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We study the �cN interaction in the covariant chiral effective field theory (ChEFT) at leading order. All the
relevant low-energy constants are determined by fitting to the lattice QCD simulations from the HAL QCD
Collaboration. Extrapolating the results to the physical point, we show that the �cN interaction is weakly
attractive in the 1S0 channel, but in the 3S1 channel it is only attractive at extremely low energies and soon turns
repulsive for larger laboratory energy. Furthermore, we show that the neglect of the 3S1 - 3D1 coupling provided
by the leading-order covariant ChEFT would result in an attractive interaction in the 3S1 channel at the physical
point, which coincides with the previous nonrelativistic ChEFT study. As a byproduct, we predict the 3D1 phase
shifts and the mixing angel ε1, which can be checked by future lattice QCD simulations. In addition, we compare
the �cN interaction with the �N and NN interactions to study how the baryon-nucleon (BN) interactions evolve
as a function of the baryon mass with the replacement of a light quark by a strange or charm quark in the
baryon (B).

DOI: 10.1103/PhysRevC.102.065208

I. INTRODUCTION

Baryon-baryon (BB) interactions are one of the most im-
portant inputs in studies of hadronic matter. At present, the
low energy nucleon-nucleon (NN) interaction has already
been comprehensively studied both phenomenologically and
model independently [1–5]. The investigation of the hyperon-
nucleon (Y N) interaction has achieved significant success as
well [6–11]. Hypernuclear spectroscopy provides one of the
most important sources from which Y N and hyperon-hyperon
(YY ) interactions can be derived. As a natural extension of NN
and Y N interactions, the charmed hyperon-nucleon (YcN) in-
teraction has also been studied with growing interest [12–19].
High energy facilities such as BEPC in China [20,21], J-PARC
in Japan [22], and FAIR in Germany [23] all have ongoing
or proposed experiments on charm physics, for instance the
production of �c and �c hyperons and their interactions with
other hadrons [24].

Early theoretical studies, based on either meson-exchange
models [12–17] or constituent quark models [18,19], indi-
cated that the YcN (Yc = �c, �c) interaction is fairly attractive.
Particularly, compared with the �N interaction, the strange
meson (K, K∗) exchanges are replaced by the charmed me-
son (D, D∗) exchanges in the �cN interaction [13,14,16] in
meson-exchanged models. This would result in less (more)
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attraction in the S (P) partial waves in the �cN interaction
than in the corresponding �N potential, because of the larger
masses of exchanged mesons.

Recently, the HAL QCD Collaboration performed lattice
QCD simulations for unphysical pion masses to study the
�cN interaction [25]. They obtained the S-wave phase shifts
for mπ = 410, 570, and 700 MeV. These results were sub-
sequently studied in the next-to-leading-order nonrelativistic
chiral effective field theory (ChEFT) and extrapolated to the
physical point, and a moderately attractive �cN interaction
was found for both the 1S0 and 3S1 channels [26]. In a later
work, the S-wave �cN interaction with isospin 1/2 was stud-
ied by the HAL QCD Collaboration as well [27]. Taking
these results as inputs, Meng et al. [28] calculated the �cN
interaction to the next-to-leading order in the nonrelativistic
ChEFT and found that the 3S1 interaction for isospin 1/2
is weakly attractive, but the interaction for isospin 3/2 is
strongly attractive, resulting in a �cN bound state. It should be
stressed that the latter prediction depends on the quark model
inputs adopted.

As all the lattice QCD simulations of the YcN system were
still performed for unphysical light quark (pion) masses, a
reliable extrapolation of these results to the physical point
is essential to guide future experiments and to gain insights
into the YcN interaction. In a series of recent works, we have
shown that the recently proposed covariant ChEFT approach
can be used for such a purpose. In Refs. [29–32], it was shown
that the strangeness S = −1 lattice QCD Y N interaction can
be described reasonably well, and so can the strangeness
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FIG. 1. Leading-order Feynman diagrams for nonderivative four-
baryon contact terms and one-meson exchanges.

