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Outer crust of a cold, nonaccreting neutron star within the quark-meson-coupling model
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The outer crust properties of cold nonaccreting neutron stars are studied within the framework of the
quark-meson coupling (QMC) model, which includes the effects of modifications of the quark structure inside in-
dividual nucleons when they are within a high-density nuclear medium. With a unique set of five well-constrained
adjustable parameters, which have a clear physical basis, the QMC model gives predictions for the ground state
observables of even-even nuclei which agree with experiment as well as traditional models. Furthermore, it gives
improved theoretical values for nuclei thought to play a role in the outer crusts of neutron stars but for which
experimental data are not available. Using the latest experimental data tables wherever possible but otherwise
the predictions from the QMC model, we construct an equation of state for the outer crust, which is then used
within stellar model calculations to obtain an equilibrium sequence of crustal layers, each characterized by a
particular neutron-rich nucleus. Various properties of the layers are calculated for a range of neutron-star masses
and comparisons are made with alternative equations of state from the literature. This leads to the conclusion that
the QMC model successfully predicts the outer crust properties and is fully comparable with the more traditional
mass models, which all depend on a larger number of parameters.
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I. INTRODUCTION

Neutron stars (NSs) are the only known objects in
the Universe that contain nuclear matter in equilibrium at
densities as high as several times the saturation density
n0 (≈0.16 fm−3). These complex objects connect many dif-
ferent fields of research, from nuclear and particle physics
and astrophysics to general relativity. Small in size, with radii
less than ≈14 km but having substantial mass (as high as two
solar masses), they possess many extreme properties such as
surface magnetic fields of up to 1013 Gauss (for a “classical”
pulsar), rotation periods between 1.4 ms and 30 s, densities up
to 10n0, and gravity which can be ≈1011 times stronger than
that of Earth. There is still much about them which is not very
well known, starting with the building blocks of heavy NS
cores, the equation of state (EOS) of high-density matter, and
the relation between NS masses and radii, going on to their
thermodynamics and shape oscillations, magnetic fields, and
much more. However, progress in theoretical and terrestrial
experimental efforts and the recent detections of gravitational
waves from neutron-star mergers have put the research of NSs
in stronger focus that ever before.

A neutron star is born in a core-collapse supernova event,
at the end of the life of a massive star [1]. The core of the pro-
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genitor star, containing mainly iron-group nuclei, is rapidly
transformed by subsequent electron capture and photodis-
integration to a hot, very-neutron-rich object having about
10–15 km radius and with most of its mass (1M�–2M�)
concentrated in the center, the proto-neutron star. This star is
initially fully fluid and has a temperature of ≈1010–1011 K
[2,3]. The matter cools by neutrino emission and, after a few
years, it reaches temperature ≈109 K, allowing the outer layer
of the star to form a solid crust beneath the envelope, an ocean
of a hot Coulomb fluid plasma, and a thin atmosphere (see,
e.g., Refs. [3–6] and references therein). The matter stratifies
into layers, each of them containing fully ionized atoms, ar-
ranged in a body-centered cubic (bcc) lattice to minimize their
Coulomb interaction energy, and relativistic, fully degenerate
electrons, cooling further to temperatures of ≈106–107 K.

Moving inward from the NS surface, with growing pres-
sure the electron chemical potential increases and electron
capture by nuclei, A(Z, N ) + e → A(Z − 1, N + 1) + ν, fol-
lowed by neutrino emission becomes energetically favorable.
The nuclei building different layers of the outer crust become
more neutron rich with decreasing neutron separation energy
until neutrons start to drip out. This process leads to the
appearance of a free neutron gas as part of the background
alongside the electrons, marking the transition to the NS inner
crust. Further increase of density eventually causes nuclei to
deform, touch, and clump, transforming the lattice structure
into various exotic shapes, called nuclear pasta. The nuclei
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are stabilized against β decay by the filled electron Fermi
sea. Eventually, the matter goes through a phase transition
to a homogeneous liquid mixture of neutrons, protons, and
electrons (and muons at higher densities), forming the core
of an average-mass NS. For a very heavy NS with mass
close to 2M�, the core structure may be divided into two
separate regions: the homogeneous outer core consisting of n,
p, e−,and μ−, and the inner core with a density several times
the saturation density of nuclear matter. Exotic particles such
as hyperons and/or various phases of quark matter have been
proposed to appear under these extreme conditions [7].

Theoretical models of the outer crust depend on only one
nuclear physics input, the nuclear masses. The models evolve
as improvements are made in experimental mass determi-
nations and in the theoretical predictions for those nuclei
which are too close to the neutron drip-line for measurements
to be made. Feynman, Metropolis, and Teller [8] calculated
the EOS of the envelope and established its ground state as
being 56Fe. The outer crust EOS was first studied by Baym
et al. [9] in 1971, using the droplet model by Myers and
Swiatecki [10]. Haensel, Zdunik, and Dobaczewski [11] em-
ployed the Hartree-Fock-Bogolyubov formalism with the SkP
Skyrme force and the Myers droplet model [12]. Haensel
and Pichon [13] used the experimental nuclear data mass
table of 1992 from Audi and Wapstra [14] and the theoret-
ical nuclear mass tables of the droplet models from Moller
and Nix [15] and Aboussir et al. [16]. Rüster et al. [17]
updated the work of Baym using nuclear data available in
2006 and theoretical mass tables via the Brussels Nuclear
Library for Astrophysics Applications (BRUSLIB) [18] and
by Dobaczewski and coworkers [19] for Skyrme-based mod-
els, and by Geng, Toki, and Meng for a relativistic model
[20] (for details see Ref. [17]). Pearson et al. [21] used the
Hartree-Fock-Bogoliubov method with three Skyrme-force
models (HFB-19, HFB-20, and HFB-21) and the Gogny-force
model D1M.

Chamel and Fantina [22] examined the validity of the
generally accepted assumption that the layers in the outer
crust each consist of a pure body-centered cubic ionic crystal
in a charge-compensating background of highly degenerate
electrons. They studied the stability of binary and ternary
compounds in different cubic and noncubic lattices in dense
stellar matter and showed that their stability against phase
separation is uniquely determined by their structure and com-
position, irrespective of the stellar conditions. In addition,
they obtained the EOS and the ground-state structure for the
outer crust of a nonaccreting cold neutron star using the exper-
imental 2012 Atomic Mass Evaluation [23] and the HBF-24
[24] theoretical model for nuclear masses. Pearson et al.
[25,26] constructed a unified EOS for NSs with the HFB-22,
HFB-24, and HFB-26 models and studied the impact of the
nuclear symmetry energy on properties of the NS interior.
The question of crystallization in the outer crust of nonac-
creting and accreting cold neutron stars was further pursued
by Fantina et al. [6]. They concluded that the presence of
impurities in the outer crust is non-negligible and may have
a sizable impact on transport properties [27], which could be

important for the cooling of neutron stars and their magneto-
rotational evolution [28].

