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Thermodynamics of large-N QCD and the nature of metastable phases
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In the limit of a large number of colors (N), both Yang-Mills and quantum chromodynamics are expected
to have a first-order phase transition separating a confined hadronic phase and a deconfined plasma phase. One
aspect of this separation is that at large N , one can unambiguously identify a plasma regime that is strongly
coupled. The existence of a first-order transition suggests that the hadronic phase can be superheated and the
plasma phase supercooled. The supercooled deconfined plasma present at large N , if it exists, has the remarkable
property that it has negative absolute pressure—i.e., a pressure below that of the vacuum. For energy densities
of order unity in a 1/N expansion but beyond the endpoint of the hadronic superheated phase, a description of
homogeneous matter composed of ordinary hadrons with masses of order unity in a 1/N expansion can exist,
and acts as though it has a temperature of TH in order unity. However, the connection between the canonical
and microcanonical descriptions breaks down and the system cannot fully equilibrate as N → ∞. Rather, in a
hadronic description, energy is pushed to hadrons with masses that are arbitrarily large. The thermodynamic limit
of large volumes becomes subtle for such systems: the energy density is no longer intensive. These conclusions
follow provided that standard large-N scaling rules hold, the system at large N undergoes a generic first-order
phase transition between the hadronic and plasma phases and that the mesons and glueballs follow a Hagedorn-
type spectrum.
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I. INTRODUCTION

Quantum chromodynamics (QCD) at finite temperature
and zero chemical potential consists of a confined hadronic
regime and a deconfined plasma regime, which are connected
by a crossover [1]. In this crossover regime, the medium is nei-
ther unambiguously hadronic nor unambiguously a plasma,
and the physical description is not straightforward. The nature
of matter near the crossover temperature can be probed with
heavy-ion experiments. Phenomenological models of heavy-
ion collisions have been studied to describe the collisions
and have successfully explained many aspects of the ex-
periments [2–5]; however, the assumptions underlying these
models, particularly in the crossover regime, are not always
consistent with experiment [6].

Many of the awkward ambiguities of the crossover regime
vanish in the large-N limit of QCD [7–9]. At large N the
hadronic and plasma regimes are expected to become unam-
biguously distinct phases separated by a well-defined phase
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transition. The clean separation of two phases arises due to
different characteristic scalings with N : The energy density of
the hadronic phases scales as N0, whereas that of the plasma
phases scales as N2 [7–9]. Thus, they cannot be smoothly
connected—at least at infinite N . Moreover, there is strong
reason to believe that the transition between the phases is
first-order at sufficiently large N . We expect that the ther-
modynamics of large-N QCD becomes equivalent to that of
SU (N ) Yang-Mills theory due to the suppression of quark
loops. Yang-Mills with N = 3 is known to have a first-order
transition [10], and lattice simulations suggest that the first-
order transition persists at larger N [11–14], with a latent
heat that appears to grow with N2. This behavior is precisely
what one would expect if the first-order transition persists up
to infinite N . In the rest of the discussion in this paper, we
will make the standard assumption that a first-order phase
transition exists between the hadronic phase and the plasma
phase in large N QCD.

With a first-order transition, the structure of the phase
diagram becomes cleaner. The temperature of a homogeneous
medium naively determines the phase of that medium—if the
medium’s temperature is lower than the confinement temper-
ature, then the medium is in the hadronic phase and above
it is in the plasma phase. However, as a feature of the first-
order transition, a hadronic medium can be superheated and
a plasma supercooled, up to endpoints of those metastable
regimes. Apart from the assumption that a first-order transi-
tion persists in the N → ∞ limit, the analysis in this paper
will also assume it is of the generic type, with exactly two
stable phases, and exactly two metastable phases.
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The metastable regimes are globally unstable homoge-
neous phases. While the free energy would be reduced if
the system went into an inhomogeneous mixed phase at the
transition temperature, the system is locally stable against
small amplitude fluctuations in energy density over large vol-
umes. Since large amplitude fluctuations over large regions
are exponentially unlikely, such metastable regimes can be
very long-lived—at least in the absence of external perturba-
tions introducing spatially large fluctuations that could induce
transitions to an inhomogeneous regime.

The metastable superheated (supercooled) phase does not
extend to arbitrarily high (low) temperatures. Beyond end-
points of the metastable regimes, the homogeneous medium
becomes locally unstable—any spatial fluctuation over a large
region, no matter how small the amplitude, will grow ex-
ponentially. Since the existence of such random fluctuations
is a necessary feature of thermal systems, the homogeneous
system will decay towards an inhomogeneous one, eventually
yielding a mixed phase at the transition temperature.

This paper focuses on the thermodynamic features of these
metastable and unstable regimes in the large-N limit. Much of
the analysis will be from the perspective of the microcanonical
ensemble in which the key functional relation is the entropy as
a function of energy. However, for certain parts of the analysis
it is sensible to use a canonical description in which the free
energy as a function of temperature is the key relation. Note
there is no distinction between the canonical and grand canon-
ical ensembles for this system as we are taking all chemical
potentials to be zero.

Most of the analysis in this paper is done for large-N
QCD in the absence of any chemical potentials and with the
standard version of the large-N limit with quarks assumed
to be in the fundamental representation of color. The qual-
itative conclusions of this analysis hold equally well for a
variety of large-N gauge theories, including pure gauge(Yang-
Mills). Numerical studies of such theories on a lattice may
demonstrate these thermodynamic features of metastable and
unstable regimes.

