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Strong-coupling effects of pairing fluctuations, and Anderson-Bogoliubov mode
in neutron 1S0 superfluids in neutron stars
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We investigate effects of thermal and quantum fluctuations of the superfluid order parameter in 1S0 superfluids
in neutron stars. We construct a separable potential to reproduce the 1S0 phase shift reconstructed by using the
partial wave analysis from nucleon scattering data. We include superfluid fluctuations within a strong-coupling
approximation developed by Nozières and Schmitt-Rink and determine self-consistently the superfluid order
parameter as well as the chemical potential. We show that the quantum depletion, which gives a fraction of
noncondensed neutrons at zero temperature due to quantum pairing fluctuations, plays an important role not
only near the critical temperature from superfluid states to normal states but also at zero temperature. We derive
the dispersion relation of Anderson-Bogoliubov modes associated with phase fluctuations and show also that
there is a nonzero fraction of noncondensed components in the neutron number as a result of the strong-coupling
effect. Our results indicate that superfluid fluctuations are important for thermodynamic properties in neutron
stars.
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I. INTRODUCTION

Neutron stars are important astrophysical objects for stud-
ies of properties of nuclear matter at high density, with rapid
rotation, strong magnetic field, and so on, whose environ-
ments are quite different from those in normal nuclei (see
Refs. [1,2] for recent reviews). It was recently reported that
there are massive neutron stars whose masses are almost
twice as large as the solar mass [3,4], and it was also ob-
served that the gravitational waves were emitted from a binary
neutron star merger [5]. Neutron stars are interesting also
as macroscopic laboratories for studying quantum effects in
high density matter. Inside neutron stars, one of the most
important ingredients are pairing phenomena induced by the
attractive force between two nucleons lying near the Fermi
surface in momentum space [6]. In the literature, there are
many studies on the neutron superfluidity and proton super-
conductivity for explaining the observation of the neutron
stars (see Refs. [7–9] for recent reviews). For example, it was
expected that low-energy excitation modes in superfluidity
and superconductivity are important to explain pulsar glitches,
i.e., sudden speed-up of rotations of neutron stars [10–12].
Such excitation modes can affect an enhancement of neutrino
emissivities from neutron stars [13–18].1
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1We comment that pulsar glitches may also be explained by the

existence of quantized vortices in superfluids [19,20].

At present, it is considered that the vast region of uniform
neutron matter exists at low density under the crust region
near the surface of neutron stars [21]. Since early studies, it
has been theoretically proposed that neutron 1S0 superfluid
states are realized at low-density region, where the effective
attraction between two neutrons is dominated by the 1S0 inter-
action (spin singlet, S wave, and zero total spin) [22] (see also
Ref. [6] and the references therein).2

So far, the neutron superfluidity has been discussed mostly
in terms of the mean-field theory. Recently, however, the
importance of effects of pairing fluctuations in neutron
1S0 superfluid states has been theoretically pointed out in
the context of the Bardeen-Cooper-Schrieffer (BCS)–Bose-
Einstein-condensation (BEC) crossover phenomenon known
in ultracold atomic Fermi gases (see Refs. [26–32]). At low
density, the S-wave interaction between two neutrons is
well described by the effective range expansion (ERE) with
the negative scattering length as = −18.8 ± 0.3 fm and the
effective range reff = 2.75 ± 0.11 fm [6]. Thus, for a typical
Fermi momentum kF � 1 fm−1 in neutron stars, the strength
of the pairing interaction is given by a nondimensional
parameter, (kFas)−1 � −0.05. The large magnitude of kFas