In this work we study the outermost solid layer of a NS,
the outer crust, for an isolated, nonmagnetized, nonaccret-
ing NS in the framework of the QMC model. The results
are compared with the outcome of calculations using the
finite-range droplet model (FRDM) [29], the nonrelativis-
tic energy density functional (EDF) model with the Skyrme
interaction—the HFB-24 [22,24,25,30] and the Walecka-type
relativistic mean-field (RMF) model with NL3 interaction
[31]. The general conclusion of previous models of the outer
crust under the same conditions has been that the EOS is
rather insensitive to the nuclear model of theoretical masses,
but the details of the layers and their composition depend
on the predictive power of masses close to the neutron drip
line. The experimental verification of theoretically predicted
masses from different models is waiting for a new gener-
ation of terrestrial facilities and observational techniques.
However, it is interesting to catalog the current results and
add the new data from the QMC model to the existing
predictions.

This paper is organized as follows: the QMC model is
briefly introduced in Sec. II A with references to its de-
velopment and applications, including the latest version,
QMCπ -III, used in this work to calculate unknown masses
of neutron rich nuclei close to the neutron drip line. This is
followed by description of the calculation method (Sec. II B)
and a brief comment on theoretical models used for a com-
parison with the present QMC results (Sec. II C). The main
results are presented in Sec. III, including the low density
QMCπ -III EOS, the sequence of Z and N for nuclei building
the NS outer crust, the position of the neutron drip line and the
size and content of individual layers of the outer crust. The
gravitational and baryonic masses, and the electron density,
Fermi momentum, and specific heat are also calculated for
each layer. In Sec. IV we summarize the outcome of the
present work and discuss the future development of applying
the QMC model to the outermost layers of NSs.

II. METHOD

A. Theoretical framework of the quark-meson coupling model

One of our main goals in applying the QMC model to
properties of neutron stars was to construct the QMC EOS
over its full range of densities, covering both the core and the
crust. The QMC model has already been successfully applied
to NS cores and has given NS masses as high as ≈2M�
[32,33], even in the presence of hyperons at high densities. A
somewhat different version of the QMC model has also been
applied to high-density matter in NSs exploring compatibility
with GW170817 data [34]. However, the application of the
Saclay-Adelaide QMC model (that includes the Fock terms)
to the NS crust has not been carried out until now. In this
work, we address the NS’s outer crust, leaving the inner crust,
including the pasta region, to future publications.

The QMC model, proposed in 1988 [35] and developed
extensively over the following decades [36–38], takes into
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account the internal quark structure of a nucleon in con-
trast with most of the traditional mean-field nuclear structure
models, which consider the nucleons as point-like objects.
When the nucleon is immersed in a mean field created by
surrounding nucleons, the effects of the external fields is
self-consistently related to the dynamics of the quarks in the
nucleon. In the present version of the QMC model, the light
quark confinement in a nucleon is schematically modeled with
a MIT bag and the interaction between the quarks in individual
bags is described by the exchange of effective mesons (σ , ω,
ρ, and π ). It is found that the application of the scalar mean
field σ , with strength up to a half of the nucleon mass, can lead
to significant changes in the structure of the nucleon. Solution
of the bag model equations of motion in a constant scalar field
yields an effective mass

M∗
B = MB − gσ σ + d

2
(gσ σ )2, (1)

with gσ σ being the strength of the scalar field. Here gσ is
the coupling of the scalar meson to the free nucleon, which
is, of course, directly related to the coupling of the scalar
field to the quarks. The scalar polarizability d , which quan-
tifies the effects of the scalar field on the nucleon structure,
is determined within the model and is well approximated
as d ≈ 0.18RB, with RB being the bag radius (set to 1 fm,
see Ref. [39]). The coupling of the nucleon to the vector
fields, gωω and gρρ, does not affect the internal structure of
the bag but rather contributes a constant shift to its energy.
With increasing density, the reduction in strength of the σ

coupling to the nucleon is of key importance and forms the
basis for the saturation mechanism of nuclear matter. Another
crucial aspect of the QMC model is that the change in hadron
structure in-medium provides a natural mechanism to generate
three-body forces between all hadrons [40], without additional
parameters.

A comprehensive summary of the model can be found in
the recent review [39], which includes an account of the devel-
opment of an energy density functional (EDF), derived from
the underlying relativistic quark model [41]. The first version
of the EDF systematically applied to nuclear structure was
QMC-I [42], followed by QMCπ -I [43], which included the
contribution of a long-range Yukawa single-pion exchange,
and QMCπ -II [44], which took into account the nonlinear
self-interaction of the σ meson. This generalization allows a
contribution of the σ exchange in the t-channel to the polariz-
ability, which cannot arise from the response of the bag [39]. It
involves an additional parameter λ3 which has to be obtained
from a fit to experiment but leads to a significant improvement
within QMCπ -II of the predictions of the saturation properties
of symmetric nuclear matter [44].

In this work we use the latest version of the model, QMCπ -
III [45], which retains all of the features of QMCπ -II and
in addition includes the previously neglected spin-tensor �J
terms, which arise naturally within the QMC model. These
additional terms do not add any more adjustable parameters
because their coefficients are calculated within the model.
Thus, the QMCπ -III model depends in total on only five

free parameters: the σ meson mass mσ , the effective meson
coupling constants Gm = g2

m/m2
m (where m stands for different

mesons m = σ, ω, ρ), and the σ self-interaction parameter
λ3. The parameters are fit to 162 data points, consisting of
the binding energies and root-mean-square charge radii of
seventy semi- and doubly-magic nuclei. The remaining model
inputs are the ω- and ρ-meson masses and the isoscalar and
isovector magnetic moments (which appear in the spin-orbit
interaction), taken at their physical values.

In the standard formulation of HF + BCS mean-field
models, the EDF is augmented with pairing and Coulomb
contributions. In the previous versions of the QMC model
the volume pairing was used, with the pairing amplitudes
calculated using BCS theory and the parameters of the pairing
force being treated as additional fitting parameters. In the
QMCπ -III model we employ a density-dependent delta inter-
action where the usual pairing strengths are fully expressed
in terms of the QMC model parameters. Both the direct and
exchange terms of the Coulomb interaction were included as
in the previous QMC calculations.

The final parameters were determined as Gσ = 9.619 fm2,
Gω = 5.213 fm2, and Gρ = 4.712 fm2 couplings, the σ self-
interaction λ3 = 0.048 fm2 and the mass of the σ meson
mσ = 506 MeV.

