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η mesons in hot and dense asymmetric nuclear matter
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We study the ηN interactions in the hot and dense isospin asymmetric nuclear matter using two different
approaches. In the first approach, the in-medium mass and optical potential of η meson have been calculated in
the chiral SU(3) model, considering the effect of explicit symmetry-breaking term and range terms in the ηN
interaction Lagrangian density. In the second scenario, the conjunction of chiral perturbation theory and chiral
SU(3) model is employed. In this case, the next to leading order ηN interactions are evaluated from the chiral
perturbation theory (ChPT), and the in-medium contribution of scalar densities are taken as input from chiral
SU(3) model. We observe a larger negative mass shift in the ChPT + chiral model approach compared to the
chiral SU(3) model alone as a function of nuclear density. Moreover, the increase in the asymmetry and temper-
ature cause a decrease in the magnitude of mass shift. We have also studied the impact of ηN scattering length
aηN on the η-meson mass m∗

η and observed that the m∗
η decrease mores for increasing values of scattering length.

DOI: 10.1103/PhysRevC.102.065207

I. INTRODUCTION

Meson-baryon interactions are a very important topic of
research to study the physics of the nonperturbative QCD
regime [1–12]. The heavy-ion collisions (HICs) are used to
study the strong-interaction physics by colliding high-energy
particles. As a by-product of the collision, the quark gluon
plasma (QGP) appears under the utmost conditions of density
and temperature [12]. Afterward, with the expansion of a fire-
ball, the QGP cools down and changes its phase to hadronic
matter through the hadronization process [12]. These two
regimes, i.e., QGP phase and hadronic phase, have different
characterization of the respective medium. For example, in the
former phase, quarks and gluons act as a degree of freedom,
whereas in the latter, mesons and baryons play this role. In
the QGP phase the chiral symmetry is followed (mq ≈ 0),
but in the hadronic phase it is broken explicitly (mq �= 0)
and spontaneously (〈q̄q〉 �= 0) [12,13]. Furthermore, in the
hadronic ensemble, the thermodynamics quantities namely
nuclear density (number density of nucleons), isospin asym-
metry (number of neutrons versus the number of protons), and
temperature also play crucial roles to modify the in-medium
properties of the mesons and baryons [1,2,12].

The operation of future experimental facilities such as
compressed baryonic matter (CBM) and antiproton annihi-
lation at Darmstadt (PANDA) at GSI, Germany, nuclotron-
based ion collider facility (NICA) at Dubna, Russia and, Japan
proton accelerator research complex (J-PARC) at Japan may
lead to considerable progress in the understanding of meson-
baryons interactions [12,13].

On the theoretical side, several potential models have been
theorized to study the physics of the nonperturbative regime.
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Some of these are the Nambu-Jona-Lasinio (NJL) model [14],
Polyakov loop extended NJL (PNJL) model [15–17], chiral
perturbation theory (ChPT) [5,10], coupled channel approach
[1,6–8,18], chiral SU(3) model [2,19–28], quark-meson cou-
pling (QMC) model [29–34], Polyakov quark meson (PQM)
model [35,36], and QCD sum rules [3,37–41]. Various effec-
tive models are formulated, keeping in view the fundamental
QCD properties such as broken scale invariance and sponta-
neous and explicit breaking of the chiral symmetry.

Haider and Liu anticipated that the ηN interactions are at-
tractive and suggested the possibility of η-meson bound states
[42,43]. The negative mass-shift and optical potential of the η

meson have attracted researchers to study the possibilities of
η-mesic nuclei formation [5,10,11]. At nuclear saturation den-
sity, the optical potential of −20 MeV was anticipated in the
chiral coupled channel approach, considering leading-order
terms [11]. Using the same coupled-channel model, Chiang
et al. obtained optical potential Uη = −34 MeV in the normal
nuclear matter, assuming the ηN interactions dominated by
N∗(1535) excitation [44] and anticipated that the attractive
potential can produce an η-meson bound state with light and
heavy nuclei. Using the QMC model, authors of Ref. [45]
obtained the optical potential −60 MeV at ρN = ρ0. The
chiral unitary approach was also implied to evaluate the η

potential and it was observed to be −54 MeV [46]. A more
deep optical potential of −72 MeV was observed in Ref. [47].
In this article, the possibility of a bound state with η-meson is
also explored.

In Ref. [10], using ηN Lagrangian off-shell terms, at nor-
mal nuclear density, the in-medium mass of an η meson was
found to be (0.84 ± 0.015)mη and the corresponding optical
potential was observed as −(83 ± 5) MeV. Furthermore, using
the relativistic mean-field theory, Song et al. observed the
optical potential by varying the scattering length [48]. Clearly,
the values of the η optical potential predicted in various
studies varies over large range, i.e., −20 to −85 MeV, and
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hence have considerable model dependence. In addition to
theoretical attempts, there are experimental studies to explore
the properties of η mesons [49–54]. For example, for different
η-hadron interactions, the η-meson production has been stud-
ied in Refs. [49–51] and the transverse momentum spectra of
the η meson is measured in HICs near the free N-N production
threshold [51].