implies that, as long as effects of the finite effective range are

2The 1S0 interaction turns to be repulsive due to the strong core
repulsion at higher densities [23]. Instead, the dominant interactions
are provided by the 3P2 interaction at high density, leading to the
3P2 superfluidity which is described by the Bogoliubov-de Gennes
(BdG) equation (see Ref. [24] and references therein), and also by the
Ginzburg-Landau (GL) equation as the low-energy effective theory
of the BdG equation (see Ref. [25] and references therein).
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negligibly small, properties of the 1S0 superfluid are expected
to be similar to ones in dilute two-component (pseudospin
up and down) atomic Fermi gas in the crossover regime,
where superfluid fluctuations become remarkably large. Thus,
neutron 1S0 superfluids should be regarded as a strongly
coupled system. In the condensed matter physics, it is known
that effects of pairing fluctuations beyond the mean-field
approximation can be described by the Nozières and Schmitt-
Rink (NSR) scheme [33]. The NSR scheme is applicable
semi-quantitatively to the BCS-BEC crossover phenomena
in cold atom physics [34–37]. Motivated by this success, the
NSR scheme has been adopted to studies of strong-coupling
properties of nuclear systems above the superfluid transition
temperature Tc [26,28,29,32]. Recently, effects of pairing fluc-
tuations in the 1S0 neutron superfluid phase have been studied
for equation-of-state in neutron matter [38] by considering the
finite effective range as well as a strong-coupling effects in
the NSR scheme. We notice, however, that the ERE is broken
down at high momentum where the 1S0-channel interaction
becomes repulsive, and it turns out that the phase transition
from superfluids to normal states cannot be described. Thus,
it is necessary to make a more precise effective potential
for further quantitative understanding of superfluidity in a
wide range of density regions in neutron stars. This problem
can be overcome by considering an effective separable
potential with a cutoff function [39]. The explicit form of
the cutoff function is numerically determined to reproduce
the phase shift in the 1S0-channel from experimental data of
nucleon scattering in a given momentum range. In Ref. [39],
the separable potential form was applied to study pairing
fluctuations in the NSR scheme. However, they discussed
the effects of pairing fluctuations only in the normal phase
above Tc.

In this paper, we extend the NSR scheme to the neutron
superfluid below Tc described by a nuclear potential, which
reproduces scattering phase shifts in the 1S0 channel. With this
setup, we investigate the gap strength in neutron 1S0 superflu-
ids covering a wider range of the density and temperature from
zero to Tc. We determine simultaneously the gap strength as
well as the chemical potential, where the chemical potential
is much affected by the strong-coupling effect. We find that
our numerical results are quantitatively different from those
obtained within the mean-field theory which is valid only in
the weak-coupling limit.

One of the advantages of the NSR scheme in the super-
fluid phase is to explicitly treat the noncondensed neutron
pairs consisting of the bosonic collective excitations, which
is known as Anderson-Bogoliubov (phase, sound, or phonon)
and Higgs (or amplitude) modes. From the spectral functions
of these modes, we show that in the 1S0 neutron superfluidity,
the Anderson-Bogoliubov mode plays a remarkable role not
only near the critical temperature but also at zero tempera-
ture. Those gapless-collective modes will affect the transport
properties in the neutron stars, e.g., the cooling process by
neutrino emissions (see Refs. [1,2] and references therein).
Our result indicates that effects of the quantum fluctuations,
which have been usually ignored in the most of previous
theoretical works, are crucial to describe superfluid properties
of neutron star interiors.

This paper is constructed as follows. In Sec. II, we de-
scribe briefly our formalism to construct the neutron-neutron
potential and explain the gap equations for the neutron 1S0 su-
perfluid including the fluctuation effects in the NSR scheme.
In Sec. III, we show our numerical results about the gap
strength and chemical potential. We show the dispersion rela-
tions of Anderson-Bogoliubov and Higgs modes as fluctuation
modes, and also that there is a nonzero fraction of noncon-
densed components in the neutron number as a result of the
strong-coupling effect. Finally, Sec. IV is devoted to our con-
clusion and outlooks.

