with previous EDF studies
[11,71–73].
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FIG. 6. (a) Comparison between the FAM-QRPA inertia (filled-
square solid line), the nonperturbative cranking inertia taken from
Baran et al. [11] (filled-triangle dot-dashed line), and the perturbative
cranking inertia (dashed line), and (b) squared QRPA eigenfrequency
as a function of Q20 along a symmetric fission path in 256Fm.

Figure 6(a) shows the FAM-QRPA collective inertia as a
function of Q20. Two peaks in the FAM-QRPA inertia are
clearly seen at the ground state (Q20 ≈ 30 b) and fission
isomer (Q20 ≈ 105 b), which is similar to the case of 240Pu.
In this figure, we compare the FAM-QRPA inertia with the
inertia of the nonperturbative cranking approximation [11], as
well as the perturbative cranking one. We should note that
the model space, the pairing functional, and so on, adopted
in the present study are different from those in Ref. [11]. The
FAM-QRPA inertia and the nonperturbative cranking inertia
vary significantly as Q20 changes, compared with a smooth
behavior of the perturbative cranking inertia. We find two
significant differences between the FAM-QRPA inertia and
the nonperturbative cranking inertia. One is the magnitude
of the collective inertia; the FAM-QRPA collective inertia is
significantly larger than the nonperturbative cranking one at
most deformation points. Similar values are obtained near the
top of the fission barrier at Q20 ≈ 70 b and near the bifurcation
at Q20 ≈ 130 b. The other difference is the position of peaks
in Q20 in the collective inertia. The FAM-QRPA inertia peaks
at slightly smaller Q20 than the cranking one does. These
significant differences are, at least partially, due to the residual
time-odd fields neglected in the cranking approximation.

Figure 6(b) shows the squared QRPA eigenfrequency ob-
tained by the FAM-QRPA. The peak structure of the squared
QRPA eigenfrequency is similar to that of the collective in-
ertia, which is also seen in the 240Pu case. This suggests that
a structure change of the lowest frequency mode affects the
collective inertia in 256Fm, analogous to the case of 240Pu.
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V. CONCLUSION

We have developed a feasible method of calculating the
collective inertia based on the CHFB + LQRPA method with
the Skyrme EDF. This method includes time-odd components
of dynamical residual effects to the collective inertia in a
self-consistent way. We efficiently calculated the QRPA tran-
sition strengths by using the FAM and contour integration
technique. We applied this method of evaluating the collective
inertia along a symmetric fission path of 240Pu and 256Fm. The
results show that the dynamical residual effects significantly
affect the collective inertia and result in an enhancement of
the collective inertia compared with the perturbative cranking
one. The enhancement depends strongly on the deformation
of the states. This is a consequence of microscopic dynamical
effects. In the case of 256Fm, we also compare the FAM-QRPA
inertia with the nonperturbative cranking collective inertia in
Ref. [11]. Both collective inertias show peak structures, which
are not seen in the perturbative cranking inertia. The values of
the deformation at the peaks in the inertia are different. The
FAM-QRPA inertia takes much larger values than nonpertur-
bative one around the potential minima.

For future works, it is desirable to lift the symmetry re-
striction and to study collective inertia along the asymmetric
fission paths. We also plan to extend the present method
to include two or more collective variables for constructing
collective inertia tensors such as a simultaneous treatment of
quadrupole and octupole moments and pairing fluctuations
along multiple fission paths. Systematic study of the dynam-
ical residual effects on collective inertia in fission in actinide
and transactinide nuclei will be important not only for deeper
understanding of fission but also for reliable evaluation of
fission half-lives in r-process nucleosynthesis. The present
method can be also used to describe large-amplitude collective
dynamics with the collective Hamiltonian method. It would
be interesting to compare the FAM-QRPA inertia with the full
ATDHFB inertia [44].
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APPENDIX: SELECTION OF THE MOST
COLLECTIVE MODE

We explain our procedure of selecting the most collective
QRPA eigenmode to calculate the collective inertia. First, we
perform the FAM calculation with an isoscalar quadrupole ex-
ternal field Q̂20 and a complex frequency ω = ωR + iωI along
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FIG. 7. Example of the strength distribution along the imaginary
axis at (a) Q20 = 120 b and real axis at (b) Q20 = 60 b in 256Fm.
These strength distributions are calculated at each 0.1 MeV with
a smearing width of 0.1 MeV. (c) A smaller smearing width of
0.01 MeV at each 0.01 MeV in ωR is used for the same case as
panel (b).

