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5
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The J = 1/2 iso-doublet double-�-hypernuclei, namely, 5
��H and 5

��He, are examined as the three-body
cluster states, ��t (t ≡ 3H or triton) and ��h (h ≡ 3He or helion), respectively, in a model-independent
framework utilizing pionless halo effective theory. Both singlet and triplet states of the constituent �T (T ≡ t, h)
subsystem are used in the elastic channel for the study of 4

�H-� and 4
�He-� scattering processes. A prototypical

leading-order investigation using a sharp momentum cutoff regulator �c in the coupled integral equations for
each type of the �T subsystem spin states yields identical renormalization group limit cycle behavior when
the respective three-body contact interactions are taken close to the unitary limit. Furthermore, irrespective of
the type of the elastic channel chosen, almost identical cutoff dependence of the three-body binding energy
or the double-�-separation energy (B��) is obtained for the mirror partners, evidently suggesting good isospin
symmetry in these three-body systems. Subsequently, upon normalization of our solutions to the integral equation
with respect to a single pair of input data from an ab initio potential model analysis for each mirror hypernuclei,
yields B�� which agrees fairly well with various erstwhile regulator independent potential models for our
choice of the cutoff, �c ∼ 200 MeV. This is either consistent with pionless effective theory or with its slightly
augmented version with a hard scale of �H � 2mπ , where low-energy �-� interactions dominated by ππ or
σ -meson exchange. Finally, to demonstrate the predictability of our effective theory, we present preliminary
estimates of the S-wave ��T three-body scattering lengths and the �-separation energies by using a range
of currently accepted values of the double-� scattering length from a variety of existing phenomenological
predictions that is constrained by the recent experimental data from relativistic heavy-ion collisions.

DOI: 10.1103/PhysRevC.103.014001

I. INTRODUCTION

The various experimental [1–13] and theoretical [14–26]
investigations over several decades on the doubly strange
(S = −2) s-shell light double-�-hypernuclear systems, such
as 3

��n, 4
��n, 4

��H, 4
��He, 5

��H, 5
��He, and 6

��He, have
elicited keen interest in the study of exotic hypernuclei
in the strangeness nuclear physics community. Such multi-
strange systems can provide stringent tests for probing the
microscopic mechanisms for the flavor SU(3) baryon-baryon
interaction in the strangeness S = −2 channel. In particular,
essential information about the �-� interaction is expected
to be obtained from these studies, which may hold defini-
tive clues to the longstanding quest for the controversial
H-dibaryon, an exotic six-quark (J = 0, I = 0) deeply bound
state, originally predicted by Jaffe in 1977 using the bag-
model [14]. Different perspectives regarding the existence of
the H particle have been obtained in ab initio calculations
over the years. For example, the dispersion relation based
analysis [27] on the 12C(K−, K+��X ) reaction data from
the KEK-PS Collaboration [4] yielded an estimate of the 1S0
double-� scattering length, namely, a�� = −1.2 ± 0.6 fm,
that was well at odds with a possible �� bound state. While
lattice QCD simulations [28–32] with significantly larger pion
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masses yielded extrapolated results suggesting positive in-
dications of a �� bound state, albeit a shallow one in the
flavor SU(3) limit. However, apparently by going to the phys-
ical point, it tends to get pushed to the double-� threshold,
eventually dissolving into the continuum once SU(3) breaking
effects are considered [33,34]. In fact, of late the HAL QCD
(2 + 1)-flavor coupled-channel lattice simulation [35] closer
to the physical point (mLat

π � 146 MeV, mLat
K � 525 MeV) has

yielded a rather small magnitude of the 1S0 double-� scat-
tering length, a�� = −0.81 ± 0.23 fm, casting a significant
doubt on the very existence of the H particle. This is con-
sistent with the current theoretically accepted (albeit broad)
range, namely, −1.92 fm � a�� � −0.5 fm, set by the fairly
recent thermal correlation model based investigations [36–38]
on Au + Au relativistic heavy-ion collision (RHIC) data from
the STAR Collaboration [7], which is unlikely to support
any �� bound state. It is interesting in this regard that the
same RHIC data previously analyzed by the STAR Collabo-
ration themselves [7] estimated a positive scattering length,
a�� = 1.10 ± 0.37 fm. Nevertheless, the rather recent �-�
femtoscopic analysis of p-p and p-Pb collision data from the
ALICE Collaboration [12,13] yielded a �� virtual bound
state of energy ≈3.2 MeV, thereby favoring a scattering length
consistent with the above range. In short, although these anal-
yses are clearly equivocal in their resolution of the H particle
conjecture, they evidently concur on a weakly attractive �-�
interaction with no deeply bound state.

With the discovery of 6
��He in the hybrid-emulsion ex-

periment KEK-E373 [1], so-called the “NAGARA” event,
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along with indications of the conjectured 4
��H bound state

in the BNL-AGS E906 production experiment [2], argu-
ments on the existence of double-�-hypernuclei have gained
a firm foothold, fostering a prolific area of modern re-
search. A whole gamut of theoretical investigations on the
double-�-hypernuclei followed since then. As for the J =
1/2 iso-doublet mirror partners, namely, 5

��H and 5
��He, until

rather recently most of these investigations have been focusing
on establishing phenomenological potential models. In partic-
ular, there exists both ab initio and cluster model approaches
involving three- and four-body Faddeev-Yakubovsky calcu-
lations and variational methods [16–23]. In some of these
model analyses, the binding-energy difference between the
two isospin partners has been studied by using dynamical
effects of mixing between different channels, such as �N ,
��, and �N . Of these, it is believed that the dominant con-
tribution arises from the ��-�N mixing channel. Because of
this channel coupling the value of the hypernuclear binding
energy (otherwise, commonly referred to in the literature as
the double-�-separation energy) B�� of 5

��He significantly
exceeds that of 5

��H. However, such model approaches are
often nonsystematic with conflicting conclusions based on ad
hoc assumptions, whereby little perceptions can be gained re-
garding the underlying binding mechanisms inherent to these
systems. It is, thus, timely to supplement the multitude of
the existing model results with a general model-independent
prediction based on universal arguments in few-body
systems.

In a recent pioneering effort, the first microscopic pion-
less effective field theory (π/EFT) based many-body analysis
using the stochastic variational method (SVM) has been re-
ported on some of the lightest double-�-hypernuclei for A �
6 [26]. This kind of ab initio Hamiltonian constructed π/EFT
technique utilizing only elementary baryonic (NN, N�, ��

two-body and NNN, N�N, �N� three-body) interactions
was first applied to calculations of few-nucleon systems
for lattice-nuclei [39–41] and later extended to the analy-
sis of s-shell �-hypernuclei [42]. Through a leading order
(LO) assessment of the onset of double-�-hypernuclei bind-
ing, the work of Ref. [26] quantitatively demonstrates the
robust possibility of the iso-doublet partners (5

��H, 5
��He)

as the lightest particle stable double-�-hypernuclei, thereby
discounting 3

��n, 4
��n, and 4

��H as possible bound states. In-
terestingly, as a parallel qualitative assessment to supplement
the aforementioned rigorous numerical analysis, we reexam-
ine the (5

��H, 5
��He) iso-doublet pair in view of a plausible

cluster or halo nuclear nature using universal arguments in
physics. Particularly, in the context of standard π/EFT frame-
work we investigate the correlations between their bound state
characteristics and the S-wave (4

�H-�, 4
�He-�) scattering

processes, respectively, in the kinematical region below the
(3H, 3He) + � + � breakup thresholds. In this way, through
a prototypical model-independent study we assess the role
of low-energy �-� interactions in giving rise to universal
correlations between three-body observables of such s-shell
double-�-hypernuclei and their possible formations thereof.

A low-energy EFT constitutes a systematic model-
independent approach with low-energy observables expanded

in a perturbative expansion in terms of a small parame-
ter, namely, ε ∼ Q/�H � 1, where Q is a generic small
momentum and �H is the ultraviolet (UV) cutoff scale
which limits the applicability of the perturbative scheme. The
effective degrees of freedom consistent with the low-energy
symmetries of the system are then identified in terms of
which the Lagrangian of the system is constructed and ex-
panded in increasing order of derivative interaction. The
corresponding coefficients (low-energy constants) are fixed
from phenomenological data. The heavy degrees of freedom
above the hard scale �H are integrated out and their effects
are implicitly encoded in these couplings. In the so-called
halo/cluster EFT formalism, the 5

��H and 5
��He systems can

be regarded as the double-� halo-nuclear states, namely, ��t
(t ≡ 3H, i.e., the triton) and ��h (h ≡ 3He, i.e., the helion),
respectively, with T ≡ t, h being the compact core that can
be considered elementary at scales chosen well below the
breakup of 4

�H and 4
�He.

The erstwhile emulsion works [3,6,43] have indicated evi-
dences of particle stable states of 4

�H and 4
�He �-hypernuclei.

The existence of these states were recently reconfirmed by
high-resolution decay π− and γ -ray spectroscopic measure-
ments carried out by the A1 Collaboration at MAMI [9,10]
and the E13 Collaboration at J-PARC [8,11], respectively.
The extracted J p = 0+ ground state �-separation ener-
gies (B�[0+]) of 4

�H and 4
�He are 2.157 ± 0.077 MeV

and 2.39 ± 0.05 MeV, respectively, whereas those corre-
sponding to the J p = 1+ first excited state (B�[1+]) are
1.067 ± 0.08 MeV and 0.984 ± 0.05 MeV, respectively (cf.
the level scheme depicted in Fig. 1). Thus, the typi-
cal momentum scale Q associated with these single �-
hypernuclei can be naively identified with mean binding
momentum of the ground and first-excited states, namely,
Q̄ ∼ {μ�T (B�[0+] + B�[1+])}1/2 ≈ 50 MeV, with μ�T =
M�MT /(M� + MT ) being the reduced mass of these �T
subsystems. On the other hand, the experimental binding en-
ergies (BT ) of the triton and helion cores being 8.48 MeV

FIG. 1. Level energy B� scheme with the ground (JP = 0+) state
of 4

�H and the first-excited (JP = 1+) states of the mirror partners
(4
�H, 4

�He) taken from the recent high-resolution spectroscopic mea-
surements at MAMI [9,10] and J-PARC [8,11], respectively. The
ground state energy of 4

�He on the other hand is taken from the
erstwhile emulsion work of Ref. [3]. The figure is adapted from
Refs. [10,55].
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and 7.72 MeV, respectively, the breakdown scale of our EFT
framework may be associated with the corresponding bind-
ing momentum scale �H ∼ √

2μdNBT ∼ mπ of the cores,
with μdN being the reduced mass of the deuteron (d) and
nucleon (N) system, and mπ is the pion mass. Consequently,
the expansion parameter is conservatively estimated to be at
the most ε ∼ Q̄/mπ � (2μ�TB�[0+])1/2/mπ ≈ 0.4, a value
reasonably small to support a valid EFT framework.

