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GW190814: Impact of a 2.6 solar mass neutron star on the nucleonic equations of state
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Is the secondary component of GW190814 the lightest black hole or the heaviest neutron star ever discovered
in a double compact-object system [Abbott et al. Astrophys. J. 896, L44 (2020)]? This is the central question
animating this paper. Covariant density functional theory provides a unique framework to investigate both the
properties of finite nuclei and neutron stars, while enforcing causality at all densities. By tuning existing energy
density functionals we were able to: (i) account for a 2.6 M� neutron star, (ii) satisfy the original constraint on the
tidal deformability of a 1.4 M� neutron star, and (iii) reproduce ground-state properties of finite nuclei. Yet, for
the class of models explored in this work, we find that the stiffening of the equation of state required to support
supermassive neutron stars is inconsistent with either constraints obtained from energetic heavy-ion collisions
or from the low deformability of medium-mass stars. Thus, we speculate that the maximum neutron star mass
can not be significantly higher than the existing observational limit and that the 2.6 M� compact object is likely
to be the lightest black hole ever discovered.

DOI: 10.1103/PhysRevC.102.065805

I. INTRODUCTION

The first direct detection of gravitational waves from the
binary merger of two black holes launched the new era of
gravitational-wave astronomy [1]. Two years later, the de-
tection of gravitational waves from GW170817—a binary
neutron star merger [2]—in association with its electromag-
netic counterpart [3–6], greatly advanced multimessenger
astronomy. And two years after GW170817, the LIGO-Virgo
Collaboration continues to challenge the physics community
after reporting the detection of gravitational waves from the
coalescence of a binary system with the most extreme mass
ratio ever observed: a 23 solar mass black hole and a 2.6 solar
mass compact object [7]. Although data from all three instru-
ments (LIGO-Livingston, LIGO-Hanford, and Virgo) allowed
good sky localization of the source, no electromagnetic coun-
terpart has been reported. Moreover, unlike GW170817, no
measurable tidal signature was imprinted on the gravitational
waveform, which seems consistent with the relatively large
mass of the 2.6 M� compact object. Hence, one is left specu-
lating whether the compact object is either the most massive
neutron star or the lightest black hole ever discovered [8,9].

The discovery paper suggests that, based on several current
estimates of the maximum neutron star mass, “GW190814
is unlikely to originate in a neutron star-black hole (NSBH)
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coalescence” [7]. Yet the paper leaves open the possibility
that improved knowledge of the equation of state or further
observations could alter this assessment. The absence of very
massive neutron stars is consistent with the analysis by Mar-
galit and Metzger who argue against their formation based on
the lack of evidence of a large amount of rotational energy in
the ejecta during the spin-down phase of GW170817 [10]. In-
terestingly, the suggested upper limit of Mmax�2.17 M� [10]
is in full agreement with the recent observation by Cromartie
and collaborators of the heaviest 2.14+0.10

−0.09 M� neutron star to
date [11]. However, given that one can not definitively ex-
clude the existence of very massive neutron stars, we explore
here the implications of a 2.6 M� neutron star on nucleonic
equations of state, particularly in the framework of covariant
density functional theory.

It has been known for more than two decades that the
class of covariant energy density functionals (EDFs) used in
this work can reproduce nuclear observables at normal nu-
clear densities and also generate neutron stars with maximum
masses that differ by more than one solar mass [12]. Hence,
stable neutron stars with 2.6 M�—and even higher—can be
readily generated. The challenge, however, is not to reconcile
supermassive neutron stars with the properties of finite nuclei,
but rather, with neutron-star properties that are sensitive to the
equation of state (EOS) at 2–3 times nuclear densities, such
as stellar radii and tidal deformabilities that favor a rather soft
EOS [2,13].

In particular, GW170817 has provided stringent constraints
on the EOS of neutron-rich matter at a few times nuclear
densities from the measurement of three observables pertain-
ing to the binary system: the chirp mass, the combined tidal
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TABLE I. Parameters, as in Ref. [36], for the three models discussed in the text. The scalar mass ms and κ are in MeV. The vector-meson
masses are fixed at mv =782.5 MeV and mρ =763.0 MeV, respectively, and the nucleon mass at M =939 MeV.