S = −2 Y N/YY interaction. The extrapolated results are also
consistent with limited experimental data. In a more recent
work [33], we showed that the lattice QCD NN phase shifts
for the 1S0 and 3S1 - 3D1 partial waves can be simultaneously
described together with their physical counterparts by the
leading-order (LO) covariant ChEFT, implying that a reliable
chiral extrapolation of lattice QCD results for unphysical pi-
ons masses smaller than 500 MeV is possible. An interesting
discovery of Ref. [33] is that the 3S1 - 3D1 coupled channel is
described by the same two low-energy constants (LECs), thus
allowing one to make predictions for the 3D1 phase shifts and
the mixing angle ε1 using only the 3S1 phase shifts as inputs.

In this work, we revisit the HAL QCD results [25] in the
covariant ChEFT at leading order. Our purpose is threefold.
First, we provide an independent extrapolation of the HAL
QCD results, in addition to that of Ref. [26]. Second, we
predict the 3D1 phase shifts and the mixing angle ε1, so
that they can be checked by future lattice QCD simulations,
which could also provide a nontrivial check of the covariant
ChEFT. Third, we investigate the quark mass dependence of

baryon-nucleon interactions by comparing those of NN , �N ,
and �cN .

This paper is organized as follows. In Sec. II, we briefly
introduce the covariant ChEFT for the YcN system, including
covariant chiral Lagrangians, potentials, and the scattering
equation, as well as our strategy to determine the unknown
LECs. In Sec. III we show the fitted results and extrapolations,
and discuss coupled channel effects and quark mass depen-
dence in the NN , �N , and �cN interactions. This is followed
by a short summary and outlook in Sec. IV.

II. LEADING-ORDER COVARIANT CHIRAL EFFECTIVE
FIELD THEORY

In this section, we briefly introduce the covariant ChEFT
for the YcN interaction. At leading order, the YcN potentials
consist of contributions from nonderivative four-baryon con-
tact terms (CTs) and one-meson exchanges (OMEs), as shown
in Fig. 1. The LO Lagrangian for the contact terms is

LYcN→YcN
CT = Ci (Ȳc�iYc)(N̄�iN ), (1)

where Ci (i = 1, . . . , 5) are the LECs that need to be deter-
mined by fitting to either experimental or lattice QCD data,
and �i (i = 1, . . . , 5) are the elements of the Clifford algebra,

�1 = 1, �2 = γ μ, �3 = σμν, �4 = γ μγ5, �5 = γ5.

Then potentials are derived with the full baryon spinor,

uB(p, s) = Np

(
1

σ ·p
Ep+MB

)
χs, Np =

√
Ep + MB

2MB
, (2)

where Ep =
√

p2 + M2
B, and MB = MYc or MN is the mass of

the charmed baryon or nucleon. By performing partial wave
projection, the 1S0 and 3S1 - 3D1 CT potentials in the LSJ basis
read
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where

ξYcN = 4π

√(
EYc

p′ + MYc

)(
EYc

p + MYc

)(
EN

p′ + MN
)(

EN
p + MN

)
4MN MYc

and RYc,N
p(p′ ) = p(p′)

EYc,N
p(p′ ) + MYc,N

. (8)
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TABLE I. Baryon masses for different pion masses (in units of
MeV) needed in this work [25].

mπ mN m�c m�c

138 939 2287 2455
412 1215 2434 2575
570 1399 2555 2674

Note that all the LECs are implicitly pion mass dependent as
in Ref. [26] such that C1S0 = Ĉ1S0 + D1S0 m2

π . For MYc , we

used the average of �c and �c masses. On the other hand,
because of the limited LQCD data, it is impossible to pin down
all the LECs of the coupled �cN-�cN system. Therefore,
following Ref. [34], we used an effective CT potential by only
considering the �cN → �cN channel and assumed that the
CT contributions from the �cN channel can be effectively
absorbed into those from the �cN channel, thus in total only
four LECs are needed in the present study, i.e., C1S0, C′

1S0,
C3S1, and C′

3S1.
To construct the OME potentials, we need the following

LO meson-baryon Lagrangian [35]:

LMB = tr

(
B̄(iD − MB)B − D/F

2
B̄γ μγ5{uμ, B}±

)
+ 1

2
tr[B̄3̄(i∂ − M3̄ )B3̄] + tr

1

8 f 2
0

(iB̄3̄γ
μ{[M, ∂μM], B3̄})

+ tr[B̄6(i∂ − M6)B6] + tr
1

4 f 2
0

(iB̄6γ
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(
− 1√
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)
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+
(

− 1√
2 f0

)
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μγ5∂μMB3̄ ) + H.c. +
(

− 1√
2 f0

)
g6 tr(B̄3̄γ

μγ5∂μMB3̄ ), (9)

where tr indicates trace in the corresponding flavor space, DμB = ∂μB + [�μ, B], and �μ and uμ are the vector and axial-vector
combinations of the meson fields and their derivatives,

�μ = 1
2 (u†∂μu + u∂μu†),

uμ = i(u†∂μu − u∂μu†).