A practical computational framework for investigating
three-body dynamics is thus provided by the π/EFT without
explicit inclusion of pions. This has become a popular tool
for investigating shallow bound-state systems of nucleons and
other hadrons (for reviews and relatively recent works, see,
e.g., Refs. [15,24,25,44–52] and other references therein).
Such a framework provides the most general approach to
handle the dynamics of finely tuned systems with large
scattering lengths and cross sections nearly saturating the
unitary bound. This happens presumably in the vicinity of
nontrivial renormalization group (RG) fixed points of the
two-body contact couplings. Recently, a large number of
works on π/EFT have appeared dealing with low-energy
universal physics of three-body systems. A typical signature
of the onset of such universality is the appearance of a RG
limit cycle resulting from the breakdown of an exact to a
discrete scaling symmetry, accompanied with the emergence
of a geometric tower of arbitrary shallow three-body Efimov
bound states [50,53]. In the context of hypernuclear physics,
the Efimov effect and its universal role in the prediction
of three-body exotic bound states have been discussed in a
number of theoretical works [15,24,25,51,54] based on π/EFT
at LO. In the ensuing analysis, we use a similar setup to
investigate whether any remnant universal feature inherent
to the ��T system indicates Efimov-like bound state
character. However, the current paucity of phenomenological
information to constrain the various low-energy parameters of
the theory is a major hurdle in our approach which precludes
a robust prediction of the existence of Efimov-like bound
states in the 5

��H and 5
��He systems. As demonstrated in our

analysis, a crucial piece of information required as input to the
EFT analysis is a three-body datum, namely, the three-body
binding or double-�-separation energy B�� of a given
mirror partner, for which there are currently no available
experimental estimates. For this purpose, we rely on suitable
predictions based on an existing potential models, e.g., the
ab initio SVM analysis of Nemura et al. [22]. Moreover, the
predictability of our halo/cluster EFT framework depends
on fixing several two-body parameters from the following
phenomenological information:

(1) the measured ground and first-excited state �-
separation energies B�[JP = 0+, 1+] of the mir-
ror �-hypernuclei (4

�H, 4
�He), which we take from

Refs. [3,8–11] (cf. Fig. 1); and
(2) the value of the S-wave double-� scattering length

a��, for which we consider an acceptable range
of values from various phenomenological analyses
[26,27,35–38,56–58], constrained by the recent RHIC
data [7].

Based on these inputs, the three-body integral equa-
tions completely determine the B��-a�� correlations for the
��T systems, using which preliminary estimates of the
corresponding S-wave three-body scattering lengths a��T

are predicted. Such EFT predicted scattering lengths induce
universal correlations between three-body observables, as
elucidated by the so-called Phillips-lines [59] (cf. Fig. 10).
Furthermore, for the recently suggested benchmark value,
a�� = −0.80 fm, in Ref. [26], the �-separation energies,
B�(5

��H) = 2.295 MeV and B�(5
��He) = 2.212 MeV, are

deduced.
The paper is organized as follows: In Sec. II we present

the basic setup of the π/EFT formalism. There we display the
most general LO effective Lagrangian and the coupled system
of integral equations for the ��T system, with appropriate
scale-dependent three-body contact interactions that describe
RG limit cycle behavior. Section III contains our numerical
results of solving the integral equations in both bound and
scattering domains. In particular, through our study of the
B��-a�� correlations, we present preliminary estimates of the
��T scattering lengths and the corresponding �-separation
energies. Finally, in Sec. IV we present our summary with
concluding remarks. A brief discussion on the one- and two-
body nonrelativistic propagators in π/EFT is relegated to the
appendix.

II. THEORETICAL FRAMEWORK

A. Effective Lagrangian

We use the theoretical framework of pionless effective
field theory to investigate the bound states of the double-�-
hypernuclear mirror systems (5

��H, 5
��He). In this approach

the effective Lagrangian is constructed manifestly nonrela-
tivistic on the basis of available symmetries of the relevant
low-energy degrees of freedom. In our case, the explicit el-
ementary degrees of freedom involve two �-hyperon halo
fields and the generic core field, T ≡ t, h, representing one of
the two mirrors (isospin) partners, namely, the triton (t) or the
helion (h). In addition, it is convenient to introduce auxiliary
dimer fields to unitarize and renormalize the two-body sec-
tors [48,50,60–62]. Our formalism includes three such dimer
fields, namely, the spin-singlet (1S0) field u0 ≡ (�T )s, the
spin-triplet (3S1) field u1 ≡ (�T )t , and the spin-singlet ��-
dibaryon field us ≡ (��)s. Notably, these u0 and u1 dimer
states correspond to the experimentally observed spin-singlet
(0+) ground state and spin-triplet (1+) excited state of the
mirror hypernuclei (4

�H, 4
�He) [3,6,8–11,43].

The full nonrelativistic LO π/EFT Lagrangian can be ex-
pressed as the following string of terms:

L = L� + LT + Lu0 + Lu1 + Lus + L3-body. (1)

The one-body Lagrangian containing the contributions of the
elementary fields, namely, the �-hyperon and the spin-1/2
core T , is given as

L� = �†

[
i(v · ∂ ) + (v · ∂ )2 − ∂2

2M�

+ · · ·
]
�, (2)
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FIG. 2. Feynman diagrams for the coupled-channel integral equations, with u0� → u0� (type-A) choice as the elastic channel. The thin
(thick) lines denote the �-hyperon (core T ≡ t, h) field propagators. The double lines denote the renormalized propagators for the spin-singlet
dimer fields u0 and us, and the zigzag lines denote the renormalized propagators for the spin-triplet dimer field u1. The dark filled circles
denote the leading-order three-body contact interactions, while the square, oval, and rectangular gray blobs represent dressings of the dimer
propagators with resummed loops (cf. discussion in the appendix).

LT = T †

[
i(v · ∂ ) + (v · ∂ )2 − ∂2

2MT
+ · · ·

]
T, (3)

where M� and MT are the respective masses of the elementary
fields. Next we display the two-body parts of the Lagrangian,
namely,

Lu0 = −u†
0

[
i(v · ∂ ) + (v · ∂ )2 − ∂2

2(M� + MT )
+ · · ·

]
u0

− y0
[
u†

0

(
T TP̂ (1S0 )

(�T )�
) + H.c.

] + · · · , (4)

Lu1 = −(u1)†
j

[
i(v · ∂ ) + (v · ∂ )2 − ∂2

2(M� + MT )
+ · · ·

]
(u1) j

− y1
[
(u1)†

j

(
T TP̂ (3S1 )

(�T ) j�
) + H.c.

] + · · · , (5)

Lus = −u†
s

[
i(v · ∂ ) + (v · ∂ )2 − ∂2

4M�

+ · · ·
]

us

(6)
−ys

[
u†

s

(
�TP̂ (1S0 )

(��)�
) + H.c.

] + · · · ,

where the spin-singlet and spin-triplet projection operators are
given as

P̂ (1S0 )
(��) = − i

2
σ2, P̂ (1S0 )

(�T ) = − i√
2
σ2,

(7)

P̂ (3S1 )
(�T ) j = − i√

2
σ2σ j,

with σ j ( j = 1, 2, 3) being the Pauli spin matrices. In the
above equations vμ = (1, 0) is the velocity four-vector, and

the couplings y0, y1, and ys are two-body contact interactions
between the respective dimer and their constituent elementary
fields. Adopting to the power-counting scheme for the contact
interactions apposite to finely tuned systems [44–46], these
LO couplings are easily fixed as [63]

y0 = y1 =
√

2π

μ�T
, and ys =

√
4π

M�

. (8)

The ellipses in all the above Lagrangians denote subleading-
order terms containing four or higher derivative operators
that do not contribute to our LO analysis. For pedagogi-
cal reasons a brief description of the one- and two-body
nonrelativistic propagators used in the construction of the
Faddeev-type coupled integral equations is presented in the
appendix.

Finally, as demonstrated later in this section, since the
��T three-body systems are found to exhibit RG limit cycle
behavior, the set of integral equations [cf. Eqs. (11) and (12)
] becomes ill-defined in the asymptotic UV limit, and a reg-
ulator, say, in the form of a sharp momentum cutoff �c must
be introduced to obtain regularized finite results. In that case,
the basic tenet of the EFT [48] demands the introduction of
nonderivatively coupled LO counterterms to renormalize the
artificial regulator (�c) dependence of the integral equations.
For the ��T (J = 1/2, I = 1/2) mirror systems, there exists
two equivalent choices for the subsystem spin rearrangements
that determine the elastic channels, namely, u0� → u0� (de-
noted “type-A”), and u1� → u1� (denoted “type-B”). With
the type-A and -B choices of the elastic channels, the three-
body counterterm Lagrangians, are
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FIG. 3. Feynman diagrams for the coupled-channel integral equations, with u1� → u1� (type-B) choice for the elastic channel. The thin
(thick) lines denote the �-hyperon (core T ≡ t, h) field propagators. The double lines denote the renormalized propagators for the spin-singlet
dimer fields u0 and us, and the zigzag lines denote the renormalized propagators for the spin-triplet dimer field u1. The dark filled circles
denote the leading order three-body contact interactions, while the square, oval, and rectangular gray blobs represent dressings of the dimer
propagators with resummed loops (cf. discussion in the appendix).

L(A)
3-body = −g(A)

3 (�c)

�2
c

[
−MT y2

0

2
(u0�)†(u0�) + MT y0y1

2
(u0�)†(u1 · σ�) − M�ysy0√

2
(u0�)†(usT ) + H.c.

]
, (9)

L(B)
3-body = −g(B)

3 (�c)

�2
c

[
MT y2

1

6
(u1 · σ�)†(u1 · σ�) + MT y0y1

2
(u1 · σ�)†(u0�) − M�ysy1√

2
(u1 · σ�)†(usT ) + H.c.

]
. (10)

The regulator dependent three-body running couplings
g(A)

3 (�c) and g(B)
3 (�c) which are used to absorb the scale

dependence of the integral equations are a priori undeter-
mined in the EFT. Hence they must be phenomenologically
fixed from essential three-body data. A typical signature that
Efimov physics [50,53] is manifest in the three-body system
is that the RG behavior of the three-body couplings g(A)

3 and
g(B)

3 displays a characteristic quasi-log cyclic periodicity as a
function of the regulator scale �c � ∞. As originally sug-
gested by Wilson [64], this unambiguously implies the onset
of a RG limit cycle. Here we note that exact universality
demands both three-body couplings to be identical which in
principle should not depend on the details of the two-body
subsystems. However, in practice, certain nominal qualitative
differences do appear in the estimation of these scale depen-
dent couplings, as seen in our results presented in the next
section. This is primarily due to the specific choice of the
renormalization schemes we have adopted in the treatments
of the type-A and type-B integral equations [cf. discussion
below Eq. (15)]. However, such differences do not have any
significant influence on the qualitative nature of the results of
this work.

