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Deuteron-deuteron elastic and three- and four-body breakup scattering
using the Faddeev-Yakubovskii equations
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The deuteron-deuteron elastic and three- and four-body breakup scattering cross section have been calculated
using the Faddeev-Yakubovskii (FY) chain-of-partition momentum-space equations. In this calculation the initial
two-cluster potential is split into separable and nonseparable components, and the effective potential is reduced to
elastic two-body and three- and four-body breakup open channels and a closed-channel many-body contribution.
The closed-channel contribution is determined by minimizing a variational bound. The Coulomb interaction
was included by expanding the initial and final Coulomb states in a Coulomb-Sturmian basis. The three sets
of chain-of-partition integral equations were solved for the elastic and three- and four-body breakup scattering
amplitudes. The calculations were performed for the S = 2 spin/L = 0 angular-momentum state. The elastic
and double-breakup calculations were performed for energies up to E = 5.48 MeV, while the single-breakup
calculations were performed for energies up to E = 4.17 MeV. In the case of elastic scattering, the calculated
scattering length of 5add = 7.8 ± 0.3 fm is in good agreement with a FY cluster reduction calculation. The
calculated phase shift is smaller than that predicted by the resonating group model and this difference is believed
to be due to the differences in the potential and calculation methods. The breakup cross sections were calculated
as a function of initial deuteron momentum and fragmented-deuteron momentum. The d + d → d + n + p cross
sections were compared with neutron yield measurements and, while the measurements also included the L > 0
components, the general features were consistent. Estimates of the calculational uncertainties/bias are provided.
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I. INTRODUCTION

Over the past decade there has been a considerable
effort in the development and application of the four-
body scattering equations. This has included calculations
using the Alt-Grassberger-Sandhas (AGS) equations [1]
solved in momentum-space [2–5] using the Coulomb screen-
ing/renormalization method [6]. Using a single-scattering
approximation, these equations have been extended to
higher energies and used in analyzing recent three-body
(160 MeV) deuteron-deuteron breakup experiments [7]. Sev-
eral configuration-space approaches have also been used: (a)
the hyperspherical-harmonics Kohn variational method used
to solve the Schrödinger equation [8,9] and (b) the direct
numerical solution method [10–12] and the cluster reduction
method [13] used to solve the Faddeev-Yakubovskii equa-
tions [14]. In addition, the resonating group model (RGM)
has been used to solve the Schrödinger equation using the
Kohn-Hulthèn variational principle and perform four-body
bound-state and elastic and transfer scattering calculations
[15]. These efforts have been focused primarily on the four-
body elastic and rearrangement collisions.

A momentum-space variational-bound formulation of the
N-particle scattering problem has been developed in Ref. [16].
This approach is based on the Faddeev-Yakubovskii chain-
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of-partition formulation of the N-particle equations, and
makes use of the chain-space description developed by
Benoist-Gueutal and L’Huillier [17] and Cattapan and Van-
zani [18]. It is shown that the scattering amplitude for
the elastic, rearrangement, and breakup processes satisfies
a Lippmann-Schwinger type integral equation in which the
kernel integration is over the open channels and the closed
channels enter through the effective potential. The effective
potential is a scattering operator momentum-space matrix-
element consisting of (1) a Born-exchange term of the
two-cluster potential between different open-channel states
and (2) a term involving the closed channel Green’s function.
A variational estimate for this second term is obtained when
the closed channel Green’s functions are estimated using
variational upper and/or lower bounds. In this approach the
interparticle potential is not assumed to be separable as in
typical quasiparticle schemes.

In this paper, the N-particle variational-bound equations
are applied to the case of deuteron-deuteron elastic, three-
body d + d → d + n + p breakup and four-body d + d →
n + p + n + p breakup scattering. The purpose of this effort
was to (1) assess the feasibility of four-body elastic and
breakup scattering calculations using the momentum-space
N-particle Faddeev-Yakubovskii equations, (2) solve the set of
coupled chain-of-partition transition amplitude integral equa-
tions, and (3) identify solution techniques and difficulties
(numerical, modeling, etc.) in their application. While the
elastic scattering is a simpler and more transparent four-body
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calculation, the breakup reactions are considered to be of
special importance. Because of their continuum of multiple
free-particle final states, it is expected the resulting phase-
space will be used in evaluating the scattering dynamics,
Coulomb effects and 3N force models used in multiparticle
calculations.