II. FORMALISM

We consider a neutron matter with a 1S0 interaction, de-
scribed by the Hamiltonian

H =
∑
kσ

ξkc†
kσ

ckσ +
∑
k,k′,q

VS (k, k′)c†
k+ q

2 ↑c†
−k+ q

2 ↓c−k′+ q
2 ↓ck′+ q

2 ↑,

(1)

where ckσ (c†
kσ

) is the annihilation (creation) operator of a
neutron with the momentum k and the spin σ =↑,↓. ξk =
k2/(2m) − μ is the kinetic energy measured from the chemi-
cal potential μ, where m is the neutron mass. We assume that
the interaction between neutrons is given by the 1S0 pairing
interaction, whose form is described by an attractive separable
potential as

VS (k, k′) = −USFc(k)Fc(k′), (2)

where US > 0 and Fc(k) are the coupling constant and the
form factor, respectively. These are related to the 1S0 phase
shift δS (k) as

k cot δS (k) = 4π

m
[U −1

S + Re�S (k)]F−2
c (k), (3)

where

�S (k) =
∑

k′

F 2
c (k′)

k2

m + k′2
m + i0

(4)

is the two-body correlation function in the vacuum. To fit our
potential to the realistic interaction, we numerically determine
US and Fc(k) to reproduce the 1S0 phase shift δS (k) evaluated
by the partial wave analysis from nucleon scattering data, by
solving Eq. (3). In this procedure, we do not assume a specific
form of Fc(k), in contrast to the previous works [38,39]. Here
we mention that as well known the 1S0 interaction becomes
repulsive in the high-momentum region, because the sign of
δS (k) changes from positive to negative as increasing the
scattering energy. In our model, we consider only attractive
part by restricting the range of the momentum region, where
the 1S0 phase shift is positive. We simply set Fc(k) = 0 where
δS (k) < 0. Effects of the repulsive interactions in the high-
momentum region are left for our future work.

Figure 1 shows the calculated form factor Fc(k) with
the coupling constant mUS/|as| = 0.79 as well as the re-
constructed 1S0 phase shift. We find that our result com-
pletely reproduces δs(k) in the region where δS (k) > 0 (k �

065802-2



STRONG-COUPLING EFFECTS OF PAIRING … PHYSICAL REVIEW C 102, 065802 (2020)

Nijmegen
our work

ERE

(b)

 0

 0.4

 0.8

 1.2

F c
2 ( k

 )

(a)

k = kmax

 1.4

-0.2
 0

 0.2
 0.4
 0.6
 0.8

 1

 0  0.5  1  1.5  2

 (k
 )[

ra
d]

k  [fm- 1]

 S
 

FIG. 1. (a) Calculated from factor Fc(k) and (b) reconstructed
1S0-channel phase shift δS (k) (solid line and dots). The dotted and
chain line show δS (k) estimated by using the partial wave analysis
from the scattering experimental data [6] and calculated within the
ERE, respectively, for comparison.

1.78 fm−1 ≡ kmax). We also compare our results with the
ERE method, which is used in the previous work to study
the equation of state in the 1S0 neutron superfluidity [38]. In
ERE, the form factor Fc(k) was assumed to be a function with
a single cutoff parameter, and the cutoff parameter, as well as
US , is determined to reproduce the 1S0-wave scattering length
as = −18.8 fm and the effective range reff = 2.75 fm, which
characterize the low momentum properties of δS (k). Thus,

as shown in Fig. 1(b), the phase shift estimated within ERE
(chain line) gradually deviates from the 1S0 phase shift data
as the momentum increases. This disagreement of δS (k) in the
high momentum region is improved in our potential. We also
mention that in Ref. [39] they overcome this problem by using
a multi-rank separable potential including a repulsive part
with some cutoff parameters, and investigated the superfluid
instability in the normal phase of neutron system above the
superfluid transition temperature Tc.

It has been known that the 1S0 attraction is strong in the
low-density region. In the present work, therefore, we take
into account superfluid fluctuations within the NSR scheme
[33], which has been widely used for studying BCS-BEC
crossover phenomena in the context of the cold atom physics.
For this purpose, it is convenient to employ the path-integral
method for the fermionic field c and c̄ [37], starting from the
partition function

Z =
∫

D[c̄, c] exp [−S(c̄, c)], (5)

with an action S for the Hamiltonian Eq. (1) given by

S(c̄, c) =
∫ β

0
dτ

∑
kσ

c̄kσ (τ )(∂τ + ξk )ckσ (τ )

+
∑
k,k′,q

∫ β

0
dτVS (k, k′)c̄k+ q

2 ↑(τ )c̄−k+ q
2 ↓(τ )c−k′+ q

2 ↓

× (τ )ck′+ q
2 ↑(τ )