B. Integral equations

In Figs. 2 and 3, we display the Feynman diagrams
contributing to the S-wave elastic processes, namely, u0� →
u0� (type-A) and u1� → u1� (type-B), in terms of the
half-off-shell S-wave projected amplitudes, T (A,B)

a (p, k; E ),
T (A,B)

b (p, k; E ), and T (A,B)
c (p, k; E ). While T (A,B)

a (p, k; E )
denotes the elastic amplitudes, T (A,B)

b (p, k; E ) and
T (A,B)

c (p, k; E ) are the amplitudes for the inelastic processes
u0,1� → u1,0� and u0,1� → us�, respectively. Here k (p)
is the relative on-shell (off-shell) three-body center-of-mass
momentum for the u0,1-� scattering processes in the initial
(final) states, and E = E thr

2(s,t ) + k2/(2μ�(�T ) ) is the total
center-of-mass kinetic energy measured with respect to the
three-particle breakup threshold (E = 0). In other words, for
each ��T three-body system, there exists two particle-dimer
breakup thresholds, viz. the deeper � + u0 breakup threshold,
E thr

2(s) = −γ 2
0 /(2μ�T ), and the shallower � + u1 breakup

threshold, E thr
2(t ) = −γ 2

1 /(2μ�T ) (cf. discussions in Sec. III).
Here γ0 and γ1 are the respective binding momenta of
the singlet u0 ≡ (�T )s and triplet u1 ≡ (�T )t two-body
subsystems, and μ�(�T ) = M�(M� + MT )/(2M� + MT ) is
the reduced masses of the �-(�T )s,t three-body system.
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Using standard Feynman rules, the S-wave projected
amplitudes for the different elastic and inelastic channels
can be easily worked out. With the type-A and type-B

choices of the elastic channels, the two sets of coupled
integral equations for the ��T mirror partners are given
as [65–68]

T (A)
a (p, k; E ) = −1

2

(
y2

0MT
)KA

(a)(p, k; E ) + MT

μ�T

∫ �c

0

dqq2

2π
KA

(a)(p, q,�c; E )D0(q, E )T (A)
a (q, k; E )

−y0

y1

√
3MT

μ�T

∫ �c

0

dqq2

2π
KA

(a)(E ; p, q)D1(q, E )T (A)
b (q, k; E )

+y0

ys

√
8

∫ �c

0

dqq2

2π
KA

(b2)(p, q; E )Ds(q, E )T (A)
c (q, k; E ),

T (A)
b (p, k; E ) =

√
3

2
(y0y1MT )K(a)(p, k; E ) − y1

y0

√
3MT

μ�T

∫ �c

0

dqq2

2π
K(a)(p, q; E )D0(q, E )T (A)

a (q, k; E )

− MT

μ�T

∫ �c

0

dqq2

2π
K(a)(p, q; E )D1(q, E )T (A)

b (q, k; E )

+y1

ys

√
24

∫ �c

0

dqq2

2π
K(b2)(p, q; E )Ds(q, E )T (A)

c (q, k; E ),

T (A)
c (p, k; E ) = − 1√

2
(y0ysM�)K(b1)(p, k; E ) + ys

y0

√
2M�

μ�T

∫ �c

0

dqq2

2π
K(b1)(p, q; E )D0(q, E )T (A)

a (q, k; E )

+ ys

y1

√
6M�

μ�T

∫ �c

0

dqq2

2π
K(b1)(p, q; E )D1(q, E )T (A)

b (q, k; E ), (11)

and

T (B)
a (p, k; E ) = 1

2

(
y2

1MT
)KB

(a)(p, k; E ) − MT

μ�T

∫ �c

0

dqq2

2π
KB

(a)(p, q,�c; E )D1(q, E )T (B)
a (q, k; E )

−y1

y0

√
3MT

μ�T

∫ �c

0

dqq2

2π
KB

(a)(p, q; E )D0(q, E )T (B)
b (q, k; E )

+y1

ys

√
24

∫ �c

0

dqq2

2π
KB

(b2)(p, q; E )Ds(q, E )T (B)
c (q, k; E ),

T (B)
b (p, k; E ) =

√
3

2
(y1y0MT )K(a)(p, k; E ) − y0

y1

√
3MT

μ�T

∫ �c

0

dqq2

2π
K(a)(p, q; E )D1(q, E )T (B)

a (q, k; E )

+ MT

μ�T

∫ �c

0

dqq2

2π
K(a)(p, q; E )D0(q, E )T (B)

b (q, k; E )

+y0

ys

√
8

∫ �c

0

dqq2

2π
K(b2)(p, q; E )Ds(q, E )T (B)

c (q, k; E ),

T (B)
c (p, k; E ) = −

√
3

2
(y1ysM�)K(b1)(p, k; E ) + ys

y1

√
6M�

μ�T

∫ �c

0

dqq2

2π
K(b1)(p, q; E )D1(q, E )T (B)

a (q, k; E )

+ ys

y0

√
2M�

μ�T

∫ �c

0

dqq2

2π
K(b1)(p, q; E )D0(q, E )T (B)

b (q, k; E ), (12)

respectively, where in the above equations the two-body couplings y0, y1, and ys are determined by using Eq. (8). The S-wave
projected two-point Green’s functions (cf. Eq. (A3) in the appendix), namely,

D0(q, E ) = 1

γ0 −
√

q2 μ�T

μ�(�T )
− 2μ�T E − iη − iη

, D1(q, E ) = 1

γ1 −
√

q2 μ�T

μ�(�T )
− 2μ�T E − iη − iη

,

Ds(q, E ) = 1
1

a��
−

√
q2 M�

2μT (��)
− M�E − iη − iη

, (13)

014001-6



5
��H AND 5

��He HYPERNUCLEI REEXAMINED … PHYSICAL REVIEW C 103, 014001 (2021)

contain the contributions of the u0, u1, and us intermediate
dimer states, with μT (��) = (2M�MT )/(2M� + MT ), which
is the reduced mass of the T -(��)s three-body system. The
T -exchange interaction kernel K(a), and the two possible
�-exchange interaction kernels, K(b1) and K(b2), can be
expressed as

K(a)(p, κ; E ) = 1

2pκ
ln

[
p2 + κ2 + 2μ�T

MT
pκ − 2μ�T E

p2 + κ2 − 2μ�T

MT
pκ − 2μ�T E

]
,

K(b1)(p, κ; E ) = 1

2pκ
ln

[ M�

2μ�T
p2 + κ2 + pκ − M�E

M�

2μ�T
p2 + κ2 − pκ − M�E

]
,

K(b2)(p, κ; E ) = 1

2pκ
ln

[
p2 + M�

2μ�T
κ2 + pκ − M�E

p2 + M�

2μ�T
κ2 − pκ − M�E

]
,

(14)

respectively, where the generic momentum κ = k(q)
denotes the on-shell (loop) momenta. The inclusion of
the regulator-dependent (�c-dependent) three-body contact
couplings g(A)

3 (�c) and g(B)
3 (�c) modifies the one-particle

exchange interaction kernels, K(a) and K(b2), in the respective
elastic channels as

KA,B
(a) (p, κ,�c; E ) =

[
K(a)(p, κ; E ) − g(A,B)

3

(
�2

c

)
�2

c

]
,

KA,B
(b2)(p, κ,�c; E ) =

[
K(b2)(p, κ; E ) − g(A,B)

3

(
�2

c

)
�2

c

]
. (15)

Here we point out that, in this work, we use a minimal
prescription of introducing the scale dependent three-body
couplings only in the elastic channels. In general, the most
systematic method of renormalization is to include them in all
the inelastic channels as well, e.g., as done in Refs. [15,54]. In
the present case we find that the latter method leads to certain
uncontrollable numerical instabilities in determining the limit
cycle behavior of g(A)

3 (�c) and g(B)
3 (�c). This is perhaps

due to the simultaneous admixture of the negative (��)s

and positive (�T )s,t two-body scattering lengths associated
with the virtual and real bound state dimers, respectively.

Hence, we took recourse to the former simplistic prescription.
Either way, since these unknown scale-dependent three-body
couplings are needed to be fixed phenomenologically during
evaluations of the integral equations, they are expected to get
accordingly renormalized in the different coupled channels.
Thereby, the essential qualitative features of our investigations
of the three-body bound states (e.g., the quasiperiodicity of
the RG limit cycle) are by and large expected to remain
unaffected. This issue is elucidated later in our results
presented in the forthcoming section.

C. Three-body scattering lengths

The coupled integral equations displayed in the previous
subsection must be renormalized and then solved numerically
to yield predictions for the ��T three-body scattering am-
plitudes. For a given on-shell relative momentum k = |k| and
three-body center-of-mass kinetic energy E , the kinematical
scattering domain lies between the particle-dimer breakup
thresholds E thr

2(s,t ) and the three-particle breakup threshold,
i.e., E thr

2(s,t ) < E < 0. In contrast with the kinematical domain
of three-body bound states (E < E thr

2(s,t ) with imaginary k)
free of singularities, the integral equations in the scattering
domain develop singularities associated with poles of the
(�T )s,t -dimer propagators D0,1(q, E ) for certain values of
the loop momenta q. For the type-A integral equations the
only poles are those that arise from the D0(q, E ) propagator
insertions at q = k. While for the type-B integral equations
poles arise due to the insertions of both (�T )s,t -dimer prop-
agators, namely, D1(q, E ) has a pole at q = k and D0(q, E )
has a pole at q = [k2 + (γ 2

0 − γ 2
1 )(μ�(�T )/μ�T )]1/2. To avoid

these poles, a principal value prescription must be applied in
the appropriate loop integrals to extract the three-body scatter-
ing amplitudes. Furthermore, it is numerically advantageous
to express the otherwise complex-valued integral equations
below the three-particle breakup threshold in terms of the real-
valued renormalized K-matrix elements K(A,B)

a,b,c (p, k; E ) for
the respective choice of the elastic processes, viz. u(0,1)� →
u(0,1)�. To this end we display the principal value prescription
modified renormalized K-matrix integral equations:

K(A)
a (p, k; E ) = − MT

4μ�T
MA(0)

(a) (p, k; E ) − MT

2πμ�T
P

∫ �c

0
dqMA(0)

(a) (p, q,�c; E )
q2

q2 − k2
K(A)

a (q, k; E )

+
√

3MT

2πμ�T

y0

y1

∫ �c

0
dqMA(0)

(a) (p, q,�c; E )
q2

q2 − k2 + μ�(�T )

μ�T

(
γ 2

0 − γ 2
1

)K(A)
b (q, k; E )

−
√

2

π

y0

ys
P

∫ �c

0
dqMA(0)

(b2) (p, q,�c; E )
q2

q2 − k2
K(A)

c (q, k; E ),

K(A)
b (p, k; E ) =

√
3MT

4μ�T

y1

y0
M (1)