In Sec. II, the application of the Ref. [16] N-particle meth-
ods to the four-body deuteron-deuteron scattering system is
described. This includes (a) the separable expansion of the
two-cluster open-channel resolvent operator, (b) the descrip-
tion of the open and closed channel contributions to the
effective potential, and (c) the coupled elastic and breakup
scattering amplitude equations. The calculation methods and
results are presented in Sec. III including (a) the scattering
length and elastic cross sections with comparisons to alter-
nate methods calculations and (b) the three- and four-body
breakup cross sections as a function of the initial relative
deuteron momentum and the fragmented-deuteron momen-
tum. A summary of the calculations is presented in Sec. IV
and an analysis of the calculational uncertainty and bias is
provided in the Appendix.

II. FOUR-BODY INTEGRAL EQUATIONS

A. N-particle chain-labeled pairwise potentials

The N-particle system interacting via pairwise potentials
may be described by the Hamiltonian

H = H0 +
∑
i< j

Vi j = H0 + V , (1)

where H0 is the center-of-mass free particle energy and
Vi j is the interaction between particles i and j. Following
the Faddeev-Yakubovskii approach, one introduces the par-
tition ap (1 � p � N ) as a particular decomposition of the
N-particle system into a unique grouping of p disjoint (non-
interacting) subsets or clusters. A partition br that can be
formed by decomposing the specific clusters of the partition
ap is considered to follow from partition ap and satisfies the
equation br ⊂ ap. A chain Ar

p of partitions corresponding to
the sequential breakup of partition ap into r-cluster partition
ar is represented as

Ar
p = {ar ⊂ ar−1 , . . . , ap+1 ⊂ ap}, 1 � p < r � N. (2)

The chains that are initiated from single cluster partition
a1, Ar

1, and the chains that terminate with N-cluster partition
aN are denoted Ar

1 = Ar and AN
r = Ar . The complete chain A

is initiated from a1 and terminated with aN .
The interaction Vap internal to partition ap is the sum of all

two-body potentials that are internal to the p clusters of ap,

Vap =
∑

aN−1 ⊂ ap

VaN−1 , (3)

where VaN−1 is the two-body interaction associated with parti-
tion aN−1.

In the case of the deuteron-deuteron scattering system,
18 chains are required to define the chain space. Account-
ing for particle identity, there are only seven physically
distinguishable chains. In this case, there is only one physi-

cally distinguishable chain describing the complete decompo-
sition which is taken to be A4

1: (1, 2, 3̂, 4̂) → (1, 4̂)(2, 3̂) →
(1)(4̂)(2, 3̂) → (1)(2)(3̂)(4̂), where particles 3 and 4 are pro-
tons. The three corresponding two-cluster chains are obtained
by particle exchange. While these four chains define the initial
and final states, all chains/partitions contribute to the total
scattering interaction.

B. Separable expansion of the two-cluster open-channel
resolvent operator

The effective potential can be determined by separating the
energetically allowed open P channels, and noting that the
scattering operator associated with a potential V = V P + V Q

can be written as T P + T Q [16]. The closed-channel operator
T Q satisfies the Lippman Schwinger equation

T Q = V Q + V QG0T Q, (4)

where G0 is the resolvent operator for the unperturbed system.
In the case that the potential V supports a set of bound states
with state vectors |ϕi〉 and energies εi, the separable potential
is taken to be

V P =
∑
i, j

V |ϕi〉(V −1)i j〈ϕ j |V, (5)

where the matrix V is defined

Vi j = 〈ϕi|V |ϕ j〉. (6)

It then follows from the relation

V Q|ϕi〉 = (V − V P )|ϕi〉 = 0 (7)

that V P supports the same |ϕi〉 states. Since V P is separable,
T P can be determined algebraically and is given by Eq. (10)
of Ref. [19]. In the present application, |ϕi〉 are the two-cluster
eigenstates of the Hamiltonian Ha2 representing the open-
channel configurations. Recalling that Ga2 = G0 + G0Ta2 G0

and taking

HQ
a2

= H0 + V Q
a2

, (8)

it follows that

T Q
a2

= V Q
a2

+ V Q
a2

G0T Q
a2

(9)

and

Ga2 = GQ
a2

+ G0T P
a2

G0. (10)

Using the separable expansion for T P [19], GP
a2

may
be expressed as a sum over open channels: e.g., for the
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d + d → d + n + p single breakup1,2

GP
a2

= G0T P
a2

G0 =
∫

dqa2

∣∣ϕD
a2

(
E − q2

a2

)
; qa2

〉 Sa2

(
E − q2

a2

)
E − q2

a2
+ εa2

〈
ϕD(−)

a2

(
E − q2

a2

)
; qa2

∣∣

+
∑

e3⊂ a2

∫
dqa2 dpe3

∣∣ϕD
a2(e3 )

(
E − q2

a2

)
; qa2 , pe3

〉Sa2(e3 )
(
E − q2

a2
; pe3

)
E − q2

a2
− p2

e3
+ εe3

〈
ϕ

D(−)
a2(e3 )