In the current investigation, we present the in-medium
mass and optical potential of the η-meson in hot and dense
asymmetric nuclear matter using a chiral SU(3) model. By
incorporating the medium-induced nucleon scalar densities,
we calculate the in-medium mass shift of the η meson us-
ing the ηN effective Lagrangian of the chiral SU(3) model.
Furthermore, as discussed earlier, the in-medium mass and
optical potential of the η meson have been studied using the
unitary approach of ChPT and relativistic mean-field model
[10,48]. Following this work, as a second part of the current
investigation, the effective mass of the η meson is also eval-
uated using the chiral ηN Lagrangian of chiral perturbation
theory [10]. In this approach, the nucleon scalar densities
are calculated from chiral SU(3) model and plugged in the
dispersion relation of ηN interactions derived from ChPT
Lagrangian.

The chiral SU(3) model is extensively used to explore the
in-medium properties of the mesons and baryons in the hot
and dense hadronic matter [19,21,55]. For example, the model
was used to study the in-medium mass and optical potential
of kaons, antikaons, and φ mesons in nuclear and hyper-
onic matter [19,22,26]. Furthermore, in nuclear and hadronic
matter, the in-medium mass of spin-0, spin-1 D mesons and
quarkonia were calculated using the conjunction of chiral
SU(3) model and QCD sum rules with [23–25,56] and without
taking the effect of magnetic field [21,57–60]. The model
was extended to the SU(4) and SU(5) sectors to evaluate
the medium-induced properties of heavy mesons such as D
and B [22,27,28]. On the other hand, the chiral perturbation
theory is also a successful theoretical framework to study the
baryon-meson interactions. The in-medium properties of K
meson were first studied by Kaplan and Nelson using chiral
perturbation theory (ChPT) [4]. The same theory was applied
to study the η-nucleon interactions via adding leading-order
terms in the model Lagrangian [5]. The heavy baryon chiral
perturbation theory was also applied to study the kaon conden-
sation, which is an imperative property to study the neutron
star matter [61–63]. The ChPT theory was also improved by
the introduction of next to leading order terms in the chiral ef-
fective Lagrangian. By including these off-shell terms, Zhong
et al. anticipated appreciable decrease in the in-medium mass
of the η meson which is favorable for the formation of η-mesic
nuclei [10].

The layout of the present paper is as follows: In the next
section, we will give a brief explanation of the formalism
used in the present work. In Sec. II A 1, we will derive the ηN
interactions in the chiral SU(3) model, whereas in Sec. II A 2,
ηN methodology will be given in the unified approach of
chiral perturbation theory and chiral model. In Sec. III, we
will discuss the in-medium effects on the mass of the η meson,
and finally in Sec. IV, we will present the summary.

II. FORMALISM

A. In-medium scalar fields in the chiral SU(3) model

The Lagrangian density of the chiral SU(3) model is writ-
ten as

Lchiral = Lkin +
∑

M=S,V

LNM + Lvec + L0 + LSB. (1)

The model preserves the fundamental QCD properties such
as the broken scale invariance and nonlinear realization of
the chiral symmetry [2,23,24,64–67]. It is successfully used
to explain the nuclear matter, finite nuclei, neutron star, and
hypernuclei [2,23,24,64–67]. In this model, the nucleons and
baryons interact by the exchange of the vector fields ω and
ρ along with the scalar fields σ , ζ , and δ in the nuclear
medium. The vector fields give short-range repulsion or attrac-
tion which depends on the type of meson-nucleon interaction
whereas the scalar fields give attractive contributions to the
medium [26]. The σ field is a nonstrange scalar-isoscalar field
which represents the scalar mesons σ (ud̄), whereas the ζ

field is a strange scalar-isoscalar field which represents the
scalar meson (ss̄) [68]. Moreover, the scalar-isovector field δ

≈ (ūu − d̄d) is incorporated in the present model to study the
effect of the isospin asymmetric matter. Further, the glueball
field, χ , is a hypothetical gluon field that contains gluon
particles and is introduced in the chiral models to incorporate
the scale invariance property of QCD [2,69]. We have used
mean-field approximation to simplify the model by neglecting
the effect of quantum and thermal fluctuations near phase
transitions [23,70].

In Eq. (1), the Lkin term describes the the kinetic energy
term and the second term LNM is given by

LNM = −
∑

i

ψ̄i[m
∗
i + gωiγ0ω + gρiγ0ρ]ψi, (2)

which defines the nucleon-meson interactions with in-medium
nucleon mass as

m∗
i = −(gσ iσ + gζ iζ + gδiτ3δ), (3)

where τ3 denotes the third component of isospin and gσ i, gζ i,
and gδi are the coupling constants of σ , ζ , and field δ with
nucleons (i = p, n), respectively. The next term Lvec is given
by

Lvec = 1

2

(
m2

ωω2 + m2
ρρ

2
)χ2

χ2
0

+ g4(ω4 + 6ω2ρ2 + ρ4), (4)

which reproduces the mass of vector mesons through self-
interactions. The L0 defines the spontaneous chiral symmetry
breaking by the equation

L0 = −1

2
k0χ

2(σ 2 + ζ 2 + δ2) + k1(σ 2 + ζ 2 + δ2)2

+ k2

(
σ 4

2
+ δ4

2
+3σ 2δ2+ζ 4

)
+ k3χ (σ 2 − δ2)ζ − k4χ

4

− 1

4
χ4ln

χ4

χ4
0

+ d

3
χ4ln

((
(σ 2 − δ2)ζ

σ 2
0 ζ0

)(
χ

χ0

)3
)

. (5)
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TABLE I. Different constants used in the present work [2].