(a) (p, k; E ) +
√

3MT

2πμ�T

y1

y0
P

∫ �c

0
dqM (1)

(a) (p, q; E )
q2

q2 − k2
K(A)

a (q, k; E )

+ MT

2πμ�T

∫ �c

0
dqM (1)

(a) (p, q; E )
q2

q2 − k2 + μ�(�T )

μ�T

(
γ 2

0 − γ 2
1

)K(A)
b (q, k; E )

−
√

6

π

y1

ys
P

∫ �c

0
dqM (1)

(b2)(p, q; E )
q2

q2 − k2
K(A)

c (q, k; E ),
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K(A)
c (p, k; E ) = M�

2
√

2μ�T

ys

y0
M(b1)(p, k; E ) + M�√

2πμ�T

ys

y0
P

∫ �c

0
dqM(b1)(p, q; E )

q2

q2 − k2
K(A)

a (q, k; E )

+
√

3

2

M�

πμ�T

ys

y1

∫ �c

0
dqM(b1)(p, q; E )

q2

q2 − k2 + μ�(�T )

μ�T

(
γ 2

0 − γ 2
1

)K(A)
b (q, k; E ), (16)

for the type-A elastic channel with E ≡ EA = E thr
2(s) + k2/(2μ�(�T ) ), and

K(B)
a (p, k; E ) = MT

4μ�T
MB(1)

(a) (p, k; E ) + MT

2πμ�T
P

∫ �c

0
dqMB(1)

(a) (p, q,�c; E )
q2

q2 − k2
K(B)

a (q, k; E )

+
√

3MT

2πμ�T

y1

y0
P

∫ �c

0
dqMB(1)

(a) (p, q,�c; E )
q2

q2 − k2 − μ�(�T )

μ�T

(
γ 2

0 − γ 2
1

)K(B)
b (q, k; E )

−
√

6

π

y1

ys
P

∫ �c

0
dqMB(1)

(b2) (p, q,�c; E )
q2

q2 − k2
K(B)

c (q, k; E ),

K(B)
b (p, k; E ) =

√
3MT

4μ�T

y0

y1
M (0)

(a) (p, k; E ) +
√

3MT

2πμ�T

y0

y1
P

∫ �c

0
dqM (0)

(a) (p, q; E )
q2

q2 − k2
K(B)

a (q, k; E )

− MT

2πμ�T
P

∫ �c

0
dqM (0)

(a) (p, q; E )
q2

q2 − k2 − μ�(�T )

μ�T

(
γ 2

0 − γ 2
1

)K(B)
b (q, k; E )

−
√

2

π

y0

ys
P

∫ �c

0
dqM (0)

(b2)(p, q; E )
q2

q2 − k2
K(B)

c (q, k; E ),

K(B)
c (p, k; E ) =

√
3M�

2
√

2μ�T

ys

y1
M(b1)(p, k; E ) +

√
3

2

M�

πμ�T

ys

y1
P

∫ �c

0
dqM(b1)(p, q; E )

q2

q2 − k2
K(B)

a (q, k; E )

+ M�√
2πμ�T

ys

y0
P

∫ �c

0
dqM(b1)(p, q; E )

q2

q2 − k2 − μ�(�T )

μ�T

(
γ 2

0 − γ 2
1

)K(B)
b (q, k; E ), (17)

for the type-B elastic channel with E ≡ EB = E thr
2(t ) + k2/(2μ�(�T ) ). The symbol “P” stands for a principal value integral which

involves rewriting the complex-valued dimer propagators with iη prescription in terms of real-valued propagators, namely,

1

q2 − k2 − iη
= P 1

q2 − k2
+ iπδ(q2 − k2),

and

1

q2 − k2 − μ�(�T )

μ�T

(
γ 2

0 − γ 2
1

) − iη
= P 1

q2 − k2 − μ�(�T )

μ�T

(
γ 2

0 − γ 2
1

) + iπδ

(
q2 − k2 − μ�(�T )

μ�T

(
γ 2

0 − γ 2
1

))
.

The S-wave projected � and T -exchange interactions kernels in this case are rewritten as

M (0,1)
(a) (p, κ; E ) =

(
μ�(�T )

μ�T

)
K(a)(p, κ; E )

(
γ0,1 +

√
p2

μ�T

μ�(�T )
− 2μ�T E

)
,

M(b1)(p, κ; E ) = K(b1)(p, κ; E )

⎛
⎝ p2 − k2

1
a��

−
√

p2 M�

2μT (��)
− M�E

⎞
⎠, (18)

M (0,1)
(b2) (p, κ; E ) =

(
μ�(�T )

μ�T

)
K(b2)(p, κ; E )

(
γ0,1 +

√
p2

μ�T

μ�(�T )
− 2μ�T E

)
,

and the corresponding three-body force modified �c dependent kernels needed are

MA,B(0,1)
(a) (p, κ,�c; E ) =

(
μ�(�T )

μ�T

)
KA,B

(a) (p, κ,�c; E )

(
γ0,1 +

√
p2

μ�T

μ�(�T )
− 2μ�T E

)
,

(19)

MA,B(0,1)
(b2) (p, κ,�c; E ) =

(
μ�(�T )

μ�T

)
KA,B

(b2)(p, κ,�c; E )

(
γ0,1 +

√
p2

μ�T

μ�(�T )
− 2μ�T E

)
,
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where κ = k(q) is the on-shell (loop) momentum. In the above integral equations, the unrenormalized complex-valued ampli-
tudes T (A,B)

a (p, k; E ) are related to the renormalized real-valued K-matrix elements K(A,B)
a,b,c (p, k; E ) by the following relations:

K(A)
a (p, k; E )

k2 − p2
=

(
μ�T

4πγ0

) √
Z0T (A)

a (p, k; E )
√

Z0

γ0 −
√

q2 μ�T

μ�(�T )
− 2μ�T E

,

K(A)
b (p, k; E )

k2 − p2 − μ�(�T )

μ�T

(
γ 2

0 − γ 2
1

) =
(

μ�T

4πγ0

) √
Z0T (A)

b (p, k; E )
√

Z0

γ1 −
√

q2 μ�T

μ�(�T )
− 2μ�T E

, (20)

K(A)
c (p, k; E )

k2 − p2
=

(
μ�T

4πγ0

) √
Z0T (A)

c (p, k; E )
√

Z0

1
a��

−
√

q2 M�

2μT (��)
− M�E

,

for the type-A amplitudes, and

K(B)
a (p, k; E )

k2 − p2
=

(
μ�T

4πγ1

) √
Z1T (B)

a (p, k; E )
√

Z1

γ1 −
√

q2 μ�T

μ�(�T )
− 2μ�T E

,

K(B)
b (p, k; E )

k2 − p2 + μ�(�T )

μ�T

(
γ 2

0 − γ 2
1

) =
(

μ�T

4πγ1

) √
Z1T (B)

b (p, k; E )
√

Z1

γ0 −
√

q2 μ�T

μ�(�T )
− 2μ�T E

, (21)

K(B)
c (p, k; E )

k2 − p2
=

(
μ�T

4πγ1

) √
Z1T (B)

c (p, k; E )
√

Z1

1
a��

−
√

q2 M�

2μT (��)
− M�E

,

for the type-B amplitudes, where Z0,1 are the u0,1-dimer
field wave function renormalization constants, defined as
the residues of the renormalized dressed dimer propagators
0,1(k0, k) [cf. Eq. (A3) in the appendix]:

Z−1
0 = d

[
−1

0 (k0, 0)
]

dk0

∣∣∣∣
k0=−B�[0+]

= μ2
�T y2

0

2πγ0
,

Z−1
1 = d

[
−1

1 (k0, 0)
]

dk0

∣∣∣∣
k0=−B�[1+]

= μ2
�T y2

1

2πγ1
. (22)

Finally, the J = 1/2 S-wave ��T scattering lengths cor-
responding to the constituent spin-singlet and spin-triplet
�T subsystems are obtained by numerically solving the
above K-matrix equations for the renormalized on-shell
elastic-scattering amplitudes K(A,B)

a (k, k), and then taking the
threshold limit according to the definition

a3(s,t ) = − lim
k→0

K(A,B)
a (k, k). (23)

It is notable that neither of the two three-body scattering
lengths a3(s,t ) can be considered as physical observables. On
the other hand, albeit practical difficulties, it may not be on the
whole impossible to extract the effective three-body scattering
length a��T at low-energies from the (2J + 1)-spin averaged
S-wave elastic cross section σ el

��T by using the relation

a��T =
√

1

4
a2

3(s) + 3

4
a2

3(t ), (24)

vis à vis the prescription

σ el
��T = 1

4
σ3(s)(type-A) + 3

4
σ3(t )(type-B),

a3(s,t ) = lim
k→0

√
1

4π
σ3(s,t )(type-A, -B),

a��T = lim
k→0

√
1

4π
σ el

��T . (25)

Thus, our EFT framework provides a viable prescription to
determine the three-body scattering lengths via numerical
solutions to the renormalized K-matrix integral equations.
Having said that it must be borne in mind that as yet there
exists no experimental facility capable of extracting these
scattering lengths by measuring the above elastic cross sec-
tions. The unstable nature of the �-hyperon poses immense
technical challenges to be used either as targets or projectiles
in scattering experiments. Nevertheless, the purpose of the
present exercise is to demonstrate the kind of prototypical
analysis that may be necessary whenever such information
becomes available from future experimental investigations.

D. Asymptotic bound state analysis

In the investigation of three-body bound state character-
istics in the ��T cluster systems, the emergence of RG
limit-cycle behavior could be easily checked by studying the
UV limit of the coupled integral equations where the off-
shell or loop momenta is asymptotically large, i.e., q, p ∼
�c → ∞, while the on-shell energy and relative momenta is
small, i.e., E , k ∼ γ0,1 ∼ 1/a�� � p, q. In this limit the in-
homogeneous parts as well as the �−2

c suppressed three-body
contributions to the integral equations drop out. After suit-
able redefinitions of the half-off-shell amplitudes, they may
be shown to scale for generic off-shell asymptotic momenta
κ as T (A,B)

a,b,c (κ → ∞) ∼ κs−1. Finally, through a sequence of
Mellin transformations, both sets of integral equations reduce
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to same transcendental form:

1 =
(

MT

2πμ�T C1

)[
2π

s

sin[s sin−1 (a/2)]

cos [πs/2]

]

+
(

M�

π2μ�T C1C2

)[
2π

s

sin[s cot−1
√

4b − 1]

cos [πs/2]

]2

, (26)

where

a = 2μ�T

MT
, b = M�

2μ�T
,

C1 =
√

μ�T

μ�(�T )
, C2 =

√
M�

2μT (��)
.