(
E − q2

a2

)
; qa2 , pe3

∣∣, (11)

where the “self-energy” matrices are defined

S−1
a2

(
E − q2

a2

) = 〈
ϕa2

∣∣ϕD
a2

(E )
〉

(12)

and

S−1
a2(e3 )

(
E − q2

a2
; pe3

) = 〈
ϕ

(−)
a2(e3 )(pe3 )

∣∣ϕD
a2(e3 )(E ; pe3 )

〉
. (13)

The distorted bound-state and breakup states are,
respectively, ∣∣ϕD

a2
(E )

〉 = GQ
a2

(E )Va2

∣∣ϕa2

〉
(14)

and ∣∣ϕD
a2(e3 )(E ); pe3

〉 = GQ
a2

(E )Va2

∣∣ϕa2(e3 )(pe3 )
〉
, (15)

where GQ
a2

is the resolvent operator associated with the poten-
tial V Q

a2
and pe3 is the relative momentum of the two clusters

resulting from the fragmentation. (It is noteworthy that there
is no distortion when the states are on shell; i.e., |ϕD

a2
〉 → |ϕa2〉

when E = −εa2 ). The state |ϕa2 ; qa2〉 represents the situation
in which the two clusters of partition a2 move freely with a
(renormalized) relative momentum of qa2 , with |ϕa2〉 describ-
ing the bound states of the two clusters of partition a2 with
total energy = −εa2 . Similarly, |ϕa2(e3 ); qa2 , pe3〉 represents a
scattering state of Ha2 in which the initial partition is e3 (⊂
a2) with the two clusters of a2 having relative momentum qa2

and the two clusters which are bound in partition a2 and are
fragmented in partition e3 have relative momentum pe3 . The
state |ϕe3〉 describes the initial bound states of the three clus-
ters of partition e3 with total energy −εe3 . The distorted states
|ϕD

a2
(E − q2

a2
); qa2〉 and |ϕD

a2(e3 )(E − q2
a2

); qa2 , pe3〉 in Eq. (11)
are obtained by replacing the bound states by the distorted
bound states defined in Eqs. (14) and (15).

While the V Q
a2

nonseparable component of the potential
is neglected in typical separable expansions, the nonsepara-
ble component is included in the present approach. It enters
the effective potential calculation through the closed-channel
resolvent operator GQ

a2
, via the distortion of the initial and

final states and as a contribution to the effective potential. In
the case of the deuteron-deuteron system, the closed-channel
Q-space resolvent operator GQ

a2
is determined by a variational

bound procedure.

1In the case of double breakup, the separable term for the
|ϕD

a2 (e4 )(E − q2
a2

); qa2 , pe3 , pe4 〉 four-body breakup state is added to
the right-hand side of Eq. (11) when E > 0.

2For convenience, the energy continuation is suppressed when it is
E + iε.

C. Transition amplitudes and the effective potential

In the case of deuteron-deuteron scattering, the Ref. [16]
[Eq. (58)] expression for the Ti j scattering amplitudes reduces
to the following three chains of coupled integral equations: the
d + d → d + d elastic amplitude

T11 = V11 + T11P1V11, (16)

the d + d → d + n + p breakup amplitudes

T22 = V22 + T22P2V22, (17)

T21 = V21 + T22P2V21 + T21P1V11, (18)

and the d + d → n + p + n + p double-breakup amplitudes3

T32 = V32 + T32P2V22, (19)

T31 = V31 + T32P2V21 + T31P1V11. (20)

On the left, index 1 corresponds to the final one-
momentum symmetrized two-partition (2,4̂)(1,3̂) free-particle
state, index 2 corresponds to the two-momentum sym-
metrized three-partition (1)(3̂)(2,4̂) free-particle state, and
index 3 corresponds to the three-momentum symmetrized
four-partition (1)(2)(3̂)(4̂) free-particle state. On the right, in-
dex 1 corresponds to the initial one-momentum symmetrized
two-partition (1,4̂)(2,3̂) free-particle state and index 2 cor-
responds to the two-momentum symmetrized three-partition
(2,3̂)(1)(4̂) free-particle state. The propagators P1(qa2 ; E ) and
P2(qa2 , pe3 ; E ) are defined in terms of the self-energy matrices
Si, the cluster-cluster momenta qa2 and pe3 , and the deuteron
cluster binding energy ε,

P1(qa2 ; E ) = Sa2

(
E − q2

a2

)
E − q2

a2
+ 2ε

(21)

and

P2(qa2 , pe3 ; E ) = Sa2(e3 )
(
E − q2

a2
; pe3

)
E − q2

a2
− p2

e3
+ ε

. (22)

The deuteron breakup has been included by adding a
second separable term to the two-cluster potential, with a
deuteron scattering state of momentum pe3 replacing the
bound state. P1 is the bound-state propagator and P2 is the
corresponding breakup propagator. The distortion of the states

3In the double-breakup calculations, each fragmented deuteron was
assumed to have the same internal momentum and, as a result of
momentum constraints, V33 and T33 are zero.
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|ϕD
a2

(E − q2
a2

); qa2〉 and |ϕD
a2(e3 )(E − q2

a2
); qa2 , pe3〉 is caused

by the nonseparable component of the potential. These dis-
torted states only appear as final states in the effective
potential since there is no distortion of the initial on-shell
states.