The QMC EDF has been implemented in the computer
code SKYAX, to calculate ground-state properties of even-
even axially symmetric and reflection-asymmetric nuclei. The
code, which was originally designed to use Skyrme-type
EDFs, has been adapted by Reinhard [42,46] and further
modified by Martinez et al. [45] to include new features of the
QMCπ -III model. Experimentally unknown masses of nuclei
on the neutron-rich side of the nuclear chart were calculated
and used in this work, in the region defined approximately by
20 < Z < 50 and 50 < N < 90.

We note that other versions of the QMC model, differing
from the formulation adopted in this work in that they did
not include Fock terms, have also been applied to model NS
and dense matter, as in Refs. [47–52]. A recent overview
and a brief discussion of these approaches can be found in
Ref. [39].

B. Modelling of the neutron-star outer crust

We are calculating the outer crust that is at densities be-
low the neutron drip line, and are taking the temperature of
the NS as being ≈106 K, which is below the crystallization
temperature of iron. We assume the simple scenario that the
layers of the outer crust are one-component pure bcc Coulomb
crystals of fully ionized atoms, and the electrons are fully
degenerate and can be treated as a uniform ideal relativistic
Fermi gas.

The equilibrium condition of the system is determined by
the minimization of the Gibbs free energy per nucleon, g,
defined as [21]

g = e + P

n
, (2)
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where e is the energy per nucleon, P is the total pressure at the
given point in the NS crust, and n is the nuclear matter density,
calculated numerically for a given pressure.

The energy per nucleon in the outer crust is defined as

e = M ′(A, Z )/A + Ee/n + EL(A, Z )/A, (3)

having three terms representing contributions from nuclei,
free electrons, and lattice structure. In the first term, M ′(A, Z )
is the atomic mass of the element (A, Z ) with the binding
energy of the atomic electrons subtracted out

M ′(A, Z ) = M(A, Z ) + (1.44381 × 10−5Z2.39

+ 1.55468 × 10−12Z5.35). (4)

As the only nuclear physics input, the atomic masses M(A, Z )
are tabulated in Wang and Audi (2017) [53] for experimentally
available nuclei and are otherwise calculated with different
theoretical models. The second term of Eq. (3) contains the
electron energy density

Ee(ne) = E0
e (ne)(1.00116 − 1.78 × 10−5Z4/3), (5)

where E0
e (ne) is the energy density of a uniform free elec-

tron gas with number density ne = Zn/A at T = 0, as in
Eq. (24.158) of Ref. [54]. The second factor of E (ne) has
two terms, the first assessing the electron exchange term and
the second representing deviations of the electron gas from
uniformity [13]. Finally, the last term of Eq. (3) comes from
the energetically most favorable bcc lattice configuration of
ions, with lattice energy

EL(A, Z ) = −0.89593
Z2e2

R
, (6)

where point nuclei are assumed, defining the ion radius by
4
3πR3 = A

n and not taking into account the finite-size nuclear
correction.

The total pressure P at any point of the outer crust has only
electron and lattice contributions

P = Pe + PL (7)

since nuclei do not exert any pressure at T = 0. The electron
pressure, taken from Ref. [55], is

Pe = P0
e (1.00116 − 1.78 × 10−5Z4/3), (8)

with P0
e taken from Eq. (24.158) of Ref. [54] and the second

factor contributions being the same as for the electron energy
density (see Appendix for details). The lattice pressure is

PL = n

3

EL

A
. (9)

The nuclear matter density n is found numerically through
Eq. (7) as the density that returns the total value of the
pressure P.

The atomic mass tables are searched through in order to
find nuclei that minimize g for a certain value of pressure
and the corresponding density. The assumption is that, for
each value of P, only one nucleus would appear, resulting in
density discontinuities between consecutive nuclear species.
These are assumed to be coexistence regions of neighboring
nuclei and are not considered further.

As by definition there are no free neutrons in the outer
crust, the outer-inner crust boundary is defined by the con-
dition

μn � 0, (10)

with μn being the neutron chemical potential. As long as
Eq. (10) holds, all the neutrons are bound in nuclei forming
a lattice. In a NS environment, the neutron chemical potential
is calculated through the identity

μn = g − mn, (11)

which is valid because of the beta equilibrium holding in the
NS (see Ref. [9] and Appendix of Ref. [25]). The electron
chemical potential is calculated as

μe = Pe/ne − Ee/ne − me, (12)

as discussed in Appendix B of Ref. [25]. As the density
increases, the value of μn rises monotonically and eventually
becomes positive, meaning that the neutron drip line has been
reached and that the last nuclide in the outer crust of the NS
has been identified.

The importance of further corrections, such as those for
screening of electrons by protons (and protons by electrons),
for the electron-correlation energy, for zero-point energy, fi-
nite nuclear size corrections and thermal corrections has been
addressed in more detail in Ref. [21] and they were mostly
found to play a negligible role. Pearson et al. [25] did in-
clude these corrections and used complete expressions for the
electron exchange and screening corrections to the electron
energy density (the screening sometimes being referred to as
“polarization”). A significant influence of the polarization cor-
rection was found in the determination of the crystallization
temperature, at which the plasma ocean at the NS surface
would crystallize and settle into a lattice structure, marking
the beginning of the solid outer crust. However, as the crys-
tallization temperature is expected to vary between ≈108 and
109 K and the temperature assumed in this work is ≈106 K,
these corrections have not been included here.

Theoretical nuclear masses are calculated in the QMCπ -III
model and experimental data are taken from the 2017 Atomic
Mass Evaluation [53]. We note that both directly measured
and indirectly determined masses [56] were taken as experi-
mental.

C. Nuclear models for neutron-rich nuclei

It is interesting to compare the composition of the outer
crust of the NS as given by the QMCπ -III model with those
given by other theories. This can easily be done by replacing
the QMCπ -III masses in our formalism with those given
by the other models and looking for the differences. In all
cases we compare only results for even-even nuclei, as the
QMC model for odd-A and odd-odd nuclei has not yet been
developed. The nuclear chart region of interest for this study
is fairly restricted, spanning the proton numbers 26 < Z < 50
and the neutron numbers 30 < N < 90, since only nuclei in
this region are expected to appear in the NS outer crust, as
will be discussed in Sec. III.
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TABLE I. Symmetric nuclear matter properties at saturation: the particle number density n0, the energy per particle E/A, the symmetry
energy J and its slope L, and the incompressibility K as given by the different theoretical mass models employed in this work. The data are
taken from Refs. [24,29,58].

Model n0 fm−3 E/A MeV J MeV L MeV K MeV

QMCπ -III 0.15 −15.7 29.42 43.0 233.0
FRDM 32.2 53.5 240.0
HFB-24 0.1578 −16.048 30.0 46.4 245.5a

NL3 0.148 −16.299 37.4 271.76

aThe value of the incompressibility quoted for the HFB24 model is, strictly speaking, just the volume part Kv .