Solving for the exponent s in above equation yields the fol-
lowing imaginary values:

s = ±is∞
0

{
s∞

0 = 1.035 17 . . . for 5
��H

s∞
0 = 1.035 16 . . . for 5

��He.
(27)

The small numerical difference between the values of the
asymptotic limit cycle parameter s∞

0 reflects their univer-
sal character with reasonably good isospin symmetry in the
three-body sector. The imaginary solutions can be formally
attributed to the existence of Efimov states in the unitary limit
of the two mirror ��T clusters and parametrize the onset of
discrete scaling invariance. A detailed exposition of this kind
of asymptotic analysis leading to the Efimov effect is found
in Ref. [50]. In the next section we present a qualitative assay
of our numerical results for the nonasymptotic solutions to
the integral equations and their possible implications in the
low-energy domain.

III. RESULTS AND DISCUSSION

For our numerical evaluations, we use the masses of the
particles as displayed in Table I. As a comparison with our
already obtained asymptotic limit cycle parameter s∞

0 for each
mirror hypernuclei, the analogous nonasymptotic parameter
s0 may be obtained by studying the RG behavior of the
three-body couplings g(A)

3 (�c) and g(B)
3 (�c) for nonasymptotic

kinematics. The s0 parameter is, however, nonuniversal in
character and sensitive to the cutoff variations. Nevertheless,
it may be shown that, as �c → ∞, s0 → s∞

0 [52]. We note
that, currently, there is no empirical three-body information
available to constraint g(A,B)

3 . Thus, we adopt a strategy similar
to the earlier pursued works [24,25,52]. We assume that 5

��H
and 5

��He already form Efimov-like bound cluster states and
thereby investigate the RG of g(A,B)

3 by choosing two sets
of values of the three-body binding or double-�-separation
energies1 (B��) for the mirror partners, predicted by the ab
initio coupled channel potential model of Nemura et al. [22]

1The double-�-separation energy B��, as commonly referred to
in the context of potential model analyses, is interpreted in our
EFT framework as the three-body eigenenergy, −E = B��, obtained
as the likely ground-state solution to the homogeneous part of the
integral equations. Additionally, in the cluster model framework it is
conventional to define an incremental binding energy B�� which

TABLE I. Particle data used in our calculations [69].

Particle Symbol Mass (MeV) Binding energy (MeV)

� hyperon � 1115.683
Triton 3H t 2808.921 8.48
Helion 3He h 2808.391 7.72

using SVM analysis (cf. Table II). These predictions corre-
spond to the two representative S-wave double-� scattering
lengths, namely, a�� = −0.91 and −1.37 fm, taken from the
old Nijmegen hard-core potential models, mNDS and NDS ,
respectively, of Ref. [56], but consistent with the constraints
based on recent theoretical analyses [36–38] based on RHIC
data [7].

In Fig. 4 we demonstrate the cutoff regulator dependence
of the three-body coupling g(A)

3 (�c) and g(B)
3 (�c) for the ��t

system. The characteristic quasiperiodic cyclic singularities
reminiscent of the asymptotic limit cycle associated with the
successive formation of three-body bound states is clearly
evident in the nonasymptotic domain. Our finding in the
three-body sector reveals good isospin symmetry between the
two double-�-hypernuclear mirror partners with very little
discernible difference in the RG behavior of each partner.
Consequently, for brevity, we do not display the result for
the ��h system. As already pointed out, ideally the scale
dependence of the type-A and type-B three-body couplings
should be identical. However, owing to the small qualita-
tive differences in rearrangements between the two types of
elastic reaction channels where we only choose to introduce
the counterterms (cf. Figs. 2 and 3), the type-B limit cycle
plots are nominally shifted leftwards and downwards with
respect to the type-A limit cycle plots. In particular, due to
considerable sensitivity to the small-cutoff region, �c � 200
MeV, the n = 0 branch which is altogether washed out in the
type-B plot, is still manifest in the type-A plot (top-left cor-
ner). However, this branch is not associated with the formation
of an Efimov state. The ground (n = N − 1 = 0) state on the
other hand is associated with the N = 1 branch. Nevertheless,
the regulator values, �c = (�c)N , at which these couplings
successively vanish remain unaltered in the two types of limit
cycle plots. In each case the nonasymptotic RG limit cycle

is related to B�� (measured with respect to the ��T three-particle
breakup threshold) as [16]

B�� = B�� − 2Bavg
� , (28)

where
Bavg

� = 1
4B�[0+] + 3

4B�[1+] (29)

is the (2J + 1) spin-averaged �-separation energy of the singlet and
triplet two-body subsystems (interpreted in the EFT as the (�T )s,t

subsystem averaged binding energy). Thus, the predicted values of
B�� from past ab initio potential model analysis, such as in Ref. [22],
may be used to supplant the old results of B�� by reevaluating them
using the recent experimental inputs for the �-separation energies of
the ground (singlet) and first (triplet) excited states of the (4

�H, 4
�He)

mirrors [8–11].
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TABLE II. Two sets of predictions for the three-body binding or double-�-separation energy B�� for the (5
��H, 5

��He) mirrors using
the coupled-channel potential model SVM analysis of Nemura et al. [22]. The corresponding double-� scattering lengths used are two
representative values based on the old Nijmegen hard-core potential models [56] (names in parentheses) consistent with the currently accepted
range, −1.92 fm � a�� � −0.5 fm [36–38], as constrained by the recent RHIC data [7]. The values of the incremental binding energies B��

are obtained utilizing the recent experimental input for the �-separation energies of the ground (singlet) and first (triplet) excited states of the
(4
�H, 4

�He) mirrors [8–11]. Furthermore, with the three-body contact interactions excluded from our integral equations, the critical cutoffs,
�c = �

(n=0)
crit (see text), associated with the ground (n = 0) state Efimov-like trimers for each mirror double-�-hypernuclei, are also displayed.

The rightmost column shows our adjusted cutoff values, �c = �
(n=0)
pot , which reproduce the above values of B�� as ground state eigenenergies.

The paired (B��, a��) data points for cases Ia and Ib (shown in bold), are used to normalize our solutions.

��-Hypernuclear S-wave �� ��-Separation Incremental binding Critical cutoff Cutoff
mirror (a, b) scattering length energy B�� energy B�� (MeV) �

(n=0)
crit (MeV) �

(n=0)
pot (MeV)

Sets a�� (fm) (MeV) [22] reevaluated (this work) (with g(A,B)
3 = 0) (with g(A,B)

3 = 0)

Ia (5
��H) −0.91 (mNDS) [56] 3.750 1.071 235.028 437.654

Ib (5
��He) −0.91 (mNDS) [56] 3.660 0.989 269.621 429.833

IIa (5
��H) −1.37 (NDS) [56] 4.050 1.381 205.448 403.285

IIb (5
��He) −1.37 (NDS) [56] 3.960 1.289 234.522 396.332

parameter s0 can be calculated via the relation

s0 = π

ln
[ (�c )N+1

(�c )N

] , N = 1, 2, . . . , (30)

where (�c)N is the momentum cutoff corresponding to the
N th zero of g(A,B)

3 . Using, say, the N = 1, 2 values of �c,
we obtain s0 = π/ ln[(�c)2/(�c)1] ≈ 1.03, which is nearly
the same as the asymptotic values of s∞

0 given in Eq. (27),
irrespective of the chosen type of elastic channel. It is also
notable that our s0 or s∞

0 values agree well with typical
values anticipated from the universal calibration curve for a
mass imbalanced three-body system [50], namely, the plot of
exp(π/s0) versus the mass ratio m1/m3, with m1 = m2 ≡ M�

and m3 ≡ MT 
= m1, m2.
Next we report on our regulator �c dependence of B��

(cf. Fig. 5) obtained by numerically solving the homogeneous

parts of the two sets of integral equations [cf. Eqs. (11)
and (12)], excluding the three-body contact interaction, i.e.,
g(A,B)

3 = 0. Here we again consider the two representative
S-wave double-� scattering lengths, namely, a�� = −0.91
fm and −1.37 fm [56–58], compatible with the range,
−1.92 fm � a�� � −0.5 fm [36–38], constrained by RHIC
data [7]. It may be noted that both choices (type-A and
type-B) for the elastic channels yield identical cutoff depen-
dence. Furthermore, both the double-�-hypernuclear mirror
partners yield nearly identical results, apart from the ex-
pected “mismatch” in the threshold region (see inset plot
of Fig. 5). Thus, it is interesting that, despite the signifi-
cant spin-dependent charge symmetry breaking reflected in
the two-body binding energies, e.g., δB�[0+] � 200 keV, the
corresponding difference of the spin-averaged binding en-
ergies, δBavg

� ∼ 5 keV, is surprisingly small. This is easily

FIG. 4. The nonasymptotic RG limit cycle behavior of the three-body couplings g(A)
3 (�c ) and g(B)

3 (�c ) for the ��t system. Two
representative choices for the S-wave double-� scattering lengths are considered, namely, a�� = −0.91 fm (Ia) and −1.37 fm (IIa), based
on the Nijmegen hard-core potential models, mNDS and NDS , respectively [56], and compatible with the range of values constrained by the
recent phenomenological analyses [36–38] of RHIC data [7]. The corresponding three-body binding or double-�-separation energies B�� (cf.
Table II) used as input to our integral equations are the predictions of the ab initio potential model analysis of Ref. [22]. The corresponding
results for the ��h system being almost identical are not displayed for brevity.
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FIG. 5. The cutoff regulator (�c) dependence of the three-body
binding or the double-�-separation energy B�� (with respect to the
three-particle threshold) of ��T mirror systems with the three-body
couplings g(A)

3 and g(B)
3 excluded. The plots correspond to the results

for both choices of the elastic channels. Two representative choices
for the double-� scattering lengths are considered, namely, a�� =
−0.91 fm and −1.37 fm, based on the old Nijmegen hard-core poten-
tial models, mNDS and NDS , respectively [56], and consistent with
the recent theoretical constraints [36–38] based on RHIC data [7].
The vertical lines in the inset plot denote the critical cutoffs, �c =
�

(n=0)
crit , defined with respect to the deeper particle-dimer thresholds,

namely, the � + u0 thresholds. Apart from the threshold regions, the
results of both mirror partners are almost identical.

seen by using Eq. (29) with Bavg
� [4

�H] = 1.3395 MeV and
Bavg

� [4
�He] = 1.3355 MeV, based on the recent spectroscopic

measurements [8–11] [cf. Table III and also Fig. 1]. Such
a “spin averaging” effect apparently gets implicitly reflected
in the unrenormalized (regulator-dependent) eigenenergies,
E (�c) ≡ −B��, obtained via our integral equations with
g(A)

3 (�c) = g(B)
3 (�c) = 0. The resulting difference of the

double-�-separation energy (B��) between the (5
��H, 5

��He)
mirror partners is evidently large, δB��(�(n=0)

crit ) � 200 keV,

TABLE III. �-separation energies B�[JP = 0+, 1+] of the mir-
ror states of (4

�H, 4
�He) corresponding to the central values of the

experimental results of Refs. [3,8–11] and summarized in Fig. 1.