The effective potential Vi j consists of the two terms

Vi j = Bi j + V Q
i j , (23)

where the P-space open-channel (cluster-to-cluster) Born-
exchange contribution is

Bi j = 〈
ϕ

D (−)
i

∣∣V (2, 4̂) + V (1, 3̂)|ϕ j〉 (24)

and V Q
i j is the Q-space closed-channel variational contribution.

For convenience, in this calculation the GQ
a2

input for the
closed-channel variational contribution has been simplified by
(1) assuming a single term symmetric trial function g0 and
(2) neglecting the small second-order contributions from the
weakend nonseparable potential.4 The closed-channel varia-
tional contribution is then5

V Q
i j = 4π

D0
V (F )

i PQ V (I )
j , (25)

where the initial and final chain-dependent potentials are

V (I )(1, 1) = 〈g0|V (1, 4̂)|ϕ1〉, (26)

V (I )(1, 2) = 〈g0|V (2, 3̂)|ϕ1〉, (27)

V (I )(2, 1) = 〈g0|V (1, 4̂)|ϕ2〉, (28)

V (I )(2, 2) = 〈g0|V (2, 3̂)|ϕ2〉, (29)

and V (F )(i, 1) = V (F )(i, 2) = 〈
ϕ

D (−)
i

∣∣V (2, 4̂) + V (1, 3̂)|g0〉.
(30)

The Q-space chain-dependent propagators are PQ(1, 1) =
(1 + a2)/d , PQ(1, 2) = −a (1 + a)/d , PQ(2, 2) = PQ(1, 1),
and PQ(2, 1) = PQ(1, 2), where a = 〈g0|V (1, 4̂)|g0〉/4D0,
d = 1 + a2 − 2a3, and D0 = 〈g0|E − H0|g0〉.

The V Q
i j contribution is determined using a variational-

bound procedure [16] for determining GQ
a2

. Since the weakend
closed-channel two-cluster potential V Q

a2
does not support

bound states below the four-body threshold (i.e., E < 2ε =
4.38 MeV), the g0 trial function is spatially damped and the
error in the GQ

a2
estimate can be shown to be of definite sign

allowing both upper and lower bound estimates to be deter-
mined. In this calculation, the g0 trial function is determined

4This simplification neglects the nonseparable potential contribu-
tions to GQ

a2
[p = 2 terms of A in Eq. (62) of [16]].

5For convenience, chains 2 and 5 of [16] have been relabeled 1 and
2, respectively.

by minimizing the variational expression for which the error is
known to be positive, providing an upper bound. This g0 min-
imization procedure was carried out at each energy E < 2ε,
providing an energy dependent trial function. When E > 2ε,
the trial function must include a four-cluster continuum scat-
tering function.6 Since in these calculations E � 2ε and V Q

i j is
generally small compared to Bi j , the energy dependence above
E > 2ε was approximated and V Q

i j (E > 2ε) was taken to be

V Q
i j (E = 2ε).

In order to account for the Coulomb interaction, the initial
and final Coulomb states were each expanded in a Coulomb-
Sturmian (CS) basis. This allowed the CS components of
these states to be determined analytically. In the case of elastic
scattering the expansion was made in terms of the deuteron-
deuteron separation, while in the breakup calculations the
expansion was made using the proton-proton separation. The
calculation of the effective potential matrix elements with
respect to the CS basis was reduced to a one-dimensional
integration, which was performed numerically. In defining the
basis states, the scaling factor of the CS functions was taken
to be 3.0 fm−1 consistent with the range of the potential. As in
Ref. [20], a smoothing factor was employed to minimize the
effect of the Gibbs oscillations as the number of CS expansion
terms (NCS) increases. The calculations were performed with
a converged CS expansion of NCS = 21 terms.

To minimize calculation uncertainty, numerical techniques
including extended-precision coding to eliminate round-off
and increase accuracy, range-dependent mesh to improve ac-
curacy, and convergence acceleration to improve efficiency
have been employed. As an additional qualification, a detailed
and systematic assessment of the calculational uncertainties
has been performed. This has included the evaluation of the
uncertainties and bias, their propagation through the calcu-
lation and their effect on the d + d scattering length and
elastic amplitude calculation. This assessment is included in
the Appendix.