= Skin(c̄, c) + Sint (c̄, c), (6)

in the imaginary time formalism with the inverse tempera-
ture β = 1/T . As usual, we first introduce a bosonic pairing
field 
(q, τ ) as an auxiliary field, and apply the Hubbard-
Stratonovich transformation for Sint as

e−Sint =
∫

D[
̄,
] exp

{
−

∑
q

∫ β

0
dτ

[
β|
(q, τ )|2

US
+

√
βρ̄S (q, τ )
(q, τ ) +

√
β
̄(q, τ )ρS (q, τ )

]}
, (7)

where ρS (q, τ ) = ∑
k c−k+ q

2 ,↓(τ )ck+ q
2 ,↑(τ )Fc(k) and

√
β is multiplied to 
 and 
̄ for the normalization. 
̄ is the complex

conjugate of 
. Integrating out the fermion degrees of freedom in Eq. (5) and taking the Fourier transformation for τ , we obtain
an effective action as

Seff = β
∑
q,iνn

|
(q, iνn)|2
US

+
∑

k,iωl ,k
′,iωl′

{βξkδ(k − k′)δl,l ′ − Tr ln[βĜ−1(k iωl , k′ iωl ′ )]}, (8)

where ωl = (2l + 1)πT (νn = 2πnT ) are the fermionic (bosonic) Matsubara frequency, respectively. G(k iωl , k′ iωl ′ ) in Eq. (8)
is the 2×2 single-particle Green’s function defined by

G−1(k iωl , k′ iωl ′ ) = (iωlσ0 − ξkσ3)δ(k − k′)δl,l ′ + 
̄(k − k′, iωl − iωl ′ )Fc

(
k + k′

2

)
σ−+
(k′ − k, iωl ′ − iωl )Fc

(
k + k′

2

)
σ+.

(9)

Here, σ± = (σ1 ± σ2)/2 and σi (i = 0, 1, 2, 3) are the Pauli
matrices acting on the Nambu particle-hole space. The first
term describes the kinetic energy (diagonal component of
G−1) and the second and third terms describe the pairing field

(off-diagonal component of G−1). The bosonic pairing field

(q, iνn) is conveniently divided into two parts as


(q, iνn) = �δ(q)δiνn,0 + δ�(q, iνn), (10)
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where � is the saddle point solution and δ�(q, iνn) is a
fluctuation from �. In the NSR theory, the effective action Seff

is expanded with respect to δ�(q, iνn) up to quadratic order.
Then, we obtain

Seff � SMF + δSfluct. (11)

Here we express the mean-field contribution as

SMF = β|�|2
US

+
∑
k,iωl

{
βξk − Tr ln

[
βĜ−1

0 (k, iωl )
]}

, (12)

with the Green’s function within the mean-field theory given
by

Ĝ−1
0 (k, iωl ) = iωlσ0 − ξkσ3 + �(k)σ1, (13)

where we have introduced �(k) ≡ �Fc(k) as the momentum
dependence in the superfluid order parameter. We also express
the fluctuation contributions as

δSfluct = β

2

∑
q

�†(q, iνn)

[
1

US
σ0 + π̂ (q, iνn)

]
�(q, iνn),

(14)
where �†(q, iνn) = [δ�†(q, iνn), δ�(−q,−iνn)] is the two-
component bosonic field in the Nambu space, and

π̂ (q, iνn) = 1

4

[
π11 + π22 + i(π12 − π21) π11 − π22

π11 − π22 π11 + π22 − i(π12 − π21)

]
, (15)

πss′ (q, iνn) = 1

β

∑
p

Tr
[
σsĜ0

(
k + q

2
, iωl

)
σs′Ĝ0

(
k − q

2
, iωl − iνn

)]
F 2

c (k) (s, s′ = 1, 2), (16)

is the 2×2-matrix pair correlation function in the lowest
order. We note that π11 and π22 denote physically the ampli-
tude and phase fluctuations of the superfluid order parameter,
respectively, and π12 and π21 describe the coupling be-
tween them. The effective action Seff in Eq. (11) induces the
strong-coupling correction to the thermodynamic potential in
terms of the thermodynamic relation � = −T ln Z = �MF +
δ�fluct, where