Parameter Value Parameter Value Parameter Value

k0 2.53 σ0 (MeV) −93.29 gσN 10.56
k1 1.35 ζ0 (MeV) −106.8 gζN −0.46
k2 −4.77 χ0 (MeV) 409.8 gδN 2.48
k3 −2.77 d 0.064 gωN 13.35
k4 −0.218 g4 79.91 gρN 5.48

mπ (MeV) 139 mK (MeV) 498 fπ (MeV) 93.29
fK (MeV) 122.14 ρ0 (fm−3) 0.15 mσ (MeV) 466.5
mζ (MeV) 1024.5 mδ (MeV) 899.5 mη (MeV) 574.374
MN (MeV) 939

In this equation, σ0, ζ0, δ0, and χ0 denote the vacuum
values of σ , ζ , δ, and χ scalar fields, respectively. Also,
the parameter d = 0.064 along with ki (i = 1 to 4) and other

medium parameters are fitted to regenerate the vacuum values
of scalar and vector fields, η, η′ mesons, and the nucleon
mass [2,21,24]. In Table I, we have tabulated the values of
various parameters. Furthermore, the last term LSB in Eq. (1)
describes the explicit chiral symmetry breaking property and
is written as

LSB = −
(

χ

χ0

)2[
m2

π fπσ +
(√

2m2
K fK − 1√

2
m2

π fπ

)
ζ

]
.

(6)

In the above equation, mπ , mK , fπ , and fK symbolize the
masses and decay constants of pions and kaons, respectively.

The nonlinear coupled equations of motion of the scalar
and vector fields are deduced by solving the total Lagrangian
[Eq. (1)] using the Euler-Lagrange equations [24,25] and are
given as

k0χ
2σ − 4k1(σ 2 + ζ 2 + δ2)σ − 2k2(σ 3 + 3σδ2) − 2k3χσζ − d

3
χ4

(
2σ

σ 2 − δ2

)
+

(
χ

χ0

)2

m2
π fπ =

∑
gσ iρ

s
i , (7)

k0χ
2ζ − 4k1(σ 2 + ζ 2 + δ2)ζ − 4k2ζ

3 − k3χ (σ 2 − δ2) − d

3

χ4

ζ
+

(
χ

χ0

)2[√
2m2

K fK − 1√
2

m2
π fπ

]
=

∑
gζ iρ

s
i , (8)

k0χ
2δ − 4k1(σ 2 + ζ 2 + δ2)δ − 2k2(δ3 + 3σ 2δ) + 2k3χδζ + 2

3
dχ4

(
δ

σ 2 − δ2

)
=

∑
gδiτ3ρ

s
i , (9)(

χ

χ0

)2

m2
ωω + g4(4ω3 + 12ρ2ω) =

∑
gωiρ

v
i , (10)(

χ

χ0

)2

m2
ρρ + g4(4ρ3 + 12ω2ρ) =

∑
gρiτ3ρ

v
i , (11)

and

k0χ (σ 2 + ζ 2 + δ2) − k3(σ 2 − δ2)ζ + χ3

[
1 + ln

(
χ4

χ4
0

)]
+ (4k4 − d )χ3 − 4

3
dχ3ln

((
(σ 2 − δ2)ζ

σ 2
0 ζ0

)(
χ

χ0

)3
)

+ 2χ

χ2
0

[
m2

π fπσ +
(√

2m2
K fK − 1√

2
m2

π fπ

)
ζ

]
− χ

χ0
2

(
m2

ωω2 + m2
ρρ

2
) = 0, (12)

respectively.
In the above equations, the ρs

i and ρv
i denote the scalar and vector densities of ith nucleons (i = n, p) [2,24] and are given as

ρv
i = γi

∫
d3k

(2π )3

(
1

1 + exp [β(E∗
i (k) − μ∗

i )]
− 1

1 + exp [β(E∗
i (k) + μ∗

i )]

)
(13)

and

ρs
i = γi

∫
d3k

(2π )3

m∗
i

E∗
i (k)

(
1

1 + exp [β(E∗
i (k) − μ∗

i )]
+ 1

1 + exp [β(E∗
i (k) + μ∗

i )]

)
, (14)

respectively, where β = 1
kT , E∗

i (k) =
√

k2 + m∗
i

2, μ∗
i = μi − gωiω − gρiτ3ρ, and γi is the degeneracy factor. Moreover, the

isospin effect on the scalar and vector density is measured by the definition, I = −�iτ3iρ
v
i

2ρN
. In the next section, we calculate the

medium-modified mass of η mesons in hot asymmetric nuclear matter. The medium modified η-meson mass is evaluated from
the dispersion relation which is obtained from the ηN equation of motion.
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1. ηN interactions in the chiral SU(3) model

In the chiral SU(3) model, the ηN interaction Lagrangian density can be written as

Lη =
[

1

2
− σ ′ + 4ζ ′(2 fK − fπ )√

2 f 2

]
∂μη∂μη − 1

2

[
m2

η − (
√

2σ ′ − 4ζ ′)m2
π fπ + 8ζ ′m2

K fK√
2 f 2

]
η2 + d ′

f 2

(
ρs

p + ρs
n

4

)
∂μη∂μη, (15)