Model ms g2
s g2

v g2
ρ κ λ ζ �v

IUFSU 491.500 99.4266 169.8349 184.6877 3.38081 +0.000296 0.03000 0.046000
FSUGarnet 496.939 110.3492 187.6947 192.9274 3.26018 −0.003551 0.02350 0.043377
BigApple 492.730 93.5074 151.6839 200.5562 5.20326 −0.021739 0.00070 0.047471

deformability, and the mass ratio [2]. From these observables,
the tidal deformability of a M =1.4 M� neutron star was ex-
tracted and confronted against theoretical predictions [13–27].
Constraints from GW170817 seem to favor compact stars with
relatively small stellar radii, suggesting a relatively soft EOS.
These constraints are consistent with the recent determination
of both the mass and radius of PSR J0030+0451 by the
Neutron star Interior Composition Explorer (NICER) [28,29].
Pulse-profile modeling of the thermal emission from the pul-
sar’s hot spots suggest a mass of about 1.4 M� and a radius
of nearly 13 km, with a ± 10% uncertainty on both quanti-
ties [28,29]. Note that although consistent with GW170817,
NICER results can accommodate slightly stiffer equations of
state. However, a real tension develops as one aims to recon-
cile a relatively soft EOS as demanded by GW170817, with
the much stiffer EOS required to account for heavy neutron
stars with masses in the vicinity of 2 M� [11,30,31]. Based
on this combined evidence, suggestions have been made for
the existence quark matter cores in massive neutron stars
[32]. Although the claim may be premature, after all there are
purely nucleonic EOS that satisfy all experimental and obser-
vational constraints to date [15], the prospect of identifying
an assumed phase transition in the stellar cores is exciting. As
shown below, the tension is exacerbated if the EOS must be
stiffened even further to account for the possible existence of
supermassive neutron stars.

II. FORMALISM

To test the possible existence of a 2.6 M� neutron star
we rely on density functional theory [33]. The energy density
functional employed here is defined in terms of an underlying
Lagrangian density that has been extensively discussed in
earlier publications [34–36], so we limit ourselves to highlight
those terms of relevance to the high-density component of the
equation of state. That is,

L = . . . + ζ

4!
g4

v(VμV μ)2 + �v
(
g2

ρ bμ · bμ
)(

g2
vVνV ν

)
. (1)

The basic degrees of freedom of the model are neutrons and
protons interacting via the exchange of photons and mesons.
Besides the conventional Yukawa couplings (not shown) the
model includes nonlinear meson interactions that serve to
simulate the complicated many-body dynamics and that are
required to improve the predictive power of the model. The
two terms shown in Eq. (1) fall into this category and are
of critical importance to the behavior of dense, neutron-rich
matter. The first term in the expression (proportional to ζ )
describes a quartic self-interaction of the isoscalar-vector
field V μ, which affects the EOS of symmetric nuclear matter

at high densities [12]. In turn, the last term (proportional
to �v) includes a mixed quartic coupling between V μ and
the isovector-vector field bμ. Here gv and gρ represent the
strength of the Yukawa coupling of the nucleon to the cor-
responding vector mesons [12]. The �v term was introduced
to modify the density dependence of the symmetry energy,
which plays a critical role in the structure of both neutron-
rich nuclei and neutron stars [34]. Note that the symmetry
energy is to a very good approximation equal to the difference
in the energy per nucleon between pure neutron matter and
symmetric nuclear matter. Covariant density functional theory
provides a relativistic consistent framework as one extrap-
olates to dense matter as it ensures—unlike nonrelativistic
formulations—that the EOS remains causal at all densities.
Finally, the structure of neutron stars will be explored by
enforcing both charge neutrality and chemical equilibrium.
As such, the basic constituents of the model are nucleons
and leptons (both electrons and muons). No exotic degrees of
freedom—such as hyperons, meson condensates, or quarks—
will be considered.

III. RESULTS

As already alluded to, tuning the ζ parameter in Eq. (1)
allows one to stiffen the symmetric-matter EOS to produce
supermassive neutron stars. For example, two of the EDFs
used in Ref. [15]—IUFSU [37] and FSUGarnet [38])—that
are consistent with both the 2M� constraint [11,30,31] and
the tidal deformability of a 1.4 M� neutron star [2], can
be adjusted to produce maximum stellar masses of at least
2.8 M�. However, we find no need to strain the model to
such an extreme, so we tune ζ to produce a maximum neutron
star mass of 2.6 M�. Reducing the ζ parameters requires
tuning the other model parameters. To do so, we start with
the bulk properties predicted by IUFSU—together with the
analytical transformation described in Ref. [36]—to connect
the bulk properties to the model parameters. Next, we slightly
decrease the value of the slope of the symmetry energy to
obtain a neutron skin of 0.15 fm for 208Pb. Since the cen-
troid energy of the giant monopole resonance is sensitive to
the value of the incompressibility coefficient of neutron-rich
matter K (α) [39], we reduce the incompressibility coefficient
to K = 227 MeV to maintain a similar value for K (α). Fi-
nally, we readjust the values of ms, the saturation density
ρ0, and the binding energy at saturation ε0 to ensure that
the binding energies and charge radii of both 40Ca and 208Pb
remain intact. We refer to this nuclear EDF as “BigAp-
ple” and display its parameters, as defined in Ref. [36], in
Table I alongside the other two covariant EDFs used in this
work.
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TABLE II. Theoretical predictions alongside experimental data
(in parentheses) for the binding energy per nucleon [40] and charge
radii [41] for a representative set of doubly magic and semimagic
nuclei; the experimental charge radius of 68Ni is from Ref. [42]. The
last column displays predictions for the neutron skin thickness. With
the exception of 208Pb [43] no electroweak measurements of neutron
skins are presently available.