III. CALCULATION METHODS AND RESULTS

A. Calculation methods

The transition amplitudes were calculated using the set of
ten (when the imaginary amplitudes are included) coupled
momentum-space integral equations (16)–(20). In solving the
coupled equations, the T22 and T32 intermediate-state ampli-
tudes were determined first, and then substituted into the
equations for the T21 and T31 final-state amplitudes. The
real and imaginary amplitude components were uncoupled
iteratively.

The calculations were performed for the S = 2 spin/L = 0
angular momentum state using the Gaussian two-body poten-
tial and associated deuteron (ε = −2.193 MeV) bound-state
wave function of Ref. [21].7 The V Q

i j effective potential was

6It is also noteworthy that when E > 2ε, the error in the variational
estimate is not of definite sign and the usual GQ

a2
bound feature is no

longer available.
7The Gaussian potential is used here since (1) it allows the ef-

fective potential (9D) integrations to be performed analytically and
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FIG. 1. Elastic unitarity vs phase shift (−1.1 ° to −38.5 °) to
energies above the four-body breakup threshold for the S = 2/L = 0
state. The three- (four-)body threshold is at −13.7 ° (31.7 °) to the
horizontal.

calculated using an input Green’s function determined using
the upper-bound variational principle together with the g0

Gaussian trial function. The L = 0 component of the potential
was determined by an additional angular integration which
was also performed analytically.

As an initial assessment of the calculation methods, the
elastic unitarity was calculated for energies up to 5.48 MeV
(i.e., above the four-body breakup threshold). The unitarity
dependence on phase shift was determined and the calcu-
lated SS∗ and the SS∗ = 1 unitarity circle are compared in
Fig. 1. Below the three-body breakup threshold (phase shift
= −13.7◦) unitarity is satisfied exactly and the two curves
agree to within ±0.01%. This agreement is consistent with
the accuracy of the T11 amplitudes, which was independently
determined to be ±0.01%. Above the three-body threshold
the T21 amplitude also contributes to the unitarity sum, which
results in a reduction in the T11 fractional contribution and a
reduction in the radius of the elastic unitarity curve (i.e., SS∗
moves toward the inside of the circle). Similarly, above the
four-body threshold (phase shift = −31.7◦) the T31 amplitude
results in a further reduction in the radius of the elastic uni-
tarity curve. However, because of the reduced magnitude of
the breakup cross sections this contribution is very small and
the two curves are almost identical. This was confirmed by
the elastic channel calculation of S∗

12S21 = 1 − S∗
11S11 =

0.0006 and the breakup channel calculation, using the T21 am-
plitude, of S∗

12S21 = 0.0007 (the difference being round-off).
The breakup calculation involved the summation over both the
final state two-body momentum and the fragmented deuteron
internal momentum.

At the two breakup thresholds, the SS∗ calculations were
performed with an extra fine energy mesh to allow a detailed
description of the elastic and breakup cross sections and possi-
ble threshold anomalies. The calculations, however, indicated
no anomalies or significant deviations from the unitarity cir-

(2) the kernel of the amplitude momentum-space integral equation
is analytic, eliminating the difficulties associated with the com-
plex singularities and contour rotation that occur with Yukawa-type
potentials.
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FIG. 2. Deuteron-deuteron S = 2/L = 0 scattering phase shift
vs the relative momentum, below the three-body breakup threshold
(κ = 0.325 fm−1).

cle. This is believed to be due to the Coulomb repulsion which
maintains a large deuteron-deuteron separation at low energy
(i.e., just above the threshold). As a result of this barrier the
breakup cross section is insensitive to the energy (the cross
section and its derivatives tend to zero at the threshold [22])
and no anomaly or cusp is introduced.

B. Elastic scattering

The scattering length calculation was performed using
the zero-energy K-matrix form of the d + d → d + d elastic
chain equation. The elastic S = 2 Coulomb-modified scatter-
ing length calculation predicted a value of 5add = + 7.8 ±
0.3 fm.8 This compares well with the 5add = + 7.5 fm value
of Filikhin and Yakovlev (FY) of Ref. [23] calculated using
the configuration-space cluster reduction method including
Coulomb effects.