�MF = |�|2
US

+
∑

k

ξk −
∑

k

Ek − 2T
∑

k

ln(1 + e−βEk ), (17)

δ�fluct = 1

2β

∑
q

Tr ln [1 + U π̂ (q, iνn)]. (18)

Here Ek =
√

ξ 2
k + |�(k)|2 is the quasiparticle energy spec-

trum.
In this formalism, the effects of pairing fluctuations are

taken into account by self-consistently solving the gap equa-
tion together with the particle number equation for � and
μ. The gap equation is given by the saddle point condition
(∂�MF/∂�)N,V = 0 as

1

US
=

∑
k

F 2
c (k)

2Ek
tanh

βEk

2
. (19)

This equation has the same form as one in the ordinary mean-
field theory. The particle number equation is obtained from the
thermodynamic relation N = −(∂�/∂μ)V,T . When we divide
the total particle number N into the mean-field contributions
NMF and the strong-coupling correction δNfluct, we obtain

N = NMF + δNfluct, (20)

NMF =
∑

k

(
1 − ξk

Ek
tanh

βEk

2

)
, (21)

δNfluct = 1

2β

∑
q,iνn

Tr

[
�̂(q, iνn)

∂π̂ (q, iνn)

∂μ

]
. (22)

Here �̂ is the many-body scattering matrix defined by

�̂(q, iνn) = − US

1 + USπ̂ (q, iνn).
(23)

In Eq. (22), we have ignored the term
(∂δ�fluct/∂�)T (∂�/∂T )V,N , which is the higher order
correction, for simplicity. Here we also mention that in this
formalism, the gap equation Eq. (19) does not include the
modification of the single-particle spectrum, as well as the
screening effects of the interaction due to the finite density,
which are important to more quantitatively estimate the
superfluuid order parameter � and the superfluid transition
temperature Tc.

Before closing this section, we mention that δNfluct in-
cludes the number of the noncondensed bosonic pairs below
the superfluid transition temperature Tc and that of the pre-
formed Cooper pairs above Tc, respectively. Indeed, �̂(q, iνn)
describes the bosonic collective excitations associated with
the phase and amplitude fluctuations of the superfluid order
parameter, which are known as the Anderson-Bogoliubov
(phase, sound, or phonon) and Higgs (amplitude) modes,
respectively. The dispersion relations of these modes are ob-
tained from the pole analysis of the analytically continued
�̂(q, iνn → z + iδ), where z is the real energy of these modes
and δ is an infinitely small positive number. In the next sec-
tion, we will discuss the properties of these collective modes.
We note that the gap equation is equivalent to the gapless con-
dition of �̂ [the so-called Thouless criterion det �̂−1(0, 0) =
0], that guarantees the existence of the gapless Anderson-
Bogoliubov mode in the low-energy region. These topics
will be discussed in details in the next section. We mention
that δNfluct includes not only the superfluid fluctuations but
also the modifications of the single-particle spectrum, such
as the Hartree-Fock (HF) potential and the mass correction.
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FIG. 2. Calculated superfluid order parameter �(k = k̃F ) on the
effective Fermi surface, where k̃F = √

2mμ, in 1S0 superfluid in neu-
tron stars as functions of the temperature T and the Fermi momentum
kF. The dashed and the chained line shows the results at T = 0 and
the superfluid transition temperature Tc, respectively.

In Ref. [29], it was pointed out that in the normal phase
above Tc, the pairing fluctuations are overestimated without
separately treating the HF potential from δNfluct in the high
density region. However, in the present study, to avoid nu-
merical difficulties, we simply take into account all the effects
of the interaction by δNfluct given by Eq. (22) for the whole
density region, and the validity of our theoretical framework
in the high-density region will be discussed in the next section.