In our EFT they are to be identified (“
!�” denotes correspondence)

with the particle-dimer breakup thresholds −E thr
2(s,t ) for the ��T

systems or equivalently, the u0,1 ≡ (�T )s,t dimer binding energies.
The corresponding binding momenta γ�T ≡ γ0,1 are inputs to our
integral equations.

�-Hypernuclear B�[JP] γ�T
!� (2μ�TB�[JP])1/2

mirror states (MeV) (MeV)

4
�H[0+] 2.157 [9,10] γ0

!� 58.692
4
�H(1+) 1.067 [8,11] γ1

!� 41.280
4
�He[0+] 2.39 [3] γ0

!� 61.779
4
�He(1+) 0.984 [8,11] γ1

!� 39.641

around the particle-dimer thresholds, �c = �
(n=0)
crit [i.e., the

ground (n = 0) state critical cutoff scales for the mirror
partners2]. However, this difference rapidly vanishes asymp-
totically (�c → ∞), ultimately leading to good charge or
isospin symmetry. This feature will also be apparent in our
B��-a�� correlation results presented later in Table IV. No-
tably, due to the absence of the three-body contact interactions
to renormalize the integral equations, B�� is quite sensitive
to the cutoff variations, which increase with increasing cutoff
above the respective � + u0 breakup thresholds. Moreover,
it is apparent that the eigenenergies are also sensitive to the
input double-� scattering lengths, with B�� increasing with
increasing |a��|.

We emphasize that, although in our EFT framework the
u0,1 ≡ (�T )s,t two-body subsystems introduce two relevant
energy scales E thr

2(s,t ), it is the larger of the two particle-dimer
thresholds, namely, the � + u0 (singlet-dimer) threshold that
is effectively associated with the formation of Efimov states.
In fact, irrespective of the chosen (type-A, -B) elastic chan-
nels, our numerical evaluations of the integral equation
only yield trimer states which are deeper than the � + u0

thresholds, viz. B�� > B�[0+] provided �c > �
(n=0)
crit . No

numerically stable eigensolutions are obtained in the energy
domain, E thr

2(s) < E < E thr
2(t ), lying in between the two thresh-

olds. Thus, we should re-emphasize the correspondence of the
��T → � + u0 breakup threshold energies E thr

2(s) of the re-
spective double-�-hypernuclear mirror partners to the (�T )s

subsystem binding energies, vis à vis the �-separation ener-
gies B�[0+] of the ground (JP = 0+) state of the (4

�H, 4
�He)

mirror partners, namely,

B��

(
�

(n=0)
crit

) ≡ −E thr
2(s) = γ 2

0

2μ�T

!� B�[0+]

=
{

2.157 MeV [8–10] for 4
�H[0+]

2.39 MeV [3] for 4
�He[0+].

(31)

Here, the currently accepted central values of experimentally
determined �-separation energies [3,8–11] [cf. Table III and
also Fig. 1] are used to fix the two-body input parameters of
the (�T )s,t systems, namely, the binding momenta, defined

by the correspondence, γ0,1
!� (2μ�TB�[JP = 0+, 1+])1/2,

which reflect the information regarding the two breakup
thresholds in our integral equations. These critical cut-
offs for the ground (n = 0) states were tabulated earlier in
Table II. The rightmost column in the same table also displays
our cutoff values, �c = �

(n=0)
pot that reproduce the double-

�-separation energies B�� of Ref. [22], being interpreted
as the plausible Efimov ground (n = 0) state eigenenergies.
Although the �

(n=0)
pot values are significantly larger than the

canonical hard scale of a π/EFT, namely, �H ∼ mπ , they are
nevertheless within a reasonable ballpark in context of hyper-

2In our case in general, �c = �
(n)
crit , denotes the nth critical cut-

off, defined as the cutoff scale at which the nth Efimov bound
state emerges just above the deeper particle-dimer (� + u0) breakup
threshold E = E thr

2(s).
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FIG. 6. The double-�-separation energies B�� of 5
��H (left panel) and 5

��He (right panel) as a function of the inverse of the S-wave
double-� scattering length a−1

�� using different values of the three-body coupling g(A)
3 at appropriate cutoff scales �c. These results correspond

to the type-A choice of the elastic channel obtained using integral equations (11). The displayed data points correspond to our reevaluations
[via Eq. (28)] of the past potential model-based predictions of Refs. [16,17,19,20,22] using the current experimental input for the �-separation
energies B�[0+, 1+] of (4

�H, 4
�He) [8–11]. In particular, the two data points, namely, “Ia” (B�� = 3.750 MeV, a�� = −0.91 fm) for 5

��H and
“Ib” (B�� = 3.660 MeV, a�� = −0.91 fm) for 5

��He (large open squares), taken from Ref. [22], best serve to normalize our solutions to the
integral equations.

nuclear systems where one-pion exchanges are forbidden by
virtue of isospin invariance. A more reasonable choice of our
EFT hard scale consistent with the low-energy symmetries
in this case could be �H � 2mπ , with the �-� interactions
known to be dominated by ππ or the σ -meson exchange
mechanism. It is, however, not inconceivable that a momen-
tum scale of this magnitude is inconsistent with the ��T
bound cluster ansatz, whereby the very existence of the core
fields, T ≡ t, h, becomes questionable.

In Figs. 6 and 7, for each choice (type-A, -B) of the
elastic channel, we plot our predictions for the B��-a��

correlation using different values of the three-body cou-
plings g(A,B)

3 at appropriate cutoff scales. Solutions to each
set of integral equations [i.e., Eqs. (11) and (12)] are
normalized to a single (paired) data point which is conve-
niently taken from the ab initio potential model analysis
of Ref. [22], each for 5

��H and 5
��He, namely, the data

points “Ia” (B�� = 3.750 MeV, a�� = −0.91 fm) and “Ib”

FIG. 7. The double-�-separation energies B�� of 5
��H (left panel) and 5

��He (right panel) as a function of the inverse of the S-wave
double-� scattering length a−1

�� using different values of the three-body coupling g(B)
3 at appropriate cutoff scales �c. These results correspond

to the type-B choice of the elastic channel obtained using integral equations (12). The displayed data points correspond to our reevaluations
[via Eq. (28)] of the past potential model-based predictions of Refs. [16,17,19,20,22] using the current experimental input for the �-separation
energies B�[0+, 1+] of (4

�H, 4
�He) [8–11]. In particular, the two data points, namely, “Ia” (B�� = 3.750 MeV, a�� = −0.91 fm) for 5

��H and
“Ib” (B�� = 3.660 MeV, a�� = −0.91 fm) for 5

��He (large open squares), taken from Ref. [22], best serve to normalize our solutions to the
integral equations.
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FIG. 8. The EFT predicted regulator (�c) dependence of the J = 1/2 S-wave �-(�t )s scattering length a3(s) for the 4
�H[0+]-� scattering

without (left panel) and with (right panel) the three-body coupling g(A)
3 . Two representative values of the Nijmegen hard-core potential

model extracted double-� scattering lengths are used, namely, a�� = −0.91, −1.37 fm [56], which are consistent with recent RHIC data
analyses [36–38]. The input double-�-separation energies B�� needed to fix g(A)

3 (�c ) for renormalization are obtained using our EFT
calibration curves (solid red line in Fig. 6; see also Table IV). The unrenormalized (bare) scattering length is denoted aB

3(s). The smooth
curves in the right panel represent fits to the data points based on the power series ansatz, Eq. (32). The corresponding results for ��h or
4
�He[0+]-� scattering, being very similar, are not displayed.

(B�� = 3.660 MeV, a�� = −0.91 fm), respectively (cf. Ta-
ble II). In particular, our EFT results for the choice of the
regulator, �c = 200 MeV, corresponding to the three-body
couplings, g(A)

3 = −28.461 and g(B)
3 = −0.8606 for 5

��H,
and g(A)

3 = −25.252 and g(B)
3 = −0.8362 for 5

��He, agree
reasonably well with the existing regulator-independent po-
tential model results [16,17,19,20,22] (provided of course
that the original model predictions of B�� or B��, based
on the superannuated B�[0+, 1+] experimental data [3,43]
are reevaluated using the current data [8–11]).3 To this end,
each solid (red) curve in the figures represents our EFT
generated calibration curve reflecting the inherent nature of
the B��-a�� correlations of the ��T mirror systems. Thus,
in the remaining part of our analysis we use the correlation
plots corresponding to �c = 200 MeV to predict B�� for
arbitrary values of a��.

3The past potential model analyses used different three-body tech-
niques to determine either B�� or B�� in one of two ways: (i) ab
initio determination, using elementary two- and three-body baryonic
interactions, and (ii) cluster-model determination, relying on the ele-
mentary four-body inputs (or equivalently, the two-body inputs in our
particle-dimer cluster scenario), namely, the �-separation energies
B�[0+, 1+] of (4

�H, 4
�He) from old emulsion studies [3,43]. With

the advent of the recent high-precision data on B�[0+, 1+] from
MAMI and J-PARC [8–11], the old emulsion works have now been
superseded. Consequently, all model data points displayed in Figs. 6
and 7 correspond to our reevaluated B�� values from the old B��

model results using the current data via Eq. (28). There is, however,
a caveat to these figures: in the absence of updated results of the
old cluster model analyses [16,17,19,20], it is likely that some of the
our reevaluated B�� “model data points” may be nominally faulty in
using the old model B�� inputs, owing to certain degree of residual
dependence on the superannuated B�[0+, 1+] data.

The final part of our EFT analysis is concerned with
the preliminary estimation of the S-wave three-body scatter-
ing lengths a��T , namely, the 4

�H-� and 4
�He-� scattering

lengths. For this purpose, we numerically solve the two sets of
coupled integral equations for the renormalized on-shell elas-
tic K-matrix elements KA,B

a (k, k) in each case [cf. Eqs. (16)
and (17)], which yield the scattering lengths in the threshold
limit (k → 0). Care must be taken to bypass the poles of the
dimer propagators originating in the kinematical scattering
domain close to the respective particle-dimer thresholds. In
this regard, we have implemented a numerical methodology of
solving a multidimensional generalization of principal value
prescription modified integral equations, originally developed
by Kowalski and Noyes [70,71] (see also Ref. [72]) for the
one-dimensional case.

Figures 8 and 9 display the cutoff-scale dependence of the
�-(�T )s,t scattering lengths for the 4

�H[0+, 1+]-� scatter-
ing processes for the two input double-� scattering lengths,
namely, a�� = −0.91 fm and −1.37 fm [56]. In this case
the results for the ��T mirror partners are imperceptibly
close to each other, so that we graphically display the re-
sults for only one of them, say, the ��t system, although a
consolidated summary of our numerical predictions for both
mirror partners are tabulated in Table IV. It is, however, worth
mentioning that, in contrast with our universal LO EFT pre-
diction having little observable difference between the ��T
mirrors, somewhat large isospin-breaking corrections have
been reported for these systems in the context of existing
potential-model analyses. This leads to significant differences
in the model predictions of the two- and three-body binding
energies [20,73]. Such precision effects are not captured with-
out a subleading-order EFT calculation, which is beyond the
present scope.