We use the finite-range droplet model (FRDM) [29,57] as
an example of the liquid-drop based macroscopic-microscopic
models. This model provides predictions of the atomic mass
excesses and binding energies, ground-state shell-plus-pairing
corrections, ground-state microscopic corrections, and nu-
clear ground-state deformations of 9318 nuclei in the range
from 16O to A = 339. It depends on 17 constants adjusted to
nuclear masses or mass-like quantities, 21 determined from
other considerations (including five fundamental constants)
and a number of empirical relations detailed in Ref. [29].

As an example of a mass model based on a nonrelativistic
EDF with the Skyrme interaction, we use a member of the
Brussels-Montreal family of models. The latest models of this
family used to explore the NS outer crust properties were
of series HFB-22 to HFB-26 [22,24,25]. The HFB-24 model
with the BSk-24 Skyrme interaction produced the best fit to
the 2012 AME database of 2353 nuclear masses, as well as
properties of nuclear matter and neutron stars [22,24]. The
nuclear mass excess data are available via the Brussels Nu-
clear Library for Astrophysics Application (BRUSLIB) [18].
The Skyrme energy density functional is dependent on 16
variable parameters. In addition, the specific pairing force has
five parameters, the Wigner term, needed to improve fits to
N = Z masses, depends on four parameters and the correction
for spurious collective motion has five parameters. In total, the
HFB24 model is determined by 30 adjustable parameters.

Masses of even-even nuclei calculated in the RMF model
based on the Lagrangian density of the Walecka model with
the NL3 parametrization were also used in this work. That
model utilizes the exchange of σ , ω, and ρ mesons between
nucleons in the mean-field and no-sea approximation [31,58]
and has the quadratic scalar potential in the Lagrangian re-
placed by a quartic form including nonlinear σ self-interaction
terms. The model has six parameters: the mass of the σ meson,
three meson-nucleon coupling constants, and two for the σ

meson self-interaction.
It is interesting to compare predictions of the models for

basic properties of symmetric nuclear matter at the saturation
density. Of particular interest is the symmetry energy, the dif-
ference between the energy per particle in pure neutron matter
and in symmetric matter (with equal numbers of protons and
neutrons) expressed as the symmetry energy coefficient J in
the semi-empirical mass formula, its slope L, and the incom-
pressibility K .

The QMCπ -III parametrization yields symmetric nuclear
matter properties at saturation: the saturation density n0 and
the energy per particle, E0, the asymmetry coefficient asym,

the incompressibility K and its slope L, to be n0 = 0.15 fm−3,
E0 = −15.7 MeV, asym = 29.42 MeV, K = 233 MeV, and
L = 43 MeV. The asymmetry parameter asym is closely related
to the more widely used symmetry energy coefficient J and,
for practical purposes, the two quantities may be taken to be
equal (for a discussion see Ref. [59], Sec. 4.2.1). We summa-
rize these quantities for QMCπ -III, HFB-24, FRDM and NL3
in Table I.

III. RESULTS AND DISCUSSION

A. QMCπ-III nuclear mass table

To demonstrate the precision of the QMCπ -III [45] model
for calculating nuclear binding energies, Fig. 1 shows, using
a color code (available in an online version), the differences
between the calculated and experimentally measured values
for those nuclei where measured ones are available. The se-
quence of nuclei building the NS outer crust is shown with the
black squares connected with a dashed line. Up to 78Ni, the ex-
perimental values are used directly in the further calculations
(since they are available) while for heavier nuclei (starting
with 126Ru for QMCπ -III), values calculated from the model
are used. The nuclei appearing in the outer crust sequence are
mainly semimagic, having magic numbers of either neutrons
N or protons Z , indicating the role of stabilizing shell effects.
The present version of the QMCπ -III model tends to overesti-
mate the binding energies for nuclei with (semi-)closed shells
in comparison with the HFB24 and FRDM models, which
give binding energies closer to the experimental ones in some
cases, but at the price of having a larger number of model
parameters. The origin of this feature of the QMC model is so
far unknown and will be addressed in further developments of
the model.

B. Equation of state

The equation of state (EOS) for matter in the outer crust of
the NS is calculated starting from the NS surface and going
inward through the crystal lattice of different nuclei until the
boundary with the inner crust is reached. For each value of
pressure (P = 0 at the surface) the Gibbs free energy (2) is
minimized and the nuclei building the crust are determined.
The EOS for the NS outer crust calculated within the QMCπ -
III model is illustrated in Fig. 2, where various nuclear species
are presented in different colors. At the NS surface, the 56Fe
nuclei are energetically favored up to an energy density of
4.568 × 10−6 MeV fm−3, followed by the nickel Ni isotopes
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FIG. 1. Differences between nuclear binding energies (BE) as measured experimentally and as calculated with the QMCπ -III model: the
color code shows the magnitude of the difference for each nucleus, measured in units of MeV. The comparison is given just for the region of
the chart which is of interest for the outer crusts of neutron stars. The magic numbers Z = 28, 50 and N = 50, 82 are indicated with full lines
while the dashed line corresponds to Z = N . The nuclei connected with dashed line are those involved in building the outer crust, according to
the QMCπ -III mass model.

62,64,66Ni and heavier nuclei with closed neutron number shell
at N = 50, 84Kr, 82Ge, 80Zn, and 78Ni. Up to this point the
sequence of nuclei is well established, since it depends only on
the experimental masses. Beyond an energy density of around
4.726 × 10−2 MeV fm−3, the masses of the following nuclei
in the sequence, 126Ru, 124Mo, 122Zr, 120Sr, and 118Kr, with
closed neutron shell N = 82, are obtained theoretically within
the QMC model (shown in the inset of Fig. 2). The line is
not continuous since we have excluded coexistence regions
between two neighboring nuclei. The pressure increases in
steps of δP = 0.003P until the maximum density of nmax

B =
2.61 × 10−4 is reached, beyond which we enter the inner crust
of the NS where free neutrons appear alongside free electrons.

FIG. 2. The EOS for the ground state of the outer crust as given
by the QMCπ -III model. The color code (available in the online ver-
sion) indicates the different ion species involved, starting with 56Fe
at the lowest density and followed with other elements up to 118Kr
as the density increases. The BPS EOS is shown for comparison,
marked with the dashed line.

For comparison, the extensively used Baym-Pethick-
Sutherland (BPS) outer crust EOS [9] is also included in
Fig. 2. The EOSs of the other models from Sec. II C are
not plotted because the differences between them are not
distinguishable within the resolution of the plot. This is not
surprising since the pressure of the matter is dominated by
the electron contribution Pe, which is the same in all of the
models.