III. RESULTS

Figure 2 shows the superfluid order parameter obtained by
self-consistently solving Eqs. (19) and (20) at the effective
Fermi surface, which is characterized by the effective Fermi
momentum k = k̃F ≡ √

2mμ. The superfluid order parame-
ter is expressed as a function of the temperature T and the
Fermi momentum kF (density) in this figure. We first focus
on the results at T = 0. Starting from the low-density region,
�(k̃F) gradually increases as the density increases, and has a
maximum value around kF � 1 fm−1. Then, �(k̃F) turns to de-
crease because the interaction strength at the Fermi surface is
suppressed due to the form factor Fc(k) and finally vanishes at
a critical value kF = 1.8 fm−1. Note that Fc(k) is a decreasing
function of k as shown in Fig. 1. The vanishing of � means
that the phase transition from the 1S0 superfluid to the normal
state occurs. It was reported that a similar density depen-
dence of the superfluid order parameter was obtained within
the mean-field approach [40] and the renormalization group
approach [41] with realistic pseudopotentials. As shown in
Fig. 2, a similar density dependence is found in the result for
the superfluid transition temperature Tc, which is consistent
with Ref. [39]. We also briefly note that ERE cannot describe
correctly the phase transition, because the attractive potential
never vanishes in the high-density region.

In Fig. 3, we compare our results for �(k̃F) at T = 0 and
the superfluid transition temperature Tc in the NSR scheme
with ones calculated in the mean-field approximation. We
mention that in the mean-field theory the particle number
equation is obtained by ignoring δNfluct in Eq. (20). When we

FIG. 3. (a) Superfluid order parameter on the effective Fermi
surface (where k = k̃F ≡ √

2mμ) at T = 0, (b) superfluid transition
temperature Tc. In panels (c) and (d) chemical potential at T = Tc and
T = 0 are shown, respectively. In each panel, the results calculated
within the mean-field approximation are also shown (dashed lines)
for comparison.

first focus on the low-density region (kF <∼ 1 fm−1), Figs. 3(a)
and 3(b) show that � and Tc are suppressed compared to ones
calculated within the mean-field theory due to the superfluid
fluctuations. As shown in Figs. 3(c) and 3(d), the chemical po-
tential μ is always suppressed by superfluid fluctuations. This
is because in the NSR scheme the noncondensed bosonic pairs
are taken into account through the particle number equation,
the fermionic component is reduced, and the Fermi sphere is
shrunk. Then, the superfluid order parameter also becomes
smaller. This behavior is consistent with the ordinary BCS-
BEC crossover phenomena in cold atom physics.

However, in the higher-density region (kF � ∼1 fm−1),
Figs. 3(a) and 3(b) show that the superfluid fluctuations en-
hance � and Tc. These enhancements, however, might be an
artifact due to overestimation of δNfluct within our theoretical
framework. Figure 4 shows the calculated density dependence
of NMF and δNfluct given by Eqs. (21) and (22), respectively,
at (a) T = 0 and (b) Tc. Starting from the low-density region,
δNfluct rapidly increases, and eventually approaches some val-
ues at the critical density both in the cases at T = 0 and Tc.
However, as pointed out in Ref. [29], in the normal phase
δNfluct is improved to be suppressed in the higher-density
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(b) T = Tc.

065802-5



INOTANI, YASUI, AND NITTA PHYSICAL REVIEW C 102, 065802 (2020)

 0  0.5  1  1.5
q [ fm-1 ]

-8

-4

 0

 4

 8

 [ 
M

eV
 ]

-10

-5

 0

 5

 10

 0  0.5  1  1.5
q [ fm-1 ]

-8

-4

 0

 4

 8

 [ 
M

eV
 ]

 0  0.5  1  1.5
q [ fm-1 ]

-8

-4

 0

 4

 8

 [ 
M

eV
 ]

 0  0.5  1  1.5
q [ fm-1 ]

-8

-4

 0

 4

 8

 [ 
M

eV
 ]

 0  0.5  1  1.5
q [ fm-1 ]

-8

-4

 0

 4

 8
 [ 

M
eV

 ]

 0  0.5  1  1.5
q [ fm-1 ]