In the Lagrangian LMB, MB, M3̄, and M6 are the ground-state masses of octet baryons, antitriplet baryons, and sextet baryons,
respectively, and M, B, B3̄, and B6 refer to the meson and baryon matrices, which are defined as

M =

⎛
⎜⎝

π0√
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⎞
⎟⎟⎠.

The values of the coupling constants g1, g2, and g6 and the meson decay constant f0 will be specified below. Using LMB, one
can straightforwardly obtain the OME potential,

V OME
YcN→YcN = − iNūYc (p′)

(
γ μγ5qμ

2 f0

)
uYc (p)

i

�E2 − q2 − m2 + iε
ūN (−p′)

(
γ νγ5qν

2 f0

)
uN (−p) × IYcN→YcN , (10)

where Yc = �c, �c, q = p′ − p is the transferred momentum,
and m is the mass of the exchanged pseudoscalar meson. Note
that we only consider light meson exchanges in the ChEFT.
The coupling constant N is defined as

N = gYcY ′
c

A gNN
A . (11)

Following Ref. [26], gYcY ′
c

A and gNN
A are assumed to be pion

mass independent and are fixed to be gNN
A = 1.27 [36],

g�c�c
A = 0.71 [37], and g�c�c

A = 0.74 [37,38]. On the other
hand, the meson decay constant f0 varies with the pion mass,
and the dependence has been deduced, e.g., in Ref. [39].
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FIG. 2. Best fitted χ 2/d.o.f. as a function of the cutoff in the LO covariant ChEFT by fitting to the lattice QCD �cN S-wave phase shifts.
The magenta circles denote the χ 2/d.o.f. for mπ = 410 MeV and the dark-blue dots refer to the χ2/d.o.f. for mπ = 570 MeV, while their sum
is shown in the right panel.

We use f0 = 93 MeV for mπ = 138 MeV, f0 = 112 MeV
for mπ = 410 MeV, and f0 = 129 MeV for mπ = 570 MeV.
In Eq. (10), I indicates the isospin factor, whose value can
be found in, e.g., Refs. [40,41]. Note that OME does not
contribute to �cN → �cN at tree level because of isospin

conservation, but it contributes to the scattering amplitudes
via the scattering equation.

In order to obtain the scattering amplitudes, we solved the
coupled-channel Kadyshevsky equation [42],

T νν ′,J
ρρ ′ (p′, p;

√
s) = V νν ′,J

ρρ ′ (p′, p) +
∑
ρ ′′,ν ′′

∫ ∞

0

d p′′ p′′2

(2π )3

MB1,ν′′ MB2,ν′′ V νν ′′,J
ρρ ′′ (p′, p′′) T ν ′′ν ′,J

ρ ′′ρ ′ (p′′, p;
√

s)

E1,ν ′′E2,ν ′′ (
√

s − E1,ν ′′ − E2,ν ′′ + iε)
, (12)

where
√

s is the total energy of the two-baryon system in the

center-of-mass frame and En,ν ′′ =
√

p′′2 + M2
Bn,ν′′ (n = 1, 2).

The labels ν, ν ′, ν ′′ denote the particle channels, and ρ, ρ ′, ρ ′′
denote the partial waves. In numerical calculations, the po-
tentials in the scattering equation are regularized with an
exponential form factor of the following form,

f�F (p, p′) = exp

[
−

(
p

�F

)4

−
(

p′

�F

)4
]
. (13)

More details about the covariant ChEFT can be found in
Refs. [5,29–33].