C. The sequence of nuclei and the two-neutron drip line

The differences between the theoretical models do not
have a significant influence on the EOS, but the sequence of
nuclei building the NS outer crust is model dependent. The
numerical results of the EOSs are presented in Table II, listing
the minimum and maximum baryon number densities (nmin

and nmax) for the layers corresponding to the different nuclear
species, as well as the values of the pressure P and energy den-
sity ε at the boundaries between them. The last two columns
give the neutron and electron chemical potential values at the
boundaries of each element layer. The nuclear masses in the
upper part of the table are taken from the experimental mass
table of Wang and Audi (2017) [53], while those in the lower
parts of the table were calculated with the various theoretical
models under consideration. The 78Ni nucleus is included in
both sections since its mass is experimentally known but the
value of nmax for the 78Ni layer is model dependent.

The sequences of outer crust nuclei for the different the-
oretical models are indicated in the top panel of Fig. 3. All
of these models predict nuclei along the N = 82 line with
variations in the deepest layers of the outer crust, before the
neutron drip-line (the boundary between the inner and outer
crust) is reached. As the current version of the HF + BCS
method used in this work is designed to calculate only prop-
erties of even-even nuclei, we can determine the transition to
the inner crust only as a two-neutron drip-line, whose exact
position is model dependent, as demonstrated in the bottom
panel of Fig. 3. All of the models being used here predict this
transition to happen for a density around ≈2.6 × 10−4 fm−3.
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TABLE II. Composition and EOS of the outer crust for the QMCπ -III, FRDM, HFB24, and NL3 mass models (experimental masses [53]
are taken for the first eight nuclei). Baryon number densities at the bottom and top of each layer nmax and nmin are also shown as well as the
neutron and electron chemical potentials.

Z N AX nmin [fm−3] nmax [fm−3] Pmax [MeVfm−3] εmax [MeVfm−3] μn [MeV] μe [MeV]

26 30 56Fe 0 4.91×10−9 3.34×10−10 4.568×10−6 −8.96 0.8
28 34 62Ni 5.07×10−9 1.62×10−7 4.31×10−8 1.510×10−4 −8.25 1.99
28 36 64Ni 1.68×10−7 7.96×10−7 3.53×10−7 7.413×10−4 −7.53 3.27
28 38 66Ni 8.23×10−7 8.64×10−7 3.78×10−7 8.048×10−4 −7.5 3.33
36 50 86Kr 8.83×10−7 1.87×10−6 1.03×10−6 1.740×10−3 −7.00 4.26
34 50 84Se 1.93×10−6 6.81×10−6 5.59×10−6 6.351×10−3 −5.87 6.46
32 50 82Ge 7.06×10−6 1.67×10−5 1.77×10−6 1.560×10−2 −4.81 8.59
30 50 80Zn 1.74×10−5 3.81×10−5 5.05×10−5 3.563×10−2 −3.58 11.15
28 50 78Ni 3.98×10−5

QMCπ -III
28 50 78Ni 5.05×10−5 6.96×10−5 4.726×10−2 −3.16 12.08
44 82 126Ru 5.27×10−5 7.57×10−5 1.13×10−4 7.087×10−2 −2.47 13.67
42 82 124Mo 7.81×10−5 1.00×10−4 1.59×10−4 9.397×10−2 −1.96 14.87
40 82 122Zr 1.04×10−4 1.31×10−4 2.17×10−4 0.122 −1.46 16.08
38 82 120Sr 1.35×10−4 2.03×10−4 3.73×10−4 0.190 −0.53 18.39
36 82 118Kr 2.11×10−4 2.61×10−4 4.95×10−4 0.244 ≈0 19.74

FRDM
28 50 78Ni 5.22×10−5 7.26×10−5 4.877×10−2 −3.1 12.2
44 82 126Ru 5.44×10−5 7.82×10−5 1.18×10−4 7.314×10−2 −2.41 13.82
42 82 124Mo 8.05×10−5 1.13×10−4 1.85×10−4 0.105 −1.71 15.45
40 82 122Zr 1.16×10−4 1.60×10−4 2.84×10−4 0.150 −0.99 17.19
38 82 120Sr 1.66×10−4 2.26×10−4 4.30×10−4 0.212 −0.23 19.06
36 82 118Kr 2.35×10−4 2.57×10−4 4.86×10−4 0.241 ≈0 19.65

HFB24
28 50 78Ni 6.20×10−5 9.14×10−5 5.798×10−2 −2.77 17.23
44 82 126Ru 6.27×10−5 7.57×10−5 1.13×10−4 7.08×10−2 −2.46 18.23
42 82 124Mo 7.81×10−5 1.22×10−4 2.06×10−4 0.115 −1.52 21.17
40 82 122Zr 1.26×10−4 1.58×10−4 2.77×10−4 0.147 −1.01 22.79
39 82 121Y 1.61×10−4 1.65×10−4 2.90×10−4 0.154 −0.94 22.99
38 82 120Sr 1.68×10−4 1.95×10−4 3.52×10−4 0.182 −0.59 24.17
38 84 122Sr 1.98×10−4 2.38×10−4 4.51×10−4 0.224 −0.13 25.72
38 86 124Sr 2.43×10−4 2.55×10−4 4.85×10−4 0.239 ≈0 26.17

NL3
28 50 78Ni 6.28×10−5 9.31×10−5 5.877×10−2 −2.74 12.98
44 82 126Ru 6.56×10−5 7.19×10−5 1.06×10−4 6.73×10−2 −2.56 13.44
42 82 124Mo 7.42×10−5 9.21×10−5 1.42×10−4 8.82×10−2 −2.12 14.45
40 82 122Zr 9.53×10−5 1.26×10−4 2.05×10−4 0.118 −1.54 15.86
38 82 120Sr 1.3×10−4 1.65×10−4 2.83×10−4 0.155 −1.01 17.17
36 82 118Kr 1.72×10−4 2.32×10−4 4.25×10−4 0.218 −0.3 18.0
36 84 120Kr 2.37×10−4 2.67×10−4 5.00×10−4 0.250 ≈0 19.78

D. Tolman-Oppenheimer-Volkoff equations
for the neutron-star outer crust

Details of the structure of the outer crust can be obtained
by integrating the well-known Tolman-Oppenheimer-Volkoff
(TOV) equations for hydrostatic equilibrium [60,61],

dP(r)

dr
= − Gρ(r)M(r)

r2

[
1 + P(r)

c2ρ(r)

][
1 + 4πP(r)r3

c2M(r)

]

