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A class of phenomenological relativistic models of hadronic systems motivated by quantum chromodynamics
that have dual representations as models of mesons and nucleons or quarks and gluons is investigated. These
models are designed to provided qualitative insight into the role of sea quarks in hadronic structure and reactions.
The model assumption is that the Hamiltonian can be divided into two parts: one that involves degrees of freedom
in the same connected local and global color singlet and the remaining interactions that allow the connected local
and global color singlets to interact. The first class of interactions results in infinite towers of bare “particles” with
hadronic quantum numbers. All but a finite number of these remain stable when the second class of interactions is
included. The model interactions are expressed in terms of subhadronic degrees of freedom, which determine the
bare hadronic spectrum and the interactions involving the bare hadrons in terms of a small number of subhadronic
model parameters. As a first test, this paper considers the simplest case of mesons that interact via a string-
breaking interaction. One virtue of this model is that all of the bare meson masses and eigenfunctions can be
computed analytically. In addition, the string-breaking interaction leads to production vertices that can also be
computed analytically. The relativistic wave functions have a light-front kinematic symmetry. The goal is to find
a simple relativistic quantum mechanical model based on subhadronic degrees of freedom that can provide an
efficient, qualitatively consistent description of hadronic masses, lifetimes, cross sections, sea quark effects, and
electromagnetic properties. The simplicity of the model makes it a potentially useful tool to study the impact of
sea quarks on hadronic structure and reactions.
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I. INTRODUCTION

It is currently accepted that quantum chromodynamics
(QCD) [1] is the theory of the strong interaction. Lattice
calculations [2,3] support this belief. At the same time, models
based on baryons exchanging mesons [4,5] often provide an
efficient, realistic and quantitatively accurate description of
the structure and dynamics of light nuclei.

While lattice QCD is the most reliable method currently
available for testing the viability of QCD as the theory of
nuclear structure and reactions, it is a finite discretization
of a theory with an infinite number of degrees of freedom.
What makes it compelling is that it does not make any as-
sumptions about the dominant degrees of freedom; instead
it simply retains all degrees of freedom relevant to a given
volume and resolution. Because it retains both important and
unimportant degrees of freedom it is not an efficient com-
putational method, which makes it difficult to compete with
meson-exchange models as a practical computational tool for
hadronic reactions. The discretization destroys many contin-
uous symmetries of the exact theory to emphasize the role
of local gauge invariance in confinement. In addition, most
calculations use a Euclidean formulation based on imaginary
time, which often requires innovative methods [6–9] to extract
physical observables.

A reasonable expectation for the future is that lattice cal-
culations will provide a reliable means to justify and refine

more efficient realistic models of hadrons by identifying the
most important degrees of freedom and the structure of the
most important interactions between these degrees of freedom
[10,11].

Observables that are proposed to be measured at the Elec-
tron Ion Collider [12] and JLAB [13] are expressed in terms
of matrix elements of operators in hadronic states. These
observables include form factors, distribution functions, and
Wigner functions [14]. The purpose of these measurements is
to understand the structure of hadronic states at subhadronic
resolutions. The relevant theoretical input needed to compute
these observables at this sensitivity are models of the strong
current and the initial and final hadronic states in different
Lorentz frames expressed in terms of the charge carrying
QCD degrees of freedom rather than hadronic degrees of
freedom.

These considerations suggest studying fully relativistic
models that are motivated by QCD. It is desirable to use
model degrees of freedom and interactions that can be directly
constrained by lattice calculations. Since the physical degrees
of freedom in lattice calculations are locally and globally
gauge invariant, this suggests examining models based on
gauge invariant degrees of freedom. While there are many
gauge invariant degrees of freedom, a flexible class of models
could help identify the dominant gauge invariant degrees of
freedom. In addition, since the parameters of QCD are quark
masses and one coupling constant, a model motivated by
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QCD should have all scales of the model determined by one
coupling constant and a collection of quark masses.

The purpose of this work is to formulate models that are
simple enough to investigate problems where valence and sea
quarks interact. The goal is to find a class of models that
can provide a qualitatively consistent picture of mass spectra,
lifetimes, cross sections and electromagnetic observables that
also include the effects of sea quarks. Since the parameters of
QCD are quark masses and one coupling constant, a model of
QCD should have all scales determined by the quark masses
and one coupling constant. A second important goal is that
it should be simple enough to compute observables involving
sea quarks that are qualitatively consistent with experiment.
The expectation is that refinements can be treated perturba-
tively. To keep the dynamics as simple as possible, flavor
fine-structure interactions are not considered in this initial
investigation. These will need to be added for realistic appli-
cations.

The model degrees of freedom in this work are taken
to be nonlocal objects that are both local and global color
singlets. The three main QCD motivations for using models
based on these structures are Wilson’s Erice lectures of 1976
[2,3], Kogut and Susskind’s Hamiltonian formulation of Lat-
tice QCD [15] and Seiler’s [16] effort to formulate axioms of
QCD based on nonlocal color singlets. The choice of model
degrees of freedom is most directly motivated by the Kogut-
Susskind Hamiltonian. In that case the gauge invariant degrees
of freedom are connected networks of quarks, antiquarks, and
links (gluons). These states are eigenstates of the part of the
Hamiltonian involving the quark masses and the color electric
interaction, which assigns a mass to each quark and an unper-
turbed energy to each link. The local gauge invariance requires
that the quarks and antiquarks in the same connected color
singlets are connected by a network of links. Confinement
follows since separating the quarks requires more links to
maintain the local gauge invariance.

This represents a set of gauge invariant states that span
a Hilbert space of gauge invariant degrees of freedom. The
gauge covariant derivative and color magnetic interactions
are operators on this representation of the Hilbert space that
allow these degrees of freedom to interact, preserving the local
gauge symmetry.

A continuum example of a nonlocal locally gauge invariant
degree of freedom is constructed by applying operators of the
form ∫

¯ψ (x)Pe
∫ y

x Aμ
c λcdγμψ (y)F [γ ]D[γ ]

to the vacuum, where F [γ ] is a functional of paths between x
and y.

The model assumption for this work is that the strong
interaction Hamiltonian has a decomposition H = H1 + H2,
analogous to the Kogut-Susskind Hamiltonian, where the
eigenstates of H1 are systems of mutually noninteracting con-
fined connected local and global color singlets and H2 has
interactions that allows the confined connected color singlets
to interact.

If such a decomposition exists, then the expectation is that a
complete set of eigenstates of the first part of the Hamiltonian

will be a Fock space of mutually noninteracting bare confined
color singlets. These quantities have hadronic quantum num-
bers, with no explicit color degrees of freedom. The second
part would allow these bare singlets to interact. It includes
interactions that break bare confined singlets into pairs of bare
confined singlets as well as many-singlet interactions between
bare singlets.

The appeal of this framework is that it only deals with
states in the physical Hilbert space, there are no issues with
gauge choices, and the degrees of freedom have hadronic
quantum numbers. They are more directly related to quantities
that are naturally computed using lattice methods. Another
feature can be understood by considering the Kogut-Susskind
Hamiltonian. Given two quarks and two antiquarks in the
same state, they can be made into pairs of connected sin-
glets in many different ways. In the inner product of any
distinct pairs of these states, the quark degrees of freedom
will disappear, and what remains will look like the overlap
of a connected gauge invariant set of links with the vacuum
which must vanish since they are eigenstates of the same
Hamiltonian with different energies. The implication is that,
due to the gluonic degrees of freedom, quarks in the same state
in different connected singlets can be treated as distinguish-
able particles. This eliminates Van der Waals forces, which
facilitates a consistent treatment of scattering and bound states
[17–19].

The challenge of working with gauge invariant degrees of
freedom is the large number of nonlocal degrees of freedom
[16]. However, experiment and phenomenology suggest that
the dynamics is dominated a smaller number of hadronic
states that interact to first approximation by meson exchange.
The attitude of this work is to start with the simplest de-
grees of freedom and add new degrees of freedom as needed.
Connected confined color singlets containing a quark and
antiquark are modeled by treating the quark and antiquark
as interacting via a confining interaction. Additional degrees
of freedom with the same quantum numbers corresponding
to different “excited” confining interactions are anticipated,
but will not be considered. In a lattice picture the excited
interactions correspond to gluon configurations that make the
energy of a quark-antiquark system stationary, but not min-
imal, for fixed quark and antiquark positions. These excited
gluon configurations are of interest in meson searches [20].

The simplest interaction between quark-antiquark-singlets
is based on a “string-breaking” vertex at the quark level. This
interaction generates an infinite number of vertices coupling
one bare singlet to two bare singlets. Since QCD has only
one coupling constant this vertex should use the same strength
parameter, up to a dimensionless constant of order unity, that
is used in the confining interaction. These parameters, along
with the constituent quark masses, fix all of the production
vertices relating two bare confined singlets to one bare con-
fined singlet. The model has the appealing feature that all of
production vertices in the meson representation can be com-
puted analytically. This facilitates computations involving sea
quarks. The main question that this work addresses is whether
such a simple picture, with all scales fixed by one parameter,
can provide a qualitatively consistent treatment of scattering,
resonances, spectral and electromagnetic properties.
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This picture is not new; it has motivated many related quark
models [16,20–42]. It is closely related to flux tube models
in interpretation. The treatment of bare mesons is mathemati-
cally a constituent quark model. The novel feature of this work
is that all of the meson vertices can be computed analytically,
making it possible to efficiently investigate the role of sea
quarks, and high-lying states. There are explicit formulas for
wave functions, which facilitate calculations. The model is
constructed to be fully relativistic so it is applicable to systems
of light quarks and scattering with large momentum transfers.
In addition, the relativistic dynamics is formulated with a
light-front kinematic symmetry which is useful for hadronic
structure studies. The framework also provides a dual descrip-
tion of strongly interacting particles both in terms of QCD
and hadronic degrees of freedom. The dual description has the
advantage that refinements to the model can be constrained by
both lattice QCD and hadronic phenomenology.

While this paper focuses on the meson sector, which is
the simplest type of hadronic system, there is still signifi-
cant current interest in light mesons [20], which require a
relativistic treatment. In addition the model discussed in this
paper, with some minor modifications, can be applied to treat
baryons and exotic mesons. In the strong coupling limit, the
lowest energy states are the ones with the minimal string
length. This suggests that in the valence sector baryons can
be modeled as bound states of a quark and diquark, exotic
mesons could be modeled as bound states of a diquark and an
antidiquark. These mathematically look similar to the meson
models, with all of the computational advantages. Schwinger-
Dyson studies [43] have demonstrated that diquark models
of baryons compare favorably to full three-body calculations.
Exotic molecules can be also directly modeled using methods
discussed in this paper. The relativistic nature of these models
are particularly relevant for hadrons composed of light quarks
and for computations of parton distribution functions [14].
Realistic applications require flavor dependent interactions,
which are not considered in this initial model.

Methods for constructing exactly Poincaré invariant mod-
els are discussed in Sec. II. It contains a description of
irreducible representations of the Poincaré group in a light-
front basis. It also has explicit expressions that relate the
tensor product of two light-front irreducible representations
to a direct integral of light-front irreducible representations.
These are used in the construction of a fully relativistic dy-
namics in the subsequent sections. Section III discusses an
exactly Poincaré-invariant model of confined quark-antiquark
glue degrees of freedom. Properties of the confining inter-
action are discussed in Sec. IV. A string-breaking vertex is
introduced in Sec. V. Matrix elements of the string-breaking
vertex with all of the confined bare meson states are computed
analytically. A minimal Poincaré invariant dynamical model
coupling sea and valence quarks is given in Sec. VI. The
coupled channel bound state problem is discussed in Sec. VII.
Meson-meson scattering is discussed in Sec. VIII. This in-
cludes a discussion of how to formulate scattering with bound
states in the continuum. The treatment of resonances is dis-
cussed in Sec. IX. Electromagnetic observables are discussed
in Sec. X. Conclusions are presented in Sec. XI. The analytic
expression for matrix elements of the string-breaking interac-

tion is derived in Appendices A and B. Appendix C discusses
the conditions for the existence of scattering wave operators
in models with an infinite number of coupled channels. Ap-
pendix D discusses details of the scattering calculations.

II. KINEMATIC CONSIDERATIONS—LIGHT FRONT
BASICS

In this section the notation for the kinematic variables
that are used in this work is introduced. A relativistic treat-
ment is utilized because the kinetic energies of confined light
quarks are normally comparable or much larger than the quark
masses. In addition relativistic energies and momentum trans-
fers are needed to be sensitive to degrees of freedom inside of
a hadron. Light-front representations [44–48] are particularly
convenient for these purposes because of the kinematic nature
of the subgroup of light-front-preserving Lorentz boosts.

A relativistic dynamics is defined by specifying operators
representing the Casimir operators for the Poincaré group.
These are the mass and square of the spin. The mass oper-
ator plays the same role in relativistic quantum models as
the center of mass Hamiltonian in nonrelativistic quantum
theories. The spin must commute with the mass. When this
happens the Hilbert space can be decomposed into a direct
integral of irreducible representation spaces. The dynamical
unitary representation of the Poincaré group leaves these ir-
reducible subspaces invariant. In addition, the transformation
properties on these irreducible subspaces are identical to the
transformation properties of a free particle with the mass and
spin associated with the subspace. The complication is the
requirement that the unitary representation of the Poincaré
group clusters into tensor products implies that the spin is dy-
namical. The reason for this is that the relative orbital angular
momentum depends on subsystem masses, which are dynam-
ical for subsystems of two or more particles. The problem of
constructing a relativistic dynamics involves simultaneously
diagonalizing the two dynamical operators. For the applica-
tions in this work mass operators are constructed to commute
with the noninteracting spin, resulting in a dynamical model
that is similar in complexity to a nonrelativistic model. A
noninteracting spin does not necessarily mean that the angular
momentum is kinematic. The price paid for using representa-
tions with a noninteracting spin is that there will be violations
of cluster properties for systems of more than two hadrons.
The states in this work are truncated to two hadron states
where there are no violations of cluster properties. There
are methods to repair cluster properties [46,49,50] for more
complicated systems. These methods generate a dynamical
spin operator and many-body interactions.

The kinematic problems are then to describe relativistic
one and two-particle states. The Hilbert space for a parti-
cle of mass m and spin j is the mass m spin j irreducible
representation space of the Poincaré group. The irreducible
representation space is the space of square integrable func-
tions of a complete set of commuting observables, that include
the mass and spin, and are functions of the infinitesimal gen-
erators of the Poincaré group.

For a quark-antiquark pair confined to a local and global
color singlet, there is no experimental way to separate the
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quark kinetic energy from the confining interaction. This
means that there is no experimental identification that relates
the description of a quark or antiquark to an irreducible rep-
resentation of the Poincaré group. To illustrate this note that a
quark-antiquark mass operator (rest energy) can be expressed
as the sum of a relative kinetic energy and an interaction in
many equivalent ways,

M = K1 + V1 = K2 + V2 V2 = V1 + K1 − K2, (1)

where both V1 and V2 are confining interactions associated
with different choices of the quark relative kinetic energy.
Nevertheless, it is still convenient to assign a mass to the quark
and antiquark and treat them as particles that transform irre-
ducibly with respect to the Poincaré group. This means that
their transformation properties are characterized by a “mass”
and spin like ordinary particles. These quantum numbers la-
bel positive-mass positive-energy irreducible representation
spaces of the Poincaré group. Since the single-quark repre-
sentation is not the dynamical representation of the Poincaré
group, it has no physical consequences, but it is helpful input
for building representations of the Poincaré group when the
quarks interact.