-8

-4

 0

 4

 8

 [ 
M

eV
 ]

k F = 0.36 fm-1 k = 0.71 fm-1

k = 1.42 fm-1 k F = 1.60 fm-1 k F = 1.78 fm-1

k = 1.24 fm-1
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region by appropriately subtracting the contribution from the
HF potential from δNfluct, and the effects of pairing fluctu-
ations gradually vanish as approaching the critical density
where Tc = 0. As we mentioned in Sec. II, we do not subtract
the HF potential to avoid numerical difficulties. The overes-
timation of δNfluct strongly suppresses μ (see Fig. 3). Then,
naively one could expect that Tc, as well as � could also
become smaller due to the shrinking Fermi surface. However,
because the interaction becomes weaker as increasing the
momentum k, the suppression of μ eventually enhances the
interaction strength on the effective Fermi surface. As a result
the superfluid order parameter is enhanced in the high-density
region. Although it is still an open question whether in the
1S0 neutron superfluid phase below Tc the HF term also qual-
itatively changes the results, our results in the high-density
region might be changed by our theory being improved at this
point. We emphasize that, since the HF potential is negligible
in the low-density region as discussed in Ref. [29], and δNfluct

rapidly increases as kF increases, our results indicate that the

superfluid fluctuations are important in 1S0 superfluid phase at
T = 0 in neutron stars.

δNfluct affects the thermodynamic properties significantly.
To explain this, we first note that, as we mentioned in the
previous section, δNfluct physically means the number of
the noncondensed bosonic pairs, which are dominated by the
gapless mode, i.e., the Anderson-Bogoliubov mode having the
linear dispersion relations ωq = vφq with the sound velocity
vφ in the low temperature limit. Indeed, as shown in Fig. 5,
we find that the sharp peak structure along ωq = vφq appears
in the spectral function −Im [�11(q, iνn → ω + iδ)] in the
whole density region at T = 0. By expanding the pole con-
dition det [�̂−1(q, iνn → ω + iδ)] = 0 with respect to q and
ω, the explicit expression of vφ is obtained as

vφ =
√

η

ζ
, (24)

with

η =
∑

p

[
�2(p)

E3
p

F 2
c (p)

] ∑
k

(
1

2E5
k

[
ξkk

2m
+ �(k)�F ′

c (k)

2

]2

− 1

2E3
k

{
ξk

4m
+

(
k

2m

)2

+ �2Fc(k)

12

[
F ′′

c (k) + F ′
c (k)

k

]
+

[
�F ′

c (k)

2

]2})
F 2

c (k), (25)

ζ =
∑

p

[
�2(p)

E3
p

F 2
c (p)

] ∑
k

[
1

4E3
k

F 2
c (k)

]
+

[∑
k

ξk

2E3
k

F 2
c (k)

]2

. (26)

Similar results were obtained in the context of cold atom
physics [42,43], as well as nuclear matter [44]. Figure 6 shows

the sound velocity vφ of the Anderson-Bogoliubov mode
as a function of the Fermi momentum. In the low density
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FIG. 6. Density dependence of the sound velocity of the
Anderson-Bogoliubov mode calculated from Eq. (24) at T = 0. The
dashed line shows the results in the weak-coupling limit vF/

√
3

where vF is the Fermi velocity.

limit, vφ coincides with the expression in weak-coupling limit,
vφ = vF/

√
3. As the density increased, vφ gradually deviates

from the results in the weak-coupling limit, and becomes sup-
pressed due to the strong fluctuations in superfluid pairings.
We note that when the momentum dependence of �(k) is
ignored, Eq. (24) gives the expression of the sound velocity
in the ordinary BCS-BEC crossover [42].