Nucleus B/A(MeV) Rch(fm) Rskin(fm)

40Ca 8.552 (8.551) 3.452 (3.478) −0.050
48Ca 8.536 (8.666) 3.476 (3.477) 0.168
68Ni 8.643 (8.682) 3.875 (3.887) 0.170
90Zr 8.666 (8.710) 4.255 (4.269) 0.061
132Sn 8.294 (8.355) 4.708 (4.709) 0.212
208Pb 7.868 (7.867) 5.503 (5.501) 0.151

(
0.33+0.16

−0.18

)

One of the central tenets of nuclear density functional the-
ory is to provide a universal EDF that can reproduce nuclear
observables over an enormous range of densities and isospin
asymmetries. The goal is to build a nuclear EDF that can be
used to explore both the properties of finite nuclei as well as
the structure of neutron stars—dynamical objects that differ
in length scales by more that 18 orders of magnitude. In this
context, we display in Table II binding energies and charge
radii as predicted by the BigApple.

Before moving on to discuss neutron star properties, we
display in Table III some bulk properties of infinite neutron-
rich matter that encode its behavior in the vicinity of the
saturation density; the definitions are as in Ref. [44]. The
saturation point of symmetric nuclear matter is defined in
terms of the saturation density ρ0 and the value of the energy
per particle ε0. Because the pressure at saturation density
vanishes, the rate at which the energy per particle increases
is controlled by the incompressibility coefficient K , a quantity
that is strongly correlated to the centroid energy of the giant
monopole resonance [45]. In turn, J and L are fundamental
parameters of the symmetry energy that encode the increase
in the energy per particle and its density dependence as the
system becomes neutron rich. In particular, given that the
pressure of symmetric nuclear matter vanishes at saturation,
L is closely related to the pressure of pure neutron matter at
saturation density. As such, it is strongly correlated to both

TABLE III. Bulk properties of nuclear matter as predicted by
three covariant EDFs: IUFSU [37], FSUGarnet [38], and Big Apple.
The listed properties are the saturation density of symmetric nuclear
matter together with the energy per particle and incompressibility
coefficient at saturation. Also shown is the value of the symmetry
energy J and its slope L at saturation density. All quantities are given
in MeV except for ρ0, which is given in fm−3.

Model ρ0 ε0 K J L

IUFSU 0.155 −16.397 231.333 31.296 47.205
FSUGarnet 0.153 −16.231 229.628 30.917 50.961
BigApple 0.155 −16.344 227.001 31.315 39.800
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FIG. 1. Mass-vs-radius relation predicted by a variety of co-
variant EDFs. The figure has been adapted from Ref. [15] and is
supplemented by maximum-mass constraints from J0740 [11], by
NICER’s constraints [28,29], and by our predictions from BigApple.
Also shown are earlier maximum-mass constraints from J1614 [30]
and J0348 [31].

the neutron skin thickness of heavy nuclei and the radius of
neutron stars [46].

We observe from Table III that, with the exception of L, all
three models are in very close agreement. It is important to
note that the calibration of FSUGarnet relied exclusively on
physical observables that can be either measured in the lab-
oratory or extracted from observation, so the bulk properties
listed in Table III are genuine model predictions. However, the
current set of observables can not constrain the slope of the
symmetry energy and hence the observed spread in the values
of L.

Displayed in Fig. 1 is the mass-radius relation as pre-
dicted by a variety of covariant EDFs, including BigApple.
The figure has been adapted from Ref. [15] and includes,
besides earlier constraints on the maximum neutron star mass
[30,31], the newest constraint from Cromartie et al. [11] as
well as the recent NICER results [28,29]. All models support a
∼2 M� neutron star and, with couple of exceptions, agree with
the (1σ ) NICER results. Yet, several of these models generate
stellar radii for medium mass neutron stars that are inconsis-
tent with the tidal deformability extracted from GW170817
[2]. Note, however, that BigApple, with a maximum neutron-
star mass of 2.6 M�, satisfies all observational constraints; see
also Table IV.