In contrast with little or no quantitative difference in results
corresponding to each choice (type-A, -B) of the bound-state
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FIG. 9. The EFT predicted regulator (�c) dependence of the J = 1/2 S-wave �-(�t )t scattering length a3(t ) for the 4
�H[1+]-� scattering

without (left panel) and with (right panel) the three-body coupling g(B)
3 . Two representative values of the Nijmegen hard-core potential

model extracted double-� scattering lengths are used, namely, a�� = −0.91, −1.37 fm [56], which are consistent with recent RHIC data
analyses [36–38]. The input double-�-separation energies B�� needed to fix g(B)

3 (�c ) for renormalization are obtained by using our EFT
calibration curves (solid red line in Fig. 7; see also Table IV). The unrenormalized (bare) scattering length is denoted aB

3(t ). The smooth curves
in the right panel represent fits to the data points based on the power series ansatz, Eq. (32). The corresponding results for ��h or 4

�He[1+]-�
scattering, being very similar, are not displayed.

solutions significant qualitative differences arise in the re-
spective scattering domains. In the left-panel plots of Figs. 8
and 9, which exclude the three-body contact interactions, the
unregulated (bare) scattering amplitudes aB

3(s,t ) depend sensi-
tively on the cutoff scale and diverge for specific values of
�c associated with the successive emergence of three-body
bound states. Moreover for �c � 200 MeV, the very first
pole-like feature seen in the unrenormalized type-A ampli-
tude in Fig. 8, is missing from the unrenormalized type-B
amplitude displayed in Fig. 9. This feature is concomitant with
the associated limit cycle behavior of the three-body systems
(cf. Fig. 4) where the n = 0 branch is found to be altogether
missing in the type-B plots. Nevertheless, such unphysical
singularities in the scattering amplitude are renormalized by
the introduction of the scale-dependent couplings g(A)

3 (�c)
and g(B)

3 (�c), as revealed in the right-panel plots which are
free of singularities. We find that the renormalized scattering
lengths a3(s,t ) smoothly decreases with increasing �c con-
verging asymptotically for �c � 500 MeV. These asymptotic
values a3(s,t )(�c → ∞) precisely yield our EFT predictions
of the three-body scattering lengths corresponding to type-A,
-B choices of the elastic channels. To obtain the asymptotic
values a∞

3(s,t ), we use the power series fitting ansatz for small
Q̄/�c, namely,

a3(s,t )(�c) = a∞
3(s,t )

[
1 + αs,t

(
Q̄

�c

)
+ βs,t

(
Q̄

�c

)2

+ · · ·
]
,

(32)

applied to our generated data points, as shown in the figures,
obtained as solutions to the renormalized K-matrix equa-
tions (16) and (17). As estimated earlier, Q̄ ∼ 50 MeV can
be conveniently taken as the generic momentum scale of
the underlying dynamics, with αs,t , βs,t and a∞

3(s,t ) being the

fitting parameters. Thus, the corresponding fitting curves, as
displayed Figs. 8 and 9 (right-panel plots), yield the respective
three-body scattering lengths by extrapolating to �c → ∞.
We note that a similar ansatz was recently used in the SVM
π/EFT calculation of Ref. [26] to estimate the �-separation
energies B� of the (5

��H, 5
��He) mirror partners.

Table IV summarizes our numerical estimates of the S-
wave renormalized type-A, -B three-body scattering lengths
a3(s,t ) ≡ a3(s,t )(�c → ∞), as well as the spin-averaged values
a��T for different a�� inputs within the current theoretically
feasible range, −1.92 fm � a�� � −0.5 fm, based on RHIC
data analyses [36–38].4 The chosen a�� values range from
those extracted from the old Nijmegen potential models (e.g.,
NHC-F, NSC97e, ND, NDS , mNDS) [56–58], including more
recent ones based on dispersion techniques [27] and RHIC
thermal correlation model analysis [36–38], and up to the
most recent ones based on lattice simulations by the HAL
QCD Collaboration [35]. In particular, a representative value
of a�� = −0.8 fm was suggested in the recent SVM π/EFT
calculation [26], using which B� of 5

��H was predicted to
be about 1.14 MeV. This value can be compared with our
estimate displayed in Table V, which in our ��t cluster
scenario may be naively obtained as

B�

(
5
��H

) = B��

(
5
��H

) + Bavg
�

(
4
�H

)
= B��(Avg) − Bavg

�

(
4
�H

)
, (33)

4In contrast, the same RHIC data previously analyzed by the STAR
Collaboration [7] suggested a positive value of the scattering length.
It is notable, however, that our analysis in this work is only justified
on the basis of a virtual bound �� state. Hence, we restrict our
analysis to negative a�� values only.
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TABLE IV. The EFT predicted J = 1/2 S-wave ��T scattering lengths a��T [cf. Eq. (24)] of the double-�-hypernuclear mirror partners
(5
��H, 5

��He), obtained for the central values of the S-wave scattering length a�� based on various phenomenological analyses, e.g., old
Nijmegen potential models (e.g., NHC-F, NSC97e, ND, NDS , mNDS) [56–58], dispersion relations (DR) [27], thermal correlation model of
relativistic heavy-ion collisions (RHIC) [36–38], ab initio π/EFT (SVM) [26], and lattice QCD (HAL QCD) [35], consistent with the currently
accepted range, −1.92 fm � a�� � −0.5 fm [36–38]. All the displayed double-�-separation energies B��, excepting the two normalization
values taken from the potential model ab initio SVM analysis of Ref. [22] (shown in bold), are obtained using our calibration curves for the
choice of the cutoff scale, �c = 200 MeV.

Hypernucleus Scattering length Type-A Type-A Type-B Type-B (2J + 1) average
(J = 1

2 ) a�� (fm) B�� (MeV) a3(s)(�c → ∞) (fm) B�� (MeV) a3(t )(�c → ∞) (fm) a��T (fm)

−0.50 (NSC97e) [57,58] 3.236 4.258 3.292 2.388 2.968
−0.60 (DR) [27] 3.377 4.109 3.418 2.404 2.925
−0.73 (NHC-F) [56] 3.544 3.964 3.567 2.420 2.885
−0.77 (ND) [57,58] 3.592 3.927 3.610 2.425 2.875
−0.80 (SVM) [26] 3.627 3.902 3.641 2.428 2.868
−0.81 (HAL QCD) [35] 3.639 3.894 3.651 2.429 2.866

5
��H −0.91 (mNDS) [56] 3.750 [22] 3.821 3.750 [22] 2.438 2.847

−1.20 (DR) [27] 4.030 3.668 3.997 2.456 2.809
−1.25 (RHIC) [36–38] 4.073 3.648 4.034 2.459 2.804
−1.32 (NHC-F) [56] 4.131 3.622 4.085 2.462 2.797
−1.37 (NDS) [56] 4.170 3.605 4.119 2.463 2.793
−1.80 (DR) [27] 4.461 3.493 4.374 2.473 2.764
−1.92 (RHIC) [36–38] 4.530 3.470 4.434 2.474 2.757

−0.50 (NSC97e) [57,58] 3.163 4.714 3.221 1.831 2.841
−0.60 (DR) [27] 3.298 4.461 3.341 1.837 2.740
−0.73 (NHC-F) [56] 3.460 4.229 3.484 1.843 2.649
−0.77 (ND) [57,58] 3.506 4.173 3.525 1.845 2.628
−0.80 (SVM) [26] 3.541 4.134 3.555 1.846 2.613
−0.81 (HAL QCD) [35] 3.552 4.121 3.565 1.846 2.608

5
��He −0.91 (mNDS) [56] 3.660 [22] 4.012 3.660 [22] 1.849 2.567

−1.20 (DR) [27] 3.934 3.793 3.899 1.853 2.485
−1.25 (RHIC) [36–38] 3.976 3.766 3.935 1.854 2.474
−1.32 (NHC-F) [56] 4.032 3.730 3.984 1.854 2.461
−1.37 (NDS) [56] 4.071 3.707 4.018 1.854 2.452
−1.80 (DR) [27] 4.357 3.558 4.266 1.853 2.396
−1.92 (RHIC) [36–38] 4.425 3.528 4.324 1.852 2.384

where

B��(Avg) = 1
2 [B��(type-A) + B��(type-B)] (34)

is the ordinary mean of the type-A and type-B double-�-
separation energies of 5

��H obtained from Table IV. Likewise,
we also obtain the estimate for B�(5

��He), as displayed in
Table V. Consequently, the difference of the two �-separation
energies, namely, B�(5

��He) − B�(5
��H) = 9 keV, yields a

naive estimate of the charge-symmetry-breaking effects in-
herent to these double-�-hypernuclei. This is indeed small
in comparison with that in the two-body sector where

TABLE V. The �-separation energies, namely, B�(5
��H) and

B�(5
��He), corresponding to the representative value, a�� = −0.80

fm. The result for 5
��H of Ref. [26] is displayed for comparison.

Hypernucleus This work, Eq. (33) Ref. [26]
(J = 1

2 , I = 1
2 ) B� (MeV) B� (MeV)

5
��H 2.295 1.14 ± 0.01+0.44

−0.26
5
��He 2.212

δB�[0+] ∼ 200 MeV and δB�[1+] ∼ 100 MeV. However,
the charge asymmetry noted here does not directly reflect
anything regarding the underlying low-energy EFT dynamics
with no isospin breaking terms included in the effective La-
grangian at LO, but rather a consequence of using physical
masses and phenomenologically fixed inputs. Nevertheless,
given the broad range of acceptable input values of the S-wave
double-� scattering lengths, namely, with δa�� ≈ 1.42 fm,
the corresponding variations in the spin-averaged three-body
scattering lengths turn out to be quite nominal, i.e., δa��T �
0.4 fm. But it may be noticed that, in contrast, particularly the
type-A scattering lengths a3(s) exhibit significant variations
depending on the (a��, B��) inputs. In fact the behavior, of
a3(s) and a3(t ) turn out to be quite the opposite, with the former
increasing and the latter decreasing with both |a��| and B��

decreasing.
The above discussed features are depicted clearly in

the Phillips-line plots [59] shown in the upper panels
of Fig. 10, for each choice (type-A, -B) of the elastic
channel. Interestingly, the variation of the spin-averaged
scattering length a��T , in what may be termed as the
“physical” Phillips plot (lower panel) turns out to be sig-
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FIG. 10. Phillips-lines for the type-A elastic channel, i.e., 4
�H[0+]-� and 4

�He[0+]-� scatterings (upper-left panel) and the type-B elastic
channel, i.e., 4

�H[1+]-� and 4
�He[1+]-� scatterings (upper-right panel) are displayed. The lower panel displays the “physical” Phillips-lines

corresponding to the spin-averaged scattering lengths a��T plotted as a function the mean values of the three-body binding energy namely,
B��(Avg) = 1

2 [B��(type-A) + B��(type-B)], obtained from Table IV.

nificantly moderate. Evidently, the type-A Phillips plots are
in accordance with the expected behavior of the three-
body binding energies varying inversely as the three-body
scattering lengths, accounting for their characteristic negative
slopes. In contrast, the observed positive slope of the type-B
Phillips plot may seem rather counterintuitive. It is note-
worthy that these contrasting type-A, -B results are neither
dependent on the nature of the three-body contact interac-
tions used nor any artifact of the renormalization methods
adopted in each case [cf. discussion below Eq. (15)]. This
is easily understood by comparing the plots for the unrenor-
malized type-A, -B scattering lengths, which exhibit the same
contrasting features. In this context, we also note that, in
determining a3(s), only the dynamics near the deeper thresh-
old, namely, the particle-dimer � + u0 threshold, is relevant,
whereas the dynamics of both thresholds (� + u0,1) contribute
in the determination of a3(t ). Although an unambiguous phys-
ical reasoning behind this contrasting behavior could not be
ascertained, a plausible explanation may be attributed to the

underlying nature of the off-shell dynamics arising due to the
complex interplay between the two thresholds.

