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Stellar electron-capture rates based on finite-temperature relativistic
quasiparticle random-phase approximation
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The electron-capture process plays an important role in the evolution of the core collapse of a massive star that
precedes the supernova explosion. In this study, the electron capture on nuclei in stellar environment is described
in the relativistic energy density functional framework, including both the finite-temperature and nuclear pairing
effects. Relevant nuclear transitions Jπ = 0±, 1±, 2± are calculated using the finite-temperature proton-neutron
quasiparticle random-phase approximation with the density-dependent meson-exchange effective interaction
DD-ME2. The pairing and temperature effects are investigated in the Gamow-Teller transition strength as well
as the electron-capture cross sections and rates for 44Ti and 56Fe in the stellar environment. It is found that the
pairing correlations establish an additional unblocking mechanism similar to the finite-temperature effects, that
can allow otherwise blocked single-particle transitions. Inclusion of pairing correlations at finite temperature can
significantly alter the electron-capture cross sections, even up to a factor of 2 for 44Ti, while for the same nucleus
electron-capture rates can increase by more than one order of magnitude. We conclude that for the complete
description of electron capture on nuclei both pairing and temperature effects must be taken into account.
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I. INTRODUCTION

Dynamics of core-collapse supernovae are determined by
just two parameters: electron-to-baryon ratio Ye and the core
entropy. These two parameters are mainly determined by the
weak interaction processes in nuclei, in particular electron
capture and β decay [1–3]. While the electron capture lowers
the total number of available electrons in the stellar envi-
ronment, and decreases Ye, escaping neutrinos also decrease
the core entropy. On the other hand, the β decay acts in
the opposite direction, and this process gains prominence for
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neutron-rich nuclei due to the increase in the available phase
space [2]. The core of a massive star is stabilized by the
electron degeneracy pressure until its mass does not exceed
the Chandrasekhar mass Mch ∼ Y 2

e [1]. When the mass of the
iron core reaches the Chandrasekhar mass Mch, the electron
degeneracy pressure can no longer hold the gravitational force
and the core collapses.

Due to their importance in the dynamics and evolution
of massive stars, different models have been employed to
study the weak interaction processes in nuclei. The first tab-
ulation of weak interaction capture rates was presented by
Fuller, Fowler, and Newman (FFN) [4–7] using the inde-
pendent particle model and nuclei with masses 21 < A <

60. It was shown that at higher temperatures, present in the
presupernova collapse phase, nuclear weak interaction rates
are dominated by Fermi and Gamow-Teller (GT) excitations.
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The first tables for the weak processes of p f -shell nuclei
using large-scale shell-model calculations (LSSM) were also
presented in Ref. [8] in the mass range 45 < A < 65. Later
on, shell-model calculations with the GXPF1J interaction
were used to evaluate electron-capture rates [9–11]. Assum-
ing the nuclear statistical equilibrium (NSE) for the nuclear
composition, the electron-capture rates were calculated by
a microscopic and hybrid approach for roughly 2700 nuclei
[12]. Using the proton-neutron quasiparticle random-phase
approximation (QRPA) with separable GT forces, stellar weak
interaction rates were calculated for f p- and f pg-shell nuclei
in Ref. [13].

In the presupernova collapse, electron capture on p f -shell
nuclei occurs at temperatures between 300 and 800 keV [14].
Therefore, the inclusion of the temperature effect in the calcu-
lation of the relevant nuclear transitions and weak interaction
processes of nuclei is quite essential at this stage of the col-
lapse. In a previous microscopic study, the electron-capture
calculation on f p-shell nuclei was performed using the shell-
model Monte Carlo (SMMC) approach at finite temperature
[15]. Gamow-Teller strengths were used to calculate the
electron-capture cross sections and rates in zero-momentum
transfer limits. While at low temperatures (T < 0.6 MeV)
the changes in the GT strength are negligible, at higher
temperatures the excited states are slightly shifted to lower
excitation energies and the spectrum becomes broadened. The
temperature-unblocking effect was also studied in Ref. [16]
for the GT transitions together with strength redistribution for
the forbidden transitions with increasing temperature. Taking
into account the first forbidden transitions in addition to the
unblocked GT+, it was shown that the electron capture on
nuclei could dominate over the capture on free protons with
protons in the p f shell and N > 40. In Ref. [17] a hybrid
approach was employed: the SMMC was used to calculate
finite-temperature occupation numbers in the parent nucleus,
and the excited states were obtained using the RPA. Using
even-even germanium isotopes 68–76Ge, it was demonstrated
that configuration mixing is strong enough to unblock the
GT transitions at temperatures relevant for the core-collapse
supernovae.

A fully self-consistent microscopic framework for the eval-
uation of nuclear weak-interaction rates at finite temperature
based on Skyrme functionals was developed in Refs. [18–20].
The single-nucleon basis and corresponding thermal occu-
pation factors were determined using the finite-temperature
Skyrme Hartree-Fock model. The relevant charge-exchange
transitions were obtained for iron and germanium isotopes
using the finite-temperature RPA [19]. Later on, the electron-
capture rates were also calculated for 54,56Fe and Ge isotopes
[20]. Within the relativistic energy density functional frame-
work, the electron-capture rates were also calculated using
the finite-temperature proton-neutron relativisitic RPA (FT-
PNRRPA) for 54,56Fe and 76,78,80Ge [21]. By increasing the
temperature, it is found that the main peaks of the GT
strength function are shifted towards lower excitation ener-
gies. Furthermore, additional peaks appear in the GT strength
distribution that include transitions involving thermally un-
blocked single-particle levels. This modification of the GT
strength has direct consequences on the electron-capture cross

sections and rates. It was also shown that electron capture
becomes possible at lower energies of the incident electron
and the effect of thermal unblocking plays an important role
at high temperatures. Using the thermofield dynamics formal-
ism, the electron-capture rates were calculated in Ref. [22].
Thermal evolution of GT+ strengths was presented for 54,56Fe
and 76,78,80Ge. Recently, the thermal QRPA (TQRPA) ap-
proach was used to calculate the electron-capture rates for
N = 50 nuclei and 56Fe [23,24]. It was shown that ther-
mal excitations can take significant contribution from the
GT+ strength to electron-capture rates. Also, the importance
of forbidden transitions in electron-capture calculations was
demonstrated [23,24]. The effect of the temperature on the
spin-isospin response and β-decay rates of nuclei were also
discussed using a more advanced model which includes par-
ticle vibration coupling [25]. However, the pairing effect was
not taken into account and the calculations were limited to
closed-shell nuclei. At present, there is no method to de-
scribe electron-capture rates at finite temperature based on
relativistic nuclear energy density functionals, with the pairing
correlations taken into account.

In this work, we introduce the framework for the de-
scription of stellar electron-capture cross sections and rates
based on the relativistic energy density functionals [26,27],
using the finite-temperature proton-neutron relativistic QRPA
(FT-PNRQRPA) [28,29], that includes both the pairing and
finite-temperature effects. For the description of nuclear
ground-state properties, we have used the finite-temperature
RMF theory combined with the Bardeen-Cooper-Schrieffer
(BCS) approach. Unifying nuclear models for the description
of the ground-state, nuclear transitions and electron-capture
cross sections, we have developed a self-consistent framework
for the calculation of the electron-capture rates on nuclei, that
uses the same effective interaction both in the ground state
calculations and in the FT-PNRQRPA residual interaction.

This paper is organized as follows. In Sec. II we de-
scribe the relativistic mean field theory and finite-temperature
Hartree BCS model. Then, formalisms for the FT-PNRQRPA
and electron-capture cross sections and rates are introduced.
In Sec. III, results are presented for the GT+ transition
strength and electron-capture cross sections and rates for 44Ti
and 56Fe. Finally, conclusions and an outlook for future stud-
ies are given in Sec. IV.