In what follows a light-front [45] basis is used to label
vectors in each irreducible representation space. A light-front
is a hyperplane of space-time points satisfying x+ = x0 + n̂ ·
x = 0 for an arbitrary but fixed space-like unit vector n̂. The
light-front components of the four-momentum are

p± = p0 ± n̂ · p (2)

and

p⊥ = p − n̂(n̂ · p). (3)

While any representation can be used to describe free parti-
cles, when interactions are included a light-front dynamics
[44] has advantages [45–48] for treating reactions involving
electroweak probes, where the initial and final states are in
different reference frames. This is because in a light-front
dynamics the boosts relating the initial and final frames are
kinematic (independent of interactions) and the magnetic
quantum numbers are invariant under these boosts. In ad-
dition, in a light-front dynamics the light-front momentum
transferred to the constituents in the impulse approximation
is the same as the light-front momentum transferred to the
hadron in all frames related by light-front boosts. It is the only
one of Dirac’s three forms of dynamics [44] with both of these
properties.

It is useful to express the light-front components of the
four-momentum as 2 × 2 Hermitian matrices

P :=
(

p+ p1 − ip2

p1 + ip2 p−

)
= pμσμ, (4)

where σμ are the Pauli matrices and the identity. The deter-
minant of P is the invariant (p0)2 − p2 = −p2. Real Lorentz
transformations connected to the identity can be expressed in
this notation as

P → P′ = APA† det(A) = 1. (5)

The group of 2 × 2 matrices with determinant 1 is SL(2,C). It
is a double cover of the Lorentz group since A and −A result
in the same Lorentz transformation.

Vectors in the irreducible representation space Hm j can
be taken as square integrable functions of the light-front
three-momentum components of p, p̃ = (p+, p⊥) and the
eigenvalues μ̃ of the n̂ component of the light-front spin,
j f · n̂,

〈(m, j)p̃, μ̃|ψ〉,∫
d2p⊥

∫ ∞

0
d p+

j∑
μ=− j

|〈(m, j)p̃, μ̃|ψ〉|2 < ∞. (6)

The ˜ is used to denote light-front 3-vectors and light-front
spins. The commutation relation determine the eigenvalue
spectrum of these operators. The spectrum of p+ is (0,∞)
while the spectrum of p⊥ is (−∞,∞). The four momenta are
on shell and satisfy the light-front dispersion relation

p− := m2 + p2
⊥

p+ . (7)

Spins in different frames can be compared by boosting to the
rest frame with a specific choice of boost. This procedure
is not unique because any boost multiplied on the right by
a momentum-dependent rotation is also a boost. Thus, there
are different types of spin observables that are associated with
different choices of boosts. All of the spin operators satisfy
SU(2) commutation relations, which fixes j to be integer or
half integer, and μ̃ to vary from − j to j in integer steps. In the
light-front representation the natural boosts used to define the
spin are the subgroup of light-front preserving boosts, which
are defined below.

In the basis Eq. (6) p+ = 0 corresponds to infinite mo-
mentum in the −n̂ direction, so wave functions representing
normalizable vectors vanish for both large p+ and for p+ near
0. The rest four-vector has light-front components p+ = p− =
m.

For quarks and antiquarks j = 1/2 and there are additional
flavor and color quantum numbers. A noncovariant δ-function
normalization is chosen for these irreducible plane-wave basis
states 〈(

m, 1
2 , f ′, c′)p̃′, μ̃′∣∣(m, 1

2 , f , c
)
p̃, μ̃

〉
= δ(p̃′ − p̃)δμ̃′μ̃δ f ′ f δc′c, (8)

where

δ(p̃′ − p̃) := δ(p+′ − p+)δ(p′
⊥ − p⊥). (9)

A relativistic quantum mechanics is defined by a unitary rep-
resentation, U (�, a), of the subgroup of the Poincaré group
continuously connected to the identity that is consistent with
the dynamics [51]. This ensures that probabilities, expectation
values, and ensemble averages are independent of inertial
frame.

The construction of U (�, a) starts by considering repre-
sentations of rotations of a zero-momentum eigenstate. Since
rotations leave the rest four-momentum vector unchanged, the
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rotation can only affect the magnetic quantum numbers:

U (R, 0)|(m, j)0̃, μ̃〉 =
j∑

ν̃−= j

|(m, j)0̃, ν̃〉D j
ν̃μ̃(R), (10)

where D j
ν̃μ̃(R) := 〈 j, ν̃|U (R, 0)| j, μ̃〉 is the 2 j-dimensional

unitary representation of SU(2):

D j
ν̃,μ̃[R] =

j+μ̃∑
k=0

√
( j + ν̃)!( j − ν̃)!( j + μ̃)!( j − μ̃)!

k!( j + ν̃ − k)!( j + μ̃ − k)!(k − μ̃ − ν̃)!

× Rk
++R j+ν̃−k

+− R j+μ̃−k
−+ Rk−μ̃−ν̃

−− (11)

in the | j, μ̃〉 basis and

R :=
(

R++ R+−
R−+ R−−

)
= cos(θ/2) + iθ̂ · σ sin(θ/2) = ei θ

2 ·σ

(12)
is a SU(2) rotation matrix. Space-time translations of rest
four-momentum eigenstates are defined by

U (I, a)|(m, j)0̃, μ̃〉 = e−im(a++a− )/2|(m, j)0̃, μ̃〉, (13)

where the light-front components of the rest momentum are
0̃ := (m, 0, 0). The light-front spin is defined so that it does
not change when the system is boosted from the rest momen-
tum to a specified momentum, p, with a light-front preserving,
(x+ = 0), boost:

U (B f (p/m), 0)|(m, j)0̃, μ̃〉 = |(m, j) p̃, μ̃〉
√

p+

m
. (14)

The square root factors make this unitary for basis states with
a δ-function normalization Eq. (8) in a Hilbert space with
norm Eq. (6). U (�, a) for any finite Poincaré transformation
on any basis state can be expressed as a product of these
elementary unitary transformations. The result is that the mass
m spin j irreducible unitary representation of the Poincaré
group in a light front basis Eq. (6) is

U (�, a)|(m, j), p̃, μ̃〉

=
j∑

μ̃′=− j

|(m, j), p̃′, μ̃′〉eia·p′

√
p′+

p+

× D j
μ̃′μ̃

[
B−1

f (p′/m)�B f (p/m)
]
. (15)

The SL(2,C) representation of the light-front boosts,
B f (p/m), that transform (m, 0) to p are needed to construct
the light-front Wigner rotations, B−1

f (p′/m)�B f (p/m). They
are

B f (q) = ±
(√

q+ 0
q⊥√

q+
1√
q+

)

B−1
f (q) = ±

⎛
⎝ 1√

q+ 0

− q⊥√
q+

√
q+

⎞
⎠. (16)

These 2 × 2 matrices B f (q) are related to the four-vector
components of the 4 × 4 matrices Bμ̃

f ν̃ (q) by

Bμ̃

f ν̃ (q) = 1
2 Tr[σμ̃B f (q)σν̃B†

f (q)]. (17)

The four-vector representation of the light-front boosts are
simply expressed in terms of how they act on the light-front
components of a four-vector

a+ → a+′ = q+a+ a⊥ → a′
⊥ = a⊥ + q⊥a+, (18)

with a−′ determined by the invariance of the proper length of
a. The inverse light-front preserving boost is

a+ → a+′ = 1

q+ a+

a⊥ → a′
⊥ = a⊥ − q⊥

q+ a+. (19)

The 4 × 4 matrix representation of the light-front-preserving
boost, B f (q) is

B f (q)μν =

⎛
⎜⎜⎜⎜⎜⎝

q+2+q2
⊥+1

2q+
q1

q+
q2

q+
q+2+q2

⊥−1
2q+

q1 1 0 q1

q2 0 1 q2

q+2−q2
⊥−1

2q+ − q1

q+ − q2

q+
q+2−q2

⊥+1
2q+

⎞
⎟⎟⎟⎟⎟⎠. (20)

Light-front boosts have the distinguishing property that
they form a subgroup of the Poincaré group. This is easy to
see from the matrices Eq. (16), which are lower triangular with
real entries on the diagonal. For a general Lorentz transforma-
tion, �, R f (�, p) := B−1

f (�p)�B f (p) is a light-front Wigner
rotation. Because of the subgroup property this Wigner rota-
tion is the identity when � is a light-front boost. This means
that light-front boosts leave the light-front magnetic quan-
tum numbers unchanged. The light-front magnetic quantum
numbers can be identified with the magnetic quantum number
measured in the particle’s rest frame when boosted to the rest
frame with the light-front-preserving boost B−1

f (p/m).
It is typical when defining relativistic spins to choose all

types of spin (light front, canonical, helicity) to be identical in
the particle’s or system’s rest frame. Different types of spins
are distinguished by how spins in other frames are related to
spins in the rest frame. This convention will be followed in
constructing dynamical models.

Because n̂ defines a preferred direction, the light-front
Wigner rotation of a rotation,

R 	= B−1
f (Rp/m)RB f (p/m), (21)

is not the rotation. Instead it is a conjugate representation of
the original rotation that depends on the direction of p̂ and the
orientation, n̂, of the light front. This representation has the
structure:

B−1
f (R2R1 p)R2B f (R1 p) × B−1

f (R1 p)R1B f (p)

= B−1
f (R2R1)R2R1B f (p). (22)

To add angular momenta with SU(2) Clebsch-Gordan co-
efficients, the angular momenta need to be transformed to
a representation where they all undergo the same rotation,
independent of the particle’s momentum. This is important for
constructing many-body eigenstates of angular momenta.

The canonical boost is the unique boost that has this
property. In the 2 × 2 matrix representation the polar decom-
position of a general boost has the form B(p) = P(p)R(p),
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where P(p) is a positive Hermitian matrix and R(p) is an
SU(2) rotation. The positive matrix P(p) is the SL(2,C) ma-
trix representation of the corresponding canonical boost. Both
P(p) and R(p) are functions of a general boost B(p) defined
by

P(p) = [B(p)B†(p)]1/2 R(p) = [B(p)B†(p)]−1/2B(p).
(23)

When B(p) is a light-front boost the rotation R(p) that re-
lates the canonical and light-front boosts is called a Melosh
rotation [52]. The way that the light-front spins are added
is to start with a tensor product representation. For a basis
vector representing a two-body rest state, the single-particle
light-front spins are converted to canonical spins, which can
then be added to the relative orbital angular momenta using
SU(2) Clebsch-Gordan coefficients. The resulting two-body
rest state, which has the same rotational covariance properties
as (10), is boosted to the final total momentum with a light-
front boost.

For a noninteracting quark-antiquark pair the total nonin-
teracting four-momentum is

P = pq + pq̄. (24)

The kinematic invariant mass is

M0 =
√

−P2. (25)

The boosts are parameterized by the total four velocity

Q = P/M0. (26)

The momentum of the quark in the rest frame of the noninter-
acting quark-antiquark pair is defined by transforming to the
rest frame with a light-front preserving boost:

k = k f = kq = B−1
f (Q)pq, k f q̄ = B−1

f (Q)pq̄. (27)

Note that k is not a 4-vector; it is invariant with respect to
light-front boosts. To show this note that under a general
Lorentz transformation, �, k transforms like

k′ = B−1
f (�Q)�pq = B−1

f (�Q)�B f (Q)B−1
f (Q)pq

= B−1
f (�Q)�B f (Q)k. (28)

If � is a light-front boost, then the rotation acting on k is the
light-front Wigner rotation of a light-front boost which is the
identity. This gives k′ = k.

The variables P̃ and k̃ or P̃ and k can be taken as indepen-
dent variables.

The light-front components, k̃, of k are

k⊥ = kq⊥ = pq⊥ − p+
q

Q+ Q⊥ k+ = p+
q

Q+ , (29)

which follows from Eq. (19). Light-front momentum fractions
are defined by

ξ = k+

M0
= p+

q

P+ 1 − ξ = p+
q̄

P+ , (30)

which can be used to express Eq. (29) as

k⊥ = pq⊥ − ξP⊥ k+ = M0ξ . (31)

The n̂ component of k is

n̂ · k = 1

2

(
k+ − k2

⊥ + m2
q

k+

)
. (32)

The dynamical component of the light-front four-momentum
is

P− := P2
⊥ + M2

0

P+ . (33)

The tensor product of the quark and antiquark Hilbert spaces
can be decomposed into a direct integral of irreducible rep-
resentation spaces of the Poincaré group in a light-front
basis [46]. In what follows the color and flavor indices are
suppressed. The tensor product and two-particle Poincaré ir-
reducible light-front bases is related to the direct integral of
irreducible representations by

|(κ, j)P̃, μ̃(l, s)〉
=

∑
ν̃q,ν̃q̄,μq,μq̄,m,μs

∫
dk̂q|(mq, jq)p̃q, ν̃q〉 ⊗ |(mq̄, jq̄)p̃q̄, ν̃q̄〉

× D
jq
ν̃qμq

[R f c(kq/mq)]D jq̄
ν̃q̄μq̄

[R f c(kq̄/mq̄)]

×〈 jq, μq, jq̄, μq̄|s, μs〉Y m
l (k̂)〈s, μs, l, m| j, μ̃〉

×
√

p+
q p+

q̄ [ωq(κq) + ωq̄(κq̄)]

ωq(κq)ωq̄(κq̄)(p+
q + p+

q̄ )
. (34)

The magnetic quantum numbers without the tildes are canon-
ical spin labels. The coefficients relating the tensor product
to the irreducible two-body states are Clebsch-Gordan co-
efficients for the Poincaré group in the light-front basis. In
Eq. (34) p̃q and p̃q̄ on the right are functions of kq implicitly

defined by Eq. (27). κ := |kq| = kq̄ and ωq(κ ) =
√

m2
q + κ2.

The rotation R f c(kq/mq ) := B−1
f (kq/mq )Bc(kq/mq), where

Bc(kq/mq) is a rotationless (canonical) boost, transforms the
canonical spins to light-front spins. R f c(kq/mq) is the Melosh
[52] rotation discussed above. The SL(2,C) representation the
rotationless boost (the canonical boost) is

Bc(p/m) = e
ρ·σ
2 = cosh(ρ/2) + ρ̂ · σ sinh(ρ/2)

=
√

p0 + m

2m
I + p̂ · σ

√
p0 − m

2m
, (35)

where ρ is the rapidity of the Lorentz transformation. The
inverse is

B−1
c (p/m) = e− ρ·σ

2 = cosh(ρ/2) − ρ̂ · σ sinh(ρ/2)

=
√

p0 + m

2m
I − p̂ · σ

√
p0 − m

2m
. (36)

The canonical spins and orbital angular momenta rotate to-
gether, independent of the quark and antiquark momenta, so
they can be coupled with SU(2) Clebsch-Gordan coefficients.

The Poincaré group Clebsch-Gordan coefficients can be
applied to any product of positive mass irreducible repre-
sentations to construct a two-body positive mass irreducible
representation.
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The two-particle irreducible basis and the bases in terms of momentum fractions and transverse momenta are related by

|P̃, kq⊥, ξq, ν̃1, ν̃2〉 =
∑

μq,μq̄,m,μs

|(κ, j)P̃, μ̃(l, s)〉〈 j, μ|s, μs, l, μl〉Y ∗l
m (q̂)〈s, μs| jq, μq, jq̄, μq̄〉

× D
jq
μqνq [Rc f (kq/mq)]D jq̄

μq̄νq̄ [Rc f (kq̄/mq̄)]

√
ωq(κ )ωq̄(κ )

[ωq(κ ) + ωq̄(κ ))ξ (1 − ξ )]
. (37)

These can be combined to get

|P̃, kq⊥, ξq, ν̃1, ν̃2〉 = |(mq, jq)p̃q, ν̃q〉 ⊗ |(mq̄, jq̄)p̃q̄, ν̃q̄〉
√

p+
q p+

q̄

(p+
q + p+

q̄ )ξ (1 − ξ )
. (38)

Change of basis matrix elements can be read off from these matrix elements. These were formulated for quark-antiquark states,
but analogous relations hold for two hadron states.