the imaginary and real ω axes to obtain the FAM strength
distribution. For the FAM calculation along the imaginary ω

axis, ωR has a role of a smearing width.
Next, we search sharp peaks in the FAM strength distri-

bution, which appear at approximate positions of the QRPA
poles, ω = �i, in 0 � ωR(ωI ) � 4 MeV along the real (imag-
inary) axis with a smearing width of ωI (ωR) = 0.1 MeV. An
example of peak search from the strength distribution is shown
in Fig. 7 at Q20 = 60 and 120 b in 256Fm. In Fig. 7(a), the
strength distribution at Q20 = 120 b along the imaginary ω

axis shows a clear peak with large magnitude, correspond-
ing to a pure imaginary QRPA pole. We found that either
single peak with large magnitude or no peak appears in the
strength distribution along the imaginary ω axis for the cases
considered here. In Fig. 7(b), for the strength distribution
at Q20 = 60 b along the real ω axis, one peak with larger
magnitude is found at ωR ≈ 1.2 MeV. However, we found that
this peak is resolved as two peaks at ωR = 1.15 and 1.25 MeV
by the FAM calculation with a smaller smearing width of
ωI = 0.01 MeV, which is illustrated in Fig. 7(c). To search
sharp peaks in the strength distribution along the real ω axis,
we finally used ωI = 0.01 MeV to determine approximate
positions of the QRPA poles. Note that with ωI = 0.01 MeV
we cannot resolve multiple peaks within about 0.05 MeV in
frequency in the strength distribution.

We take a few peaks from the large peaks identified in
the FAM strength distribution along both the imaginary and
real ω axes as candidates of the most collective eigenmode.
Then, we perform the contour integration (30) to obtain the
transition strength for each candidate, and finally adopt the
one with the largest value of |pi(Q̂20)|2 as the most collective
eigenmode.
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[39] T. Nikšić, N. Kralj, T. Tutiš, D. Vretenar, and P. Ring, Imple-
mentation of the finite amplitude method for the relativistic
quasiparticle random-phase approximation, Phys. Rev. C 88,
044327 (2013).

[40] M. T. Mustonen, T. Shafer, Z. Zenginerler, and J. Engel, Finite-
amplitude method for charge-changing transitions in axially
deformed nuclei, Phys. Rev. C 90, 024308 (2014).

[41] J. C. Pei, M. Kortelainen, Y. N. Zhang, and F. R. Xu, Emergent
soft monopole modes in weakly bound deformed nuclei, Phys.
Rev. C 90, 051304(R) (2014).

[42] N. Hinohara, M. Kortelainen, W. Nazarewicz, and E. Olsen,
Complex-energy approach to sum rules within nuclear density
functional theory, Phys. Rev. C 91, 044323 (2015).

[43] M. Kortelainen, N. Hinohara, and W. Nazarewicz, Multipole
modes in deformed nuclei within the finite amplitude method,
Phys. Rev. C 92, 051302(R) (2015).

[44] K. Wen and T. Nakatsukasa, Self-consistent collective coordi-
nate for reaction path and inertial mass, Phys. Rev. C 94, 054618
(2016).

[45] X. Sun and D. Lu, Implementation of a finite-amplitude method
in a relativistic meson-exchange model, Phys. Rev. C 96,
024614 (2017).

[46] K. Washiyama and T. Nakatsukasa, Multipole modes of excita-
tion in triaxially deformed superfluid nuclei, Phys. Rev. C 96,
041304(R) (2017).

[47] N. Hinohara, Collective inertia of the Nambu-Goldstone
mode from linear response theory, Phys. Rev. C 92, 034321
(2015).

[48] Y. Nambu, Quasi-particles and gauge invariance in the theory
of superconductivity, Phys. Rev. 117, 648 (1960).

[49] J. Goldstone, Field theories with superconductor solutions,
Nuovo Cimento 19, 154 (1961).

[50] N. Hinohara and W. Nazarewicz, Pairing Nambu-Goldstone
Modes within Nuclear Density Functional Theory, Phys. Rev.
Lett. 116, 152502 (2016).

[51] N. Hinohara, Extending pairing energy density functional using
pairing rotational moments of inertia, J. Phys. G 45, 024004
(2018).