The above chiral ηN Lagrangian consists of three terms:

(1) First range term: The first term in the chiral Lagrangian
describes the first-range term [2,22] and is obtained
from

L1strangeterm = Tr(uμXuμX + XuμuμX ). (16)

In the above equation, uμ = − i
2 [u†(∂μu) − u(∂μu†)]

and u = exp[ i√
2σ0

Pγ5], which is expanded up to sec-
ond order. Here, symbols X and P represent the scalar
and pseudoscalar meson matrices [2], respectively, and
are explicitly given by Eqs. (A1) and (A2) in the Ap-
pendix. Furthermore, the vacuum values of σ and ζ

fields are deduced in terms of pions and kaons decay
constant by solving the axial current of pions and
kaons [2] through the relation

σ0 = − fπ ζ0 = − 1√
2

(2 fK − fπ ). (17)

Moreover, in the first term of ηN Lagrangian σ ′(=
σ − σ0), ζ ′(= ζ − ζ0) and δ′(= δ − δ0) define the di-
gression of the expectation values of fields from their
vacuum expectations. Also, f = √

f 2
π + 2(2 fK − fπ )2

and d ′ = 3d1 + d2 are the constant parameters.
(2) Mass term: Further, the mass term of the chiral model

gives the second term of ηN Lagrangian and is given
by

LSB = − 1
2 TrAp(uXu + u†Xu†), (18)

where Ap is a diagonal matrix given in Eq. (A3). The
vacuum mass of the η meson, mη, is extracted from the

above term and is given by the relation

mη = 1

f

√(
3m2

π fK m2
K + 8 f 2

K m2
K

f 2
π

− 4 fK m2
π

fπ

)
. (19)

When we substitute the values of various constants in
the above, mη turns out to be 574.374 MeV, which is
within an accuracy of 4.9% of the physical mass, i.e.,
547.862 MeV [71]. The vacuum mass of the η meson
has model dependency [72] but here in the present
work, we are more concerned in the η in-medium mass
shift, which is nearly the same for both the masses. In
Ref. [72], using Gell-Mann Okubo mass formula under
octet approximation in the SU(4) meson multiplets, the
authors calculated the vacuum mass of the η meson to
be 567 MeV, which is within an accuracy of 3.6%.

(3) d ′ term: The third term (i.e., d ′ term) in the ηN La-
grangian originates from the baryon-meson interaction
Lagrangian densities [20,27]

LBM
d1

= d1

2
Tr(uμuμ)Tr(B̄B) (20)

and

LBM
d2

= d2Tr(B̄uμuμB). (21)

In the above, B denotes the baryon matrix [see
Eq. (A4)].

It should be noted that in case of ηN interactions of
Eq. (15), the terms corresponding to vectorial Weinberg-
Tomozawa term vanishes. On the the other hand, the
Weinberg-Tomozawa term plays a crucial role in the deter-
mination of K (K̄ ) and D(D̄) in-medium mass [22,28].

Using the ηN Lagrangian in the Euler-Lagrange equation
for η meson, the equation of motion is evaluated as

∂μ∂μη −
(

m2
η − (

√
2σ ′ − 4ζ ′)m2

π fπ + 8ζ ′m2
K fK√

2 f 2

)
η + 2d ′

f 2

(
ρs

p + ρs
n

4
− σ ′ + 4ζ ′(2 fK − fπ )√

2

)
∂μ∂μη = 0. (22)

Performing the Fourier transformation on the above equation, the dispersion relation for η meson turns out to be

−ω2 + k2 + m2
η − �∗(ω, |k|) = 0. (23)

In the above equation, �∗ denotes the effective self-energy of η meson, explicitly given as

�∗(ω, |k|) = − (
√

2σ ′ − 4ζ ′)m2
π fπ + 8ζ ′m2

K fK√
2 f 2

+ 2d ′

f 2

(
ρs

p + ρs
n

4

)
(ω2 − 	k2) − 2

f 2

[
σ ′ + 4ζ ′(2 fK − fπ )√

2

]
(ω2 − k2). (24)

065207-4



η MESONS IN HOT AND DENSE ASYMMETRIC … PHYSICAL REVIEW C 102, 065207 (2020)

The unknown parameter, d ′, is approximated from the experimental values of scattering length, aηN [10]. In the chiral model,
the expression of scattering length derived from the scattering amplitude is given by

aηN = 1

4π
(
1 + mη

MN

)
[(

d ′
√

2
− gσN

m2
σ

+ 4(2 fK − fπ )gζN

m2
ζ

)
m2

η√
2 f 2

+
(√

2gσN

m2
σ

− 4gζN

m2
ζ

)
m2

π fπ

2
√

2 f 2
+ τ3

2
√

2gδN

m2
δ

m2
K fK

f 2

]
. (25)

Rearranging the above for d ′ gives

d ′ = f 2

2π
(
1 + mη

MN

) aηN

m2
η

+
√

2gσN

m2
σ

− 4
√

2(2 fK − fπ )gζN

m2
ζ

−
(√

2gσN

m2
σ

− 4gζN

m2
ζ

)
m2

π fπ√
2m2

η

− τ3
4
√

2gδN m2
K fK

m2
δm2

η

. (26)

Using the condition, m∗
η = ω(|k| = 0) in Eq. (23), we ob-

tain the effective mass of η meson in the nuclear medium.
Further, the momentum-dependent optical potentials are de-
fined through the relation [28,73]