Finally, for the purpose of constructing interacting light-front models it is useful work in a basis where the angular momentum
couplings are removed from Eq. (34). The advantage of this representation is that rotationally covariant interactions are easily
included in this basis. The result is a representation where spins and single particle 3 momenta in the two particle rest frame
transform together:

|P̃, κ, μq, μq̄〉 :=
∑
ν̃q,ν̃q̄

|(mq, jq )p̃q(P̃, κ ), ν̃q〉 ⊗ |(mq̄, jq̄ )p̃q̄(P̃, κ ), ν̃q̄〉D jq
ν̃qμq

[R f c(kq/mq)]D jq̄
ν̃q̄μq̄

[R f c(kq̄/mq̄)]

×
√

p+
q p+

q̄ (ωq(κq) + ωq̄(κq̄))

ωq(κq)ωq̄(κq̄)(p+
q + p+

q̄ )
. (39)

In this representation the spins are not subsystem light-front
spins, but when they are added to the orbital angular momen-
tum using SU(2) Clebsch-Gordan coefficients the resulting
spin is the light-front spin of the irreducible two-particle sys-
tem.

III. CONFINED COLOR SINGLETS—BARE MESONS

The model degrees of freedom are local and global con-
fined color singlet quark-antiquark-gluon states. These are
modeled by a quark-antiquark pair interacting via a confin-
ing interaction. While it is possible to use a color-dependent
confining interaction, the color indices are summed so the
final degrees of freedom are local and global color singlets.
Thus, in what follows the color degrees of freedom of both
the quarks and the interactions do not appear.

The model mass operator for a bare confined quark-
antiquark-glue singlet has the form

Mc = M0 + Uc. (40)

The confining interaction Uc is chosen to have the form

Uc =
√

κ2 + Vc + m2
q +

√
κ2 + Vc + m2

q̄ − M0, (41)

where

Vc = −λ2

4
∇2

k + V0 (42)

and V0 and λ are constants and κ2 = k2. With this choice the
confined singlet quark-antiquark invariant mass operator, Mc,
is

Mc =
√

κ2 + Vc + m2
q +

√
κ2 + Vc + m2

q̄. (43)

For equal mass quarks and antiquarks this interaction is an
addition to the square of the mass operator: M2

c = M2
0 + 4Vc.

The form Eq. (43) is a generalization that can be used to treat
unequal quark masses, which can be used to model mesons
with heavier quarks. The only flavor dependence is assumed
to be in the quark masses.

This mass operator is the rest energy operator—which is
the relativistic analog of the center-of-mass Hamiltonian. The
mass operator Eq. (43) is a function of the operator

κ2 + Vc = κ2 − λ2

4
∇2

κ + V0, (44)

which is, up to constants, the Hamiltonian for a quantum
mechanical harmonic oscillator. It follows that the wave func-
tions of Eq. (40) are harmonic oscillator wave functions,
however the spectrum is different; the eigenvalues of Mc are
obtained by replacing κ2 + Vc in Eq. (43) by the harmonic
oscillator eigenvalues. The resulting bare meson mass eigen-
values are

Mnl →
√

m2
q + λ

(
2n + l + 3

2

)
+ V0

+
√

m2
q̄ + λ

(
2n + l + 3

2

)
+ V0. (45)

While additional flavor dependent interactions would be
needed for a quantitatively more realistic model, that is not
the goal of this work. However, as a few-body model, this
model does not have dynamical chiral symmetry breaking.
However, a light pion (Goldstone boson) is essential for a
hadronic dynamics with the correct range. This can be realized
in this model by adding a spin-spin interaction that acts in the
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l = 0 states and gives the physical pion mass and the physical
π -ρ mass splitting:

Vss := (a + bsq · sq̄)δl0. (46)

This interaction is easy to include in the model; it has the
advantage that is does not change the radial wave functions.

The mass operator obtained by adding this interaction to
the confining interaction is

Mc =
√

κ2 + Vc + m2
q +

√
κ2 + Vc + m2

q̄ + Vss. (47)

The eigenvalue spectrum becomes

Mnls →

√√√√√m2
q + λ

⎛
⎝2n + l + 3

2

)
+ V0

+
√

m2
q̄ + λ

(
2n + l + 3

2

)
+ V0

+ δl0

{
a + b

2
[s(s + 1)]

}
. (48)

Solving for a and b to get the π and ρ masses and splittings
gives

a = mπ −
√

m2
q + λ 3

2 + V0 −
√

m2
q̄ + λ 3

2 + V0, (49)

b = mρ − mπ . (50)

The π and ρ masses are bare meson masses; In this and the
next section the constants a and b are chosen so the bare π and
ρ masses are the physical masses. When the string-breaking
interaction is introduced the bare π mass will be renormalized
and the ρ will become unstable with a resonant peak shifted
relative to the bare value. After the string-breaking vertex is
introduced the constants a and b will be chosen so the bare
π and ρ masses become mπ-bare = 0.16 GeV and mρ-bare =
0.882 GeV. With these choices the string-breaking interaction
brings the masses closer to their experimental values.

The harmonic oscillator wave functions are known,

Rnl (r) = (−)n

(
λ

2

)3/4
√

2�(n + 1)

�
(
n + l + 3

2

)(√
λ

2
r

)l

× L
l+ 1

2
n

(
λ

2
r2

)
e− λ

4 r2
. (51)

In this expression the variable r is the Fourier-Bessel trans-
form of the light-front invariant variable κ . In momentum
space they have the same form with

R̃nl (κ ) = (−)n

(
2

λ

)3/4
√

2�(n + 1)

�
(
n + l + 3

2

)
(√

2

λ
κ

)l

× L
l+ 1

2
n

(
2

λ
κ2

)
e− 1

λ
κ2

. (52)

In the noninteracting two-particle irreducible bases the coor-
dinate and momentum-space mass/spin eigenfunctions have

the form

〈P̃, j, μ̃, r, l, s|P̃′, j′, μ̃′, n′, l ′, s′〉
= δ(P̃ − P̃′)δμ̃μ̃′δ j′ jδs′sδl ′lRn′l ′ (r) (53)

and

〈P̃, j, μ̃, κ, l, s|P̃′, j′, μ̃′, n′, l ′, s′〉
= δ(P̃ − P̃′)δμ̃μ̃′δ j′ jδs′sδl ′l R̃n′l ′ (κ ), (54)

respectively. In these expressions the r-space basis func-
tions are obtained from the corresponding momentum-space
basis functions using a Fourier-Bessel transform on the
momentum-space functions. The total light-front momentum
is not transformed.

A unitary irreducible representation of the Poincaré group
consistent with this dynamics can be defined on the mass-spin
basis states, |P̃, j, μ̃, n, l, s〉. These states span a subspace
H j,n,l,s. This subspace is invariant under the following light-
front unitary representation of the Poincaré group

Un jls(�, a)|P̃, j, μ̃, n, l, s〉

= e−ia·�Pnls

j∑
ν̃=− j

|�̃Pnls, j, ν̃, n, l, s〉

×
√

(�Pnls)+

P+ D j
ν̃μ̃

[
B−1

f (�Pnls)�B f (Pnls)
]
, (55)

where the dynamics enters in P−:

Pnls = (P+, P⊥, P−
nls) =

(
P+, P⊥,

P2
⊥ + M2

nls

P+

)
. (56)

Note that the mass in this expression is the eigenvalue of
the confining mass operator. What makes this a light-front
dynamics is that the mass eigenvalues do not appear on the
right hand side of Eq. (55) for Poincaré transformations �

that leave the light front invariant.
This dynamical representation differs from the noninteract-

ing two-particle irreducible representation by the replacement
M0 → Mnls. Since the model has additional string-breaking
interactions, this is not the physical unitary representation
of the Poincaré group. Note that in this light-front represen-
tation rotational invariance is exactly preserved, although it
is a dynamical transformation since it depends on the mass
eigenvalues.

The Hadronic representation of the Hilbert space is the
infinite direct sum of these irreducible subspaces over the
confined (bare) mass channels

HH := ⊕Hn jls. (57)

The corresponding dynamical unitary representation of the
Poincaré group on HH is

UH (�, a) =
∑
n jls

Un jls(�, a), (58)

where each Un jls(�, a) : Hn jls → Hn jls. The wave functions
〈P̃, k, μq, μq̄|P̃′, n, j, l, s, μ〉 define a unitary mapping �n jls
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from the irreducible representation space Hn jls to the two-
free-quark space, HQ. The sum

� :=
∑
n jls

�n jls (59)

defines a unitary map from the hadronic Hilbert space HH to
the quark-antiquark Hilbert space HQ. The unitary represen-
tation of Poincaré group on HQ in the quark representation is
defined by

UQ(�, a) = �UH (�, a)�†. (60)

The quark representation is needed to compute current matrix
elements involving electrically charged quarks.

IV. PROPERTIES OF THE CONFINING INTERACTION

The spectrum of the confined singlet mass operator is

Mnls →
√

m2
q + λ

(
2n + l + 3

2

)
+ V0

+
√

m2
q̄ + λ

(
2n + l + 3

2

)
+ V0

+ δl0

{
a + b

2
[s(s + 1)]

}
. (61)

The root-mean-square (R.M.S.) relative displacement and mo-
mentum of the quark and antiquark in each of the oscillator
states is

〈
r2

nls

〉1/2 =
√

2

λ

(
2n + l + 3

2

)

〈
k2

nls

〉1/2 =
√

λ

2

(
2n + l + 3

2

)
. (62)

The following scaling relations emerge from these expres-
sions in the limit that the oscillator quantum number, 2n + l ,
gets large,

Mnls ≈
√

2λ
〈
r2

nls

〉 1
2 . (63)

This shows an asymptotically linear confinement with respect
to the light-front invariant variable r. In addition as l gets
large,

l ≈ 1

4λ
M2

nls = αM2
nls, (64)

which shows Regge behavior and as n gets large. These obser-
vations suggest that in spite of its simplicity, this model has
some properties that are qualitatively consistent with obser-
vations. Note that models with a similar structure, where the
mass square eigenstates are harmonic oscillator wave func-
tions, also emerge from Holographic QCD [53].

The parameters of this model are the quark masses, the
oscillator coupling strength λ, the constant V0, and the param-
eters a and b in the spin-spin interaction. The quark masses
and V0 appear in the spectrum in Hamiltonian in the combina-
tion, m2

q + V0, so they are essentially the same parameter. The
difference is only relevant for matrix elements of currents.

TABLE I. Regge trajectories, J = L + 1, S = 1 mq = 0.385,
λ = 0.282.

Meson l Exp. mass Exp. (mass)2 j Calc. mass Calc. (mass)2

ρ 0 0.770 0.593 1 0.770 0.593
a2 1 1.320 1.742 2 1.311 1.719
ρ3 2 1.690 2.856 3 1.687 2.846
a4 3 2.040 4.162 4 1.994 3.976
ρ5 4 2.350 5.522 5 2.259 5.103
a6 5 2.450 6.000 6 2.497 6.335

In the absence of the string-breaking interaction, which
will be introduced in the next section, the parameters a and
b can be chosen to get the experimental pion mass and π − ρ

mass splitting. The quark masses and coupling constant can
be chosen to get the correct Regge slope and intercept. While
there is not a single Regge slope or intercept, all of the slopes
are similar.

In what follows the Regge parameters from the family
containing the ρ meson (ρ and a mesons), which has [54] α =
0.887(GeV)−2 and α0 = 0.456, are used to fix λ = 0.282. The
intercept fixes the value of

m2
q + 3

2λ + V0, (65)

where m2
q can be given any value provided it is compensated

with V0. Setting V0 to zero requires m2
q be negative to get

the Regge intercept. For the choice 3
2λ + V0 = 0, the Regge

trajectory can be approximately realized with mq = mρ/2.
This work initially uses mq = 0.385 GeV.

With this choice of λ the pion R.M.S. radius is√
3

λ
≈ 3.3 (GeV)−1 = 0.64 fm (66)

Note that in the light-front representation, this is not the same
as the charge radius due to the additional momentum depen-
dence in the Melosh rotations that is needed to couple the
quark spins to a rotationally invariant eigenstate.

The mean quark momentum in the pion is√
3λ

4
≈ 0.46 (GeV), (67)

which is still relativistic even for the relatively heavy quark
masses.

The calculated (bare) and measured masses in the ρ me-
son’s Regge trajectory are given in Table I. The table exhibits
qualitative agreement with the data from the particle data
book. The general Regge behavior and linear confinement are
illustrated in Figs. 1 and 2. The first figure shows the Regge
trajectories for different values of the principal quantum num-
ber. The first figure is a plot the square of the masses in
Table I as a function of l . The second figure shows approxi-
mately linear confinement by plotting the bare masses against
the R.M.S. quark-antiquark separation. The numerical values
are in Table II.

065209-9



KUNHAMMED AND POLYZOU PHYSICAL REVIEW C 102, 065209 (2020)

0 1 2 3 4 5 6

L

1

2

3

4

5

6

(M
as

s)
2

(G
eV

)
2

experiment
model

FIG. 1. Regge trajectory for ρ and a mesons.

V. STRING BREAKING

The second class of interactions allow the confined singlets
to interact. The interaction is assumed to be a string-breaking
interaction that assumes in the first approximation that a
quark-antiquark pair is produced with equal probability at any
point on a line between the quark and antiquark, causing it
to break up into a pair of confined singlets. The interaction
is taken to be local in the sense that the quark-antiquark pair
is produced at a point. This is consistent with the assump-
tion that string breaking is generated by the local covariant
derivative operator. Since this naive interaction is singular, the
δ functions that keep the produced pair on the line between
the original quark and antiquark are replaced by Gaussian ap-
proximations of δ functions where the width of the Gaussian
is the same as the oscillator ground state. This has the effect
of fattening the string to a flux tube with a width consistent
with the size of the ground state. Given that QCD has only
one coupling constant, it seems reasonable that the scale that

−0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
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FIG. 2. Plot of meson mass versus R.M.S. radii.

TABLE II. Meson mass versus R.M.S. radii.

n l s mass (GeV) radius (GeV)−1

0 0 0 0.140 3.261
0 0 1 0.770 3.261
0 1 0 1.311 4.210
0 1 1 1.311 4.210
0 2 0 1.687 4.982
0 2 1 1.687 4.982
0 3 0 1.994 5.649
0 3 1 1.994 5.649
0 4 0 2.259 6.245
0 4 1 2.259 6.245
0 5 0 2.496 6.789
0 5 1 2.496 6.789
1 0 0 1.057 4.982
1 0 1 1.687 4.982
1 1 0 1.994 5.649
1 1 1 1.994 5.649
1 2 0 2.259 6.245
1 2 1 2.259 6.245
1 3 0 2.496 6.789
1 3 1 2.496 6.789
1 4 0 2.713 7.293
1 4 1 2.713 7.293
1 5 0 2.913 7.764
1 5 1 2.913 7.764
2 0 0 1.629 6.245
2 0 1 2.259 6.245
2 1 0 2.496 6.789
2 1 1 2.496 6.789
2 2 0 2.713 7.293
2 2 1 2.713 7.293
2 3 0 2.913 7.764
2 3 1 2.913 7.764
2 4 0 3.101 8.208
2 4 1 3.101 8.208
2 5 0 3.277 8.629
2 5 1 3.277 8.629
3 0 0 2.083 7.293
3 0 1 2.713 7.293
3 1 0 2.913 7.640
3 1 1 2.913 7.764
3 2 0 3.101 8.208
3 2 1 3.101 8.208
3 3 0 3.277 8.629
3 3 1 3.277 8.629
3 4 0 3.445 9.031
3 4 1 3.445 9.031
3 5 0 3.605 9.415
3 5 1 3.605 9.415

determines the bare meson sizes should also determine the
bare hadronic vertex form factors. Subsequent calculations
using this vertex indicate that to get a consistent description
of the Regge trajectories and the ρ lifetime, it is necessary
to use a unitary scale transformation to reduce the width of
the flux tube by a factor of two (see Eqs. (86) and (87). This
transformation is applied after the vertex is computed. The
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resulting interaction is still consistent with the scale set by the
confining interaction.

An additional virtue of this string-breaking vertex is that
it is possible to analytically perform the nine dimensional
integrals that smear the vertex with one initial and two final
confined quark antiquark singlets. This property simplifies
calculations with sea quarks.