TABLE II. Values of the LECs from the best fits obtained with
�F = 600–700 MeV, where C′

1S0 and C′
3S1 are in units of 104 GeV−2

and C1S0 and C3S1 are in units of 102 GeV−2. The pion mass mπ and
cutoff �F are in units of MeV.

mπ �F C1S0 C′
1S0 C3S1 C′

3S1

410 600 −1.2653 1.6882 0.2698 1.8966
650 −0.9267 1.8736 0.1270 1.3170
700 −0.2255 2.1488 −0.0130 0.8456

570 600 −0.7624 0.6540 −0.0520 0.1994
650 −0.7168 0.6876 −0.0468 0.1608
700 −0.6485 0.7274 −0.0414 0.1323

III. RESULTS AND DISCUSSION

A. Fitted results and extrapolations to the physical point

The four LECs in the CT potential are determined by fitting
to the lattice QCD simulations from the HAL QCD Collabo-
ration [25]. For this, we used the �cN S-wave phase shifts
for mπ = 410 and 570 MeV with the center-of-mass energy

FIG. 3. �cN 1S0 phase shifts of the lattice QCD simulations in
comparison with the ChEFT fits. The magenta open circles denote
the LQCD data [25] for mπ = 410 MeV, while the dark-blue dots
refer to the LQCD data [25] for mπ = 570 MeV. The lines and band
denote the ChEFT fits. The band is generated from a variation of �F

from 600 to 700 MeV. The grey line and band refer to the predictions
for mπ = 138 MeV. The vertical dashed line at Ec.m. = 30 MeV
denotes that the �cN interaction is obtained by fitting to the lattice
QCD data only up to this energy.
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FIG. 4. Left: the same as Fig. 3 but for the 3S1 phase shifts. Right: the same as the left panel, but with the S-D coupled channel effect
turned off. The vertical dashed lines at Ec.m. = 30 MeV denote that the �cN interaction is obtained by fitting to the lattice QCD data only up
to this energy.

Ec.m. up to 30 MeV. Although the lattice QCD results for
mπ = 570 MeV are probably already beyond the applicability
of leading-order ChEFT, we included these results in order
to pin down the pion mass dependence of the LECs so that
we can extrapolate the lattice QCD results to the physical
point. In Table I, we list the lattice QCD [25] and physical
[36] baryon masses relevant to the present study. Similar
to our previous study on the �N-�N system [29–31], the
fits were first performed with cutoff values in the range of
�F = 500–750 MeV. The fitted χ2 for lattice QCD simula-
tions for different pion masses and the total χ2 as a function
of the cutoff �F are shown in Fig. 2. For the 1S0 channel,
within the cutoff range studied, the χ2/d.o.f. for mπ = 410
MeV decreases with increasing �F , while the χ2/d.o.f. for
mπ = 570 MeV stays almost constant. On the the other hand,
for the 3S1 channel, the χ2/d.o.f. increases with increasing
�F for mπ = 570 MeV, but stabilizes in the range �F =
550–700 MeV for mπ = 410 MeV. From the right panel, one
can see that a cutoff between 500 and 700 MeV yields the
minimum χ2 for all the lattice QCD data fitted. However,
since the lattice QCD data for mπ = 570 MeV were used in
our fits, in principle the cutoff value should be larger than the
pion mass such that the inclusion of the OME potential is justi-
fied. As a result, we choose the range of �F = 600–700 MeV
in subsequent analyses, and the fitted LECs are shown in
Table II.

The fitted S-wave �cN phase shifts are shown in Figs. 3
and 4. For the 1S0 partial wave, the covariant ChEFT phase
shifts are in good agreement with the lattice QCD data. The

�cN potential turns out to be moderately attractive when
extrapolated to the physical point. It should be noted that
the predicted 1S0 phase shifts at the physical point are qual-
itatively similar to those of the nonrelativistic ChEFT of
Ref. [26], but with slightly larger uncertainties.

On the other hand, for the 3S1 partial wave shown in the left
panel of Fig. 4, the covariant ChEFT phase shifts are in fair
agreement with the lattice QCD data only for energies up to
30 MeV. The discrepancy then becomes larger as the energy
increases. Extrapolated to the physical point, the �cN inter-
action is weakly attractive only in the very low energy region,
then becomes repulsive as the kinetic energy increases. This
results in a peculiar phenomenon that, although the scattering
length of this channel is negative (see Table III) and therefore
indicates a weakly attractive interaction, on the whole the 3S1

interaction is repulsive. This is quite different from the results
of the nonrelativistic ChEFT [26].