To test this hypothesis we took the strategy of consider-
ing a hypothetical (unphysical) scenario in which the triplet
and singlet �T subsystems are completely decoupled from
each other to avoid the simultaneous contribution of both the
particle-dimer thresholds for each ��T systems. In other
words, this is essentially tantamount to the removal of the
triplet-dimer field u1 contributions in the type-A integral equa-
tions (11), and the singlet-dimer field u0 contributions in the
type-B integral equations (12). The resulting ��T dynamics
become considerably simpler reducing into a system of two
coupled-channel integral equations in each case. It is found
that, in these reduced systems, the type-A elastic channel
does not exhibit a limit cycle behavior any longer, while the
type-B elastic channels continue to exhibit limit cycles but
instead following a very different value of the asymptotic
parameter, namely, s′∞

0 ≈ 0.84, for each mirror system. Sub-
sequently, it may indeed be checked that the estimation of the
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scattering lengths a3(s,t ) leads to the expected natures of the
Phillips-lines with negative slopes. This ostensibly indicates
plausible role of the simultaneous particle-dimer thresholds
resulting in the atypical nature of the type-B Phillips-lines.
However, a more satisfactory explanation of this feature de-
mands a thorough understanding of the off-shell dynamics
perhaps hinting at the need of a four-body calculations which
is beyond the present scope. Finally, the fact that our results
converge asymptotically for momentum scales significantly
larger than mπ , the canonical hard scale of π/EFT, there is an
indication of the apparent insensitivity of the three-body dy-
namics to the �-� (two-body) correlations. In this regard, our
findings corroborate the two previous π/EFT analyses [24,25]
based on similar three-body calculations of 4

��H and 6
��He

double-�-hypernuclei.

IV. SUMMARY AND CONCLUSIONS

In summary, this work presents an assay of the puta-
tive doubly strange (S = −2) mirror double-�-hypernuclei
(5
��H, 5

��He) in the context of a LO pionless EFT. In
this framework the systems are conjectured as shallow
three-particle halo-bound clusters, viz. the iso-doublet pair
(��t, ��h) in the J = 1/2 channel. The numerical method-
ology presented here closely resembles the approaches of
Refs. [24,25,51,52]. By solving the Faddeev-like coupled in-
tegral equations [65–68] for each choice (type-A, -B) of the
constituent (�T )s,t subsystem spin introduced in the elastic
channel, we presented a qualitative RG-based study of the
cutoff dependence of the three-body contact interactions. In
particular, we investigated the dynamical interplay between
the different constituent two-body subsystems, namely, the
virtual bound 1S0 �� cluster (with a�� < 0), and the (�T )s,t

bound clusters (equivalently, the two-body spin-singlet and
spin-triplet bound states, i.e., 4

�H[J = 0+, 1+] and 4
�He[J =

0+, 1+]), whose interplay could plausibly lead to the emer-
gence of three-body shallow bound states. This is formally
suggested by the appearance of RG limit cycles in the run-
ning of the three-body couplings g(A)

3 (�c) and g(B)
3 (�c). In

the unitary limit this also implies that a discrete sequence of
Efimov states emerges from the three-particle threshold [53]
and, simultaneously with our LO theory in the scaling limit,
the ground-state energy collapses to negative infinity (Thomas
effect [74]). Of course, such universal phenomena are de facto
unrealistic and disappear for interactions with nonvanishing
range (finite momentum cutoff) and finite scattering lengths.
Nevertheless, for energies in proximity to the particle-dimer
thresholds (sufficiently far from open channels involving
transmutations into particles like �,�, . . . ) with reasonably
fine-tuned �-T and �-� correlation strengths, it cannot be
precluded that any remnant universal feature leads to the for-
mation of Efimov-like trimers.

For our numerical analysis we considered different choices
of the input double-� scattering lengths within the currently
acceptable range, −1.92 fm � a�� � −0.5 fm [36–38],
along with the inputs for the � + u0,1 particle-dimer thresh-
olds provided by the up-to-date experimental information
on the �-separation energies of the (4

�H, 4
�He) mirror hy-

pernuclei [3,8–11]. By appropriate fixing of the three-body

contact interactions using the RG limit cycles at the typ-
ical cutoff scale, �c ∼ 200 MeV, a fairly good agreement
of our EFT predicted B��-a�� correlations was obtained
with existing potential models [16,17,19,20,22] (provided
that the B�� are reevaluated from their old model pre-
diction of B�� using updated experimental inputs). This
agreement, of course, relied on the efficacy in choosing
our normalization points, taken from the ab initio poten-
tial model analysis of Nemura et al. [22]. In this case
the double-�-separation energy B�� could be identified
with the eigenenergy of the ground (n = 0) state Efimov-
like trimer, with the provision that our halo/cluster π/EFT
analysis could be extended to include ππ or σ -meson
exchange interactions with an adjusted breakdown scale,
�H � 2mπ . But whether such physically realizable bound
states can be de facto supported in our EFT framework
remains contentious, depending crucially on support from ex-
perimental or lattice QCD data which are currently altogether
missing. Future feasibility studies from the much awaited pro-
duction experiments, like PANDA and CBM at FAIR [75–77],
and JPARC-P75 [78], are likely to explicate more on the inher-
ent character of these hypernuclei. Besides, predictions based
on LO EFT analyses are by and large qualitative in nature and
must be supplemented by subleading order precision analyses
for robust assessments. This should naturally address issues
such as the compatibility of the low-energy cluster picture
at momentum scales, Q � �H , potentially probing the short-
distance degrees of freedom beyond the breakup scales of the
triton and helion cores.

Finally, to demonstrate the predictive power of our EFT
analysis, we presented preliminary estimates of the �-
separation energies B� of the two double-�-hypernuclear
mirrors of interest and the previously undetermined S-wave
three-body scattering lengths for the 4

�H-� and 4
�He-� scat-

tering processes. Needless to say that, with the scarcity of
pertinent empirical inputs, a theoretical error analysis based
on such empirical estimates serves little purpose and, hence,
was not attempted in this work. Nevertheless, the accuracy of
our results evidently relies on the precise nature of the B��-
a�� correlations, with the latter being still poorly constrained
currently. Subject to the inherent limitation pertaining to the
ambiguity in the normalization of the solutions to the inte-
grals equations, our EFT methodology demands a three-body
empirical input which is provided by the B�� model pre-
dictions of Nemura et al. Subsequently, the correlation plots
self-consistently determine the three-body scattering lengths
a��T . In particular, the scale variation of the renormalized
scattering lengths was found to asymptotically converge for
�c � 500 MeV, which is well beyond the hard scale of stan-
dard π/EFT. Thus, the three-body dynamics are most likely
insensitive to the low-energy �-� two-body interactions,
unless the hard-scale �H of the effective theory could be aug-
mented sufficiently beyond without potentially invalidating
the basic halo/cluster ansatz. This supports the earlier claim
made in Refs. [24,25] based on similar investigations of the
other double-�-hypernuclear cluster systems, such as 4

��H
and 6

��He. Although short-distance mechanisms beyond the
realm of our EFT can certainly influence the formation of such
exotic bound hypernuclear clusters, this does not preclude
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(a)

(b)

(c)

FIG. 11. Diagrams for the renormalized dressed dimer propa-
gators: (a) i0 for the spin-singlet auxiliary field u0, (b) i1 for
the spin-triplet auxiliary field u1, and (c) is for the spin-singlet
auxiliary field us. Thick (thin) lines denote the �-hyperon (core
T ≡ t, h) field propagators.

possible role of low-energy off-shell effects that may not be
accessible in a three-body framework without involving four-
body calculations. Such an endeavor, however, goes beyond
the scope of the simple qualitative nature of this work. To this
end, we reiterate once more that our estimates of the scattering
lengths a��T should serve for demonstrative purposes only,
given the current limitations of performing ��T scattering
experiments in testing their validity thereof.
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APPENDIX: ONE- AND TWO-BODY NON-RELATIVISTIC
PROPAGATORS

Here we summarize the one- and two-body nonrelativistic
propagators specific to the ��T three-body systems in pion-

less effective theory (π/EFT). In this framework, at sufficiently
low-energies below the respective breakup scales, we may
consider the triton (3H or t) and the helion (3He or h) as
being fundamental particles. Thus, as the fundamental one-
body components of the theory, the � and T propagators are
given as

iS�,T (p0, p) = i

p0 − p2

2M�,T
+ iη

, (A1)

where p0 and p are the generic off-shell energy and three-
momentum. In our analysis we only consider the S-waves
contributions from the two-body interactions at LO. We have
incorporated a power-counting scheme [44,45] for the 1S0 �-
T , 3S1 �-T and the 1S0 �-� interactions in the two-body
sector, in which the unitarized two-body amplitudes are con-
veniently expressed in terms of the auxiliary fields, namely,
the spin-singlet and spin-triplet �T -dimer fields u0,1, and the
spin-singlet ��-dibaryon field us. The leading-order renor-
malized dressed dimer propagators [47–49] are given by the
expressions (see Fig. 11)

D0,1(p0, p) = 1

γ0,1 −
√

−2μ�T
(
p0 − p2

2(MT +M� )

) − iη − iη
,

(A2)

Ds(p0, p) = 1

1
a��

−
√

−M�

(
p0 − p2

4M�

) − iη − iη
,

(A3)

respectively, with the LO two-body contact interactions y0, y1,
and ys fixed as in Eq. (8) in the text. In the above expressions,
γ0 and γ1 are the binding momenta of spin-singlet and spin-
triplet states of the �T subsystem, and a�� is S-wave double-
� scattering length.
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