×
[
1 − 2GM(r)

c2r

]−1

(13)

and

M(r) = 4π

∫ r

0
ρ(r′)r′2dr′, (14)

where ρ(r) is the mass density (at radius r) that appears in the
EOS and M(r) is the (gravitational) mass internal to radius
r. For doing this, it is necessary to have appropriate values
for the mass and radius at the inner edge of the outer crust. To
obtain those, we calculate the structure of the inner parts of the
NS, starting from the center and using a composite EOS for
the whole star comprising (i) a QMCπ -III based part for the
central core, including the full baryon octet [39], (ii) the BPS
EOS covering the inner crust (since a QMCπ -III model is not
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FIG. 3. (top) The sequence of nuclei involved in building the outer crusts of neutron stars, as predicted by the QMCπ -III, FRDM, HFB24,
and NL3 mass models. (bottom) The two-neutron drip line for the same set of mass models. The gray-scale indicates the experimentally
determined binding energies of the nuclei in GeV, where available. The full black lines indicate N and Z magic numbers while the black
dashed line corresponds to Z = N .

yet available for that region), and (iii) the QMCπ -III EOS for
the outer crust, as calculated in this work. We first specify the
required total gravitational mass of the star and iterate integra-
tions of the TOV equations to find the corresponding central
density. With that, we then make a further integration to find
the mass and radius values at the inner edges of the inner and
outer crust, iterating to determine those with high accuracy.
The transition density between the outer core and the inner
crust is taken to be where the QMCπ -III high density EOS is
joined to the BPS one (at ≈0.6n0), with the transition between
the inner and outer crust coming at the neutron drip point,
as mentioned earlier. This composite EOS gives a maximum
NS mass of 1.97M�, with a radius of 12.28 km, while for
a 1.44M� NS model it gives a radius of 13.00 km, which is
compatible with the observational values recently obtained for
PSR J0030 + 0451 using NICER [62] (1.44+0.15

−0.14M� with a
radius of 13.02+1.24

−1.06 km at 68% confidence level). In Table III
we show results obtained with the composite EOS for differ-
ent parts of the star (core, inner crust, and outer crust) for NS

models with masses of 1.0M�, 1.4M�, and 1.94M� within
the QMCπ -III model. Our other theoretical models (FRDM,
NL3, and HFB-24) give very similar values to the QMCπ -III
ones and are therefore not included in the table.

For obtaining the depths and masses of the successive
layers in the outer crust, corresponding to the succession of
nuclei listed in Table II for QMCπ -III, we then make a high-
resolution integration of the TOV equations in this region, for
NS models with each specified gravitational mass. For each
layer, we calculate the radii corresponding to the maximum
and minimum densities in the layer and the gravitational mass
contained within it. Table IV shows results for the same NS
models as in Table III with the mass in each layer given as
a percentage of the total mass in the outer crust. Table IV
also contains results from similar calculations carried out for
the three alternative comparison EOSs. The results from the
QMCπ -III outer crust calculation are also illustrated in Fig. 4,
with the profiles being shown as a function of the distance
from the surface of the star. It is interesting to observe the

TABLE III. Results for neutron-star models of 1.0M�, 1.4M�, and 1.94M� calculated with the QMCπ -III equation of state. The columns
give the total (gravitational) mass Mg and radius R, the core mass Mc and radius Rc, and the mass and thickness of the inner and outer crusts
(Min, zin) and (Mout, zout) respectively. All masses are in units of M� and radii are in km.

Model Mg R Mc Rc Min zin Mout zout

QMCπ -III 1.0 12.972 0.951 11.091 0.486×10−1 1.084 0.650×10−4 0.796
1.4 13.008 1.363 11.753 0.368×10−1 0.739 0.447×10−4 0.517
1.94 12.514 1.919 11.820 0.208×10−1 0.415 0.233×10−4 0.279
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TABLE IV. Properties of individual layers in the outer crust: Depth z in km and mass �M (as a percentage of the total mass of the outer
crust) are calculated for 1.0M�, 1.4M�, and 1.94M� neutron stars using the QMCπ -III, FRDM, HFB24, and NL3 mass models.

Element z1.0 z1.4 z1.94 �M1.0 �M1.4 �M1.94

56Fe 1.77 × 10−2 1.13 × 10−2 5.98 × 10−3 8.51 × 10−5 7.9 × 10−5 7.43 × 10−5

62Ni 6.67 × 10−2 4.25 × 10−2 2.26 × 10−2 1.07 × 10−2 1.0 × 10−2 9.51 × 10−3

64Ni 6.66 × 10−2 4.25 × 10−2 2.27 × 10−2 7.62 × 10−2 7.16 × 10−2 6.83 × 10−2

66Ni 2.63 × 10−3 1.68 × 10−3 8.98 × 10−4 5.87 × 10−3 5.54 × 10−3 5.3 × 10−3

86Kr 4.49 × 10−2 2.88 × 10−2 1.54 × 10−2 1.58 × 10−1 1.5 × 10−1 1.43 × 10−1

84Se 1.02 × 10−1 6.54 × 10−2 3.51 × 10−2 1.07 1.02 0.98
82Ge 9.36 × 10−2 6.06 × 10−2 3.27 × 10−2 2.75 2.65 2.59
80Zn 1.06 × 10−1 6.89 × 10−2 3.73 × 10−2 7.2 7.03 6.9

QMCπ -III
78Ni 3.60 × 10−2 2.35 × 10−2 1.28 × 10−2 4.07 4.0 3.95
126Ru 5.75 × 10−2 3.77 × 10−2 2.05 × 10−2 9.14 9.05 8.97
124Mo 4.27 × 10−2 2.8 × 10−2 1.53 × 10−2 9.39 9.34 9.31
122Zr 4.13 × 10−2 2.72 × 10−2 1.49 × 10−2 11.9 11.9 11.9
120Sr 7.57 × 10−2 5.0 × 10−2 2.74 × 10−2 30.96 31.18 31.35
118Kr 4.01 × 10−2 2.66 × 10−2 1.46 × 10−2 22.64 22.96 23.2

FRDM
78Ni 4.09 × 10−2 2.68 × 10−2 1.45 × 10−2 4.73 4.65 4.6
126Ru 5.81 × 10−2 3.81 × 10−2 2.07 × 10−2 9.57 9.47 9.4
124Mo 5.8 × 10−2 3.82 × 10−2 2.08 × 10−2 13.83 13.78 13.75
122Zr 5.9 × 10−2 3.9 × 10−2 2.13 × 10−2 20.0 20.08 20.13
120Sr 6.1 × 10−2 4.04 × 10−2 2.22 × 10−2 29.02 29.32 29.57
118Kr 1.81 × 10−2 1.2 × 10−2 6.61 × 10−3 10.79 10.96 11.09