II. FORMALISM

Relativistic mean field (RMF) theory for finite nuclei is re-
alized in the framework of relativistic nuclear energy density
functionals [26,27]. Nucleons are treated as Dirac particles,
and they can interact via meson exchange. In this study, we in-
clude the isoscalar-scalar σ meson, isoscalar-vector ω meson,
and isovector-vector ρ meson, that build the minimal set of
meson fields necessary to describe the bulk and single-particle
nuclear properties. The meson exchange model is described
by the Lagrangian density [30–32],

L = LN + Lm + Lint. (1)
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LN denotes free nucleon Lagrangian

LN = ψ̄ (iγμ∂μ − m)ψ, (2)

where m is “bare” mass of the nucleon and ψ is Dirac spinor.
The meson field Lagrangian is

Lm = 1
2∂μσ∂μσ − 1

2 m2
σ σ 2 − 1

4
μν

μν + 1

2 m2
ωωμωμ

− 1
4

�Rμν · �Rμν + 1
2 m2

ρ �ρμ · �ρμ − 1
4 FμνFμν, (3)

with corresponding meson masses mσ , mω, mρ and field ten-
sors 
μν, �Rμν , and Fμν ,


μν = ∂μων − ∂νωμ, �Rμν = ∂μ�ρν − ∂ν �ρμ,

Fμν = ∂μAν − ∂νAμ,
(4)

corresponding to ω-meson, ρ-meson, and electromagnetic
fields respectively. The vectors in isospin space are denoted
with arrows above the symbols, while coordinate space vec-
tors are boldfaced. The interaction Lagrangian is given by

Lint = −gσ ψ̄ψσ − gωψ̄γ μψωμ

− gρψ̄ �τγ μψ �ρμ − eψ̄γ μψAμ, (5)

with coupling constants gσ , gω, gρ , and e. In this work, the
density dependent meson-nucleon couplings are employed,
and the DD-ME2 parametrization is implemented in the cal-
culations [33,34]. The energy density functional is given by

ERMF =
∫

d3r H(r), (6)

where H(r) denotes Hamiltonian density. Since the meson-
nucleon couplings are density dependent, the rearrangement
terms appear in the equation of motion, namely, they include
derivatives of the couplings gσ , gω, and gρ with respect to
isovector density ρv . In this work, the ground-state prop-
erties of nuclei are calculated using the finite-temperature
Hartree BCS theory (FT-HBCS), assuming spherical symme-
try [35,36]. We should also mention that only the isovector
pairing (T = 1, S = 0) contributes to the ground-state calcu-
lations and leads to the partial occupation of states. Within
our current model, isoscalar pairing is not considered in the
ground-state calculations because we do not consider proton-
neutron mixing, which is known to be of significance for
N ∼ Z nuclei [37–39]. However, this presents a rather com-
plex problem and was considered in Refs. [37–39]. Since
our calculations are to be used in the large-scale calcula-
tions convenient for the core-collapse supernovae simulations,
importance was put on the simplicity of the model, yet con-
sidering the important nuclear effects. Using the FT-HBCS
framework, occupation probabilities of single-particle states
are given by

nk = v2
k (1 − fk ) + u2

k fk, (7)

where vk and uk are BCS amplitudes, and fk is the temperature
dependent Fermi-Dirac distribution function

fk = [1 + exp(Ek/kBT )]−1, (8)

where kB and T represent the Boltzmann constant and temper-
ature, respectively. The Ek is the quasiparticle (q.p.) energy
of a state and is defined as Ek =

√
(εk − λq)2 + �2

k with εk

denoting single-particle energies and λq chemical potentials,
for either proton or neutron states. �k represents the pairing
gap of the given state. The central equation of the FT-HBCS
theory is the gap equation, from which pairing gaps �k are
determined [40]:

�k = −1

2

∑
k′>0

vkk̄k′ k̄′
�k′ (1 − 2 fk′ )

Ek′
, (9)

where vkk̄k′ k̄′ are matrix elements of pairing interaction
vkk̄k′ k̄′ = 〈kk̄|V |k′k̄′〉 and k̄ denotes the time-reversed single
particle state k. Further, we denote only nonzero matrix ele-
ments with vkk̄k′ k̄′ = −Gkk′ , and the gap equation is given by

�k = 1

2

∑
k′>0

Gkk′
�k′ (1 − 2 fk′ )

Ek′
. (10)

In this work, we adopt the monopole pairing force for which
Gkk′ = Gδkk′ . The isovector pairing strengths are adjusted to
reproduce the pairing gap values according to the three-point
relation [41,42]. Smooth cutoff weights are also introduced in
the calculations to take into account the finite-range of pairing
interaction [41]. The cutoff weights are defined as

sk = 1

1 + exp [(εk − λq − �Eq)/μq]
, (11)

where μq = �Eq/10 and �Eq is fixed from the condition∑
k

sk = Nq + 1.65N2/3
q , (12)

where Nq is total number of protons or neutrons. Now Eq. (10)
reads

�k = 1

2

∑
k′>0

Gkk′
sk′�k′ (1 − 2 fk′ )√

(εk′ − λq)2 + �2
k′s2

k′

. (13)

In the calculation of the excited states, both isovector
(T = 1, S = 0) and isoscalar pairing (T = 0, S = 1) con-
tribute to the FT-PNRQRPA residual interaction. While the
isovector pairing is constrained by the experimental data at the
ground-state level, within the present framework the isoscalar
pairing contributes only in the residual interaction and can
be constrained by the excitation properties [43]. Following
Ref. [43], for the isoscalar pairing we employ a formula-
tion with a short-range repulsive Gaussian combined with a
weaker longer-range attractive Gaussian

V12 = V is
0

2∑
j=1

g je
−r2

12/μ
2
j

∏
S=1,T =0

, (14)

where
∏

S=1,T =0 denotes the projector on T = 0, S = 1 states.
For the ranges we use μ1 = 1.2 fm and μ2 = 0.7 fm, and
strengths are set to g1 = 1 and g2 = −2 [43]. The residual
isoscalar pairing strength V is

0 is taken as a free parameter.
Rather than constraining its value, in this work we study the
effect of varying the isoscalar strength value on the excitations
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and electron-capture cross sections and rates. For the isovector
pairing in the residual interaction, we employ the pairing part
of the Gogny interaction [44].

The FT-QRPA formalism was first developed in Ref. [45];
however, it was only applied to a schematic model. In order
to study electron-capture processes at finite temperature, we
employ the FT-PNRQRPA in the change-exchange channel,
introduced in Ref. [28]. Here we only give a brief overview of
the FT-PNRQRPA formalism; for more details see Ref. [28].
The FT-PNRQRPA matrix is given by [45,46]

⎛
⎜⎜⎝

C̃ ã b̃ D̃
ã† Ã B̃ b̃T

−b̃† −B̃∗ −Ã∗ −ãT

−D̃∗ −b̃∗ −ã∗ −C̃∗

⎞
⎟⎟⎠

⎛
⎜⎜⎝

P̃
X̃
Ỹ
Q̃

⎞
⎟⎟⎠ = Eν

⎛
⎜⎜⎝

P̃
X̃
Ỹ
Q̃

⎞
⎟⎟⎠, (15)

where Eν represent the excitation energies, and eigenvectors
P̃, X̃ , Ỹ , Q̃ are given by

X̃ab = Xab

√
1 − fa − fb, (16)

Ỹab = Yab

√
1 − fa − fb, (17)