U ∗
η (ω, k) = ω(k) −

√
k2 + m2

η. (27)

At zero momentum, the above equation gives

U ∗
η = �m∗

η = m∗
η − mη. (28)

2. Unification of chiral perturbation theory (ChPT)
and chiral model

In this section, we discuss the unified approach of ChPT
and chiral model to compute the in-medium mass of η mesons.
The ChPT comprises the underlying chiral symmetry property
of QCD and use an effective field theory approach [10]. The
same theory along with the relativistic mean-field model has
been used to deduce the η-nucleon interactions in the symmet-
ric nuclear matter [10,48]. The Lagrangian density defining
the meson-baryons interactions in this theory is given by

LChPT = LP + LPB, (29)

with P representing the pseudoscalar meson multiplet [see
Eq. (A2)]. Up to second chiral order, the LP term is defined as
[4,10]

LP = 1
4 f 2

π Tr∂μ�∂μ�† + 1
2 f 2

π B0{TrMq(� − 1) + H.c.},
(30)

where � = ξ 2 = exp (i
√

2P/ fπ ) and Mq = diag{mq, mq, ms}
is the current quark mass matrix. The Lagrangian term LPB =
LL

PB + LNL
PB describes the leading and next to leading order

contributions [4]. Jenkins and Manohar developed the next
to leading order terms using heavy baryon chiral theory [5].
In this Lagrangian, the loop contributions not considered as
higher order corrections get suppressed for the small momen-
tum scale, Q2 [10]. The different nuclear properties are studied
successfully using LNL

PB [74].
The ηN Lagrangian is obtained by expanding Eq. (29) up

to the second order of multiplet P [10]

LηN = 1

2
∂μη∂μη − 1

2

(
m′2

η − �ηN

f 2
π

�̄N�N

)
η2

+ 1

2

κ

f 2
π

�̄N�N∂μη∂μη. (31)

Here, m′
η =

√
2
3 B0(mq + 2ms) denotes the vacuum mass of

the η meson calculated in chiral perturbation theory. In the
mass expression, B0 symbolizes the relation with the order
parameter of spontaneously broken chiral symmetry and mq(s)

denotes the mass of light (strange) quarks [72]. For consis-
tency with the chiral SU(3) model, we have used the same
value of η meson vacuum mass, i.e., m′

η = mη = 574.374
MeV in the further calculations of ChPT. The ηN sigma term
�ηN, obtained from “ai” terms of the next to leading order
chiral Lagrangian density, is given as [10]

�ηN = − 2
3 [a1mq + 4a2ms + 2a3(mq + 2ms)]. (32)

The �ηN value is estimated to be 280 ± 130 MeV from
the different empirical observations of �KN term having value
380 ± 100 MeV [10,61,62,75–79].

Also, the parameter κ in the last term of Eq. (31) comprises
the contributions from the “off-shell” di terms of the next
to leading order Lagrangian [10]. In the present work, we
determined κ using the expression of ηN scattering length,
aηN, calculated from the ChPT matrix amplitude (on-shell
constraints) [10]

aηN = 1

4π f 2
π (1 + mη/MN)

(
�ηN + κm2

η

)
, (33)

and by rearranging for κ it becomes

κ = 4π f 2
π

(
1

m2
η

+ 1

mηMN

)
aηN − �ηN

m2
η

. (34)

We have taken the experimentally determined aηN values,
i.e., ≈0.91–1.14 fm in the present investigation [10,80–83].
Furthermore, the ηN equation of motion has been derived
using the interaction Lagrangian [Eq. (31)] in the Euler La-
grange equation of motion:(

∂μ∂μ + m2
η − �ηN

2 f 2
π

〈�̄N�N〉 + κ

2 f 2
π

〈�̄N�N〉∂μ∂μ

)
η = 0.

(35)

In the above, 〈�̄N�N〉 ≡ ρs
N = (ρs

p + ρs
n) defines the in-

medium scalar density of nucleons calculated within the
mean-field chiral SU(3) model [see Eqs. (13) and (14)]. The
Fourier transformation of Eq. (35) gives

−ω2 + k2 + m2
η − �ηN

2 f 2
π

ρs
N + κ

2 f 2
π

ρs
N (−ω2 + k2) = 0.

(36)
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FIG. 1. The in-medium scalar density of nucleons.

From the above equation, the effective mass m∗
η =

ω(|k|=0) of η meson can be written as

m∗
η =

√(
m2

η − �ηN

2 f 2
π

ρs
N

)/(
1 + κ

2 f 2
π

ρs
N

)
. (37)

Further, the η-meson self-energy derived from Eq. (36) is
given by

�∗(ω, k) =
[
−�ηN

2 f 2
π

+ κ

2 f 2
π

(−ω2 + k2)

]
ρs

N . (38)

III. RESULTS AND DISCUSSION

In this section, first we discuss the behavior of in-medium
nucleon scalar densities in the hot asymmetric nuclear matter.
Further, we discuss the effective mass of the η meson, which
is derived using the chiral SU(3) model alone in Sec. III A and
with the unified approach of ChPT and chiral SU(3) model in
Sec. III B. In both approaches, we show the results for range
of scattering length, aηN = 0.91–1.14 fm. Various parameters
used in the present investigation are mentioned in Table I.