The calculated S = 2/L = 0 deuteron-deuteron phase shift
for momentum below the single-breakup threshold (κ <

0.325 fm−1) is given in Fig. 2. For comparison, the Filikhin
and Yakovlev phase shift calculation using the MT I–III two-
body potential [24] is also included. It is seen that the FY
phase shift is substantially more negative with a stronger
momentum dependence than the present calculation. This dif-
ference is believed to be due to the difference in potentials.
The Pauli repulsion in the symmetric S = 2 spin state ensures
the particles are well separated, increasing the sensitivity of
the phase shift to the long-range properties of the potential.
The effective range of the MT I–III Yukawa potential is a
factor of ∼3 larger than the range of the Gaussian potential
used in the present calculation. As indicated in the effective-

8As described in the Appendix, this value is the result of a recent
detailed uncertainty analysis that has been performed for the scatter-
ing length calculation and is an update of the 5add = 8.2 fm value of
Ref. [16].
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FIG. 3. Deuteron-deuteron S = 2/L = 0 scattering phase shift
vs the relative momentum, above the four-body breakup threshold
(κ = 0.460 fm−1).

range expansion, this will increase the phase shift and result
in the observed stronger momentum dependence.9

In Fig. 3, the phase shift calculation of Hofmann and
Hale (HH) of Ref. [15] is compared with the present cal-
culation. The calculations were performed for momentum
above the double-breakup threshold (κ = 0.460 fm−1) up to a
momentum of κ = 0.514 fm−1 (E = 5.48 MeV), and use the
RGM with the more recent Bonn-based Gaussian potential of
Kellermann et al. [26]. While both calculations have the same
linear dependence on momentum, the present calculation indi-
cates a smaller phase shift. However, the Bonn-based potential
used in the RGM calculation differs in that it includes (1)
a strong attractive core for r � 1.0 fm and (2) a slightly
weaker attractive long-range tail for r � 1.0 fm. The larger
phase shift of the RGM calculation is believed to be due to
the strong attractive core of the Bonn-based potential and
the difference in the calculation methods.10 Variational-bound
calculations using the Ref. [26] Gaussian Bonn-based poten-
tial are presently underway.

C. Three-body d + d → d + n + p breakup scattering

The breakup cross section was calculated for the cases
where the fragmented deuteron takes the specific fragmented-
deuteron kinetic energy fractions FKE = 0.1, 0.5, and 0.9
of the available (κ > 0.325 fm−1) initial kinetic energy.
The calculations were performed as a function of ini-
tial relative deuteron momentum up to a value of κ =
0.449 fm−1 (E = 4.17 MeV). The S = 2/L = 0 Coulomb-

9While the FY and present predictions of the phase shift disagree,
the zero-energy scattering length predictions are in good agreement.
This insensitivity of the scattering length to the potential is consis-
tent with previous 4N calculations in which the particles are well
separated [25].

10The Ref. [26] potential consists of (17) damped Gaussian terms
and the effective range is similar to that of the Gaussian used in the
present calculation. Consequently, unlike the difference with the FY
calculation, this difference in phase shift cannot be explained by a
difference in the effective range of the potentials.
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FIG. 4. d + d → d + n + p S = 2/L = 0 breakup cross sec-
tion vs the initial deuteron relative momentum, as a function of the
fragmented-deuteron kinetic energy fraction (FKE).

corrected breakup cross section for these cases is given in
Fig. 4 as a function of the initial relative deuteron momentum.

The breakup cross section was also calculated as a function
of FKE at E = 3.29 MeV (κ = 0.398 fm−1). The normalized
breakup cross section and Coulomb-corrected cross section
are presented in Fig. 5. For comparison, the normalized
D(d ,np)D neutron yield measured by Cranberg et al. [27]
at E = 3.15 MeV and zero degrees (with the beam) is also
presented. Comparing the measured neutron yield and the
uncorrected breakup cross section, it is seen that both the mea-
sured and calculated peaks occur at FKE ∼ 0.40. However,
the measurement is significantly more peaked than the calcu-
lation. The effective potential includes terms that contribute
exponential factors of the form exp (ακ · K), where K is the
deuteron-deuteron relative momentum, which would produce
the stronger peak. However, these terms do not contribute
in the L = 0 calculation. On the other hand, the measure-
ments of Cranberg and those of Cabral et al. [28] include
a strong angular dependence indicating the presence of the
L > 0 contributions which would explain the sharper peak in
the measurements.

0

0.2

0.4

0.6

0.8

1

1.2

0 0.2 0.4 0.6 0.8 1

Re
la

�v
e 

N
eu

tr
on

 Y
ie

ld

Fragmented-Deuteron Energy (FKE)

d+d d+n+p 

C-CROSS SECTION

CROSS SECTION

CRANBERG (et al.)
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action vs the fragmented-deuteron kinetic energy fraction (FKE),
together with the (normalized) cross sections and Coulomb-corrected
cross sections. Calculations are at 3.29 MeV and the Cranberg et al.
measurements are at 3.15 MeV.
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D. Four-body d + d → n + p + n + p breakup scattering

The breakup cross section was calculated for the cases
where the fragmented deuterons each take an equal frac-
tion FKE = 0.05, 0.25, and 0.45 of the available (κ >

0.460 fm−1) initial kinetic energy. The calculations were
performed as a function of the initial relative deuteron mo-
mentum up to a value of κ = 0.514 fm−1 (E = 5.48 MeV).
The S = 2/L = 0 Coulomb-corrected breakup cross section
for these cases is given in Fig. 6 as a function of the initial
relative deuteron momentum.