P̃ab = Pab

√
fb − fa, (18)

Q̃ab = Qab

√
fb − fa, (19)

and the matrix elements read [45,46]

Ãabcd =
√

1 − fa − fbA′
abcd

√
1 − fc − fd

+ (Ea + Eb)δacδbd , (20)

B̃abcd =
√

1 − fa − fbBabcd

√
1 − fc − fd , (21)

C̃abcd =
√

fb − faC
′
abcd

√
fd − fc

+ (Ea − Eb)δacδbd , (22)

D̃abcd =
√

fb − faDabcd

√
fd − fc, (23)

ãabcd =
√

fb − faaabcd

√
1 − fc − fd , (24)

b̃abcd =
√

fb − fababcd

√
1 − fc − fd , (25)

ã+
abcd = ãT

abcd =
√

fd − fca+
abcd

√
1 − fa − fb, (26)

b̃T
abcd = b̃+

abcd =
√

fd − fcb+
abcd

√
1 − fa − fb. (27)

Detailed expressions for matrix elements Ã, B̃, C̃, D̃, ã and b̃
can be found in Refs. [45,46]. Ea(b) denote proton (neutron)
q.p. energies, and appear on diagonals of the submatrices Ã
and C̃ in Eq. (15). Submatrices Ã and B̃ are nonvanishing at
zero temperature and describe effects of the excitations of the
q.p. pairs, while C̃, D̃, ã, b̃, ã+, and b̃T start to gain importance
with increasing temperature [46]. The residual interaction
in the particle-hole channel is obtained from the relativistic
density-dependent meson-exchange effective interaction DD-
ME2 [34], while in the particle-particle matrix elements the
finite-range pairing interactions have been used in T = 1 and
T = 0 channels.

The amplitude of a particular excitation with energy Eν is
given by [46]

Aab = ∣∣X̃ ν
ab

∣∣2 − ∣∣Ỹ ν
ab

∣∣2 + ∣∣P̃ν
ab

∣∣2 − ∣∣Q̃ν
ab

∣∣2
, (28)

and the normalization condition is given by∑
a>b

Aab = 1. (29)

The reduced transition probability of an excited state is
calculated using [46]

Bν = |〈ν||F̂J ||QRPA〉|2

=
∣∣∣∣∑

cd

[(
X̃ ν

cd + Ỹ ν
cd

)
(vcud + ucvd )

√
1 − fc − fd

+ (
P̃ν

cd + Q̃ν
cd

)
(ucud − vcvd )

√
fd − fc

]〈c||F̂J ||d〉
∣∣∣∣∣
2

,

(30)

where |ν〉 is the excited state, F̂J is the transition operator, and
|QRPA〉 is the correlated FT-PNRQRPA vacuum state. For
GT± transitions, the operators are F̂J = ∑A

i=1 στ±, where σ is
Pauli spin matrix and τ± is isospin raising (lowering) operator.
For the analysis of the GT± states, the reduced transition
probability reads

Bν =
∣∣∣∣∣
∑
c�d

bcd

∣∣∣∣∣
2

, (31)

where bcd corresponds to the partial contribution of a given
particle-hole configuration to the transition probability.

Numerical calculations have been performed with 20 os-
cillator shells in the ground-state, and maximal energy Ecut =
100 MeV is used for the FT-PNRQRPA particle-hole config-
urations.

The electron capture on nuclei is a weak interaction pro-
cess,

e− + A
ZXN → A

Z−1X ∗
N+1 + νe. (32)

In order to derive the electron-capture cross section, we start
from the Fermi golden rule,

dσ

d

= 1

(2π )2

2E2

ν

1

2

∑
lept .spin

1

2Ji + 1

∑
Mi,M f

|〈 f |ĤW |i〉|2, (33)

where for the weak interaction part we are using the current-
current form of the Hamiltonian [47–49]

ĤW = − G√
2

∫
d3x jlept

μ (x)Ĵμ(x), (34)

where G is the Fermi coupling constant, jlept
μ (x) is lepton

current, and Ĵμ(x) is hadron current. The electron capture
cross section can be obtained by multipole expansion of
Eq. (34), performing the lepton traces using 
2

2

∑
lept .spin

(where 
 is phase-space volume) and introducing some new
operators to write expression in compact form (for details see
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Refs. [47–49]). The differential cross section is given by

dσ

d

= G2 cos2 θc

2π

F (Z, Ee)

2Ji + 1

{∑
J�1

W (Ee, Eν )
{
[1 − (ν̂ · q̂)(β · q̂)]

[|〈Jf ||T̂ mag
J ||Ji〉|2 + |〈Jf ||T̂ el

J ||Ji〉|2
]

− 2q̂ · (ν̂ − β) Re〈Jf |
∣∣T̂ mag

J ||Ji〉〈Jf ||T̂ el
J ||Ji〉∗

}
+

∑
J�0

W (Ee, Eν ){[1 − ν̂ · β + 2(ν̂ · q̂)(β · q̂)]|〈Jf ||L̂J ||Ji〉|2 + (1 + ν̂ · β)|〈Jf ||M̂J ||Ji〉|2

− 2q̂ · (ν̂ + β) Re〈Jf ||L̂J ||Ji〉〈Jf ||M̂J ||Ji〉∗}
}

. (35)

Here, q = ν − k denotes the momentum difference between
neutrino and electron, and ν̂ and k̂ are corresponding unit
vectors. The electron velocity is β = k/Ee, where Ee is the
energy of incoming electron, Eν is the neutrino energy, and
θc is the Cabbibo angle. The Fermi function F (Z, Ee) takes
into account distortion of the electron wave function [50]. The
nuclear recoil factor is

W (Ee, Eν ) = E2
ν

1 + Ee/MT (1 − ν̂ · β)
. (36)

MT denotes mass of the target nuclei. Nuclear matrix elements
between initial 〈Ji| and final |Jf 〉 states correspond to charge
M̂J , longitudinal L̂J , transverse electric T̂ el

J , and transverse
magnetic T̂ mag

J multipole operators [47–49]. These matrix
elements are calculated for selected total angular momentum
and parity Jπ , and in this work we calculate cross sections and
capture rates for a number of multipoles.

The energy of the outgoing neutrino is determined from the
energy conservation,

Eν = Ee − EQRPA − �np − (λn − λp), (37)

where EQRPA is the QRPA excitation energy, �np is the
mass difference between neutron and proton, and λn(p) is
the neutron (proton) chemical potential. In the model cal-
culations, the coupling constant gA in the axial-vector part
of the transition operators [47,49] is usually quenched from
its free-nucleon value gA = −1.26. In the present study, we
include the quenching of axial-vector coupling constant, using
gA = −1.0, motivated by the study of electron capture (EC)
based on the FT-PN(R)RPA as in Refs. [19–21]. The use of
this quenching factor in the FT-PN(R)RPA model is due to
the limited configuration space of only one-particle–one-hole
(1p-1h) transitions. Further evidence of the gA quenching is
supported by the study of muon capture rates based on the
RQRPA [51], where axial-vector quenching was employed
in order to reproduce the experimental muon capture rates.
The same gA quenching is used for the allowed as well as
forbidden transitions, which is supported by the large-scale
study of β-decay rates in Ref. [52].