We now proceed to examine the microphysics responsi-
ble for the macroscopic properties displayed in Fig. 1. The
underlying neutron-star matter EOS alongside the square of
the speed of sound, defined as the derivative of the pressure
with respect to the energy density, is displayed in Fig. 2.
Predictions from the BigApple energy density functional sug-
gest a softer EOS at intermediate densities (as suggested by
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TABLE IV. Stellar properties as predicted by the three covariant
EDFs used in this work. The maximum mass is given in solar masses,
both radii in km, and the tidal deformability is dimensionless. The
subscript “1.4” refers to the properties of a “1.4” M� neutron star
whereas the subscript “max” is associated with the maximum mass
configuration.

Model R1.4 �1.4 Mmax Rmax �max

IUFSU 12.528 499.2 1.939 11.265 20.9
FSUGarnet 12.869 624.8 2.066 11.706 18.2
BigApple 12.960 717.3 2.600 12.417 5.0

GW170817) and a significant stiffness at high densities, in an
effort to account for the possible existence of very massive
neutron stars. For the uniform stellar core, we use an EOS
predicted by the various covariant EDFs introduced in Table I.
Besides the EOS for the high-density core, one must also
specify the EOS for the nonuniform crust.

The outer stellar crust is composed of a Coulomb lattice
of neutron-rich nuclei embedded in a degenerate electron gas
[47,48]. The nuclear physics input consists solely of nuclear
masses in the 26 � Z � 40 region, with the pressure support
provided primarily by the degenerate electrons. Hence, the
EOS for this region is relatively well known [47,49,50], except
for the masses of exotic nuclei near the neutron drip line.
For the very low-density region of the outer crust (4.7 ×
10−15 fm−3 < ρ < 6.93 × 10−13 fm−3) we adopt the equa-
tion of state of Feynman, Metropolis, and Teller (FMT) [49].
Still within the outer crust but at slightly higher densities
(up to 1.966 × 10−4 fm−3) we use the equation of state of
Haensel, Zdunik, and Dobaczewski [50]. At a density of about
2.6 × 10−4 fm−3, the nuclei in the outer crust become so neu-
tron rich that they can no longer bind additional neutrons, so
neutrons start dripping out. This region defines the boundary
between the outer and the inner crust.

FIG. 2. Equation of state—pressure as a function of baryon
density—for neutron-star matter in chemical equilibrium. Here ρ0 �
0.154 fm−3 is the density of nuclear matter at saturation (see
Table III), and the inset displays the associated speed of sound
squared in units of the speed of light squared.

The inner crust extends from the neutron-drip density up
to about ρ ≈ 2/3ρ0, where the uniformity in the system is
restored. On the top layers of the inner crust, nucleons con-
tinue to cluster into a Coulomb crystal of neutron-rich nuclei
embedded in a uniform electron gas; however, now the sys-
tem is also in chemical equilibrium with a dilute superfluid
neutron gas [51]. As the density continues to increase further,
the spherical nuclei start to deform in an effort to reduce
the Coulomb repulsion. As a result, the inner crust exhibits
complex and exotic structures that are collectively known as
nuclear pasta [52–54], which emerge from a dynamical com-
petition between the short-range nuclear attraction and the
long-range Coulomb repulsion. Although significant progress
has been made in simulating this exotic region [55–58], the
equation of state for this region remains highly uncertain and
must be inferred from theoretical calculations. While detailed
knowledge of the EOS in this region is important for the
interpretations of cooling observations [59], its impact on the
bulk properties of neutron stars is minimal. Therefore, for
this region we resort to the equation of state of Negele and
Vautherin [60].

Returning to Fig. 2, we note that the kink in the pressure
at around 2/3 saturation density signals the transition from
the solid crust to the liquid core. At saturation density the
pressure is generated exclusively by the symmetry energy.
This pressure determines the thickness of the neutron skin in
neutron-rich nuclei [61–64]. In turn, the pressure at 2–3 times
saturation density appears to control the radius of medium-
mass neutron stars [23–25,65]. Indeed, all three models share
the same pressure just below 2ρ0 and, as consequence, predict
similar radii for a canonical 1.4 M� neutron star. However, the
maximum mass of stable neutron stars stars is highly sensitive
to the pressure at the highest densities [27]. Indeed, a dramatic
rate of increase in the pressure—best reflected in the speed of
sound—is required to support a supermassive 2.6 M� neutron
star.