The light-front translationally invariant, spin-independent
part of the string-breaking vertex is taken to have a r-space
kernel of the form

〈r1, r2, r12|v2:1|r〉 := γ δ(r − 2r12)
∫ 1

0
dηδ√ λ

2
(r1 − ηr)

× δ√ λ
2
[r2 − (1 − η)r], (68)

where the Gaussian approximate δ function is

δ√ λ
2
(r) :=

(
λ

4π

)3/2

e
−λr2

4 ,

∫
δ√ λ

2
(r)dr = 1. (69)

The coordinates are defined as Fourier transforms of the
light-front invariant momentum variable k. For matrix ele-
ments of this vertex to have dimensions of energy the matrix
element

〈ψ |v1:2v2:1|ψ〉 v1:2 := v†
2:1 (70)

should have dimension (energy)2. It follows that γ should
have dimensions of (energy)−1. Since λ has dimension
(energy)2, it can be replaced by

γ → g/
√

λ, (71)

which makes g a dimensionless factor. Since the model as-
sumption is that one parameter should fix all scales, the
dimensionless parameter g should be of order unity. In the
calculations that follow g was taken to be 5.44. This choice
gives a qualitatively consistent picture of the ρ lifetime and
the π − π scattering cross section.

FIG. 3. String-breaking vertex.

The variables r1 and r2 are the displacement variables of
the quark-antiquark pairs in the produced confined singlets.
The variable r is the displacement variable for the quark-
antiquark pair in the initial confined singlet. The variable r12

represents the displacement between the centers of the two
produced singlets. The assumption that the quark-antiquark
pair is produced at a point leads to r = 2r12. The general
structure is illustrated in Fig. 3.

In the limit that the Gaussians become δ functions the in-
teraction makes the string break with equal probability at any
point along the line between the initial quark and antiquark.

The hadronic vertices, which are defined by the overlap
of this string-breaking vertex with three harmonic oscillator
states can be computed analytically. The result, which is de-
rived in Appendices A and B is

〈n1, l1, m1, n2, l2, m2, r12|v2:1|n, l, m〉 =
∫

ψ∗
n1l1m1

(r1)ψ∗
n2l2m2

(r2)v(r1, r2, r12; r)ψnlm(r)dr1dr2dr

= g√
λ

Rnl (2r12)(2λ)3/2

(√
λ
2 r12

)2n1+l1+2n2+l2√
2n1!�

(
n1 + l1 + 3

2

)√
2n2!�

(
n2 + l2 + 3

2

)
× e− λ

4 r2
12

∑
k1+k2=2r

(l1 + 2n1)!(l2 + 2n2)!

k1!k2!(l1 + 2n1 − k1)!(l2 + 2n2 − k2)!
(−)k2

(
1

2

)l1+2n1+l2+2n2

× 1

2r + 1
M

(
1

2
+ r,

3

2
+ r,−λr2

12

4

)
Ylm(r̂12)Y ∗

l1m1
(r̂12)Y ∗

l2m2
(r̂12), (72)

where M( 1
2 + r, 3

2 + r,− λr2
12

4 ) is the confluent hypergeometric function.
This matrix element does not include any spin dependence. The model assumption is that the string breaking creates a

quark-antiquark pair out of the vacuum at the point where the string breaks. In what follows the initial quark-antiquark is labeled
1–2, the pair created out of the vacuum is labeled 3–4 and the final quark-antiquark pairs are labeled 1–4 and 2–3 (see Fig. 3).
Since the quark and antiquark have opposite parity, if they are created out of the vacuum the pair must be in an odd l state.
Since the spin of the pair can be 0 or 1, to get j = 0 and l odd the quark and antiquark must be created with s = l = 1. The
following spin-dependent addition is motivated by assuming that the string-breaking operator is oriented parallel to the original
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quark-antiquark pair

Y1m(r̂12)〈s3, μ3, s4, μ4|1, μs〉〈1, ml , 1, μs|0, 0〉. (73)

This operator is included as a dimensionless multiplicative factor. The directional dependence is motivated by the string-breaking
model, where the breaking is caused by a quark-antiquark-link oriented parallel to the line between the quark and antiquark. The
Y 1

m1
(r̂12) gives the spherical components of the unit vector along the line between original the quark and antiquark. The full-spin

dependence is obtained by multiplying this factor by an additional spin factor that couples the above to the spins of the other
quarks and antiquarks

〈s23, μs23|s2, μ2, s3, μ3〉〈s14, μs14|s1, μ1, s4, μ4〉〈s1, μ1, s2, μ2|s12, μs12〉 (74)

and summing over the single quark spins.
The spin-dependent vertex is obtained by multiplying the spin-independent vertex by these two spin-dependent factors to get

〈n23, l23, m23, s23, μs23, n14, l14, m14, s14, μs14, r12|v2:1|n12, l12, m12, s12, μs12〉

×
∑

〈n23, l23, m23, n14, l14, m14, r12|v2:1|n12, l12, m12〉Y1,m1 (r̂12)

〈
1

2
, μ3,

1

2
, μ4

∣∣∣∣1, μs

〉
〈1, m1, 1, μs|0, 0〉

× 〈s23, μs23|s2, μ2, s3, μ3〉〈s14, μs14|s1, μ1, s4, μ4〉〈s1, μ1, s2, μ2|s12, μs12〉. (75)

The radial dependence can be projected on angular momentum states by multiplying by the spherical harmonic 〈lv, mv|r̂12〉 and
integrating over angles. The resulting angular integral is over a product of five spherical harmonics

〈114, m14|r̂12〉〈123, m23|r̂12〉〈lv, mv|r̂12〉〈r̂12|l12m12〉〈r̂12|1, ml34〉
= Y ∗

l14m14
(r̂12)Y ∗

l23m23
(r̂12)Y ∗

lvmv
(r̂12)Yl12m12 (r̂12)Y1m1 (r̂12). (76)

This integral can be expressed as sums of products of Clebsch-Gordan coefficients:∫
d r̂12Y

∗
l14m14

(r̂12)Y ∗
l23m23

(r̂12)Y ∗
lvmv

(r̂12)Yl12m12 (r̂12)Y1m34 (r̂12)

=
∑

lt ,l12:34

〈l14, m14, l23, m23|l14:23, ml14:23〉〈l14:23, ml14:23 , lv, mv|lt , mt 〉〈lt , mt |l12, m12, 1, m34〉. (77)

Since the bare meson states are eigenstates of the total intrinsic spin, it is useful to couple the spins and orbital angular momenta
of each bare meson state. This involves multiplying by three more Clebsch-Gordan coefficients. The result for the vertex is

〈n23, j23, l23, s23, μ23, n14, j14, l14, s14, μ14r, lv, mv|v2:1|n12, j12, l12, s12, μ12〉
= 〈n23, l23, n14, l14, r|v2:1|n12, l12〉 × C( j23, l23, s23, μ23, j14, l14, s14, μ14, lv, mv; j12, l12, s12, μ12), (78)

where

C( j23, l23, s23, μ23, j14, l14, s14, μ14, lv, mv; j12, l12, s12, μ12)

:=
∑

〈 j14, μ14|l14, m14, s14, μs14〉〈 j23, μ23|l23, m23, s23, μs23〉
× 〈l14, m14, l23, m23|l14:23, ml14:23〉〈l14:23, ml14:23 , lv, mv|lt , mt 〉〈lt , mt |l12, m12, 1, m34〉
× 〈s23, μs23|s2, μ2, s3, μ3〉〈s14, μs14|s1, μ1, s4, μ4〉〈s1, μ1, s2, μ2|s12, μs12〉
× 〈s3, μ3, s4, μ4|1, μs〉〈1, ml , 1, μs|0, 0〉〈l12, m12, s12, νs12| j12, ν12〉. (79)

This has the form of the product of the spin-independent vertex Eq. (A18) multiplied by a spin-dependent coefficient Eq. (79).
The more useful form is the momentum-space version of these vertices. They can be obtained by performing a Fourier-Bessel

transform of the vertex Eq. (78). Because the spin-independent vertex factors out of this expression it is enough to replace the
spin-independent coefficient

〈n23, l23, n14, l14, r|v2:1|n12, l12〉 (80)

in the above expression by its Fourier-Bessel transform

〈n23, l23, n14, l14, κ, lv|v2:1|n12, l12〉 :=
√

2

π

∫ ∞

0
r2dr jlv (κr)〈n23, l23, n14, l14, r|v2:1|n12, l12〉, (81)

so the momentum-space vertex becomes

〈n23, j23, l23, s23, μ23, n14, j14, l14, s14, μ14, κ, lv, mv|v2:1|n12, j12, l12, s12, μ12〉
= 〈n23, l23, n14, l14, κ, lv|v2:1|n12, l12〉 × C( j23, l23, s23, μ23, j14, l14, s14, μ14, lv, mv; j12, l12, s12, μ12). (82)
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Both the strength and size scale of the vertex is determined by the same parameter that is responsible for the confine-
ment. This elementary string-breaking vertex at the quark level leads to analytic expressions for all vertices relating one
bare confined meson eigenstate to two bare confined meson eigenstates as a function of the initial relative quark-antiquark
displacement.

The only integral that needs to be computed numerically is the one-dimensional radial integral in the Fourier-Bessel transform.
While the model is too crude to expect that all of these vertices lead to accurate results, the hope is that they provide a rough
characterization of the size of the contributions from the higher lying states assuming that the physics is largely determined by
the string-breaking mechanism.

This vertex has the property that the kernel of this operator is rotationally covariant:∑
D j23

μ23ν23
[R]D j14

μ14ν14
[R]Dlv

mvm′
v
[R]〈n23, j23, l23, s23, ν23, n14, j14, l14, s14, ν14κ, lv, m′

v|v2:1|n12, j12, l12, s12, μ12〉

=
∑

〈n23, j23, l23, s23, μ23, n14, j14, l14, s14, μ14, κ, lv, mv|v2:1|n12, j12, l12, s12, ν12〉D j12
ν12μ12

[R]. (83)

This is also true for the r-space vertex. This means that the operator is rotationally invariant. This property will be important in
making a Poincaré invariant dynamics that includes the vertex. This will be discussed in the next section.

For the purpose of using this vertex in a relativistic light-front dynamical model it is useful decompose this vertex into
invariant kernels for different partial waves. This is achieved by coupling the final meson spins and relative orbital angular
momenta

〈(κ, j)n23, j23, l23, s23, n14, j14, l14, s14, lv, s, μ̃|v j
2:1|n12, j12, l12, s12, μ̃

′〉
= δ j j12δμ̃μ̃′ 〈n23, l23, n14, l14, κ, lv|v2:1|n12, l12〉 × Gj ( j23, l23, s23, j14, l14, s14, lv, s; l12, s12), (84)

where the rotationally invariant coefficient can be computed by using rotational covariance and integrating over the SU(2) Haar
measure, which is equivalent to averaging over the magnetic quantum numbers

Gj ( j23, l23, s23, j14, l14, s14, lv, s; l12, s12)

:= 1

2 j + 1

j∑
μ12=− j

C( j23, l23, s23, μ23, j14, l14, s14, μ14, lv, mv; j, l12, s12, μ12)〈 j, μ12|lv, mv, s, μs〉〈s, μs| j23, μ23, j14, μ14〉.

(85)

The spins in Eq. (84) are the system light-front spins.
Qualitative agreement with the ρ lifetime was used to determine the dimensionless strength, g of the string-breaking

interaction. To achieve the desired agreement, in addition to using the freedom to make order of unity adjustments to the strength,
it was also necessary to make the following scale transformation on the vertex on the spin-independent part of the string-breaking
vertex

〈n23, l23, n14, l14, r|v2:1|n12, l12〉 → 〈n23, l23, n14, l14, r|v′
2:1|n12, l12〉 := (2)3/2〈n23, l23, n14, l14, 2r|v2:1|n12, l12〉 (86)

and

〈n23, l23, n14, l14, κ, lv|v2:1|n12, l12〉 → 〈n23, l23, n14, l14, κ, lv|v′
2:1|n12, l12〉 := (2)−3/2

〈
n23, l23, n14, l14,

κ

2
, lv

∣∣∣∣v2:1|n12, l12〉. (87)

This scale transformation has the effect of reducing the width
of the string-breaking vertex by a factor of two, which is still
a modification of order unity of the original string-breaking
vertex. The calculations that follow use the re-scaled vertex
unless otherwise specified.

Figure 4 shows the strength of the spin-independent part
Eq. (80) of the re-scaled vertices for l23 = l14 = l12 = 0
and n23 = n14 = 0 for different values of n12 = n as a function
of κ . The lower n contributions dominate at lower energies.
The contribution for each n is significant in a given energy
range and falls off rapidly outside of that range. We note
that most of the computational complexity is due to the spin
coupling.

VI. SEA QUARKS—RELATIVISTIC 1 + 2 MODEL

The simplest extension of the bare confined singlet model
allows the bare confined singlets to interact with the string-
breaking vertex to produce pairs of bare confined singlets.
The model Hilbert space is the orthogonal direct sum of the
one-singlet Hilbert space with the tensor product of two copies
of the one-singlet Hilbert space

H = HH ⊕ (HH ⊗ HH ). (88)

This is unitarily equivalent to the corresponding representa-
tion in terms of confined quark-antiquark-gluon singlet pairs

H = HQ ⊕ (HQ ⊗ HQ). (89)
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FIG. 4. Strength of the spin-independent part of the vertex for
different n values (l = 0).

This equivalence exhibits the duality between representations
in terms of one and two quark-antiquark-gluon singlet pairs
and one in terms of infinite towers of one or two bare mesons.
In this case the two-singlet or two-bare meson sectors repre-
sent sea quark degrees of freedom.

In Sec. III a unitary representation of the Poincaré group
on the single-meson states Eq. (55), was constructed in both
the hadronic Eq. (58) and quark Eq. (60) representations

U (�, a) : HH → HH , (90)

U (�, a) : HQ → HQ. (91)

The next step is to construct a relativistic dynamics on the
Hilbert space Eqs. (88) and (89). The first step is to use
Eqs. (90) and (91) to define the free dynamics on the space
Eq. (88):

U0(�, a) =
(

U (�, a) 0
0 U (�, a) ⊗ U (�, a)

)
. (92)

Here free means free bare mesons, not free quarks. This rep-
resentation treats the bare mesons as if they were elementary
particles. This representation has to be modified to include the
dynamics defined by the string-breaking vertex.