Electron capture rates are calculated by [21]

λec = 1

π2h̄3

∫ ∞

E0
e

peEeσec(Ee) f (Ee, μe, T )dEe. (38)

Here, E0
e = max(|EQRPA + �np + (λn − λp)|, mec2) is mini-

mum electron energy for the capture process, and electron
momentum is pe = √

E2
e − m2

ec4. The electron distribution is
given by the Fermi-Dirac distribution

f (Ee, μe, T ) = 1

exp
(Ee−μe

kT

) + 1
, (39)

where μe is the chemical potential of the electrons and T is
temperature. The chemical potential is determined by invert-
ing the relation [21]

ρYe = 1

π2NA

(mec

h̄

)3
∫ ∞

0
( fe − f +

e )p2d p, (40)

where ρ is baryon density, Ye is the electron-to-baryon ratio,
NA is Avogadro’s number, and f +

e denotes Fermi-Dirac distri-
bution of positrons, for which μ+

e = −μe.

III. RESULTS

It is known that the weak interaction process on p f -shell
nuclei plays an essential role in the presupernovae evolution,
which takes place at various stellar densities and tempera-
tures [53,54]. Therefore, accurate determination of the GT+
strength distribution under these conditions is important in
the calculation of the electron-capture cross sections and
rates. In this section, we first present our results for the GT+
strength of 44Ti and 56Fe using the FT-PNRQRPA with DD-
ME2 functional. As mentioned above, the isovector pairing
in the ground state can be constrained by using the experi-
mental data on nuclei, whereas there is no clear consensus
about the strength of the isoscalar pairing in the QRPA resid-
ual interaction. Therefore, both the residual isoscalar pairing
and temperature are varied to study their influence on the
GT+ strength distribution. By adjusting the isoscalar pairing
strength it is possible to reproduce the low-lying experimental
GT excitation strength [55–57]. Afterward, their effects on the
electron-capture cross sections and rates are discussed, and the
results are compared with other model calculations. For nuclei
studied in this work quadrupole deformation parameter β2 is
≈0.2 [58], indicating that their shape is slightly prolate, yet
not far from spherical. In general, shape deformation could
lead to the weakening of the pairing correlations due to the
influence on the single-particle spectrum and residual pairing
interaction, as was demonstrated in Refs. [59,60]. Although a
weakening of the pairing correlations due to the deformation
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is expected, the effect of the temperature on the pairing prop-
erties will be the same and our discussions on the results will
not change qualitatively.

A. 44Ti nucleus

As the first case to test the framework introduced in Sec. II,
we consider 44Ti, as an open-shell nucleus with pronounced
pairing effects, and explore its excitation properties and EC
cross sections and rates by varying the isoscalar pairing
strength and temperature. As mentioned in Sec. II, the ground-
state properties are obtained using the finite-temperature
HBCS model. The isovector pairing strength is determined
to be, in MeV, Gn(p) = 41.4(26.5)/A, where A is the nuclear
mass number, at zero temperature, according to the three-point
formula [41]. Since we use the grand-canonical description
in our model, the nucleus undergoes a sharp phase transition
at critical temperatures and pairing properties vanish. In this
work, the critical temperature value for neutrons (protons) is
obtained as Tc = 1.83(0.88) MeV. Due to the large neutron
pairing gap (�n = 3.38 MeV) in 44Ti, pairing effects are non-
vanishing for relatively high temperatures (T > 1.5 MeV).
This temperature interval is also known to be significant for
core-collapse supernovae simulations [2].

In Fig. 1, the GT+ strength obtained with the FT-PNRRPA
(black solid line) [21] is shown together with the FT-
PNRQRPA results for different values of the isoscalar pairing
strength V is

0 . The calculations are performed at temperatures
T = 0, 0.3, 0.6, 0.9, 1.2 and 1.5 MeV. For demonstration
purposes, the excited states are smoothed with a Lorentzian
of 1 MeV width. We start our analysis with the FT-PNRRPA
results (without pairing correlations) at zero temperature (see
Fig. 1). The main peak is found at E = 0.36 MeV with the
total strength B(GT+) = 3.06. This peak is mainly formed
with the (π1 f7/2, ν1 f5/2) transition. By increasing tempera-
ture up to T = 1.5 MeV, the strength and excitation energy of
the main peak almost do not change.

The FT-PNRQRPA results are also displayed in Fig. 1 at
finite temperatures. As mentioned above, the proton-neutron
isoscalar pairing is only included in the residual interac-
tion part of the FT-PNRQRPA calculations, and it does not
contribute to the ground-state calculations. Accordingly, the
isoscalar pairing strength can be treated as a free parameter
and we use various isoscalar pairing strength values (V is

0 = 0,
100, and 200 MeV) in our calculations to study its impact on
the results. To simplify our discussion, we start our analysis
with the results in case of no isoscalar pairing (V is

0 = 0 MeV)
at zero temperature (the topmost panel of Fig. 1). Using the
FT-PNRQRPA, we found that the main peak is located at E =
3.18 MeV with B(GT+) = 2.83. Similar to the results using
the FT-PNRRPA, the main contribution of this peak comes
from the (π1 f7/2, ν1 f5/2) transition. It is known that the inclu-
sion of the isovector pairing in the ground-state calculations
unblocks the GT transitions, and leads to an increase in the
quasiparticle energies of the states. Therefore, the main GT
peak shifts to higher excitation energies compared to the FT-
PNRRPA results. Apart from the main peak, two additional
peaks appear with considerable strengths at E = −2.29 MeV
[B(GT+) = 1.07] and 6.30 MeV [B(GT+) = 0.43]. While

FIG. 1. The GT+ transition strength for 44Ti with respect to exci-
tation energy of the mother nucleus. The calculations are performed
using the FT-PNRRPA (black line) and FT-PNRQRPA using vari-
ous isoscalar pairing strength values V is

0 = 0, 100, and 200 MeV at
T = 0, 0.3, 0.6, 0.9, 1.2, and 1.5 MeV. The grey dashed line denotes
the main FT-PNRRPA peak at T=0 MeV.

the former one is mainly formed with (π1 f7/2, ν1 f7/2), the
strength of the latter mainly comes from the (π2s1/2, ν2s1/2)
configuration.

By increasing the isoscalar pairing strength at zero temper-
ature, excited states start to shift towards lower energies due
to the attractive nature of the residual isoscalar pairing. While
the main GT+ peak is obtained at E = 3.18 MeV without
the isoscalar pairing, we obtain two peaks at E = 0.43 and
1.86 MeV with comparable strengths using the largest value
of the isoscalar pairing strength. Furthermore, the strength of
the main GT+ peak decreases, and the low-energy strength
for E < 0 MeV slightly increases. In Table I, the contribu-
tions from the most dominant configurations are presented
for the main GT+ peak from model calculations with and
without the isoscalar pairing. For the two states, the table
shows relative contributions of several configurations to the
total norm [Eq. (28)] and their partial contributions to the
transition strength bcd [see Eqs. (30) and (31)]. It is found
that the (l = l ′, j = j′ ± 1) transitions also contribute to the
low-energy strength as well as the (l = l ′, j = j′) with the
inclusion of the isoscalar pairing, which is consistent with the
findings from previous studies [43,55–57,61–64]. However,
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TABLE I. The quasiparticle configurations with the major contributions to the main GT+ states in 44Ti at zero temperature. The calculations
are performed using the FT-PNRQRPA with and without isoscalar pairing. The relative contribution of a particular transition to the total norm
[see Eq. (28)] of an excited state and partial contributions to the strength for given configuration bcd obtained from calculation of the GT+

matrix element [see Eqs. (30) and (31)] are shown.