As pointed out in Ref. [44], the existence of the gapless-
collective mode qualitatively changes the thermodynamic
properties in the low-temperature limit. Since the single-
particle excitations have an energy gap associated with the
superfluid order parameter, the contributions from these
excitations to thermodynamic quantities are exponentially
suppressed as decreasing T , as well as developing �. How-
ever, the gapless Anderson-Bogoliubov mode gives the power
low behavior on T to thermodynamic quantities, such as
equation-of-state, specific heat, compressibility, and so on
[44]. Thus, in the low-temperature limit, thermodynamic
properties should be dominated by the Anderson-Bogoliubov
mode. The collective excitations in 1S0 superfluid in neu-
tron stars were discussed within a theory based on the
random phase approximation (RPA) in the previous work
[44]. However, to quantitatively estimate the effects of the
Anderson-Bogoliubov mode in the whole region below Tc,
RPA is not sufficient, because the superfluid fluctuations are
not taken into account when one estimates � and μ. Al-
though, we do not calculate the thermodynamic quantities
in the present work, the NSR scheme can be applied to the
thermodynamics in 1S0 neutron superfluid. It is our future
work to investigate the effects of the superfluid fluctuations
on the thermodynamic properties.

We comment that the Anderson-Bogoliubov modes are
damped in the quasi-particle continuum, which is defined
as ω2 � mink[Ek+q/2 + Ek−q/2]2, because in this region, the
collective excitations decay into two quasiparticle excita-
tions. Reflecting the density dependence of �(k̃F) shown in
Fig. 3(a), the structure of the continuum nonmonotonically
changes as the density increases. At the critical density of the
phase transition from the 1S0 superfluid to the normal state
(kF = 1.78 fm−1), the Anderson-Bogoliubov mode eventually

becomes to be damped in the whole region except at q = 0
and ω = 0. We also comment that the amplitude Higgs mode
is always located in the quasiparticle continuum and are not
clearly seen in the spectral function Im �11. For this reason,
the Higgs mode does not play a crucial role in the thermo-
dynamics near T = 0. As shown in Fig. 4(a), even in the
low-density region (kF � 0.1 fm−1), δNfluct at T = 0 accounts
for about 40% of the total density of the neutrons. Thus, our
results clearly indicate that the superfluid fluctuations should
be taken into account for the thermodynamics in 1S0 superflu-
ids in neutron stars.

IV. SUMMARY AND DISCUSSION

To summarize, we have discussed the effects of superfluid
fluctuations in 1S0 superfluid in neutron stars. To describe
the neutron-neutron interaction, we have constructed a sep-
arable potential to reproduce the 1S0 phase shift estimated
by the partial wave analysis from nucleon scattering data.
Using the constructed potential and including superfluid fluc-
tuations within the NSR theory, we have self-consistently
determined the superfluid order parameter in a wide density
and temperature region. We have found that the superfluid
order parameter is suppressed in the low-density region, as
a result of the shrunk Fermi sphere due to the suppression
of the chemical potential. Although we have found that the
superfluid order parameter is enhanced in the high-density
region, it might be an artifact of our theoretical framework,
because we do not separately treat the HF potential, which is
known to be remarkable in the high density region above Tc,
and the contributions from the superfluid fluctuations might
be overestimated. This is left as our future work.

We also have shown that the superfluid fluctuations are
dominated by the gapless Anderson-Bogoliubov mode with
a linear dispersion relation with a sound velocity in the low
temperature region. Furthermore, we have found that the
contribution from the superfluid fluctuations to the particle
number accounts for 40% of the total number of neutrons even
in the low-density region. Since the single-particle excitations
are strongly suppressed due to an energy gap associated with
the superfluid order parameter, our results indicate that for
studying the thermodynamic quantities, such as equation-of-
state, specific heat, and compressibility in the neutron stars,
the superfluid fluctuations should be taken into account.

The Anderson-Bogoliubov modes studied in this paper are
expected to significantly affect the cooling process of neutron
stars by neutrino emissions (see Refs. [1,2] and references
therein). Possible impacts of the present study on the cooling
process of neutron stars remain as one of important future
problems.

In this paper, we have considered only the attractive part
of the 1S0 interaction between neutrons. To access the higher-
density region, the repulsive part of the 1S0 interaction should
be included. In addition, it has been known that the 3P2 at-
tractive interaction also becomes significantly strong as the
density increases. Thus, in more realistic situation, the phase
transition from 1S0 to 3P2 superfluid or the coexistence of
them should be discussed [45]. It is in progress to extend our
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formalism to the case with the 1S0 repulsion as well as the 3P2

attraction.
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