The next step in constructing a relativistic dynamics is to
decompose the operator U0(�, a) into a direct integral of irre-
ducible representations. This can be done by decomposing the
direct product of single-particle irreducible basis states into a
direct integral of irreducible basis states using the Poincaré
group Clebsch-Gordan coefficients in the light front basis:
Eq. (34),

|(κ, j)p̃, μ̃; n1, j1, l1, s1, n2, l2, s2, s12, l12〉
=

∑∣∣(Mn1,l1,s1 , j1
)
p̃1, μ1

〉∣∣(Mn2,l2,s2 , j2
)
p̃2, μ2

〉
D j1

μ1,ν1

[
R f c

(
k1/Mn1, j1,l1,s1

)]
D j2

μ2,ν2

[
R f c

(
k2/Mn2, j2,l2,s2

)]
× Yl12m12 (q̂1)〈 j1, ν1, j2, ν2|s12ν12〉〈l12, m12, s12, ν12| j, ν̃〉

√
p+

1 p+
2 [ω1(κ ) + ω2(κ )]

ω1(κ )ω2(κ )(p+
1 + p+

2 )
, (93)

where in this representation the two-body kinematic mass is the multiplication operator

M02 := ω1(κ ) + ω2(κ ) =
√

κ2 + M2
n1, j1,l1,s1

+
√

κ2 + M2
n2, j2,l2,s2

. (94)

The states (|(Mnls, j)p̃, μ̃; l, s〉
0

)
(95)

and (
0

|(κ, j)p̃, μ̃; n1, j1, l1, s1, n2, l2, s2, s12, l12〉
)

(96)

are a basis that transforms irreducibly under U0(�, a):

U0(�, a)

(|(Mnls, j)p̃, μ̃; l, s〉
0

)

=
(|(Mnls, j)�̃p, ν̃; l, s〉

0

)
e−i�p·aD j

ν̃μ̃

[
B−1

f (�p/Mnls)�B f (p/Mnls)
]√ (�p)+

p+ , (97)
U0(�, a)

(
0

|(κ, j)p̃, μ̃; n1, j1, l1, s1, n2, l2, s2, s12, l12〉
)

=
(

0
|(κ, j)�̃p, ν̃; n1, j1, l1, s1, n2, l2, s2, s12, l12〉

)
e−i�p·aD j

ν̃μ̃

[
B−1

f (�p/M02)�B f (p/M02)
]√ (�p)+

p+ . (98)
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The next step is to express the kernel of the vertex operator in this basis:

〈(κ, j)p̃, μ̃; n1, j1, l1, s1, n2, l2, s2, s12, l12|v2:1|(n, j′)p̃′, μ̃′; l, s〉
= δ j j′δμ̃μ̃′δ(p̃ − p̃′)〈n1, l1, n2, l2, κ, l12|v2:1|n, l〉 × Gj ( j1, l1, s1, j2, l2, s2, l12, s12; l, s), (99)

where Gj ( j1, l1, s1, j2, l2, s2, l12, s12; l, s) is the spin coefficient in Eq. (85). Using this vertex the dynamical mass operator is
defined by

M = M0 + V =
(

Mc 0

0
√

M2
c1 + κ2 +

√
M2

c2 + κ2

)
︸ ︷︷ ︸

M0

+
(

0 v1:2

v2:1 0

)
︸ ︷︷ ︸

V

, (100)

where M0 is the mass Casimir operator of U0(�, a). With this definition M commutes with p̃ and j but not with M0 because
[M0,V ] 	= 0. This means that it is possible to simultaneously diagonalize M, p̃, j2 and jz. If this is done in the basis of
simultaneous eigenstates of M0, p̃, j2, and jz, then it is only necessary to diagonalize M. The resulting eigenfunctions have
the form

〈 j, p̃, μ̃, · · · |(m, j′) p̃′, μ̃′; X 〉 =
( 〈(Mnls, j)p̃, μ̃; l, s|(m, j′)p̃′, μ̃′; X 〉

〈(κ, j)p̃, μ̃; n1, j1, l1, s1, n2, l2, s2, s12, l12|(m, j′)p̃′, μ̃′; X 〉
)

= δ(p̃′ − p̃)δ j′ jδμ̃′μ̃ ×
( 〈(Mnls, j)l, s|(m, j); X 〉

〈(κ, j); n1, j1, l1, s1, n2, l2, s2, s12, l12|(m, j); X 〉
)

, (101)

where X represents possible degeneracy parameters.
The rotational invariance of Eq. (100) means that the rest eigenstates in this representation transform under the 2 j + 1-

dimensional representation of the SU(2).
A dynamical unitary representation of the Poincaré group with a light-front kinematic symmetry is defined in this basis by

U (�, a)|(m, j)p̃, μ̃, X 〉 := |(m, j)�̃p, ν̃, X 〉e−i�p·aD j
ν̃μ̃

[
B−1

f (�p/m)�B f (p/m)
]√ (�p)+

p+ . (102)

This reduces the dynamical problem to finding the eigenvalues of the mass operator in the kinematic irreducible basis.

The representation Eq. (102) has the property that ei�p·a, D j
νμ[B−1

f (�p/m)�B f (p/m)], and
√

(�p)+
p+ are all independent of

m for all Poincaré transformations that leave the light front invariant. Since the interaction only changes the mass in this
representation, it follows that the light-front-preserving subgroup is kinematic. This means that these light-front-preserving
Lorentz transformations, ( 〈(Mnls, j)p̃, μ̃; l, s|U (�, a)|(m, j′) p̃′, μ̃′; X 〉

〈(κ, j)p̃, μ̃; n1, j1, l1, s1, n2, l2, s2, s12, l12|U (�, a)|(m, j′) p̃′, μ̃′; X 〉
)

, (103)

can be evaluated by acting to the right on the irreducible
eigenstate or to the left with the adjoint on the noninteracting
basis state.

Equation (102) defines U (�, a) on a complete set of irre-
ducible states. This defines a relativistic light-front dynamics
on this space that is consistent with the dynamical mass op-
erator. This model has the advantage that the mass operator is
exactly rotationally invariant. Given these eigenstates they can
be transformed to single-quark bases or any other convenient
basis.

In what follows calculations will used to investigate to
what extent this simple model provides a qualitatively con-
sistent description of the following observables:

(1) Probability of finding sea quarks in bound states.
(2) Cross section for scattering of bare mesons.
(3) Lifetimes and energy shifts of unstable bare mesons.
(4) Convergence as the number of bare meson channels

are increased.
(5) Form factor calculations.

VII. BOUND STATES

The first question of interest is how do the sea quark
contributions generated by the string-breaking vertex impact
the mass spectrum and the sea quark content of the mesons.
Clearly the eigenvalues of the lowest-mass bare mesons will
shift and it will make the high-lying bare mesons unstable.

In the hadronic representation the bound state problem
requires solving a system of equations with an infinite number
of coupled channels.

Bound-states are eigenvectors of M = (M0 + V ) with
eigenvalues η in the point spectrum:

(M0 + V )|�〉 = η|�〉. (104)

Truncating to the one + two-bare meson sectors the mass
eigenvalue equation has the operator form(

Mc v1:2

v2:1

√
M2

c1 + κ2 +
√

M2
c2 + κ2

)(|ψ1〉
|ψ2〉

)
= η

(|ψ1〉
|ψ2〉

)
,

(105)
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where Mc is the bare quark-antiquark mass operator, Eq. (47).
These equations are equivalent to the pair of coupled equa-
tions

|�1〉 = 1

η − Mc
v1:2|�2〉, (106)

|�2〉 = 1

η −
√

M2
c1 + κ2 −

√
M2

c2 + κ2
v2:1|�1〉. (107)

Using the second equation in the first gives a single equation
for the valence component, |�1〉:⎛
⎝I − 1

η − Mc
v1:2

1

η −
√

M2
c1 + κ2 +

√
M2

c2 + κ2
v2:1

⎞
⎠|�1〉

= 0. (108)

The exact meson mass eigenvalues are the real values of η be-
tween zero and the two-bare meson threshold, where Eq. (108)
has nonzero solutions.

The short-hand notation is used

m ↔ {n1, j1, l1, s1}, (109)

n1, n2, κ ↔ {s12, lq, n1, j1, l1, s1, n2, j2, l2, s2} (110)

to label the one and two singlet channels, and

Mn := Mnls Mn1,n2 (κ ) :=
√

κ2 + M2
n1,l1,s1

+
√

κ2 + M2
n2,l2,s2

(111)

to label the mass eigenvalues of the bare meson systems. In
this notation the mass eigenvalue problem Eq. (108) has the
form∑

m

(
δnm −

∑
n1,n2

∫ ∞

0

1

η − Mn
〈n|v1:2|n1, n2, κ〉

× κ2dκ

η − Mn1,n2 (κ )
〈n1, n2, κ|v2:1|m〉

)
〈m|�1〉 = 0. (112)

Even this truncated problem is a coupled channel problem
with an infinite number of channels. It can be solved by an ad-
ditional truncation to a finite number of channels. The ability
to analytically calculate vertices that couple any combination
of channels can be used to estimate the size of the error due to
eliminated channels.

Equation (112) has the form∑
m

(δnm − A(η)nm)〈m|�1〉 = 0. (113)

The eigenvalues are the real zeros, ηk , of the determinant of
the matrix, δnm − A(η)nm, considered a function of η:

f (η) = det[I − A(η)] = 0. (114)

The eigenvalues, which are the zeros of the determinant, can
be determined by plotting the determinant, f (η), for values of
η between 0 and the two meson threshold. For this range of
values of η, the determinant is a real valued function of η and
the momentum integrals in Eq. (112) are nonsingular.

To determine the wave function for the kth eigenvalue, ηk ,
consider the ordinary eigenvalue problem for χ :∑

m

(χδnm − Anm(ηk ))ξ k
m = 0. (115)

By construction χ = 1 is the eigenvalue of this equation for
η = ηk . The valence wave function in the hadronic represen-
tation is

〈n|�1〉 = Nkξ
k
n , (116)

where ξ 1
n is the eigenvector associated with χ = 1 of Eq. (115)

and Nk is a normalization constant.
The sea quark component of the wave function is

〈n1, n2, κ|�2〉 =
∑

m

1

ηk − Mn1,n2 (κ )
〈n1, n2, κ|v2:1|m〉

× 1

ηk − Mm
Nkξ

k
m. (117)

The normalization constant Nk is chosen so

1 = 〈�1|�1〉 + 〈�2|�2〉. (118)

With this normalization 〈�1|�1〉 represents the probability of
finding the meson in the valence sector and 〈�2|�2〉 repre-
sents the probability of finding the meson with sea quarks.

The evaluation of 〈�2|�2〉 involves a one-dimensional in-
tegral and a sum over two hadron states that couple to the
valence sector.

These “exact calculations” can be compared to the per-
turbative result to determine the applicability of perturbation
theory. The perturbative calculation treats the string-breaking
interaction as a perturbation. A formal expansion parameter ε

is introduced to keep track of powers of the string-breaking
vertex. In the end it is set to 1. The unperturbed state is taken
to be one of the low-mass confined quark-antiquark states
(n0 = m0, l0): (|�10〉

|�20〉
)

=
(

δnn0

0

)
. (119)

Standard Rayleigh-Schrödinger perturbation theory gives the
leading correction to the unperturbed eigenvalue Mn0 in pow-
ers of ε:

Mn0 (ε) = Mn0 + ε2
∑
n1n2

∫
κ2dκ

|〈n0|v12|n1, n2, κ〉|2
Mn0 − Mn1,n2 (κ )

+ o(ε4).

(120)

The corresponding un-normalized wave function is( 〈n|�1〉
〈n1, n2, κ|�2〉

)
=

(
δnn0

ε
〈n1,n2,κ|v21|n0〉
Mn0 −Mn1 ,n2 (κ )

)
+ · · · (121)

In what follows the model calculation uses a bare π mass of
mπ0 = 0.16 GeV, a bare ρ mass of mρ0 = 0.882 GeV and a
dimensionless vertex coupling constant g = 5.44. The correc-
tion to the pion mass and wave function, keeping the 2 quark-2
antiquark channels with n � 4, is computed using both second
order perturbation theory Eq. (120) and the exact calculation
obtained by finding zeros of the determinant Eq. (114). The
perturbative result gives a pion mass of 0.1327 GeV while the
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exact method gives a pion mass of 0.1329 GeV. While the per-
turbative and “exact” calculated masses are close, they differ
from the bare π mass of 0.16 GeV by about 0.027 GeV, which
is about a 17% shift. The calculation of the corresponding pion
wave function results in a probability of 0.82 of measuring the
pion to be in the valence sector and 0.18 of measuring pion to
be in a two bare singlet state. This indicates that in this model
sea quarks make up a nontrivial part of the pion wave function.

VIII. MESON-MESON SCATTERING

This model can also be used to treat meson-meson scat-
tering. Due to the truncation, the particles that scatter are
bare mesons. The scattering integral equations have an infi-
nite number of poles in the continuum. These are not real,
because the vertex makes the associated mesons unstable. The
treatment of scattering in models with confined particles is
discussed in Refs. [55,56]. These results are applicable to this
model.

In this dual quark-hadron setting it is natural to formulate
the scattering problem using a two Hilbert space formulation
[50]. In one Hilbert space, the asymptotic space, the bare
mesons are treated like elementary particles. Their internal
structure is included in a mapping from the asymptotic space
to the dynamical Hilbert space. The asymptotic Hilbert space
is the direct sum of scattering channel Hilbert spaces. The
2 + 1 model scattering channels involve pairs of bare mesons
labeled by the quantum numbers n1 and n2. A normalizable
vector in the two bare-meson subspace of the Hilbert space
has the form∣∣�0n1n2 (0)

〉 =
∑
μ̃1μ̃2

∫
d p̃1, d p̃2|(n1) p̃1, μ̃1〉

× |(n2) p̃2, μ̃2〉 fn1 ( p̃1, μ̃1) fn2 ( p̃2, μ̃2), (122)

where fn1 ( p̃1, μ̃1) and fn2 ( p̃2, μ̃2) are wave packets in the
meson momenta and magnetic quantum numbers and the ni

represent the particle quantum numbers (ni, ji, li, si ). Equa-
tion (122) can be expressed in the form of a mapping from the
Hilbert space Hn1n2 of square integrable functions of light-
front momenta and meson magnetic quantum numbers to the
two bare-mesons subspace of the Hilbert space:∣∣�0n1n2 (0)

〉
:= �0n1n2

∣∣ fn1 fn2

〉
. (123)

For identical mesons this state should be symmetrized:∣∣�0n1n2

〉 → ∣∣�0,S,n1,n1

〉 = S|�〉, (124)

where S is the projector on symmetrized states. Note that in
this model the symmetrization is only with respect to identical
mesons, not quarks. The symmetrizer and normalization fac-
tors can be absorbed in the definition of �0n1n2 , In both cases
the free two-meson states should be normalized to unity:∥∥∣∣�0n1n2 (0)

〉∥∥ = 1. (125)

The asymptotic Hilbert space is defined as the orthogonal
direct sum of all of the channel spaces:

HA := ⊕n1,n2Hn1,n2 . (126)

In this model there are an infinite number of channel sub-
spaces. This is an artifact of the truncation to the 2 + 1 sector,
which eliminates the interactions in the two-meson subspace
that allow unstable bare mesons to decay.

An injection operator from HA to the two-meson subspace
of the 2 + 1 Hilbert space H is defined by

� :=
∑
n1,n2

�0n1n2 , (127)

where each �0n1n2 is understood to act on the subspace Hn1,n2

of HA. The two Hilbert space representation separates the
quantities (momenta and magnetic quantum numbers) that are
used to prepare initial and final meson wave packets from the
internal structure of each meson in terms of quarks, antiquarks
and gluons. The asymptotic space contains the degrees of
freedom that can be “controlled in an experiment.”

A light-front asymptotic Hamiltonian and mass operator is
defined on HA. On each subspace Hn1,n2 they are

P−
A = M2

cn1 + p2
n1⊥

p+
n1

+ M2
cn2 + p2

n2⊥
p+

n2

(128)

and

MA =
√

M2
cn1 + κ2 +

√
M2

cn2 + κ2. (129)

In the absence of the string-breaking vertex the asymptotic
states evolve in time like two free particles (mesons)∣∣�0n1n2 (t )

〉 = �0n1n2 e− i
2 (P−

A +P+
A )t

∣∣ fn1 fn2

〉
. (130)

Dynamical solutions of the Schrödinger equation |�±n1n2 (t )〉
that look like these states long before or long after interacting
satisfy the scattering asymptotic conditions

lim
t→±∞

∥∥∣∣�±n1n2 (t )
〉 − ∣∣�±0n1n2 (t )

〉∥∥ = 0, (131)

where |�±0n1n2 (t )〉 are free meson states of the form Eq. (130)
that are approached by the exact scattering states in the
asymptotic future (+) or past (−).

Using the unitarity of the time evolution operator this can
be expressed as

lim
t→±∞

∥∥∣∣�±n1n2 (0)
〉−ei 1

2 (P−+P+ )t�n1n2 e− i
2 (P−

A +P+
A )t

∣∣ fn1 fn2

〉∥∥=0.

(132)

Since P+ and P⊥ are kinematic operators Eq. (132) becomes

lim
t→±∞

∥∥|�±(0)〉 − ei M2

2P+ t�0n1n2 e−i
M2

A
2P+ t

∣∣ fn1 fn2

〉∥∥ = 0. (133)

Because the spectrum of P+ is positive, the time limit can be
replaced by a τ := t/2P+ limit:

lim
τ→±∞

∥∥∣∣�±n1n2 (0)
〉 − eiM2τ�0n1n2 e−iM2

Aτ
∣∣ fn1 fn2

〉∥∥ = 0.