DD-ME2 E = 3.18 MeV (V is
0 = 0 MeV) E = 0.43 MeV (V is

0 = 200 MeV)

Configurations Rel. strength (norm) (%) bcd Rel. strength (norm) (%) bcd

(π1 f7/2, ν1 f5/2 ) 97.86 −1.77 67.91 1.50
(π1 f5/2, ν1 f7/2 ) 0.56 0.04 16.95 −0.002
(π2p3/2, ν2p3/2) 0.44 0.03 3.46 0.06
(π1 f7/2, ν1 f7/2 ) 0.33 −0.05 1.75 −0.26
(π1d3/2, ν1d3/2) 0.23 0.02 0.08 −0.01
(π2p3/2, ν2p1/2) 0.09 0.01 3.20 0.06
(π2p1/2, ν2p3/2) 2.24 0.03

the contribution of the (π1 f7/2, ν1 f5/2) transition decreases
and the other transitions also contribute incoherently, which
eventually leads to a slight decrease in the strength of this
peak. Similar results are also obtained for the peaks at E <

0 MeV, whereas the low-energy strength increases due to the
coherent contribution of the transitions.

Below the critical temperature, one can observe signifi-
cant differences between the FT-PNRQRPA and FT-PNRRPA
strength distributions, demonstrating the important role of
the pairing correlations. By increasing temperature from T =
0 MeV toward T = 0.6 MeV, the GT+ spectra show weak
dependence on the temperature. One can observe only a slight
decrease of the excitation energies and B(GT+) values. At
higher temperatures, the paring effects weaken in the ground-
state calculations and the FT-PNRRQPA residual interaction,
and strength distributions are considerably different than at
lower temperatures with the pairing interaction effects.

It is known that both the pairing and temperature can un-
block the GT+ transitions. Below the critical temperatures,
the unblocking effect of the temperature is not strong enough,
whereas the pairing correlations lead to the formation of new
excited states in the low-energy part of spectra due to their
unblocking effect on the quasi(single)-particle states. With
increasing temperature (below critical value), the isovector
pairing effects also start to weaken. The decrease in the
isovector pairing effects has an impact on the ground-state
properties of nuclei [i.e., occupation factors and single(quasi)-
particle energies of states] and leads to a decrease in the
quasiparticle energies of the states. Furthermore, the resid-
ual interaction, which contains both the particle-hole and
isoscalar proton-neutron pairing interaction parts, weakens
due to the temperature factors in front of the matrices [see
Eqs. (21)].

The evolution of the main GT+ peak for 44Ti with increas-
ing temperature is shown in more detail in Table II using
the FT-PNRQRPA for V is

0 = 200 MeV. Up to T = 0.9 MeV,
the strength of the main peak increases and starts to shift to
lower excitation energies. Compared to the results using the
FT-PNRRPA, we obtain some part of the excitation spectrum
with negative energies using the FT-PNRQRPA. Since those
excitations are available to all electrons independently of their
incident energy, they are going to have a considerable impact
on electron-capture calculations, as we discuss below.

In Fig. 2, we present for 44Ti the EC cross sections for J =
0±, 1±, 2± multipoles at T = 0.6 MeV. The calculations are
performed using both the FT-PNRRPA and FT-PNRQRPA,
and various isoscalar pairing strength values are used in the
latter case to study their impact on the results. Since natural
parity transitions are determined, to a good approximation,
only by the isovector pairing (pairing part of Gogny inter-
action, cf. Sec. II) in residual interaction, the J = 0+, 1−, 2+
transitions show no dependence on varying the isoscalar pair-
ing strength. On the other hand, the isoscalar pairing is present
only for unnatural parity transitions (0−, 1+, 2−) in the resid-
ual interaction. Using the FT-PNRQRPA, the EC cross section
takes contributions from all multipoles J = 0±, 1±, 2±, where
1+ has the most significant contribution and 2+ multipole
has the lowest contribution. It is also seen that J = 0−, 2−
multipoles display a mild dependence on the changes in the
isoscalar pairing strength. Compared to the FT-PNRRPA re-
sults, the calculations using the FT-PNRQRPA show that the
1+ transition has larger impact on the cross section due to
the pairing effects. As mentioned above, the FT-PNRQRPA
predicts a considerable amount of 1+ excitation strength at
negative excitation energies (see Fig. 1). The strength of the
low-energy peak is found to be slightly higher for the larger
values of the isoscalar pairing strength. Therefore, the cal-
culated EC cross sections at lower electron energies increase
with the isoscalar pairing strength.

At higher energies of incident electron, a broader range of
GT+ strength can be excited by incoming electrons, hence

TABLE II. The evolution of the main GT+ peak energy and
transition strength in 44Ti with temperature. The results are presented
for the FT-PNRQRPA and V is

0 = 200 MeV is adopted.

FT-PNRQRPA

T (MeV) E (MeV) B(GT+)

0.0 0.43 1.72
0.3 0.43 1.73
0.6 0.40 1.96
0.9 0.32 3.01
1.2 0.33 2.98
1.5 0.34 2.97
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FIG. 2. Electron capture cross section for 44Ti decomposed into J = 0±, 1±, 2± multipoles, shown with respect to the energy of incident
electron Ee. The results are displayed for the FT-PNRRPA (red dashed line) and FT-PNRQRPA for different values of the isoscalar pairing
strength V is

0 at temperature T = 0.6 MeV.

results are very similar for different values of V is
0 . At an

incident electron energy of 30 MeV, the FT-PNRQRPA gives
for the 1+ multipole a larger cross section value compared to
the FT-PNRRPA by a factor of 2, irrespective of the isoscalar
pairing strength. This demonstrates the importance of in-
cluding pairing correlations in EC calculations. Results for
other multipoles display only slight deviations between the
FT-PNRRPA and FT-PNRQRPA calculations, except for 0+
case. From Fig. 2 it is seen that the EC cross section for 0+
multipole is considerably increased using the FT-PNRQRPA.
To explain this result it would be useful to the investigate iso-
baric analog state (IAS+). At T = 0.6 MeV, the FT-PNRRPA
predicts almost no IAS+ excitations, hence its contribution to
the total EC cross section is negligible. On the other hand, the
FT-PNRQRPA calculations predict a strong low-energy peak
at E = −3.70 MeV with strength B(IAS+) = 0.63 and giving
rise to higher 0+ EC cross sections. The main contribution
for this low-energy peak comes from the (π1 f7/2, ν1 f7/2)
transition.

Figure 3 shows the total EC cross sections for 44Ti with
contributions from all multipoles as well as the contribu-
tions from each channel using the FT-PNRQRPA (black full
line) and FT-PNRRPA (red dashed line). For demonstration
purposes, the FT-PNRQRPA results are displayed for V is

0 =
200 MeV at T = 0.6 MeV. The FT-PNRQRPA calculations
predict larger cross sections compared to the FT-PNRRPA,
as explained in previous analysis of multipole contributions
shown in Fig. 2. We also find that the largest contributions
to the EC cross section at low energies of incoming elec-
tron come from the 1+ and 0+ transitions, respectively. At
higher energies of incident electron (Ee ≈ 30 MeV), 1− and
2− transitions also have sizable contributions to the total EC
cross section. This result confirms that for increasing electron
energies forbidden multipoles also become non-negligible,
even for a light nucleus like 44Ti.