The breakup cross section was also calculated as a function
of FKE at E = 4.82 MeV (κ = 0.482 fm−1). The normalized
breakup cross section and Coulomb-corrected breakup cross
section are presented in Fig. 7. The breakup cross section
peaks at FKE ∼ 0.25. The Coulomb correction is especially
large at FKE ∼ 0.45, where the fragmented-deuteron energy
is large and the proton-proton energy is low. This reduces
the proton penetration factor C0 and decreases the Coulomb
uncorrected cross section in Fig. 7. This is exacerbated by the
fact that the available energy in this case is only 0.434 MeV
compared to the three-body breakup where the available en-
ergy is 1.097 MeV.
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FIG. 7. Normalized cross sections and Coulomb-corrected cross
sections (i.e., the relative neutron yield) for the d + d → n + p +
n + p reaction vs the fragmented-deuteron kinetic energy fraction
(FKE) at 4.82 MeV.

IV. SUMMARY

The deuteron-deuteron elastic, three-body, and four-body
breakup scattering cross sections have been calculated us-
ing the Faddeev-Yakubovskii chain-of-partition momentum-
space equations as described in Ref. [16]. In this approach
the initial two-cluster potential is split into separable and non-
separable components, and the scattering amplitudes satisfy
a Lippmann-Schwinger type equation in which the kernel
integration is over the open channels and the closed channels
enter through the effective potential. The effective potential
consists of a P-space open-channel Born-exchange term and a
Q-space closed-channel variational contribution. The effective
potential closed-channel term is determined by minimizing
a variational bound. The Coulomb effects are included by
expanding the initial and final Coulomb states in a Coulomb-
Sturmian basis.

The three sets of chain-of-partition momentum-space in-
tegral equations were solved for the elastic and three- and
four-body breakup scattering amplitudes. The calculations
were performed for the S = 2 spin/L = 0 angular-momentum
state. In the case of elastic scattering, the calculated scat-
tering length of 5add = 7.8 ± 0.3 fm compares well with
the 5add = + 7.5 fm value of Ref. [23] calculated using
the configuration-space cluster reduction method. However,
the calculated phase shift is smaller than that predicted by
the RGM calculation of Ref. [15]. This difference is believed
to be due to the different potentials and methods used in the
calculations.

The d + d → d + n + p breakup cross sections were cal-
culated as a function of initial deuteron momentum and
fragmented-deuteron energy. The cross sections were com-
pared with neutron yield measurements and, while the
measurements also included the L > 0 angular-momentum
and spin < 2 components, the general features were con-
sistent. The d + d → n + p + n + p breakup cross sections
were also calculated as a function of initial deuteron momen-
tum and fragmented-deuteron energy. No comparisons were
made for the double breakup since applicable measurements
were not available. Estimates of the calculational uncertainties
and bias were also provided.

APPENDIX: UNCERTAINTY ANALYSIS FOR THE
DEUTERON-DEUTERON SCATTERING CALCULATIONS

1. Scattering length calculation

The variational-bound formulation of the N-particle scat-
tering problem based on the Faddeev-Yakubovskii equations
is given in Ref. [16]. This integral-equation formulation,
implemented using a set of specially designed numeri-
cal methods, has been applied to the two-cluster case of
deuteron-deuteron scattering. Using this approach, the S = 2
deuteron-deuteron scattering length is calculated to be 5add =
+ 8.2 fm.

The various many-body techniques developed for the N �
4 particle systems necessarily include a number of difficult
to assess approximations. In order to assess the effect of
the calculational uncertainties introduced by the approxima-
tions and numerical methods used in the scattering length
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TABLE I. Effect of approximations and numerical methods
uncertainties and bias on the deuteron-deuteron scattering length
calculation.

Source of bias/uncertainty Bias (fm) Uncertainty (fm)

Born-exchange term spatial integration 0.0 ±0.09
Variational-bound trial function +0.1 ±0.01
Second-order Born distortion 0.0 ±0.2
Distortion coarse-mesh momentum −1.3 ±0.1
Coulomb-Sturmian convergence +0.8 ±0.1
Integration and summation of CS terms 0.0 ±0.1
Smoothing numerics 0.0 ±0.06
Total −0.4 ±0.3
5add = 8.2 + bias ± uncertainty = 7.8 ± 0.3 fm

calculation a detailed uncertainty analysis has been per-
formed. This analysis included (a) the identification of the
significant sources of systematic bias and random uncertain-
ties, (b) the estimation of these biases and (1σ ) uncertainties,
and (c) the determination of their effects on the deuteron-
deuteron scattering length calculation.