Based on the evidence presented so far, there seems to be
no compelling argument against the possible existence of a su-
permassive 2.6 M� neutron star. Note, however, that whereas
the relatively large tidal deformability predicted by BigAp-
ple is consistent with the limits presented in the discovery
paper [2], the revised limit of �1.4 = 190+390

−120 [13] presents
a more serious challenge. However, the most serious evidence
against such a stiff EOS comes from laboratory experiments
involving the energetic collision between two gold nuclei, a
violent encounter that compressed matter to pressures in ex-
cess of 1034 Pa [66]; note that 1Pa = 10 dyn/cm2 = 6.242 ×
10−33 MeV/fm3.

We display in Fig. 3 constraints on the EOS of symmetric
nuclear matter as extracted from the analysis of particle flow
in heavy-ion collisions [66]. We observe that IUFSU and
FSUGarnet (the two lower lines in the figure) with predictions
of 1.94 M� and 2.07 M� for the maximum neutron star mass,
already sit near the upper edge of the allowed region. In con-
trast, the very stiff EOS predicted by the NL3 parametrization
[67] that is displayed by the green upper line, was explicitly
ruled out by the heavy-ion data [66]. Following a similar trend
as NL3, it is clear that the stiff EOS predicted by BigApple
and required to account for supermassive neutron stars is also
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FIG. 3. Equation of state—pressure as a function of baryon
density—of symmetric nuclear matter. The blue shaded area repre-
sents the EOS extracted from the analysis of flow data using a value
of ρ0 �0.16 fm−3 for the saturation density [66].

ruled out. Given that FSUGarnet is approaching the upper
boundary allowed by the heavy-ion data, it is unlikely that the
maximum neutron star mass can go much beyond the present
observational limit of 2.14 M� [11].

IV. SUMMARY

In summary, motivated by the recent identification of a
compact object in the 2.5−5.0 M� mass gap [7], we have
explored the possibility that such an object could be a su-
permassive neutron star. Given the lack of an electromagnetic
counterpart to GW190814 and the absence of tidal distortions
to the gravitational waveform, it is unlikely that the nature of
the 2.6 M� compact object will ever be resolved by a further
analysis of the data. In this paper we have adapted a class of
modern covariant EDFs to account for a stable 2.6 M� neutron
star, while ensuring that earlier constraints on the structure
of neutron stars as well as ground-state properties of finite
nuclei are accurately reproduced. Indeed, we demonstrated
that such an EDF, dubbed BigApple, successfully accounts
for the binding energy and charge radii of a representative
set of spherical nuclei, is consistent with the bulk properties
of infinite nuclear matter, reproduces the recent NICER data,
and is compatible with the limits on the tidal deformability of

a 1.4 M� neutron star, as reported in the GW170817 discovery
paper. In particular, our predictions are well aligned (see Ta-
ble IV) with the constraints extracted from GW190814 under
the NSBH scenario: R1.4 =12.9+0.8

−0.7 km and �1.4 =616+273
−158

[7].
However, despite the considerable success of the model,

two sets of data strongly disfavor such a stiff EOS. First,
the revised upper limit from GW170817 of �1.4 =190+390

−120 (at
the 90% level) [13] is significantly lower than the �1.4 �720
value predicted by BigApple. This would require a softening
of the EOS, particularly of the symmetry energy. Second,
constraints on the EOS of symmetric nuclear matter extracted
from particle flow in high-energy nuclear collisions rule out
an overly stiff nuclear matter EOS. For example, BigApple
predicts a pressure at four times saturation density that is
nearly twice as large as the upper limit extracted from the
flow data. In principle, by adding additional interactions at
high densities one could soften the EOS of symmetric nuclear
matter to bring it into agreement with the heavy-ion data at the
expense of needing to stiffen the symmetry energy. Whereas
such a procedure may still result in an overall EOS that can
account for a 2.6 M� neutron star, it may require considerable
fine tuning to keep the pressure of nuclear matter and the tidal
deformability low enough. Hence, we conclude that the low
deformability demanded by GW170817 combined with the
heavy-ion data for symmetric nuclear matter make it highly
unlikely that the maximum mass could be as large as 2.6 M�,
at least for the class of models used in this work. So as
one is left speculating whether the 2.6 M� compact object
in GW190814 is either the most massive neutron star or the
lightest black hole ever detected, our analysis points strongly
in favor of the latter. However, a primordial black hole ex-
planation for the secondary component of GW190814 also
appears to be improbable [68], suggesting that the mystery
is unlikely to be resolved any time soon.
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