In Fig. 4, the EC cross sections for 44Ti are presented
at finite temperatures. The calculations are performed using
the FT-PNRQRPA and the isoscalar pairing strength is fixed
to V is

0 = 200 MeV. For temperatures up to T = 0.9 MeV,
the EC cross section closely follows temperature dependence
of the main GT+ peak from Table II. The overall trend is

increasing the strength in the main peak with increasing tem-
perature, as already discussed. The EC cross section values
increase considerably at T = 0.9 MeV due to the increase
in the strength of the main peak, as shown in Table II. By
further increasing temperature to T = 1.2 MeV and T =
1.5 MeV, it is seen that the EC cross sections decrease.
From Table II, it can be seen that this downward shift in
cross sections cannot be explained just by considering the
main GT+ peak. The overall GT+ strength also decreases
with temperature for T > 0.9 MeV due to the weakening of
pairing effects. At T = 1.2 MeV,

∑
B(GT+) = 4.56, while at

T = 1.5 MeV,
∑

B(GT+) = 4.29, which explains the low-
ering of EC cross sections. Similar results are also obtained

FIG. 3. Electron capture cross section for 44Ti with respect to
the energy of incident electron Ee for J = 0±, 1±, 2± multipoles at
temperature T = 0.6 MeV. Total FT-PNRQRPA cross section (black
solid line) and FT-PNRRPA cross section (red dashed line) are plot-
ted on the same figure. The isoscalar pairing strength is taken as
V is

0 = 200 MeV.
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FIG. 4. Electron capture cross sections for 44Ti with respect to
energy of incident electron at T = 0, 0.3, 0.6, 0.9, 1.2, and 1.5 MeV.
The calculations are performed using the FT-PNRQRPA with V is

0 =
200 MeV. In the inset, the electron-capture cross sections are dis-
played for a particular range of incident electron energy.

for V is
0 = 0 and V is

0 = 100 MeV. Analysis of the EC cross
sections with multipole contributions by varying the isoscalar
pairing and temperature is also important to explain the be-
havior of the EC rates, as we discuss below.

In Fig. 5, we display the results for the electron-capture
rates for 44Ti with increasing temperature. The calculations
are performed using both the FT-PNRRPA (red full line) and
FT-PNRQRPA with V is

0 = 0, 100, and 200 MeV to study
the sensitivity of the results to the isoscalar pairing strength.
We select the temperature interval as T = 0–1.5 MeV and
densities ρYe = 108 and 1010 g/cm3, which are relevant for
the evolution of core-collapse supernovae [12,53,65]. We find
that the calculations using the FT-PNRQRPA predict higher
EC rates compared to the FT-PNRRPA results for ρYe = 108

and ρYe = 1010 g/cm3. Below the critical temperature for
protons, larger isoscalar pairing strength value V is

0 produces
larger rates. This result is also consistent with previous dis-
cussions on the GT+ strength and EC cross sections. For
ρYe = 108 g/cm3, both the FT-PNRRPA and FT-PNRQRPA
predict increasing EC rates with increasing temperature. Also,
the difference between the two models decreases due to the
vanishing of pairing properties with increasing temperature.
In Fig. 5, we also present the shell-model (SM) results using
the GXPF1J interaction (black full circles) for comparison
[9–11,66]. The FT-PNRRPA results are in good agreement
with the shell-model calculations. Although the EC rates

FIG. 5. Electron capture rates λe for 44Ti as a function of
temperature T for densities ρYe = 108 and 1010 g/cm3. The FT-
PNRRPA results (red solid line) are shown in comparison with the
FT-PNRQRPA calculations using different values for the isoscalar
pairing strength V is

0 . Results of shell-model (SM) calculations with
GXPF1J interaction [9–11,66] are also shown (black dots).

are overestimated using the FT-PNRQRPA compared to the
shell model, it is seen that the behavior of the EC rates is
compatible using both models. For higher electron densities,
ρYe = 1010 g/cm3, rates are almost independent of tempera-
ture. By increasing temperature, the FT-PNRRPA calculation
predicts slowly increasing EC rates. Using the FT-PNRQRPA,
the behavior of the EC rates depends on the isoscalar pairing
strength below the critical temperature for protons. We obtain
a steep increase in the EC rates for the calculations without the
isoscalar pairing, whereas they gradually increase for larger
values of the isoscalar pairing strength. For T > 0.9 MeV, the
EC rates start to decrease slowly with increasing temperature.

The results obtained in Fig. 5 can be explained by using
Eq. (37) given in Sec. II. According to Eq. (37), we have a
kinematic constraint on E(Q)RPA excitation energy (neglecting
the neutrino mass):

Ee − E(Q)RPA − �np(−λn + λp) > 0, (41)

where parentheses indicate that for the QRPA calculations ad-
ditional subtraction of the neutron-proton chemical potential
difference λn − λp is needed. For electron energy Ee, we can
use chemical potential of the electron λe, and by rearranging
Eq. (41) one obtains

E(Q)RPA < λe − �np(−λn + λp). (42)

According to Eq. (41), we have a condition on the FT-
PNR(Q)RPA excitation energies stemming from kinematics.
To compare the FT-PNRRPA excitation energies with the
FT-PNRQRPA ones, we have to add the difference between
neutron and proton chemical potentials (λn − λp) to the
FT-PNRQRPA excitation energies, and the above condition
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FIG. 6. Upper panel: The GT+ transition strength distributions
for 44Ti calculated using the FT-PNRQRPA with V is

0 = 200 MeV
(red solid line) at T = 0.6 MeV. The FT-PNRRPA results (black
solid line) are also shown for comparison. Lower panel: The same
but for T = 1.5 MeV. The green dashed line is the upper limit on
the excitation energy according to Eq. (42) for the electron chemical
potential at ρYe = 108 g/cm3 and blue dashed line is the same limit
for the electron chemical potential at ρYe = 1010 g/cm3. See the text
for details.

reduces to

ERPA < λe − �np. (43)

In Fig. 6, the GT+ strength for 44Ti is displayed at T = 0.6
and 1.5 MeV. The calculations are performed using the FT-
PNRRPA and FT-PNRQRPA by fixing the isoscalar pairing
strength to V is

0 = 200 MeV. As can be seen from the upper
panel of Fig. 6, the inclusion of pairing correlations un-
blocks the GT+ transitions and strength becomes considerably
fragmented with the FT-PNRQRPA. Consequently, we obtain
higher cross sections and higher EC rates. The GT+ excitation
strength for 44Ti is also shown in the lower panel of Fig. 6 at
T = 1.5 MeV. The results are displayed for the FT-PNRQRPA
and FT-PNRRPA. Although the pairing effects are quite weak
for 44Ti at T = 1.5 MeV, we still have small differences in
the predictions of the FT-PNRRPA and FT-PNRQRPA. The
limiting values for the EC process [see Eq. (43)] are also
displayed on top of the GT+ excitation strength for ρYe = 108

g/cm3 (EQRPA < 0.67 MeV) and ρYe = 1010 g/cm3 (EQRPA <

9.72 MeV). At higher value of chemical potential (obtained
at ρYe = 1010 g/cm3), incoming electrons can excite more
GT+ transitions, hence we obtain larger rates at higher stellar
densities (ρYe). Since the limit values for the EC process
are quite low for ρYe = 108 g/cm3, the EC rates are more
sensitive to the the structure of the low-energy states. By
increasing temperature, the number of excited states increases
considerably, resulting in gradual increase of the the EC rates.
A similar explanation follows for ρYe = 1010 g/cm3, where
most of the GT+ strength is excited due to the large electron

chemical potential, and rates become almost independent of
the increase of temperature.

For temperatures above 0.9 MeV the rates become also less
dependent on the pairing effects, which confirms the trends
found in Fig. 1, where for temperatures above the proton
pairing collapse the GT+ peaks for different values of V is

0
almost match. The EC rates calculated using the FT-PNRRPA
and FT-PNRQRPA (for V is

0 = 200 MeV) differ by more than
one order of magnitude for temperature below the proton
critical temperature for ρYe = 108 g/cm3 and by a factor
≈2.5 for ρYe = 1010 g/cm3. We note that, in comparison to
the shell-model, the FT-PNRQRPA provides a self-consistent
approach that allows a systematic description of the EC rates
for all nuclei of interest for supernova simulations, including
a complete description of all relevant multipole transitions.