[52] K. Petrík and M. Kortelainen, Thouless-Valatin rotational mo-
ment of inertia from linear response theory, Phys. Rev. C 97,
034321 (2018).

[53] K. Washiyama and T. Nakatsukasa, Multipole modes for triax-
ially deformed superfluid nuclei, JPS Conf. Proc. 23, 013012
(2018).

[54] B. Gall, P. Bonche, J. Dobaczewski, H. Flocard, and P.-H.
Heenen, Superdeformed rotational bands in the mercury region.
A cranked Skyrme-Hartree-Fock-Bogoliubov study, Z. Phys. A:
Hadrons Nucl. 348, 183 (1994).

[55] J. Terasaki, P.-H. Heenen, P. Bonche, J. Dobaczewski,
and H. Flocard, Superdeformed rotational bands with den-
sity dependent pairing interactions, Nucl. Phys. A 593, 1
(1995).

[56] P. Bonche, H. Flocard, P.-H. Heenen, S. J. Krieger, and M. S.
Weiss, Self-consistent study of triaxial deformations: Applica-
tion to the isotopes of Kr, Sr, Zr and Mo, Nucl. Phys. A 443, 39
(1985).

[57] P. Bonche, H. Flocard, and P.-H. Heenen, Self-consistent cal-
culation of nuclear rotations: The complete yrast line of 24Mg,
Nucl. Phys. A 467, 115 (1987).

[58] P. Bonche, H. Flocard, and P.-H. Heenen, Solution of the
Skyrme HF + BCS equation on a 3D mesh, Comput. Phys.
Commun. 171, 49 (2005).

[59] V. Hellemans, P.-H. Heenen, and M. Bender, Tensor part of the
Skyrme energy density functional. III. Time-odd terms at high
spin, Phys. Rev. C 85, 014326 (2012).

[60] J. Bartel, P. Quentin, M. Brack, C. Guet, and H.-B. Håkansson,
Towards a better parametrisation of Skyrme-like effective
forces: A critical study of the SkM force, Nucl. Phys. A 386,
79 (1982).

[61] A. Baran, A. Bulgac, M. M. Forbes, G. Hagen, W. Nazarewicz,
N. Schunck, and M. V. Stoitsov, Broyden’s method in nuclear
structure calculations, Phys. Rev. C 78, 014318 (2008).

[62] K. F. Flynn, E. P. Horwitz, C. A. A. Bloomquist, R. F. Barnes,
R. K. Sjoblom, P. R. Fields, and L. E. Glendenin, Distribution
of mass in the spontaneous fission of 256Fm, Phys. Rev. C 5,
1725 (1972).

[63] D. C. Hoffman, J. B. Wilhelmy, J. Weber, W. R. Daniels, E. K.
Hulet, R. W. Lougheed, J. H. Landrum, J. F. Wild, and R. J.
Dupzyk, 12.3-min 256Cf and 43-min 258Md and systematics of
the spontaneous fission properties of heavy nuclides, Phys. Rev.
C 21, 972 (1980).

[64] E. K. Hulet, J. F. Wild, R. J. Dougan, R. W. Lougheed, J. H.
Landrum, A. D. Dougan, M. Schädel, R. L. Hahn, P. A. Baisden,
C. M. Henderson, R. J. Dupzyk, K. Sümmerer, and G. R.
Bethune, Bimodal Symmetric Fission Observed in the Heaviest
Elements, Phys. Rev. Lett. 56, 313 (1986).

[65] U. Brosa, S. Grossmann, and A. Müller, Fission channels in
258Fm, Z. Phys. A: At. Nucl. 325, 241 (1986).

[66] L. Bonneau, P. Quentin, and D. Samsœn, Fission barriers of
heavy nuclei within a microscopic approach, Eur. Phys. J. A
21, 391 (2004).

[67] B.-N. Lu, E.-G. Zhao, and S.-G. Zhou, Potential energy surfaces
of actinide nuclei from a multidimensional constrained covari-
ant density functional theory: Barrier heights and saddle point
shapes, Phys. Rev. C 85, 011301(R) (2012).

[68] J. Sadhukhan, J. Dobaczewski, W. Nazarewicz, J. A. Sheikh,
and A. Baran, Pairing-induced speedup of nuclear spontaneous
fission, Phys. Rev. C 90, 061304(R) (2014).

[69] J. Zhao, B.-N. Lu, T. Nikšić, D. Vretenar, and S.-G. Zhou,
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