In the chiral model, the scalar densities of nucleons have
been calculated through Eq. (14). This equation contains the
effect of medium modified scalar and vector fields [2]. The
in-medium behavior of these fields is obtained by solving
the coupled equations of motion [Eqs. (7) to (12)] [26]. In
Fig. 1, we plot the scalar density of proton and neutron as a
function of number density for finite values of temperature,
T , and isospin asymmetry parameter. In symmetric nuclear
matter, as the contribution of δ and ρ field is zero [24], we get
the same behavior of neutron and proton scalar densities. The
δ and ρ fields change the in-medium value of baryon mass
m∗

i and effective chemical potential μ∗
i , respectively, which

further modify the nucleon scalar density [see Eq. (14)] [2]. In
the figure, at T = 0 the scalar density increases linearly in the
low-density regime and becomes nonlinear in the high-density
regime. When we move from the I = 0 to I �= 0 region,
we observe a gradual increase in the neutron scalar density,
whereas the proton scalar density decreases. This is because
of the nonzero contribution of δ and ρ fields in the isospin
asymmetric nuclear matter, which changes the effective mass
as well as chemical potential and therefore scalar density [2].

Another thermodynamic quantity, i.e., temperature, is also
a main property of the nuclear medium, and in Fig. 1 we have
shown how the in-medium dynamics changes under nonzero
temperature. The effect of temperature is observed more in the
high-density regime as compared to the low-density regime.
For symmetric matter in Figs. 1(a) and 1(c), we anticipate an
appreciable effect of temperature. Here, for a particular value
of nuclear density, the value of scalar densities decrease as
a function of temperature. Because of the Fermi distribution
integral, due to the coupled nature of Eqs. (7) to (12), the
value of scalar density in Eq. (14) decreases when we increase
the temperature in the integral. On the other hand, in the
highly asymmetric matter, i.e., I = 0.5, for the neutron scalar
density the temperature effects become more appreciable. In
addition, we observe a minor contribution to the proton scalar
density for higher temperature values. This is because at finite
temperature the proton condensate ( p̄p), i.e., proton scalar
density still populates in the medium despite the zero value
of proton number density ρp. The observed behavior of scalar
densities in the symmetric nuclear matter is in agreement with
the calculations of the relativistic mean-field model [10,48].

A. Optical potential and mass of η meson in chiral model

In Fig. 2, we have illustrated the medium modified mass
of the η meson as a function of nuclear density for different
values of scattering length. In the same figure, we also show
the impact of isospin asymmetry and temperature. For a given
value of asymmetry, temperature, scattering length, the in-
medium mass of the η meson is observed to decrease as a
function of nuclear density. The rate of decrease is linear in
the low-density regime, whereas in the high-density regime it
becomes nonlinear. This behavior reflects the opposite varia-
tion of nucleon scalar density plotted in Fig. 1. This is because
the self-energy of the η meson [see Eq. (24)] has a direct
dependence on the sum of scalar densities of nucleons.

When we change the value of aηN from 0.91 to 1.14 fm,
we observe a decrement in the effective mass. For example,
at ρN = ρ0(4ρ0), I = T = 0, the effective mass of η meson
changes from 528 (441) to 512 (423) MeV when we change
the aηN value from 0.91 to 1.14 fm, respectively. This is due
to the d ′ term in Eq. (24). The d ′ term has direct dependence
on aηN as shown in Eq. (26) and therefore increases the
value of scattering length, causing an increase in the value of
d ′. Due to the attractive contribution of the self-energy part
corresponding to the d ′ term, the value of effective mass
decreases. We also observed the substantial impact of the
temperature on the in-medium mass in the symmetric nuclear
matter which reflects the in-medium behavior of scalar densi-
ties. However, in the asymmetric nuclear matter, we observe
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FIG. 2. In-medium η-meson mass in the chiral model.

the temperature effects on the mass to be less appreciable
which reflects the less contribution of the net scalar density
(ρs

p + ρs
n).

The self-energy expression given by Eq. (24) contains three
terms: (i) first range term, (ii) mass term, and (iii) d ′ term.
To understand the contribution of these individual terms, we
illustrated the in-medium mass of the η meson at zero and
nonzero values of asymmetry and temperature in Fig. 3 for
these different terms. At zero temperature and asymmetry, one
can see that the first range term gives an appreciable repulsive
contribution to the effective mass whereas the mass and d ′
terms give attractive contributions. We observe the dominant
contribution of the d ′ term, which in turn gets reflected in the
net effective mass. For nonzero temperature and asymmetry,
the variation in the d ′ term becomes less and hence we get
a lower value of effective mass. This is due to the effect of
scalar density terms present in the d ′ term [Eq. (24)]. For
further understanding, in Fig. 4 we plot the η-meson effective
mass as a function of scattering length aηN at ρN = ρ0, 4ρ0.
At nuclear saturation density, we observe a linear decrease
of effective mass with the increase in scattering length. Fur-
thermore, the effective mass decrease more rapidly in the
high-density regime. The observed behavior emphasizes the
importance of scattering length in the ηN interactions.

FIG. 3. Comparison of the different terms of η-meson effective
mass in chiral model at aηN = 1.14 fm.