B. 56Fe nucleus

As the next case we study 56Fe, the main ingredient in
the core of the massive star at the end of hydrostatic burn-
ing. The electron-capture process on iron group nuclei plays
an important role to set the conditions for the core col-
lapse [14]. Therefore, it is interesting to explore the behavior
of the GT+ strength as well as the EC cross sections and
rates using the FT-PNRQRPA. For the ground-state calcula-
tions, the monopole pairing constant is determined as Gn(p) =
29.6(30.6) MeV/A. It is found that the pairing collapse oc-
curs at Tc = 0.98 (0.85) MeV for neutron (proton) states.
Therefore, our calculations do not have contributions from the
pairing correlations for T > 1 MeV.

Figure 7 shows the GT+ transition strength for 56Fe. The
GT+ strength is calculated using the FT-PNRQRPA for differ-
ent values of isoscalar pairing strength at T = 0, 0.3, 0.6, 0.9,
1.2, and 1.5 MeV. The FT-PNRRPA results are also presented
for comparison. At T = 0 MeV, the main FT-PNRRPA peak
is found at E = 3.30 MeV with B(GT+) = 6.68. The main
contribution to its strength comes from the (π1 f7/2, ν1 f5/2)
transition.

In the case of the FT-PNRQRPA calculations at the T = 0
limit, by increasing the isoscalar pairing strength V is

0 , the GT+
peak shifts to lower excitation energies due to the attractive
nature of the isoscalar pairing. For the largest value of the
isoscalar pairing strength (V is

0 = 200 MeV), the GT+ peak
is found at E = 2.73 MeV with B(GT+) = 4.89. The main
contribution of this state comes from the (π1 f7/2, ν1 f5/2)
configuration, while some strength also comes from the
(π1 f5/2, ν1 f7/2) transition. However, the strength of the peak
slightly decreases due to the incoherent contribution of these
transitions.

The evolution of the main peak with increasing tem-
perature is shown in Table III using the FT-PNRRPA and
FT-PNRQRPA. Using the FT-PNRRPA, the energy and
strength of the main peak decreases gradually. However, this
behavior changes with the inclusion of the pairing correla-
tions. Using the FT-PNRQRPA, the GT+ peak shifts slightly
upward and its strength increases from 4.89 to 5.69 up to T =
0.9 MeV. Although the pairing effects weaken with increasing
temperature, the modifications of the main peak are reduced
compared to the FT-PNRRPA due to the interplay between

065804-10



STELLAR ELECTRON-CAPTURE RATES BASED ON … PHYSICAL REVIEW C 102, 065804 (2020)

FIG. 7. Same as Fig. 1 but for 56Fe.

pairing and temperature effects. While the excited states are
pushed down at finite temperatures due to the decrease in the
two q.p. energies and residual particle-hole interaction, the
reducing impact of the attractive residual isoscalar pairing also
slows down the shift of the excited states to lower energies.
Therefore, the excited states are more stable against changes
in the temperature, at least up to the critical temperatures,
compared to the FT-PNRRPA (see Ref. [28]). By further in-
creasing the temperature, pairing correlations disappear and
the FT-PNRQRPA and FT-PNRRPA results completely agree,
as can be seen from Fig. 7 and Table III.

TABLE III. The excitation energy and strength B(GT+) of the
main peaks for 56Fe. The calculations are performed using the
FT-PNRQRPA (V is

0 = 200 MeV) and FT-PNRRPA with increasing
temperature.

DD-ME2 FT-PNRQRPA FT-PNRRPA

T (MeV) E (MeV) B(GT+) E (MeV) B(GT+)

0.0 2.73 4.89 2.89 6.68
0.3 2.73 4.89 2.88 6.67
0.6 2.73 4.92 2.84 6.17
0.9 2.81 5.69 2.80 5.90
1.2 2.76 5.63 2.76 5.63
1.5 2.67 5.33 2.67 5.33

Previous studies showed that the 1+ multipole gives the
largest contribution to the total EC cross section for 56Fe
[21,23]. To verify this, we decompose the total electron-
capture cross section to multipoles up to J = 2 for both
positive and negative parities. The results are displayed in
Fig. 8 using the FT-PNRRPA and FT-PNRQRPA at T =
0.3 MeV. Clearly, the largest contribution to the EC cross
section comes from the 1+ multipole for both models. At
low energies of incident electron the 1+ multipole operator
reduces to the GT+ operator [23]. Therefore, the structure of
the 1+ cross section is closely related to the GT+ strength
distribution. In Fig. 7, one can observe that for temperatures
below the pairing collapse (T < 1 MeV) the FT-PNRRPA
predicts more strength for the GT+ peak. This has a direct
impact on the EC cross section results, and for 1+ multipole
the FT-PNRRPA predicts larger values for all incident electron
energies. Using the FT-PNRQRPA, the EC cross section for
the 1+ multipole does not display sensitivity to the changes
in the isoscalar pairing strength at lower electron energies.
However, for (Ee ≈ 30 MeV) the strongest GT+ transition is
also excited by the electrons. In this case, the behavior of the
EC cross section at a given temperature is mainly related to
the main GT+ peak properties. Following the behavior of the
GT+ peak shown in Fig. 7, with the increasing strength of the
isoscalar pairing, the EC cross section for the 1+ multipole
becomes reduced.

In addition to 1+ multipole, spin-dipole transitions 0−, 1−,
and 2− also have non-negligible impact on the EC cross sec-
tion. However, both the FT-PNRRPA and the FT-PNRQRPA
predict similar results for those multipoles, with only small
deviations. It is seen that 2+ and 0+ have the smallest con-
tribution to the cross section. Similar to the findings in 44Ti,
the FT-PNRQRPA predicts much larger contribution from the
0+ multipole (Fermi transition) compared to the FT-PNRRPA.
Since we have no significant temperature effects at T =
0.3 MeV, the difference in the cross sections occurs due to
the unblocking effect of the pairing correlations.

In Fig. 9, the EC cross section results are displayed for
all multipoles at T = 0.3 MeV. The isoscalar pairing strength
is taken as V is

0 = 200 MeV for the FT-PNRQRPA calcula-
tions. At higher energies of incident electron, the FT-PNRRPA
predicts larger total cross section, as concluded from our dis-
cussion on 1+ multipole results. It can be clearly seen that 1+
dominates the EC cross sections up to high electron energies
(Ee ≈ 25 MeV) where contributions from the forbidden mul-
tipoles (0−, 1−, 2−) become non-negligible.

In Fig. 10, we show the dependence of EC cross section
on temperature using the FT-PNRQRPA with V is

0 = 200 MeV.
In the inner panel of the figure, the range of the incident
electron energies is limited to Ee = 10–30 MeV to better
visualize dependence on the temperature. Up to T = 0.3
MeV, the cross section displays no change. By increasing the
temperature up to T = 0.9 MeV, the cross sections increase
due to the increase in the strength of the GT+ peak (see
Table III). Above the critical temperatures, the pairing effects
disappear, whereas no significant temperature unblocking oc-
curs for the considered temperature range. Therefore, the
total GT+ strength and cross sections decrease with increas-
ing temperature. Calculations using the FT-PNRRPA without

065804-11
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FIG. 8. Same as in Fig. 2 but for 56Fe at T = 0.3 MeV.

the pairing correlations predict a gradual decrease in the
excitation energies and strength (see Table III). Therefore, the
EC cross sections decrease below T = 0.9 MeV as compared
to the calculations using the FT-PNRQRPA. This is a proof
of the importance of including pairing correlations in the EC
calculations below the critical temperature.