In order to understand this phenomenon, we set V3S1 - 3D1

and V3D1 - 3S1
in the CT potential to zero and redid the fits. The

resulting phase shifts are shown in the right panel of Fig. 4.
The covariant ChEFT phase shifts are in better agreement with
the lattice QCD data for energies up to 40 MeV. In particular,
the description of the mπ = 570 MeV data is much improved.
Furthermore, when extrapolated to the physical point, an at-
tractive interaction is obtained, which is similar not only to the
1S0 interaction shown in Fig. 3, but also to the 3S1 interaction
of the nonrelativistic ChEFT. As a result, we conclude that the
predicted 3S1 interaction depends strongly on how the coupled
channel S-D mixing is treated.

TABLE III. NN , �N , and �cN scattering lengths (in units of fm) obtained in the LO covariant ChEFT, NLO nonrelativistic ChEFT, and
Nijmegen-D model. For guidance, we also show the experimental NN scattering lengths.

Channels Cov. ChEFT (LO) NR ChEFT (NLO) Nijmegen-D Expt.

NN aNN
1S0 −21.3 −23.0 −17.0 [15] −23.7

aNN
3S1 5.75 5.48 5.42 [15] 5.42

�N a�N
1S0 −2.44 [29] −2.91 [45] −1.90 [46]

a�N
3S1 −1.32 [29] −1.54 [45] −1.96 [46]

�cN a�cN
1S0 −1.16 −1.00 [26] −3.83 [15]

a�cN
3S1 −0.52 −0.98 [26] −4.24 [15]
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FIG. 5. On-shell �cN potentials for the 3S1 - 3D1 coupled channel for different pion masses. The black solid lines denote potentials for
mπ = 138 MeV, the magenta dashed lines refer to potentials for mπ = 410 MeV, and the dark-blue dotted lines are potentials for mπ =
570 MeV.

In the nonrelativistic ChEFT, there is no S-D mixing in
the leading-order CT potential, while the same two LECs
are responsible for the 3S1 - 3D1 coupled channel in the LO
covariant ChEFT. In the following, we further explore this
coupled channel effect, which is due to relativistic corrections
that are considered to be of higher order in the nonrelativistic
ChEFT but already shows up at leading order in the covariant
ChEFT.

For the sake of simplicity, we fixed the cutoff �F at
600 MeV, but the general discussion remains unchanged for
�F = 650 and 700 MeV. The on-shell coupled channel po-
tentials as a function of kinetic energy in the center-of-mass

frame are shown in Fig. 5. The 3S1 potential increases slowly
with Ec.m., while the 3D1 and 3S1 - 3D1 potentials decrease
with the energy. The 3D1 potential is two order of magnitude
smaller than the 3S1 potential, while the 3S1 - 3D1 mixing is
even one more order of magnitude smaller. Such features
of the triplet channel potentials are in qualitative agreement
with the lattice QCD simulations [25]. Nonetheless, the small
mixing seems to affect the 3S1 phase shifts a lot, as we
noted above. As a result, we strongly encourage lattice QCD
collaborations to check whether the inclusion of the coupled
channel effect in extrapolating the 3S1 interaction can make a
difference.

FIG. 6. �cN 3S1, 3D1 phase shifts and mixing angles ε1 for different pion masses. The bands are generated from the variation of �F from
600 to 700 MeV. The vertical dashed lines at Ec.m. = 30 MeV denote that the �cN interaction is obtained by fitting to the lattice QCD data
only up to this energy.
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FIG. 7. NN , �N , and �cN phase shifts in the 1S0 and 3S1 - 3D1 coupled channels for physical pion masses. The green solid lines, red
dashed lines, and blue dot-dashed lines denote the �cN , �N , and NN interactions, respectively. The vertical dashed lines at Ec.m. = 30 MeV
denote that the �cN interaction is obtained by fitting to the lattice QCD data only up to this energy.

In the following, we predict the 3D1 phase shifts and
the mixing angle ε1 with the LECs determined by fitting
to the lattice QCD 3S1 phase shifts, which are shown in
Fig. 6 together with their 3S1 counterparts for three pion
masses, mπ = 138, 410, and 570 MeV. As this is only a
leading-order study and also demonstrated above, the results
beyond Ec.m. > 30 MeV should be taken with caution. For
the 3S1 partial wave, the interaction changes from weakly
attractive to moderately repulsive as the pion mass decreases
from 570 to 138 MeV. As already stressed above, this tran-
sition is strongly related to the S-D coupling and should be
checked by future lattice QCD simulations. For the 3D1 par-
tial wave, the interaction is weakly repulsive for mπ = 570
MeV, and becomes stronger as the pion mass decreases to
mπ = 410 MeV. However, such a reduction does not extend
to the physical point. As a matter of fact, the �cN interac-
tion for the physical pion mass is almost the same as that
for mπ = 410 MeV. As for the mixing angle ε1, it shows a
strong dependence on the cutoff for mπ = 570 MeV, yet such
a dependence becomes weaker as the pion mass decreases. In
addition, for mπ = 410 MeV, the mixing angle has the largest
magnitude.