The decrease in the in-medium mass leads to a negative
mass shift which suggests the bound-state formation of an
η meson with a nucleus [5,10]. To understand the bound-
state phenomenon, the study of in-medium optical potential
is imperative. By using the effective mass in Eq. (28), we
plotted the optical potential of an η meson as a function of

FIG. 4. The in-medium η-meson mass as a function of scattering
length.
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FIG. 5. The in-medium η meson optical potential in chiral model
at aηN = 0.91 fm.

momentum |k| for different values of ηN scattering length and
other medium parameters in Figs. 5–7. In Fig. 5, at ρN = ρ0

we observe a negative value of the optical potential. The
value of optical potential becomes less negative as we increase
the momentum of the η meson. The variation of optical po-
tential reflects the interplay between the effective mass and
momentum. At high values of the momentum, Eq. (28) gets

FIG. 6. The in-medium η-meson optical potential in chiral model
at aηN = 1.02 fm.

FIG. 7. The in-medium η meson optical potential in chiral model
at aηN = 1.14 fm.

dominated by momentum and the contribution of effective
mass becomes less.

A similar phenomenon happens in the high-density regime.
In this region, we observe appreciable values of optical poten-
tial which become less as momentum increases. Moreover, in
the presence of a high density of neutron matter, we antici-
pate less effect of temperature, which reflects the in-medium
behavior of the η-meson mass. In Figs. 6 and 7, we observe a
similar trend of optical potential with η momentum. In these
figures, we observe a more negative value of optical potential
as we increase the scattering length. As discussed earlier, the
optical potential is directly related to in-medium mass, and
here it is illustrated to get a clear idea of negative potential.
In the cold symmetric nuclear matter, at ρN = ρ0(4ρ0) we
observe optical potential to be −54.61 (−146.77) MeV for
aηN = 1.02 fm, whereas for I = 0.5 these values change to
−52.99 (−136.93) MeV. For better understanding, we have
tabulated the in-medium mass shift of the η meson at zero
momentum in Table II.

B. In-medium mass of η meson in unified approach of ChPT
and chiral model

In this section, we have used the unified approach of the
chiral SU(3) model and chiral perturbation theory to calculate
the medium-induced mass of the η meson. As discussed in the
methodology section, the ηN equation of motion is obtained
from the Lagrangian density of ChPT. Further, the scalar den-
sity of nucleons appearing in the ChPT equation of motion is
obtained from the chiral SU(3) model. In this calculation, we
have taken the value of parameter �ηN to be 280 MeV. We
have not considered the contribution of uncertainties in the
�ηN parameter because of the lesser contribution of the σ term
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TABLE II. Values of in-medium mass-shift of the η meson for different medium attributes calculated in the chiral model (in units of MeV).

η = 0 η = 0.5

T = 0 T = 100 T = 0 T = 100

aηN (fm) ρ0 4ρ0 ρ0 4ρ0 ρ0 4ρ0 ρ0 4ρ0

0.91 −46.18 −132.88 −37.78 −120.31 −44.74 −123.35 −37.74 −116.46
�m∗

η 1.02 −54.61 −146.77 −45.22 −133.79 −52.99 −136.93 −45.16 −129.78
1.14 −63.37 −160.51 −52.98 −147.21 −61.58 −150.42 −52.92 −143.07

in the in-medium mass as compared to the κ term, which we
will see later. The values of in-medium η mass shift calculated
using the present unified approach are given in Table III.

In Fig. 8, we illustrated the ratio of the in-medium and
vacuum mass of the η meson as a function of nuclear density.
In this figure, we have also included the effect of ηN scat-
tering length, temperature, and medium isospin asymmetry.
Moreover, we compared the results obtained from two dif-
ferent approaches, i.e., (i) chiral model alone and (ii) ChPT
and chiral model. Using the second approach, we observed a
substantial decrease in the mass of the η meson. We observed
the same behavior of the in-medium mass with respect to tem-
perature, asymmetry, and scattering length as was observed in
the situation when the chiral model was used alone. The main
difference is that in the ChPT the η meson gets a more net at-
tractive contribution than the chiral model, which is due to the
absence of the first range term in ChPT Lagrangian. In Fig. 9,
we have plotted the contributions of individual terms to the
in-medium mass of the η meson calculated from the unified
approach. The η-meson in-medium mass given by Eq. (37)

FIG. 8. Comparison of in-medium η-meson mass calculated
from chiral model and ChPT.

in the ChPT + chiral model approach has two terms: the (i)
�ηN term and (ii) κ term. In this figure, we have shown the
individual contribution of these terms with increasing nuclear
density and observed a nonappreciable contribution with �ηN

but appreciable with κ term. This is because in the η-meson
in-medium mass expression [see Eq. (37)], the denominator
has a positive contribution of the scalar densities and the
increase in scalar density with number density increases the
denominator hence the value of effective mass becomes more
negative. Clearly, there is no first range term with the positive
contribution as was observed in the previous chiral model cal-
culations, and therefore in the present case we get substantial
attractive mass shift.

The present observations can be compared with the η-
meson effective mass calculated in the unified approach of
ChPT and relativistic mean-field model of Ref. [10]. In this
article, the authors also considered the effect of scattering
length and at nuclear saturation density and aηN = 1.02 fm
they anticipated the effective mass to be 0.84 mη, whereas
we observed it to be 0.79 mη. At nuclear saturation density,

FIG. 9. Comparison of different terms of the effective mass of
η meson calculated using unification of ChPT and chiral model at
aηN = 1.14 fm.
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TABLE III. Values of in-medium mass-shift of η-meson for different medium attributes calculated in the ChPT+chiral model are tabulated
(in units of MeV).