HFB24
78Ni 6.9 × 10−2 4.51 × 10−2 2.45 × 10−2 8.8 8.68 8.58
126Ru 2.58 × 10−2 1.69 × 10−2 9.22 × 10−2 4.55 4.51 4.48
124Mo 7.85 × 10−2 5.17 × 10−2 2.82 × 10−2 19.41 19.36 19.32
122Zr 4.12 × 10−2 2.72 × 10−2 1.49 × 10−2 14.44 14.5 14.55
121Y 4.72 × 10−2 3.12 × 10−2 1.71 × 10−2 1.89 1.9 1.91
120Sr 2.86 × 10−2 1.89 × 10−2 1.04 × 10−2 12.72 12.83 12.92
122Sr 3.67 × 10−2 2.43 × 10−2 1.33 × 10−2 19.57 19.82 10.01
124Sr 1.0 × 10−2 6.66 × 10−3 3.66 × 10−3 6.09 6.18 6.26

NL3
78Ni 7.12 × 10−2 4.66 × 10−2 2.53 × 10−2 8.99 8.87 8.77
126Ru 1.5 × 10−2 9.84 × 10−2 5.36 × 10−2 2.55 2.53 2.51
124Mo 3.61 × 10−2 2.38 × 10−2 1.3 × 10−2 7.39 7.35 7.31
122Zr 4.83 × 10−2 3.18 × 10−2 1.74 × 10−2 13.03 13.01 13.0
120Sr 4.28 × 10−2 2.82 × 10−2 1.55 × 10−2 15.32 15.39 15.43
118Kr 5.75 × 10−2 3.81 × 10−2 2.09 × 10−2 27.87 28.15 28.37
120Kr 2.14 × 10−2 1.42 × 10−2 7.8 × 10−3 12.83 13.01 13.16

relation between the depth of the crust and the mass and radius
of the star.

E. Adiabatic index

An important property of an EOS is its stiffness, which can
be represented by the dimensionless adiabatic index, defined
as [4]

� = d ln P

d ln nB
= nB

P

dP

dnB
, (15)

with P being the total pressure and nB the baryon density. At
subnuclear densities, � can be approximated as ε

P
dP
dε

by using
the energy density ε = ρc2 [4]. The outer crust pressure in the
ground state is well approximated by Eq. (7). Figure 5 shows
the adiabatic index as a function of baryon number density

for all of the layers in the outer crust, as calculated using the
QMCπ -III model (with the gaps excluded). As can be seen,
at high mass densities, � approaches the limit of 4/3. This
is because both the electron and lattice pressures Pe and PL

have an energy density dependence proportional to ≈ρ (4/3). It
is instructive to compare this result with Fig. 3 in Ref. [17],
which shows a very similar behavior for a large range of mod-
els. This seems to suggest that the stiffness of the outer crust
is rather insensitive to the choice of different mass models.

F. Speed of sound

In Fig. 6 we show the behavior of the speed of sound
defined as (cs

c

)2
= dP

dε
(16)
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FIG. 4. Illustration of the sequence of single-ion pure layers in
the outer crust of three neutron-star models with gravitational masses
of 1.0M�, 1.4M� and 1.94M�, as calculated using the QMCπ -III
model: R signifies the total radius of the star, and Ri labels the
radii of the top and bottom of each layer. The white spaces between
some layers are the transition regions (gaps) containing more than
one species of ion. The gaps have not been included in the present
analysis.

in units of the speed of light c. Although the speed of sound
in the outer crust is very low (as expected), it is interesting to
observe that it grows systematically with increasing particle
number density of the medium. This is also consistent with
predictions of the speed of sound in NS matter based on chiral
effective-field theories and the AV8′ + UIX interaction [63].
We observe that all four mass models used in this work give
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FIG. 5. The adiabatic index � of the ground state of the outer
crust as calculated using the QMCπ3, FRDM, HFB24, and NL3
mass models, plotted as a function of the baryon number density
nB. The plot labeled QMCπ3 includes both results obtained using
experimental masses, where available, and also ones using theoreti-
cal masses calculated with QMCπ3. For the other mass models only
results obtained with theoretical masses are shown (see the inset for
details). The horizontal dashed line corresponds to � = 4/3.

FIG. 6. Similar to Fig. 5 but for the speed of sound cS in units of
the speed of light c.

very similar answers for this, showing a limited sensitivity of
the speed of sound to the composition of the outer crust.

G. Specific heat of the outer crust

The specific heat of baryonic matter in the inner crust of a
neutron star provides the microscopic input for the solution of
the heat transport equations, governing thermalization of neu-
tron stars (see, e.g., Ref. [64]). The cooling rate is dependent
on the ratio of the specific heat to the thermal conductivity and
proportional to the square of the crust depth. Therefore, the
outer crust, only several hundred meters deep, plays a minor,
but non-negligible role in NS cooling. Thermal properties
of the outer crust are fully determined by the electrons. For
completeness, we calculate the electron specific heat capacity
Ce for each layer, assuming that the electrons are a nearly
ideal, strongly degenerate, ultrarelativistic gas. At constant
temperature and pressure [65],

Ce ≈ 3.54 × 10−14
(ne

n0

)2/3
T9[MeV fm−3 K−1], (17)

where n0 is the saturation density and T9 stands for T9 =
T/109 K. The results for the QMCπ -III model of a NS with
gravitational mass Mg = 1.4M� and temperature T = 106 K
are summarized in Table V, together with the baryon and
electron number densities and the Fermi momentum of the
electrons.

IV. SUMMARY AND CONCLUSIONS

In this paper we calculated zero-temperature ground-state
properties of the outer crust of nonaccreting, nonrotating
neutron stars using measured masses for the nuclei where
available and, otherwise, theoretical predictions coming from
the QMCπ -III model. The FRDM, HFB24, and NL3 mass
models have been used as alternatives for comparison with
QMCπ -III. The EOS for the outer crust was found to be
substantially the same for all four models but the nuclidic
composition of the layers closer to the neutron drip line, and
the drip line itself, varied from model to model. We found the
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TABLE V. Properties of the individual outer crust layers for a 1.4M� neutron star calculated with the QMCπ -III mass model using
measured masses where available but otherwise masses predicted using QMCπ -III. The baryon density nB, electron density ne, electron
specific heat capacity Ce, and electron Fermi momentum pe

F are given for each layer.