Results for the EC rates for 56Fe are shown in Fig. 11
for two cases of densities ρYe = 108 and 1010 g/cm3. The
FT-PNRQRPA calculations using V is

0 = 0, 100, and 200 MeV
are shown together with the FT-PNRRPA results (red solid
line). For comparison, the EC rates from other model cal-
culations are also displayed: thermal QRPA (TQRPA) with
the Skyrme SkM∗ interaction (blue squares) [23], the shell-
model (SM) with GXPF1J interaction (black dots) [9–11,66],
and the LSSM calculations (purple triangles) [67]. At ρYe =
108 g/cm3, the EC rates are almost independent of the
isoscalar pairing strength V is

0 and increase with increasing
temperature. Both the FT-PNRQRPA and FT-PNRRPA pre-
dict similar results and agree with the TQRPA calculations.
Our calculations also show very good agreement with the

FIG. 9. Same as in Fig. 2 but for 56Fe at T = 0.3 MeV.

LSSM calculations [67] and the shell-model calculations
with GXPF1J interaction [9–11,66] in the whole temperature
range. Since we have low electron chemical potential (λe ≈ 2
MeV), the main GT+ peak from Fig. 7 is not included in the
EC rates calculation. Therefore, small EC rates are obtained
at lower temperatures for ρYe = 108 g/cm3. By increasing
the temperature (i) the main peak shifts to lower excitation
energies and (ii) additional peaks appear at low (even nega-
tive) excitation energies. Consequently, the EC rates start to
increase with increasing temperature.

At ρYe = 1010 g/cm3 the electron chemical potential is
large enough (λe ≈ 10 MeV) to excite most of the GT+
strength. Therefore, we obtain high EC rates compared to
the previous case of lower density. The FT-PNRRPA predicts

FIG. 10. Same as in Fig. 4 but for 56Fe.
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FIG. 11. Electron capture rates λe for 56Fe with respect to tem-
perature T for densities ρYe = 108 and 1010 g/cm3. The results for
the FT-PNRRPA (red solid line) are shown together with the FT-
PNRQRPA calculations for different strengths of isoscalar pairing
V is

0 . The EC rates using the TQRPA (blue squares) from Ref. [23], the
shell-model (SM) with GXPF1J interaction (black dots) [9–11,66],
and LSSM calculations (purple triangles) [67] are also shown for
comparison.

larger EC rates than the FT-PNRQRPA ones, irrespective of
the isoscalar pairing strength V is

0 . As indicated in our analysis
of the GT+ strength in Fig. 7, for the higher value of the
isoscalar pairing strength V is

0 , the main peak is pushed to lower
excitation energies, and GT+ strength is more easily excited
by incoming electrons. When compared with the TQRPA
calculations, the FT-PNRQRPA rates are somewhat larger.
However, one should note that the TQRPA is a rather different
approach than the FT-PNRQRPA. The TQRPA calculations
are based on the nonrelativistic Skyrme functional (SkM∗),
without the isoscalar pairing in the residual interaction of the
TQRPA. In our case, the relativistic functional (DD-ME2) is
employed in calculations, supplemented with the T = 0 pair-
ing in the residual interaction. Our results are in reasonable
agreement with the LSSM rates [67], while the shell model
calculations based on the GXPF1J interaction [11,66] show
a different trend with increasing temperature. We note that
the SM rates [11,66] start to decrease above T ≈ 0.5 MeV
because these calculations also include additional transitions
from other excited states except 0+ ground state and first 2+
states [66]. The EC rates calculated with the FT-PNRQRPA
display weak dependence on temperature for high stellar
densities.

We should mention that only two-quasiparticle excitations
are considered within the FT-PNRQRPA calculations, while
the shell-model calculations take into account complex con-
figurations, thus better predicting the fragmentation in the
excitation strength. Although at high stellar densities the EC
rates slowly vary at higher temperature due to large chemical

potential, and depend on total GT+ strength, this weak tem-
perature dependence is sensitive to the fragmented strength.
To confirm this we can explore the EC rates calculated with
different values of isoscalar pairing in Fig. 11. Even though
the chemical potential is high enough to excite all of the GT+
strength, the variation of isoscalar pairing strength produces
small variations in the temperature dependence of the rates.
A similar conclusion applies to the shell-model strength com-
pared to the FT-PNRQRPA.

IV. CONCLUSION

In this work, we have studied the electron-capture cross
sections and rates in the stellar environment, based on the
relativistic energy density functional, to describe relevant nu-
clear properties and transitions. In comparison to previous
studies based on energy density functionals, we introduced
a framework to describe the EC process for the first time
by including both the finite-temperature and nuclear pairing
effects. The FT-HBCS model was employed to calculate nu-
clear ground-state properties and the FT-PNRQRPA [46] was
used to describe the relevant nuclear excitations in the charge-
exchange channel. Our model is self-consistent in a sense
that the same relativistic energy density functional (DD-ME2)
[34] is used in the ground-state and excited-state calculations.
The pairing interaction is included both in the ground-state
calculations and in the residual FT-PNRQRPA interaction.
In the latter case, the isoscalar pairing interaction is also
included, which necessitates further constraint by the exper-
imental data. Rather than constraining its value, in this work
we have explored the sensitivity of the results on the T = 0
pairing interaction strength parameter.

We first analyzed the GT+ strength distributions in 44Ti
and 56Fe at finite temperatures. Then, the EC cross sec-
tions and rates are investigated, by including transitions up
to Jπ = 0±, 1±, 2± multipoles. We mainly focused on the
role of the pairing and temperature effects on the GT+ tran-
sitions and EC calculations. It is shown that the isoscalar
pairing plays an important role below the critical tempera-
ture and together with the temperature effects leads to the
unblocking of quasiparticle states and new excitation channels
become possible.

By using a range of values for the isoscalar pairing strength
V is

0 , different results for the EC cross sections and rates are
obtained; however, all results are within the same order of the
magnitude. Nevertheless, a better estimation of the isoscalar
pairing strength constrained by other experimental data is
needed for future study. By increasing temperature, addi-
tional peaks in the GT+ strength appear and excited states
shift downward. Compared to the results without the pair-
ing correlations, the downward shift of the excited states is
mainly slowed down with the inclusion of pairing below the
critical temperatures where the pairing correlations vanish.
As discussed in Ref. [28], this behavior is a result of the
interplay between the pairing and temperature effects below
the critical temperatures. It is also shown that the inclusion
of the pairing correlations along with the temperature can
impact the EC cross sections and rates considerably, compared
to the calculations without the pairing effects. The pairing
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correlations can alter the EC cross-sections up to the factor
of 2 for the 1+ multipole in 44Ti. Model calculations also
demonstrated the importance of including forbidden transi-
tions in the description of the EC process with increasing
temperature. Our results are also in qualitative agreement with
the TQRPA [23] and shell-model [9–11] calculations. Since
temperatures below the pairing collapse are also important
for the evolution of core-collapse supernovae, the theoretical
framework introduced in this work represents a complete and
consistent microscopic tool that can be readily applied to
describe all EC rates relevant for core-collapse supernovae
simulations.

The FT-PNRQRPA formalism in the charge-exchange
channel can also be applied to β decay and neutrino-nucleus
reactions at finite temperature, and hence provide a universal
theoretical approach to weak-interaction processes impor-
tant for the evolution of core-collapse supernovae. Since our
model is based on the BCS theory, it cannot be applied
for exotic nuclei close to the drip lines, where scattering
to continuum becomes more important. Further improve-
ments toward finite-temperature Hartree-Bogoliubov theory
[44] that would successfully describe those nuclei, also in-

cluding the nuclear deformation effects, are currently under
development.
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