(134)

Finally the invariance principle [57,58] can be used to re-
place M2 by M leading to the following expression for the
normalized scattering state at time 0:∣∣�±n1n2 (0)

〉
:= lim

τ→±∞ eiMτ�0n1n2 e−iMAτ
∣∣ fn1 fn2

〉
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= �±n1n2

∣∣ fn1 fn2

〉
. (135)

In this notation the probability that a solution of the
Schrödinger equation that asymptotically looks like∣∣�−0n1n2 (t )

〉
(136)

in the past will be measured to be in a state that looks like∣∣�+0n′
1n′

2
(t )

〉
(137)

in the future is given by the square of the inner product of
the unit normalized vectors Eq. (135) at any common time
[normally taken as (t = 0)],

P = ∣∣〈�+n′
1n′

2
(0)

∣∣�−n1n2 (0)
〉∣∣2

= ∣∣〈 f ′
n′

1
f ′
n′

2

∣∣�†
+n′

1n′
2
�−n1n2

∣∣ fn1 fn2

〉∣∣2
= ∣∣〈 f ′

n′
1

f ′
n′

2

∣∣Sn′
1n′

2;n1n2

∣∣ fn1 fn2

〉∣∣2. (138)

The operator

Sn′
1n′

2;n1n2 := �
†
+n′

1n′
2
�−n1n2 (139)

is the channel scattering operator.
In this model the interaction looks like a separable potential

with an infinite number of terms. While truncation to a finite
number of terms leads to a short-range interaction, whether
the infinite sum also leads to a short-range interaction depends
of properties of the string-breaking vertex. A sufficient condi-
tion for the existence of the limit in Eq. (135) is given by the
Cook condition [59] which expresses this limit as the integral
of a derivative, and bounds the integral by the integral of the
norm of the integrand. In this model the Cook condition has
the form∫ ∞

a

∥∥v1:2�0n1,n2 e−iMn1 ,n2 ,qt
∣∣ fn1 fn2

〉∥∥dt < ∞, (140)

which gives a sufficient condition on the string-breaking ver-
tex for the existence of the limits Eq. (131). In Appendix
C this condition is shown to hold for the vertex Eq. (68)
for the case n1 = n2. This is possible because the sum over
channels can be replaced by an integral that can be bound. In
Appendix C it is shown that the integrand falls off like t−3/2

for large t , so this integral is finite. This is an important
result because in the context of this 2+1 truncation, it means
that truncations to a finite numbers of channels are actually
approximations in the sense that they converge in the infinite
channel limit.

The channel scattering operator can be expressed in terms
of a multichannel scattering operator, S, on H:

Sn′
1n′

2;n1n2 = �
†
0n′

1n′
2
S�0n1n2 . (141)

The Sn′
1n′

2;n1n2 are matrix elements of S in bare meson mass
eigenstates, |m · · · 〉, of M0. These matrix elements have the
form

〈m · · · |S|m′ · · · 〉 = 〈m · · · |I|m′ · · · 〉 − 2π iδ(m − m′)

× 〈m · · · |T (m + i0+)|m′ · · · 〉, (142)

where

T (z) = V + V (z − M )−1V (143)

and V is the string-breaking interaction. Note that all of the
operators in Eq. (143) commute with all three kinematic com-
ponents of the total light-front momentum of the system. The
second resolvent identity [60],

(z − M )−1 = (z − Mc0)−1 + (z − Mc0)−1V (z − M )−1,

(144)

can be used to construct a Lippmann-Schwinger integral equa-
tion for T (z) of the form

(
T 11(z) T 12(z)

T 21(z) T 22(z)

)

=
(

0 v1:2

v2:1 0

)
+

(
0 v1:2

v2:1 0

)

×
(

(z − M1)−1 0

0 (z − M2)−1)

)(
T 11(z) T 12(z)

T 21(z) T 22(z)

)
.

(145)

The derivation is justified when (z − M )−1 and (z − Mc0)−1

are both defined. The property of this model that deviates
from conventional scattering theory is that (z − Mc0)−1 has an
infinite number of poles on the positive real axis. These poles
are not expected to appear in (z − M )−1 or Eq. (143) because
the vertex will cause the bare bound states in the continuum
to decay. Both resolvents are analytic for z off of the real axis.
The solution of equations Eq. (145) has the correct limit at
the poles in the continuum, but the equations are ill-defined at
these poles.

To understand this in more detail note that if (Mc0 −
η)|B〉 = 0 and z = η + iε then Eq. (144) leads to

〈B|(z − M )−1 = 〈B|(iε)−1 + 〈B|(iε)−1V (z − M )−1

= (iε)−1〈B|(1 + V (z − M )−1)

= (iε)−1〈B|(η + iε − Mco)(z − M )−1)

= (iε)−1〈B|[iε(z − M )−1], (146)

which shows that the singular terms in the resolvent (z −
Mc)−1 in the driving term cancel with corresponding singular
terms in the kernel of the integral equation when the equation
is applied to the bare discrete eigenstates.

In what follows the equations will be recast in a form where
there are no poles in the continuum. Equations (145) break
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up into uncoupled pairs of coupled equations. The component that is needed to calculate the scattering operator is T 22(e + i0+)
which is the solution of the coupled pair of equations

T 22(e + i0+) = 0 + v2:1(e − M1 + i0+)−1T 12(e + i0+), (147)

T 12(e + i0+) = v1:2 + v1:2(e − M2 + i0+)−1T 22(e + i0+). (148)

Using Eq. (147) in Eq. (148) gives a single equation for T 12(e + i0+):

T 12(e + i0+) = v1:2 + v1:2(e − M2 + i0+)−1v2:1(e − M1 + i0+)−1T 12(e + i0+). (149)

The solution of Eq. (149) can be used to calculate the transition operator for scattering:

T 22(e + i0+) = v2:1(e − M1 + i0+)−1T 12(e + i0+). (150)

The kernel of Eq. (149) has poles in the continuum. To transform Eq. (149) to a form where the poles in the continuum do not
appear defined:

�12(e + i0+) := (e − M1 + i0+)−1T 12(e + i0+). (151)

Multiplying Eq. (149) by (e − M1 + i0+)−1 gives an equivalent equation for �12(e + i0+):

�12(e + i0+) = (e − M1 + i0+)−1v1:2 + (e − M1 + i0+)−1v1:2(e − M2 + i0+)−1v2:1�12(e + i0+). (152)

Multiply both sides of (152) by (e − M1) to get

[e − M1 − v1:2(e − M2 + i0+)−1v2:1]�12(e + i0+) = v1:2. (153)

Formally solving for �12(e + i0+) gives

�12(e + i0+) = (e − M1 − v1:2(e − M2 + i0+)−1v2:1)−1v1:2, (154)

which leads to the following expression for T 22(e + i0+)

T 22(e + iε+) = v2:1�12(e + iε+) = v2:1
1

e − M1 − v1:2(e − M2 + i0+)−1v2:1
v1:2. (155)

The advantage of this form is that there are no poles in the continuum. The denominator is complex for energies above the
scattering threshold, because v1:2(e − M2 + i0+)−1v2:1 is complex above threshold for two-particle scattering.

The scattering problem is to invert the matrix

Kmn(e + iε+) = (e − Mn)δmn − Mmn(e + i0+), (156)

where

Mmn(e + i0+) =
∑
m1m2

∫ ∞

0

〈m|v1:2|m1, m2, κ〉κ2dκ〈m1, m2, κ|v2:1|n〉(
e − M2m1m2 (κ ) + i0+) . (157)

Given this solution the transition matrix elements can be expressed in terms of the vertex and the inverse of Kmn(e + i0+):

〈m1, m2, κ|T 22(e + i0+)|m′
1, m′

2, κ
′〉 =

∑
〈m1, m2, κ|v2:1|m〉K−1

mn (e + i0+)〈n|v1:2|m′
1, m′

2, κ
′〉. (158)

The quantity that needs to be computed is the matrix Mmn(e + i0+) in Eq. (157) which is used to compute Kmn(e + i0+).
In principle Kmn(e + i0+) is an infinite matrix. For the purpose of calculations the number of channels must be truncated to a
finite number. As mentioned earlier, this truncation is actually a controlled approximation in the context of this 2+1 model. The
calculation is reduced to inverting a complex matrix. Convergence can be checked by adding more channels.

The scattering computation requires computing the matrix Mmn(e + i0+), constructing Kmn(e + i0+), and inverting Kmn(e +
i0+).

The details of how this calculation is performed is discussed in Appendix D.
Transition matrix elements have to be computed in a basis. A natural basis for scattering calculations uses as commuting

observables the discrete quantum numbers of the bare mesons, the kinematic light front components of the total momentum,
and three-momentum, κ, of one of the mesons boosted to the two-meson rest frame with a light-front boost. The total kinematic
light-front momenta are conserved and factor out of the transition matrix elements. The following shorthand notation is used for
the reduced matrix elements:

〈n′
1, n′

2, κ f |T 22|n1, n2, κi〉 := 〈n′
1, j′1, l ′

1, s′
1, μ

′
1; n′

2, j′2, l ′
2, s′

2, μ
′
2, κ

′|T 22|n1, j1, l1, s1, μ1; n2, j2, l2, s2, μ2, κ〉. (159)

The center of mass differential cross section is

dσ

d�(κ̂ f )
= (2π )4

(
ωn1 (κ f )ωn2 (κ f )

ωn1 (κ f ) + ωn2 (κ f )

ωm1 (κi )ωm2 (κi )

ωm1 (κi ) + ωm2 (κi)

)∣∣∣∣κ f

κi

∣∣∣∣〈n1, n2, κ f |T 22|m1, m2, κi〉|2, (160)
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where ωm(κ ) = √
m2 + κ2. For identical mesons |〈n1, n2, κ f |T 22|m1, m2, κi〉|2 is replaced by

|〈n1, n1, κ f |T 22|m1, m1, κi〉 + 〈n1, n1,−κ f |T 22|m1, m1, κi〉|2. (161)

Phase shifts can be expressed in terms of the transition matrix elements by

〈n1, n2, κ f |T 22|m1, m2, κi〉 = −4π2 ωm1 (κi)ωm2 (κi )

ωm1 (κi ) + ωm1 (κi)
eiδ j sin(δ j ). (162)

The simplest case of interest is π − π scattering. In this case the transition matrix element for each partial wave has the form

〈0, 0, lκ , κ|T 22|0, 0, lκ , κ〉 =
∑

n

〈0, 0, lκ , κ|v2:1|n〉(e − Mn)−1(δnm − Mnm)−1〈m|v12|0, 0, lκ , κ〉. (163)

The matrix Mmn(e + i0+) is approximated by

Mnm(e + iε+) =
∑

k,m1m2

〈n|v1:2|m1, m2, lκ , χk〉gk (e + iε+)〈m1, m2, lκ , χk|v2:1|m〉, (164)

where the χk denote the box functions [see Eq. (D1) in Appendix D] for a suitably fine mesh and gk (e + iε)+ are the matrix
elements Eq. (D8). For a channel truncation with one one-body and one two-body channel this becomes

M00(e) =
∑

n

〈0|v1:2|0, 0, lκ , χn〉gn(e + iε+)〈0, 0, lκ , χn|v2:1|m〉 (165)

and

〈0, 0, 0, lκ |T 22(+iε+)|0, 0, lκ , κ〉 = 〈0, 0, lκ , κ|v2:1|0〉(e − M0 − v1:2M00(e + iε+)v2:1)−1〈0|v1:2|0, 0, lκ , κ〉. (166)

For the simplest truncation, where the vertex only includes the π+ − π− ↔ ρ channels (note π0 − π0 ↔ ρ is forbidden),
the transition matrix elements have the from

Tl (κ ) = 1

πκωπ (κ )

�(κ )/2

2ωπ (κ ) − mρ − �(κ ) + i�(κ )/2
, (167)

where

�(κ ) = πκωπ (κ )|〈ρ|v12|π, π, κ〉|2, (168)

�(κ ) := P
∫ ∞

0

κ ′2dκ ′〈ρ|v12|π, π, κ ′〉|2
2ωπ (κ ) − 2ωπ (κ ′)

≈
∫ �

0

dκ ′

κ2 − κ ′2

(
κ ′2(κ ′2 − κ2)〈ρ|v12|π, π, κ ′〉|2

2ωπ (κ ′) − 2ωπ (κ )
− κ2ωπ (κ )〈ρ|v12|π, π, κ〉|2

)

+ 1

2
κωπ (κ )〈ρ|v12|π, π, κ〉|2 ln

(
� + κ

� − κ

)
+

∫ ∞

�

dκ ′

κ2 − κ ′2

(
κ ′2(κ ′2 − κ2)〈ρ|v12|π, π, κ ′〉|2

2ωπ (κ ′) − 2ωπ (κ )

)
, (169)

where the last term in this expression can be ignored for
sufficiently large cutoff �. Equation (167) has a resonant
form, although because of the momentum dependence it is not
necessarily a Breit-Wigner form.

In general the scattering calculation is a coupled channel
calculation. The total cross section is

σ (κ ) = (π )3ωπ (κ )2
∑

l

(2l + 1)|Tl (κ )|2. (170)

Figures 5 and 6 show the real and imaginary parts of the on
shell transition operator for π − π scattering for the param-
eters used Sec. VII. The calculation shown in these figures
is a coupled channel calculation using ρ and f2 intermediate
states. The total π − π differential cross section computed
using these channels is shown in Fig. 7 and compared to data
from Refs. [61,62].

The computed cross section exhibits a qualitative agree-
ment with the data, but it is quantitatively about 25% below
the observed cross section. The calculation is limited to s-
channel exchanges.

IX. UNSTABLE PARTICLES

Bound states occur when

Mn1,n2,κ12 − Mn0 > 0 (171)

for all n1 and n2. When Eq. (171) is negative the denominator
in Eq. (108) can vanish. When this happens the bound state
becomes unstable with respect to decay into the two-bare
meson channels. All but a small number of the bare mesons
states will fall into this category.

The correct way to understand the resonant behavior is the
same way that they are observed experimentally, by looking
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FIG. 5. Real part of the on-shell transition matrix for π -π elastic
scattering.

for peaks in the differential cross section. Equation (167)
already has the resonant form exhibiting a complex shift in
the position of the bare meson pole.

When perturbation theory is justified, expressions for the
lifetime and mass corrections are simple: The expression for
the second order correction to the binding energy in Eq. (120)
becomes complex∫
−

∑
n1,n2

q2
12dq12

|〈n0‖v1:2‖n1, n2, q12〉|2
Mn0 − Mn1,n2,q12

− iπ
∫

δ
(
Mn0 − Mn1,n2,q12

)
q2

12dq12|〈n1, n2, q12‖v2:1‖n0〉|2,
(172)

where
∫− indicates a principal value integral. The principal

value term gives the leading correction to the bare mass. The
imaginary term arises because the bound state can decay to the
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FIG. 6. Imaginary part of the on-shell transition matrix for π -π
elastic scattering.
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FIG. 7. Total cross section for π -π elastic scattering.

two-particle continuum. The imaginary part leads to a wave
function with an amplitude that decays like

e−�t/2, (173)

where τ = 1/� is the lifetime of the unstable state in pertur-
bation theory:

� =
∑
n1n2

2π
q120ωn1(q120)ωn2(q120)

ωn1(q120) + ωn2(q120)
|〈n1, n2, q120|v21|n0〉|2.

(174)

The sum in Eq. (174) sum is over the open decay channels
which are the channels where

Mn1,n2,q120 = Mn0 (175)

has solutions for real q2
120 that depend on n1 and n2. This

requires

Mn1,n2,0 < Mn0 . (176)
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FIG. 8. Fπ (Q2).
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FIG. 9. Q2Fπ (Q2).

These solutions are

q2
120 = M4

n1
+ M4

n2
+ M4

n0
− 2M2

n1
M2

n2
− 2M2

n1
M2

n0
− 2M2

n2
M2

n0

4M2
n0

(177)

when the numerator is positive.
Partial widths for decay into the bare mesonic states n1 and

n2 are given by

�n1,n2 = 2π
q120ωn1(q120)ωn2(q120)

ωn1(q120) + ωn2(q120)
|〈n1, n2, q120‖v21‖n0〉|2.