The results of this analysis are summarized in Table I.
The determination of the Bi j Born-exchange term in the
effective potential [Eq. (24)] requires a two-dimensional spa-
tial integration. This integration was performed numerically
using two methods: (1) as a two-dimensional integral and
(2) as the product of two one-dimensional integrals in a
series expansion. A comparison of these two methods in-
dicated a scattering length uncertainty of ±0.09 fm with
no systematic bias.11 The closed-channel Q-space contribu-
tion to the effective potential [Eq. (25)] was determined
using the upper-bound variational principle for the Q-
space Green’s function. The selection of the trial function
in this variational calculation also introduces uncertainty.
Based on sensitivity studies of the upper bound, it is es-
timated this term contributes a scattering length bias of
+0.1 fm and an uncertainty of ±0.1 fm.

The determination of the off-shell long-range distortion of
the deuteron bound states [Eqs. (14) and (15)], by the nonsep-
arable component of the potential V Q, requires the solution of
a (negative-energy) Lippmann-Schwinger type integral equa-
tion for GQ

a2
(E ). Since the potential V Q is weak and to avoid

the large momentum-space matrix inversion, GQ
a2

(E ) was ap-
proximated with G0(E ). To evaluate this approximation, the
second-order Born contribution was added. Comparing these
calculations, it was determined that the G0(E ) calculation
of the distorted bound states introduces a scattering length
uncertainty of ±0.2 fm and no bias. In addition, to reduce

11It should be noted that the bias and uncertainty values given here
are applicable for the specific parameters and methods used in this
calculation. It is expected these uncertainties/biases can be reduced
by further tightening of the methods.

computing time a relatively coarse mesh was used to represent
the distortion momentum dependence. A fine mesh calcu-
lation indicated a scattering length bias of −1.3 fm and an
uncertainty of ±0.1 fm.

To minimize numerical uncertainty in the determination
of the Coulomb-Sturmian components of the initial and final
states, an accurate integration of the individual terms of the
CS expansion and their summation is required. This calcula-
tion has been performed using both a numerical and analytic
approach. Comparison of the results of these calculations
indicates a scattering length uncertainty of ±0.1 fm and no
systematic bias. Based on the observed asymptotic depen-
dence of the scattering length on the number of CS expansion
terms, it is estimated the numerics of the smoothing process
used to minimize the effect of Gibbs oscillations contribute a
±0.06 fm uncertainty. No bias is indicated.

In order to assess the accuracy of the Coulomb-Sturmian
representation of the initial and final states, the order of
the expansion was increased to tighten the convergence
(NCS = 25terms). The results indicated a scattering length
bias of +0.8 fm and an uncertainty of ±0.1 fm.

Applying these statistical bias/uncertainty data, the base
calculation is updated in Table I leading to a deuteron-
deuteron scattering length of 5add = + 7.8 ± 0.3 fm. This
variational (momentum-space) integral-equation calcula-
tion is in good agreement with the cluster-reduction
(configuration-space) integrodifferential equation result of
5add = + 7.5 fm [23].

2. Scattering amplitude calculations

The zero-energy K-matrix scattering length and the E > 0
elastic T-matrix amplitude calculations differ in that the T-
matrix calculation includes a pole in the two-body momentum
integration. The methods for treating this pole are well estab-
lished and introduce no significant additional uncertainty/bias.
The calculation of the effective potential is the same in both
cases. The self-energy matrices, bound-state distortion, and
propagators are determined using the exact same methods in
these calculations. The numerical solution of the K-matrix and
T-matrix integral equations has been verified and is not a sig-
nificant contributor to the uncertainty. The Coulomb-Sturmian
expansion is the same. As a result it is expected the elastic
amplitude calculational uncertainty will be similar to that of
the scattering length calculation.

In the case of the E > ε breakup amplitude calculations,
the inhomogeneous terms of the integral equations [Eqs. (18)
and (20)] include the T22 and T32 amplitudes and the un-
certainty and bias observed in the scattering length are not
applicable. In addition, the E > 2ε four-body breakup ef-
fective potential does not include the required four-cluster
continuum scattering trial function. It is expected the use of
the approximate energy-independent V Q

i j (E = 2ε) potential
above E > 2ε will increase the uncertainty/bias as energy
increases. The uncertainty analysis for the breakup amplitudes
will be performed after the inclusion of the free-particle scat-
tering term in the E > 2ε trial function.
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