B. Comparison of the NN, �N, and �cN interactions

It is instructive to compare the NN , �N , and �cN in-
teractions, which not only allows for a better understanding
of the evolution of the baryon-nucleon interactions as one

replaces one light quark in the baryon by one strange or charm
quark, but also allows us to better assess the extrapolated �cN
interaction from the lattice QCD simulations as both the NN
and Y N interactions are constrained by experimental data,
particularly the former.

The 1S0 and 3S1 - 3D1 NN , �N , and �cN phase shifts
with �F = 600 MeV for the physical pion mass are shown
in Fig. 7. In the 1S0 channel, the NN interaction is strongly
attractive (to the extent that there is a virtual bound state in this
channel), while both the �N and �cN interactions become
less attractive, but the latter two are of similar strength. In the
3S1 channel, the NN interaction is strongly attractive (to the
extent that the deuteron exists), the �N interaction becomes
only weakly attractive, while the �cN interaction becomes
weakly repulsive, as we discussed already. In the 3D1 chan-
nel, both the NN and �cN interactions are weakly repulsive,
while the �N interaction is quite small up to Ec.m. ≈ 50 MeV,
and then increases quickly, corresponding to the opening of
the �N channel. A similar phenomenon has been observed
in the experimental data [43,44] and our previous studies
[29,41] that a cusp appears in the �p → �p cross section
at the opening of the �+n channel. On the other hand, the
NN and �N mixing angles are very similar up to Ec.m. ≈ 50
MeV but the �cN mixing angle is negative and smaller in
magnitude.

In Table III, we list the corresponding scattering lengths.
For comparison, we also show the results of the LO covaraint
ChEFT [29] for �N , next-to-leading-order nonrelativistic

065208-7



SONG, XIAO, LIU, WANG, LI, AND GENG PHYSICAL REVIEW C 102, 065208 (2020)

ChEFT [26,45] for �N and �cN , and the Nijmegen-D model
[15,46]. The covariant ChEFT NN scattering lengths were
obtained with the regulator of Eq. (13) with a cutoff of
600 MeV following the fitting strategy of Ref. [5], while
those of the nonrelativistic ChEFT were obtained using the
same regulator and cutoff following the fitting strategy of
Ref. [47]. We note that the scattering lengths obtained in the
covariant ChEFT are qualitatively similar to those obtained
in the nonrelativistic ChEFT, while some of the predictions
of the Nijmegen-D model are drastically different, e.g., those
of the �cN and 1S0 NN .

IV. CONCLUSION

In this work, we studied the lattice QCD simulations of
the �cN interaction for mπ = 410, 570 MeV and extrapolated
the results to the physical point. We found that the covariant
ChEFT �cN phase shifts are in good agreement with the
lattice QCD simulations in the 1S0 partial wave for Ec.m. �
40 MeV, while in the 3S1 partial wave the ChEFT results
are in good agreement with the lattice QCD data for Ec.m. �
30 MeV. Different from the previous study of Ref. [26], we
found an attractive �cN interaction in the 1S0 partial wave,
but a repulsive interaction in the 3S1 partial wave, though it is

slightly attractive at extremely low energies. We showed that
such a repulsive �cN interaction originates from the coupling
of 3S1 and 3D1, and one ends up with an attractive interaction
at the physical point once the coupling in the CT potential is
neglected.

To understand how the baryon-nucleon (BN) interac-
tion evolves if one replaces one of the light quarks in the
baryon B with a strange or charm quark, we compared the
so-obtained �cN interaction with those of �N and NN .
We found that in general the strength of the BN interac-
tion becomes weaker as one moves from NN to �N to
�cN .

We noted that although in good agreement with the lattice
QCD simulations for unphysical pion masses, the covariant
ChEFT results for the spin triplet channel seem to show strong
dependence on the consideration of coupled channel effects.
This needs to be checked by future and more refined lattice
QCD simulations.
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