(178)

Again, n1 and n2 represent several quantum numbers.
This perturbative expression is identical to the � in

Eq. (157) obtained by looking at the scattering amplitude near
resonance, except in the exact case the shift is a function of κ ,
so the position of the peak has to be determined by finding the

value of κ that makes the real part of denominator of Eq. (167)
vanish.

This analysis is applied to treat the decay of the ρ meson
into a pair of pions. Using the parameters given in Sec. VII, the
bare ρ mass is shifted down by 0.122 GeV from its value of
0.882 to the physical value of 0.770 GeV. The resulting width
is �p = 0.134 × GeV which is qualitatively consistent with
the observed width of 0.150 GeV. The size of the resonant
shift, 12.7%, is consistent with the size of the 17% correction
to the pion mass due to the coupling to the sea quarks in
this model. Similar calculations could be performed for higher
lying states; these will generally involve more open channels.

X. FORM FACTORS

The last type of observables of interest are electromagnetic
observables. Electron scattering from a hadron includes con-
tributions from both valence and sea quarks.

The simplest electron scattering reaction is the scattering
of an electron from a charged pion. The relevant observable is
the pion form factor. Because the momentum transfer is space-
like the form factor can always be calculated in a frame where
the + component of the momentum transfer is zero, Q+ = 0.
The form factor can be expressed in terms of the + component
of the current at x = 0:

Fπ (Q2) = 〈π, p̃′|I+(0)|π, p̃〉, (179)

where the pion state (in this model) will in general include
both valence and sea quark contributions. In this model the
pion state vector has the form( |π, p̃〉1

1
mπ −M2

v2:1
1

mπ −M1
|π, p̃〉1

)
, (180)

where mπ is the mass eigenvalue. The current matrix element
has the general form

〈π, p′
⊥|I+(0)|π, p⊥〉

= 1〈π, p̃′|Iμ(0)|π, p̃〉1 + 1〈π, p̃′|Iμ(0)| 1

mπ − M2
v2:1

1

mπ − M1
|π, p̃〉1 + 1〈π, p̃| 1

mπ − M1
v12

1

mπ − M2
|Iμ(0)|π, p̃〉1

+ 1〈π, p̃| 1

mπ − M1
v12

1

m∗
π − M2

|Iμ(0)| 1

m∗
π − M2

v2:1
1

mπ − M1
|π, p̃′〉1. (181)

This expression involves both the wave functions and current
operators. The evaluation of the current matrix elements is
naturally performed in the quark-antiquark-gluon represen-
tation. The advantage of the light front representation is the
invariance of the single quark magnetic quantum numbers
under light front boosts, which leads to frame-independent
impulse approximations. In addition the boosts are kinematic.
However, the quark current operator necessarily has many-
body contributions due to the dynamical nature of rotational
covariance and current conservation. These relations involve
the string-breaking vertex.

The structure of the full current is beyond the scope of this
model. It is nevertheless useful to examine the pion form fac-
tor assuming that the quarks can be treated as point particles
in the valence sector of this model to determine if there is any
kind of qualitative agreement with experiment.

Equation (181) can be interpreted as the matrix element of
a two-body current in the valence state, however in this case
valence state is not the same as the bare state, and there is an
additional normalization correction that appears in the current.

The simplest calculation is the calculation of the charge
form factor for the bare pion assuming that the single quark
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and antiquark are treated as point charges with no magnetic
form factors. In this case the pion form factor is given by
the first term in Eq. (181) where the valence wave function is
replaced by the bare wave function. The results of the calcu-
lation are shown in Figures 8 and 9, where they are compared
to low and high energy data from Refs. [63–65]. The solid
curves use the quark masses and oscillator parameters of this
model. The curves with stars use an oscillator wave function
with λ = 0.259 and quark masses of mq = 0.20, which were
the values used in Ref. [66], and the dash-dot curves use
λ = 0.282 and mq = 0.2. The single quarks and antiquarks
are treated as point charges with no magnetic form factors.
Equation (93) is used to express the valence wave function in
terms of the single quark degrees of freedom. The calculated
form factor is too large compared to data for both low and high
Q2; however, a rough agreement was achieved in Ref. [66]
using the same valence wave function with λ decreased by
about 8% to 0.259 and a lighter quark mass, m = 0.2. Since
the quark masses appear in the Poincaré generators in the
combination m2

q + V0, there is an additional freedom to reduce
the quark masses keeping m2

q + V0 constant. This freedom
leaves the Poincaré generators unchanged. It leaves the bound
state, scattering, and lifetime calculations unchanged. Re-
ducing the quark masses to mq = 0.2 without changing the
coupling constant gives the dot-dash curves, which are indis-
tinguishable from the results of Ref. [66] (stars) which use a
slightly reduced value of λ. Further calculations are needed
to determine the corrections due to sea quarks and two-body
currents.

XI. CONCLUSION

This work examined a simple model of mesons, based
on nonlocal degrees of freedom that are both globally and
locally gauge invariant. The structure of the model was largely
motivated by the strong coupling limit of Hamiltonian lat-
tice QCD. Gauge invariant systems of quarks and antiquarks
connected by links were modeled by quark-antiquark pairs
interacting via a confining interaction. A key feature is that
quarks in different connected singlets are treated as distin-
guishable particles. The model has dual representations in
terms of hadronic and QCD degrees of freedom. While there
are many possible interactions involving connected gauge
invariant degrees of freedom, this work examined the con-
sequences of the assumption that the dominant contribution
comes from string breaking, which produces quark-antiquark
pairs from a given local/global singlet state. The model was
formulated so all matrix elements of the string-breaking vertex
with bare meson states could be computed analytically in
terms of the underlying QCD degrees of freedom. Calcula-
tions were performed by truncating to the direct sum of a one
and two-singlet subspace. The model is formulated to be fully
relativistic and designed so computations can be performed

efficiently. To stay close in spirit to QCD, one parameter was
used to set all of the scales. In this application that parameter
was fixed by the Regge slope of the family of excitations of
the ρ meson in the valence model, which fixed a confinement
scale. The same parameter was used to fix the size of the
string-breaking vertex; however, a scale transformation on
the string-breaking vertex was needed to get a qualitatively
consistent treatment of lifetimes and spectral properties. The
vertex also included a dimensionless coupling constant of
order unity. The model was used to calculate sea quark con-
tributions to bound states, spectral properties, cross sections,
lifetimes and electromagnetic properties. The calculations of
spectral properties, lifetimes, and scattering cross sections
generally gave results that were qualitatively consistent with
experiment. The calculation were consistent with a nontrivial
sea quark component in the pion state vector. The pion form
factor in the bare model over predicted the experimental data
for both high and low momentum transfers, however the data
can be fit with the same wave functions using smaller quark
masses (48%). Since the quark mass in this model appears
in the combination m2

q + V0, it could be reduced by changing
V0 to keep this combination constant. This change leaves all
of the dynamical operators unchanged, so would not affect
the bound state, scattering or resonance calculations. Further
adjustments in the quark masses are anticipated after contri-
butions from sea quarks or two-body currents are included.

These results suggest that a string-breaking reaction mech-
anism is a significant component of hadronic dynamics, and
could provide a good starting point for developing more real-
istic models of hadronic dynamics. This type of model could
also be extended to treat baryons modeled as diquarks, which
would provide more stringent experimental constraints. This
model is also directly applicable to treating exotic mesons
as confined diquark-antidiquark systems, or as molecules of
confined quark and antiquarks. Realistic applications require
generalizing the model to include flavor dependent interac-
tions.
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APPENDIX A: STRING-BREAKING MATRIX ELEMENTS

In Appendices A and B the analytic Eq. (72) for the ma-
trix elements of spin-independent part of the string breaking
vertex the oscillator basis is derived. This involves a nine-
dimensional integral that can be computed analytically.

To calculate matrix elements of this vertex with the har-
monic oscillator states the expressions for the smeared δ

functions are inserted in the expression for the vertex. The re-
sulting expression for the kernel of the string-breaking vertex
becomes

〈r1, r2, r12|v2:1|r〉 := g√
λ

δ(r − 2r12)

(
λ

4π

)3 ∫ 1

0
dηe− λ

4 {(r1−2ηr12 )2+[r2−2(1−η)r12]2}, (A1)
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where the Gaussians δ functions are expressed using

e− λ
4 (ri−2αr12 )2 = e− λ

4 r2
i −λα2r2

12+αλri ·r12 . (A2)

The angle dependent part of Eq. (A2) can be represented using the partial-wave expansion of ek·x [67] (see Sec. 10.2.36, page
445, which is the analytic continuation of the usual expansion of plane waves in spherical harmonics):

eik·r = 4π
∑

l l jl (kr)Y ∗
lm(k̂)Ylm(r̂), (A3)

which becomes

ez cos(θ ) =
∞∑

n=0

(2n + 1)

√
π

2z
In+1/2(z)Pn[cos(θ )] (A4)

or

eαλri ·r12 = 4π

√
π

2λαrir12

∞∑
l=0

l∑
m=−l

Il+ 1
2
(λαrir12)Y ∗

lm(r̂i )Ylm( ˆr12). (A5)

The Bessel function Il+ 1
2
(2ab) in Eq. (A5) is a generating function for the associated Laguerre polynomials [see Ref. [67],

Eqs. (22.9.16) and (9.6.3), or Ref. [68], Eq. (7.12)]. Abramowitz and Stegun give the following expressions:

(xz)−α/2ezJα (2(xz)1/2) =
∞∑

n=0

Lα
n (x)

zn

�(n + a + 1)
, (A6)

Iν (z) = e− 1
2 νπ iJν

(
ze

1
2 π i

) − π < φ < π/2, (A7)

Iν (z) = e
3
2 νπ iJν

(
ze− 3

2 π i
)

π/2 < φ < π, (A8)

and Schwinger gives [Eq. (7.12), p. 302] the equivalent but more useful expression

e−λIα (2
√

λx) = (λx)
α
2

∞∑
n=0

(−)n λn

(n + α)!
Lα

n (x), (A9)

which in this case is

Il+ 1
2
(2ab) = ea2

(ab)l+ 1
2

∞∑
n=0

(−)n a2n

�
(
n + l + 3

2

)L
l+ 1

2
n (b2). (A10)

In what follows this expression is used with a =
√

λ
2 αr12 and b =

√
λ
2 ri.

Using Eq. (A10) in Eq. (A5) along with Eq. (51) for the harmonic oscillator wave function gives

e− λ
4 (ri−2αr12 )2 = 2π3/2

∑
n,l,m

(√
λ

2
αr12

)2n+l

e− λ
2 α2r2

12 (−)n

(√
λ
2 ri

)l
L

l+ 1
2

n
(

λ
2 r2

i

)
e− λ

4 r2
i

�
(
n + l + 3

2

) Ylm(r̂i )Y
∗

lm( ˆr12)

= 2π3/2

(
2

λ

)3/4

e− λ
2 α2r2

12

∞∑
n=0

(√
λ

2
αr12

)2n+l Rnl (ri)√
2n!�

(
n + l + 3

2

)Ylm(r̂i )Y
∗

lm( ˆr12), (A11)

where this has been expressed in terms of the radial harmonic oscillator wave function Rnl (r).
Letting α = η and α = 1 − η gives the following expression for the kernel of the vertex as an expansion in harmonic oscillator

states:

〈r1, r2, r12|v2:1|r〉 = g√
λ

δ(r − 2r12)

(
λ

4π

)3

4π3

(
2

λ

)3/2 ∑
n1l1m1n2l2m2

∫ 1

0
dηe− λ

2 r2
12(η2+(1−η)2 )ηl1+2n1 (1 − η)l2+2n2

×
(√

λ

2
r12

)2n1+l1+2n2+l2 ψn1l1m1 (r1)Y ∗
l1m1

(r̂12)ψn2l2m2 (r2)Y ∗
l2m2

(r̂12)√
2n1!�

(
n1 + l1 + 3

2

)√
2n2!�

(
n2 + l2 + 3

2

) , (A12)

where

ψnlm(r) = Rnl (r)Ylm(r̂). (A13)
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Integrating this against three oscillator eigenstates in r1, r2 and r reduces the vertex in coordinate space to an expression in terms
of a single one-dimensional integral

〈n1, l1, m1, n2, l2, m2, r12|v2:1|n, l, m〉 =
∫

ψ∗
n1l1m1

(r1)ψ∗
n2l2m2

(r2)v(r1, r2, r12; r)ψnlm(r)dr1dr2dr

= g√
λ

Rnl (2r12)(2λ)3/2

(√
λ
2 r12

)2n1+l1+2n2+l2√
2n1!�

(
n1 + l1 + 3

2

)√
2n2!�

(
n2 + l2 + 3

2

)
×

∫ 1

0
dηe− λ

2 r2
12(η2+(1−η)2 )ηl1+2n1 (1 − η)l2+2n2Ylm(r̂12)Y ∗

l1m1
(r̂12)Y ∗

l2m2
(r̂12). (A14)

The one-dimensional integral

∫ 1

0
dηe− λ

2 r2
12[η2+(1−η)2]ηl1+2n1 (1 − η)l2+2n2 (A15)

can be performed analytically, although a numerical calculation may be more efficient. The analytic calculation is given in
Appendix B. The result of this calculation is

∫ 1

0
dηe− λ

2 r2
12(η2+(1−η)2 )ηl1+2n1 (1 − η)l2+2n2

= e− λ
4 r2

12

∫ 1

0
dηe−λr2

12(η− 1
2 )2

η2n1+l1 (1 − η)2n2+l2

= e− λ
4 r2

12

∑
k1+k2=2r

(l1 + 2n1)!(l2 + 2n2)!

k1!k2!(l1 + 2n1 − k1)!(l2 + 2n2 − k2)!
(−)k2

(
1

2

)l1+2n1+l2+2n2 1

2r + 1
M

(
1

2
+ r,

3

2
+ r,−λr2

12

4

)
, (A16)

where the sum is over k1 and k2 keeping only terms with k1 + k2 = 2r even, 0 � ki � 2ni + li, and M(α, β, γ ) is the confluent
hypergeometric function.