η = 0 η = 0.5

T = 0 T = 100 T = 0 T = 100

aηN (fm) ρ0 4ρ0 ρ0 4ρ0 ρ0 4ρ0 ρ0 4ρ0

0.91 −107.54 −219.71 −93.73 −205.06 −105.19 −208.52 −93.64 −200.43
�m∗

η 1.02 −116.83 −232.28 −102.21 −217.49 −114.35 −220.99 −102.11 −212.80
1.14 −126.36 −244.56 −110.96 −229.72 −123.75 −233.24 −110.86 −225.00

the effective mass equal to 0.95 mη was obtained within the
coupled channel approach with scattering length aηN ≈ 0.25
fm [11]. In this nondiagonal coupled channel approach, there
are only leading-order contributions and hence only a small
decrement in the in-medium mass is observed. Also, in the
QMC model at ρ0 the in-medium mass of the η meson having
value 0.88 mη was observed [45]. The obtained values are
comparable with the calculations of the ChPT+chiral model
for aηN ≈ 0.50 fm.

In the cold symmetric nuclear matter, at ρN = ρ0(4ρ0)
and |k| = 0, we observe optical potential to be −116.83
(−232.28) MeV for aηN = 1.02 fm and in the cold isospin
asymmetric nuclear matter the values modifies to −114.35
(−220.99) MeV. Using the ChPT + chiral model approach,
we observed a even deeper optical potential than evaluated
in the relativistic mean-field model + ChPT approach of
Ref. [10]. This is due to the difference in the in-medium scalar
densities obtained in two models. In our approach, we have
taken the effect of scalar and vector fields under the influ-
ence of isospin asymmetry and finite temperature whereas in
the relativistic model approach only cold symmetric medium
was considered. The η optical potential was also observed
in the different theoretical observations [9–11,45,46]. Uη =
−34 MeV was observed by studying the ηN interactions
near the threshold using the free space chirally inspired
coupled-channel approach by considering the contributions of
N∗(1535) baryon resonance [9]. Besides, the optical potential
Uη = −54, −60, and −83 MeV was observed in the chiral
unitary approach [46], QMC model [45], and the ChPT [10],
respectively.

IV. SUMMARY

We investigated the in-medium mass of the η meson in the
asymmetric nuclear matter at finite temperature. Under these

medium conditions, we studied the behavior of the η meson
using two different methodologies. In the first methodology,
using the chiral model alone, we calculated the medium mod-
ified mass and optical potential of the η meson by considering
the ηN interactions up to second order in the Lagrangian and
observed a decrease in the effective mass of the η meson as a
function of density. We find the in-medium effects to be more
appreciable in the high-density regime. In the second, we used
the unified approach of chiral perturbation theory (ChPT) and
chiral SU(3) model to study the in-medium attributes of the
η meson. In this approach, we took the next to leading order
contributions. We incorporated the medium effects from the
chiral SU(3) model through scalar density which is plugged in
the ηN equation of motion, which is calculated from the effec-
tive ηN Lagrangian of ChPT. Using this methodology, we find
a substantial decrease in the mass of the η meson as a function
of nuclear density. The temperature and asymmetry effects are
also studied and found to be slight repulsive in nature. Also, in
the both approaches the mass shift is observed to increase with
an increase in the value of scattering length. The decrement on
the η-meson mass leads to a negative mass shift and optical
potential which further suggests the possibility of ηN bound
states. The optical potential calculated in the present work will
be used in future to calculate the spectroscopic state of the
η-mesic nuclei [10]. Also, the momentum-dependent optical
potential can be used to study the η-meson production rate
[49–51] and its momentum dependence in the asymmetric
nuclear medium [52,84,85].
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APPENDIX: EXPLICIT REPRESENTATION OF DIFFERENT MATRICES

Here, we give the matrix representation of meson, baryon, and mass matrices which are used in the present calculations [2]:

(1) The scalar meson matrix, X :

X = 1√
2
σ aλa =

⎛
⎝(δ + σ )/

√
2 δ+ κ+

δ− (−δ + σ )/
√

2 κ0

κ− κ0 ζ

⎞
⎠. (A1)
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(2) The pseudoscalar meson matrix, P:

P = 1√
2
πaλ

a =

⎛
⎜⎜⎝

1√
2

(
π0 + η√

1+2 w2

)
π+ 2 K+

w+1

π− 1√
2

(−π0 + η√
1+2 w2

)
2 K0

w+1

2 K−
w+1 2 K

0

w+1 − η
√

2√
1+2 w2

⎞
⎟⎟⎠, (A2)

where w = √
2ζ0/σ0.

(3) The Ap matrix:

Ap = 1√
2

⎛
⎝m2

π fπ 0 0
0 m2

π fπ 0
0 0 2m2

K fK − m2
π fπ

⎞
⎠. (A3)

(4) The baryon matrix, B:

B = 1√
2

baλa =

⎛
⎜⎜⎝

�0√
2

+ �0√
6

�+ p

�− − �0√
2

+ �0√
6

n

�− �0 −2 �0√
6

⎞
⎟⎟⎠. (A4)
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