Element nB [fm−3] ne [fm−3] Ce [MeV fm−3 K−1] pe
F [MeV]

56Fe 0.68×10−10 0.32×10−10 0.12×10−22 0.19×10−07

62Ni 0.21×10−08 0.97×10−09 0.12×10−21 0.59×10−06

64Ni 0.15×10−07 0.67×10−08 0.43×10−21 0.41×10−05

66Ni 0.30×10−07 0.13×10−07 0.66×10−21 0.78×10−05

86Kr 0.37×10−07 0.16×10−07 0.75×10−21 0.95×10−05

84Se 0.12×10−06 0.48×10−07 0.16×10−20 0.29×10−04

82Ge 0.36×10−06 0.14×10−06 0.32×10−20 0.85×10−04

80Zn 0.89×10−06 0.34×10−06 0.58×10−20 0.20×10−03

78Ni 0.16×10−05 0.58×10−06 0.83×10−20 0.35×10−03

QMCπ -III
126Ru 0.15×10−05 0.51×10−06 0.76×10−20 0.31×10−03

124Mo 0.21×10−05 0.72×10−06 0.96×10−20 0.44×10−03

122Zr 0.29×10−05 0.96×10−06 0.12×10−19 0.59×10−03

120Sr 0.44×10−05 0.14×10−05 0.15×10−19 0.85×10−03

118Kr 0.65×10−05 0.20×10−05 0.12×10−19 0.12×10−02

last nuclide before the drip line to be 118Kr in the QMCπ -III
and FRDM models, 124Sr in the HFB24 model (in agreement
with [22]), and 120Kr in the NL3 model.

The structure of the outer crust was found by integrating
the TOV equations with the above EOSs. Of course, in order
to obtain suitable initial conditions at the inner edge of it, we
needed to also integrate over the inner regions of the NS. For
that we used QMCπ -III for the core and the BPS EOS for the
inner crust. Once the mass and radius values were determined
at the inner edge of the outer crust, the continuing outward
TOV integration then gave results for the depths and masses
of the succession of layers comprising it (each characterized
by a different nuclide). NS models with 1.0M�, 1.4M�, and
1.94M� were studied. For each case, we observed only slight
variations in the results when varying the EOS used. As all
of the models are fit to the same set of data when the data are
known, the close agreement between them is not surprising.
The extrapolation to unknown masses in this work is not
going sufficiently far away from experiment for the model
differences to be exposed. The QMC model represents a class
of models based on subnucleon degrees of freedom, treating
finite nuclei and nuclear matter in the same framework.
In this respect, it is different from other, more frequently
used models and, in its present version, accommodates only
five well-controlled parameters related to the underlying
background physics. The latest fit involving the known
masses for approximately 740 even-even nuclei has a rms
deviation of just 1.74 MeV [45]. It is then interesting to use
this relatively precise and highly constrained model to study
the experimentally inaccessible regions of the nuclear chart
and to make comparisons with other theories.

Finally, we calculated the adiabatic index, the speed of
sound, the specific heat, and the electron number density and
Fermi momentum to complete the investigation of the perfor-
mance of the QMCπ -III model. Comparing these results with
the literature, no anomalies were found.

As for the future: in order to obtain the complete NS
EOS from crust to core, the inner crust still remains to be
modeled within the Saclay-Adelaide QMC approach, in which
Fock terms are included. Recently, the Florianopolis-Coimbra
QMC model has been applied to the pasta phase at T = 0
[66]. We are now planing to obtain predictions of the Saclay-
Adelaide model under those same conditions and to extend it
to finite T , as the temperature dependence of the pasta phase is
important in supernova modeling, as shown by Pais and Stone
(2012) [67]. Avancini et al. [68–70] studied the pasta phase
at finite temperatures within a Thomas-Fermi approach and
also by using the coexisting phase (CP) method both at fixed
neutron to proton ratios and for matter in equilibrium. They
used RMF models, with both constant and density-dependent
couplings, to describe this frustrated system and determine the
density regions for appearance of the classical pasta phases
as a function of temperature for different variants of their
models. The temperature of neutron stars can be measured
only at the surface and its variation going towards the center is
model dependent. Significant changes in the composition and
mechanical properties of the inner and outer crust have been
suggested to occur during the cooling process after the birth
of a neutron star (see, e.g., Refs. [4,71–73]). An interesting
connection between ejection of material from the neutron-star
crust and the r process was investigated by Goriely et al. [74].
They studied the composition of the outer crust material after
the decompression that would follow a possible ejection and
found that, depending on the initial state and temperature of
the matter, the decompression could provide suitable condi-
tions for a robust r processing of the light species, particularly
r nuclei with A < 140.

Furthermore, the crystalline structure of the crust, includ-
ing the outer part, and its deformation and strength are not
only temperature dependent but are also strongly affected
by magnetic fields [75,76]. Models of neutron-star cooling
considering the surface and/or atmosphere (for example,
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emission of x-rays from the carbon atmosphere of CAS A
[77]) assume an iron heat-blanketing envelope of the star
[72], with uniform average thermal distribution over the sur-
face. However, hot spots on the surface of the isolated pulsar
PSRJ0030 + 0451, recently identified in the study of a va-
riety of x-ray emission patterns obtained from the NICER
mission [62,78], suggest that the surface thermal distribu-
tion may be more complicated. We are not aware of any
model which includes the effect of the more complex struc-
ture of the outer crust, studied in this work, on neutron-star
cooling.

An isolated neutron star born in a core-collapse supernova
is likely to experience fallback of neutron-heavy r-process
material created in the ejecta [79–81]. The question of
whether this material can remain on the surface of a proto-
neutron star and reach equilibrium is open. Deposition of
energetic particles on the surface of the star may ignite nuclear
reactions, similar to those discussed in the case of accreting
envelopes [82], which would make the composition of the
outer crust more complicated.

We conclude that studies of the outer crust of neutron stars,
which are usually neglected in neutron-star modeling, deserve
further attention, particularly in the context of the effort to
determine the best possible values for the radii of neutron stars
with known masses.
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APPENDIX: THE ELECTRON CONTRIBUTION
TO THE OUTER CRUST

Both the energy per nucleon and the pressure have a term
coming from the free electron gas contribution. The energy

density of free electrons given by Eq. (5) contains the energy
density at T = 0 of a free uniform electron gas, E0

e (ne), which
is

E0
e = 8π

3h3

(
p3

F εF
) − P0

e , (A1)

as given by Eq. (24.161) in Ref. [54]. The momentum and
electron pressure are

pF = (h̄c)
(
3π2ne

)1/3
(A2)

and

P0
e = 8π

3h3

∫ pF

0

(p4/m)d p√
1 + (p/mc)2

. (A3)

Following the Chandrasekhar approach [55] by introducing
the substitutions

sinh θ = p/mc, sinh θF = pF /mc, (A4)

letting x = sinh θF = pF /mc and defining the functions g(x)
and f (x) to be

g(x) = 8x3
√

(1 + x2 − 1) − f (x),

f (x) = x(x2 + 1)1/2(2x2 − 3) + 3 ln(x +
√

(1 + x2)), (A5)

the internal kinetic energy of the electrons per unit volume V
is given by

E0
e = πm4c5

3h3
g(x) = 3.746 × 10−11g(x) MeV/fm3, (A6)

while the pressure is

P0
e = πm4c5

3h3
f (x) = 3.746 × 10−11 f (x) MeV/fm3. (A7)
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