The kernel of the spin-independent part of the string-breaking vertex is

〈n1, l1, m1, n2, l2, m2, r12|v2:1|n, l, m〉 =
∫

ψ∗
n1l1m1

(r1)ψ∗
n2l2m2

(r2)v(r1, r2, r12; r)ψnlm(r)dr1dr2dr

= g√
λ

Rnl (2r12)(2λ)3/2

(√
λ
2 r12

)2n1+l1+2n2+l2√
2n1!�

(
n1 + l1 + 3

2

)√
2n2!�

(
n2 + l2 + 3

2

)
× e− λ

4 r2
12

∑
k1+k2=2r

(l1 + 2n1)!(l2 + 2n2)!

k1!k2!(l1 + 2n1 − k1)!(l2 + 2n2 − k2)!
(−)k2

(
1

2

)l1+2n1+l2+2n2

× 1

2r + 1
M

(
1

2
+ r,

3

2
+ r,−λr2

12

4

)
Ylm(r̂12)Y ∗

l1m1
(r̂12)Y ∗

l2m2
(r̂12). (A17)

The radial part of this expression is the part of Eq. (A17) that multiplies the three spherical harmonics:

〈n1, l1, n2, l2, r12|v2:1|n, l〉 = g√
λ

Rnl (2r12)(2λ)3/2

(√
λ
2 r12

)2n1+l1+2n2+l2√
2n1!�

(
n1 + l1 + 3

2

)√
2n2!�

(
n2 + l2 + 3

2

)
× e− λ

4 r2
12

∑
k1+k2=2r

(l1 + 2n1)!(l2 + 2n2)!

k1!k2!(l1 + 2n1 − k1)!(l2 + 2n2 − k2)!
(−)k2

(
1

2

)l1+2n1+l2+2n2

× 1

2r + 1
M

(
1

2
+ r,

3

2
+ r,−λr2

12

4

)
. (A18)
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APPENDIX B

The integral Eq. (A15) that must be evaluated in Appendix A to get an analytic expression for the meson form factors in the
coordinate representation has the form

In1.l1,n2,l2 (r12) =
∫ 1

0
e− λ

2 r2
12(η2+η2−2η+1ηl1+2n1 (1 − η)l2+2n2 dη

= e− λ
4 r2

12

∫ 1

0
e−λr2

12(η− 1
2 )2

ηl1+2n1 (1 − η)l2+2n2 dη. (B1)

Let ν = η − 1
2 so this becomes

In1.l1,n2,l2 (r12) = e− λ
4 r2

12

∫ 1
2

− 1
2

e−λr2
12ν

2

(
1

2
+ ν

)l1+2n1
(

1

2
− ν

)l2+2n2

dν. (B2)

Using the binomial theorem this becomes

In1.l1,n2,l2 (r12) = e− λ
4 r2

12

∑
k1+k2=2r

(l1 + 2n1)!(l2 + 2n2)!

k1!k2!(l1 + 2n1 − k1)!(l2 + 2n2 − k2)!
(−)k2

(
1

2

)l1+2n1+l2+2n2−2r ∫ 1
2

− 1
2

e−λr2
12ν

2
ν2r

= e− λ
4 r2

12

∑
k1+k2=2r

(l1 + 2n1)!(l2 + 2n2)!

k1!k2!(l1 + 2n1 − k1)!(l2 + 2n2 − k2)!
(−)k2

(
1

2

)l1+2n1+l2+2n2−2r(
− 1

r2
12

)r dr

dλr

∫ 1
2

− 1
2

e−λr2
12ν

2

= e− λ
4 r2

12

∑
k1+k2=2r

(l1 + 2n1)!(l2 + 2n2)!

k1!k2!(l1 + 2n1 − k1)!(l2 + 2n2 − k2)!
(−)k2

(
1

2

)l1+2n1+l2+2n2−2r

×
(

− 1

r2
12

)r dr

dλr

1√
λr12

∫ √
λr12
2

−
√

λr12
2

e−ρ2
dρ. (B3)

Next express the integral in terms of the error function

erf(z) = 2√
π

∫ z

0
e−t2

dt (B4)

to get

In1.l1,n2,l2 (r12) = e− λ
4 r2

12

∑
k1+k2=2r

(l1 + 2n1)!(l2 + 2n2)!

k1!k2!(l1 + 2n1 − k1)!(l2 + 2n2 − k2)!
(−)k2

(
1

2

)l1+2n1+l2+2n2−2r

×
√

π

4

(
− 1

r2
12

)r dr

dλr

2√
λr12

[
2√
λr12

erf

(√
λr12

2

)
− 2√

λr12

erf

(
−

√
λr12

2

)]
, (B5)

then express the error functions in terms of confluent hypergeometric function (see Eq. 7.1 of Ref. [67])

erf(z)

z
= 2√

π
M

(
1

2
,

3

2
,−z2

)
(B6)

In1.l1,n2,l2 (r12) = e− λ
4 r2

12

∑
k1+k2=2r

(l1 + 2n1)!(l2 + 2n2)!

k1!k2!(l1 + 2n1 − k1)!(l2 + 2n2 − k2)!
(−)k2

(
1

2

)l1+2n1+l2+2n2−2r

×
√

π

4

(
− 1

r2
12

)r dr

dλr

2√
λr12

[
2√
π

M

(
1

2
,

3

2
,−λr2

12

4

)
+ 2√

π
M

(
1

2
,

3

2
,−λr2

12

4

)]

= e− λ
4 r2

12

∑
k1+k2=2r

(l1 + 2n1)!(l2 + 2n2)!

k1!k2!(l1 + 2n1 − k1)!(l2 + 2n2 − k2)!
(−)k2

(
1

2

)l1+2n1+l2+2n2−2r

× 1

4r

dr

d
( − λr2

12

/
4
)r

2√
λr12

M

(
1

2
,

3

2
,−λr2

12

4

)
. (B7)

065209-26



SIMPLE RELATIVISTIC QUARK MODELS PHYSICAL REVIEW C 102, 065209 (2020)

Next use Eq. 13.4.9 of Ref. [67] to express derivatives of the confluent hypergeometric functions in terms of the confluent
function:

In1.l1,n2,l2 (r12) = e− λ
4 r2

12

∑
k1+k2=2r

(l1 + 2n1)!(l2 + 2n2)!

k1!k2!(l1 + 2n1 − k1)!(l2 + 2n2 − k2)!
(−)k2

(
1

2

)l1+2n1+l2+2n2−2r

× 1

4r

�
(

1
2 + r

)
�
(

3
2

)
�
(

3
2 + r

)
�
(

1
2

)M

(
1

2
+ r,

3

2
+ r,−λr2

12

4

)
,

which gives Eq. (A16),

= e− λ
4 r2

12

∑
k1+k2=2r

(l1 + 2n1)!(l2 + 2n2)!

k1!k2!(l1 + 2n1 − k1)!(l2 + 2n2 − k2)!
(−)k2

(
1

2

)l1+2n1+l2+2n2 1

2r + 1
M

(
1

2
+ r,

3

2
+ r,−λr2

12

4

)
. (B8)

APPENDIX C: THE COOK CONDITION

If the vertex is evaluated by projecting on a truncated basis, then the resulting interaction is separable. While the separable
approximation is a short-range compact interaction which has a nontrivial scattering operator, it is not automatically true that the
sum of an infinite number of separable terms remains short ranged. For this reason it is desirable to prove that the limit of the S
matrix with truncated numbers of channels converges in the infinite number of channel limit to the exact S-matrix. Here exact
means in the context of the 2 + 1 singlet model.

On way to avoid directly dealing with infinite number of channels is to show the existence of the channel wave operators that
are used to make the S operator. The Cook condition [59] is a sufficient condition for the strong convergence of the time limits
that define scattering wave operators

�±n1n2 := lim
τ→±∞ eiMτ�n1n2 e−iMn1n2 τ | f1 f2〉 (C1)

for and initial or final state in the n1, n2 two meson channel.
For the model of Sec. VI the Cook condition is∫ ±∞

c

∥∥v1:2�n1n1 e−iMn1n1 τ | f1 f2〉
∥∥dτ < ∞. (C2)

To show that this inequality is satisfied it is necessary to show that∥∥v1:2�n1n1 e−iMn1n1 τ | f1 f2〉
∥∥ (C3)

is an integrable function of τ for a dense set of initial or final wave packets.
The Cook condition follows provided that the square of Eq. (C3) has the form∫

dr12 f ∗(r12, τ )K∗(r12)K (r12) f (r12, τ )dr12, (C4)

where
∫ |K (r12)|2dr12 is finite and f (r12, τ ) satisfies

| f (r, 2τ )| <
c1

c2 + τ 3/2
(C5)

for constants c1 and c2. This ensures that the integrand in Eq. (C2) is bounded by√∫
|K (r12)|2dr12| <

c1

c2 + τ 3/2
, (C6)

which is integrable.
In what follows only the simplest case of identical particle scattering is discussed. In this case Mn1n2 has the form 2

√
m2

n + q2

and after factoring out the conserved light-front 3-momentum, the term 〈r12|e−iMn1n2 τ | f1 f2〉 becomes

〈r12|e−iMn1n2 τ | f1 f2〉 := 1

(2π )3/2

∫
e−i2

√
q2+m2

nτ+iq·rdq f (q). (C7)

This has the form of a positive energy solution of the Klein-Gordon equation with a wave packet f (q) in the relative momentum.
When f (q) a Schwartz test function these solutions are known to satisfy the bound Eq. (C5) [69–71].

What remains is to verify
∫ |K (r12)|2dr12 < ∞.

To construct the kernel K (r12) note that

K∗(r12)K (r12) = γ 2
∫

δ(r − 2r12)δ(r − 2r′
12)dr1dr2dr′

1dr′
2drdr′

12dηdη′

× g(r1 − ηr)g(r2 − (1 − η)r)〈φn|r1〉〈φn|r2〉〈r′
2|φn〉〈r′

1|φn〉g(r′
1 − η′r)g[r′

2 − (1 − η′)r]. (C8)
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The integrals over the δ functions give a factor of 1
2 and replace r/2 = r′

12 by r12. This gives

K∗(r12)K (r12) = γ 2

2

∫ 1

0
dη

∫ 1

0
dη′

∫
dr1g(r1 − 2ηr12)〈φn|r1〉

∫
dr2g(r2 − 2(1 − η)r12)〈φn|r2〉

×
∫

dr′
1〈r′

2|φn〉g(r′
1 − 2η′r12)

∫
dr′

2g(r′
2 − 2(1 − η′)r12)〈r′

1|φn〉. (C9)

Ignoring the η and η′ which are over the compact interval [0,1], this expression is a product of four integrals of identical structure.
It is enough to consider one of them; for example,∫

dr1g(r1 − 2ηr12)〈r1|φn〉. (C10)

In this case g(r1 − 2ηr12) is a Gaussian and the oscillator function, 〈φn|r1〉, is a Gaussian multiplied by a polynomial. In what
follows it will be shown that the result of the integration over ri is a Gaussian multiplied by a polynomial in r12. The product of
these four factors are Gaussians multiplied by polynomials. This ensures that the bound

∫ |K (r12)|2dr12 < ∞ is satisfied, which
along with Eq. (C5) verifies that the interaction satisfies the Cook condition. It also implies that truncations of the channel sums
to finite numbers of one and two-body channels is an approximation with controlled errors rather than an uncontrolled truncation,
however this is only in the context of the truncation to the two-meson sector. The case of mesons with unequal masses should
have the same qualitative behavior, but the proof is not as clean as in the equal mass case.

Note that the τ−3/2 dependence is exactly the same falloff that is seen the nonrelativistic case. The origin of this behavior is
the phase space factor q2dq.

APPENDIX D: NUMERICAL METHODS

The numerical methods used to compute Mmn(e + i0+) in equation Eq. (157) are discussed in this Appendix.
The calculations below evaluate this matrix using an orthonormal set of box functions [72], that are constant on a finite

interval, [qn−1, qn] and are normalized to unity:

1 = N2
n

∫ κn

κn−1

κ2dκ = N2
n

3

(
κ3

n − κ3
n−1

) = N2
n

3
(κn − κn−1)

(
κ2

n + κnκn−1 + κ2
n−1

)
. (D1)

The resulting normalization coefficient is

Nn =
√

3

(κn − κn−1)
(
κ2

n + κnκn−1 + κ2
n−1

) . (D2)

This is equivalent to approximating the integral in the integral equation by a limit of Riemann sums. For a given grid of
momentum variables {κ0, · · · , κN } the normalized box functions are

χn(κ ) :=
{

0 κ /∈ [κn−1, κn)
Nn κ ∈ [κn−1, κn) . (D3)

They satisfy the orthonormality condition ∫ ∞

0
χn(κ )χm(κ )κ2dκ = δmn. (D4)

Using these functions, Mmn(e + i0+) is approximated by

Mnm(e + i0+) ≈
∑

k,m1,m2

〈n|v1:2|m1, m2, χk〉〈χk| 1

e − M2m1,m2 (κ ) + i0+ |χk〉〈m1, m2, χk|v2:1|m〉. (D5)

The advantage of this basis is that matrix elements of the propagator are diagonal [72]. In addition to the channel truncations the
calculations also use a momentum cutoff at κN . The box functions are chosen so the on-shell point always sits at the midpoint of
an interval.

The quantities that appear in the sum are the elementary integrals over the vertex in momentum space

〈n|v1:2|m1, m2, χn〉 = Nn

∫ κn

κn−1

〈n|v1:2|m1, m2, κ〉κ2dκ, (D6)

〈m1, m2, χn|v2:1|m〉 = Nn

∫ κn

κn−1

〈m1, m2, κ|v2:1|m〉κ2dκ, (D7)
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and

gn(e + i0+) = 〈χn| 1

e − M2(m1, m2, κ ) + i0+ |χn〉 = N2
n

∫ κn

κn−1

κ2dκ

e − M2(m1, m2, κ ) + i0+ . (D8)

The first two integrals are computed using a Gauss Legendre quadrature. For reasonably narrow intervals [κn−1, κn] only a small
number of quadrature points are sufficient for convergence. For the Green’s function integrals there are three cases to consider.
The first step is to check to see if

M2(m1, m2, 0) > e = mos, (D9)

where mos is the on-shell invariant mass. If this is true, then there is no singularity in the denominator and the i0+ can be removed.
The integral can be computed numerically using a Fejer or Gauss Legendre quadrature rule with a small number of quadrature
points.

If

M2(m1, m2, 0) � e = mos, (D10)

then there is a real κs satisfying

M2(m1, m2, κs) = e = mos. (D11)

In this case κs is given by

κ2
s = e4 + m4

1 + m4
2 − 2e2m2

1 − 2e2m2
2 − 2m2

1m2
2

4e2
. (D12)

If this condition is satisfied, then there are two possibilities. If κs /∈ [κn−1, κn], then there is no singularity in the domain of
integration and the integral can again be performed numerically, setting ε → 0, using a small number of quadrature points. In
this case

gn(e) := 〈χn| 1

e − M2(m1, m2, κ )
|χn〉 = N2

n

∫ κn

κn−1

κ2dκ

e − M2(m1, m2, κ )
,

where ε can be set to 0. If κs ∈ [κn−1, κn], then there is a singularity in the domain of integration. In this case the singular part
can be isolated as follows:

gn(e) := 〈χn| 1

e − M2(m1, m2, κ ) + i0+ |χn〉 = N2
n

∫ κn

κn−1

κ2dκ

e − M2(m1, m2, κ ) + i0+

= N2
n

∫ κn

κn−1

κ2dκ

M2(m1, m2, κs) − M2(m1, m2, κ ) + i0+

= N2
n

∫ κn

κn−1

κ2dκ√
m2

1 + κ2
s +

√
m2

2 + κ2
s −

√
m2

1 + κ2 −
√

m2
2 + κ2 + i0+

= N2
n

∫ κn

κn−1

κ2dκ√
m2

1 + κ2
s −

√
m2

1 + κ2 +
√

m2
2 + κ2

s −
√

m2
2 + κ2 + i0+

= N2
n

∫ κn

κn−1

κ2dκ(
κ2

s − κ2
)(

1√
m2

1+κ2
s +

√
m2

1+κ2
+ 1√

m2
2+κ2

s +
√

m2
2+κ2

) + i0+

= N2
n

∫ κn

κn−1

κ2dκ(
κ2

s − κ2
)(

1√
m2

1+κ2
s +

√
m2

1+κ2
+ 1√

m2
2+κ2

s +
√

m2
2+κ2

) + i0+

= N2
n

∫ κn

κn−1

(√
m2

1 + κ2
s +

√
m2

1 + κ2
)(√

m2
2 + κ2

s +
√

m2
2 + κ2

)
√

m2
1 + κ2

s +
√

m2
1 + κ2 +

√
m2

2 + κ2
s +

√
m2

2 + κ2

κ2dκ

κ2
s − κ2 + i0+ .

In this form the singularity is at κ = κs. Defining

f (κ ) := −N2
n

(√
m2

1 + κ2
s +

√
m2

1 + κ2
)(√

m2
2 + κ2

s +
√

m2
2 + κ2

)
√

m2
1 + κ2

s +
√

m2
1 + κ2 +

√
m2

2 + κ2
s +

√
m2

2 + κ2

κ2

κ + κs
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gives

gn(e) =
∫ κn

κn−1

f (κ ) − f (κs)

κ − κs
dκ + f (κs)

∫ κn

κn−1

dκ

κ − κs − i0+

=
∫ κn

κn−1

f (κ ) − f (κs)

κ − κs
dκ + f (κs)

(
ln

(
κn − κs

κs − κn−1

)
+ iπ

)
, (D13)

where

f (κs) = −N2
n

κs

√
m2

1 + κ2
s

√
m2

2 + κ2
s√

m2
1 + κ2

s +
√

m2
2 + κ2

s

. (D14)

These singular terms contain all of the imaginary parts of gn(e).
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