Although large-N QCD is generally expected to behave
differently from nature with N = 3, the thermodynamic as-
pects of such metastable and unstable phases ought to be
of interest for a better understanding of thermodynamics of
gauge theories. Moreover, it is worth noting that for some
observables the large-N world is a recognizable caricature
of the physical world with N = 3 and can be used to make
qualitative [9,15] and sometimes semiquantitative predictions
(for example baryon axial coupling constant ratios [16]), of
direct relevance to the physical world. The thermodynamic
issues at the heart of this paper are not of this type. Indeed,
the behavior of QCD at large N with a first-order transition
is qualitatively quite different from the N = 3 world with a
smooth crossover; the metastable phases on which this paper
principally focuses do not even exist in the N = 3 world.
Nevertheless, it is worth trying to understanding QCD ther-
modynamics at large N as may give significant insight into
QCD more generally. For example, as will be discussed in
Sec. III, in the large-N limit one can explicitly demonstrate
that a strongly interacting plasma must exist—this is in accord
with the phenomenological understanding from the analysis

of heavy ion collisions that a regime of strongly interacting
plasma is formed [17].

The analysis in this paper depends on three assumptions:

(1) Standard large-N scaling rules hold for both proper-
ties of hadrons and for properties of a quark gluon
plasma [7–9].

(2) As the large-N and thermodynamic limits are ap-
proached, the system, when fully equilibrated in a
stable phase, has a single phase transition between a
hadronic and plasma phases; the transition is generic
first order and thus allows the system to superheat
into a metastable hadronic regime and supercool into
a metastable plasma phase (over a nonzero range of
temperatures). There are no other (meta)stable phases.

(3) The mesons and glueballs have a Hagedorn spec-
trum [18]. This is a spectrum for which Nhad(m),
the number of hadrons with mass less than m,
at asymptotically high mass behaves as Nhad(m) ∝
(m/TH )−d exp(m/TH ); TH is a parameter with di-
mensions of mass. Moreover, d , the power in
the subexponential prefactor is assumed to greater
than 7/2.

Assumption 2 is quite plausible in light of lattice studies
of gauge theories at multiple values of N . The Hagedorn
spectrum of Assumption 3 is discussed in detail in Sec. IV A.

In Sec. II, we review general features of first-order phase
transitions from the perspective of the microcanonical en-
semble; we also summarize the scaling of thermodynamic
quantities in the two phases of large-N QCD. Section III
focuses on the plasma phase of large-N QCD and establishes
two facts: first, that the deconfined medium near the transition
is a strongly coupled plasma, and second, that if supercooled
plasma exists over a finite temperature range in the large-N
limit, then it must achieve negative absolute pressure. It is
not obvious how large N needs to be to have a phase with
negative pressure from our analysis. Numerical lattice simula-
tions of Yang-Mills theories with large enough N may be able
to address this question. Section IV focuses on the hadronic
phase and the regime after the endpoint of the metastable
hadronic regime for the situation when d > 7/2. We show
that in the N → ∞ limit, the energy density of homogeneous
matter can be increased without limit while its temperature
remains fixed to the Hagedorn temperature. However, this
requires the energy of the system to reside in hadronic states
with arbitrarily high masses that may be beyond the regime
of validity of standard large N scaling rules for hadrons. We
summarize these results and discuss open questions in Sec. V.

II. MICROCANONICAL ENSEMBLE AND LARGE N

A. The microcanonical ensemble

Since much of the analysis in this paper is done using
microscanonical reasoning, we begin by reviewing some el-
ementary general features of first-order phase transitions as
described via the microcanonical ensemble [19].

The key quantity in a microcanonical description of a finite
volume system is the entropy as a function of the energy S(E ),
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FIG. 1. An entropy density-energy density curve for a system
with a generic first-order phase transition. As drawn, the curve is ana-
lytic everywhere. Despite this, the thermodynamics has nonanalaytic
behavior. Note that, depending on details a system with a generic
first-order transition can have nonanalytic behavior of s(ε) at the
points of inflection—while the first derivative is continuous and the
second derivative zero, higher derivatives can be discontinuous or
divergent.

where the entropy of the system is the logarithm of the number
of accessible states at that energy. The temperature is defined
as 1/T = S′(E ). We will focus on homogeneous systems in
the thermodynamic limit; therefore we will work with the
intensive quantities such as the entropy and energy densities,
s = S/V and ε = E/V .

The pressure P will play a central role in this work. For a
homogeneous system, the pressure (or equivalently, the nega-
tive of the free energy density) is

P(ε) = − f = T s(ε) − ε. (1)

Geometrically, both the temperature and pressure for a system
with energy density ε0 are given in terms of the line t (ε),
which is defined as the line in the ε-s plane that is tangent
to the curve s(ε) evaluated at the point [ε0, s(ε0)]:

t (ε) = ε + P(ε0)

T (ε0)
. (2)

The temperature is the multiplicative inverse of the slope of
this line while the pressure is given by the negative of the
ε-intercept. Figure 1 shows the entropy density s(ε) as a
function of energy density, for a homogeneous medium in a
system which has a first-order phase transition at a critical
temperature Tc.

A key feature of a first-order transition is a region in
which s′′(ε) > 0 (see Fig. 1). This region corresponds to an
absence of stable homogeneous configurations: at fixed en-
ergy, introducing an appropriate inhomogeneity will increase
the entropy, and therefore inhomogeneous configurations are
preferred. Critically, in the region where the entropy density
is concave up, this is true even locally, so that even small
amplitude fluctuations can “trigger” the instability (in contrast
to metastable regimes).

The condition s′′(ε) > 0 describes locally accessible insta-
bilities, which can begin from arbitrarily small fluctuations.

Homogeneous systems in the thermodynamic limit can have
regions which are globally unstable against the formation of
inhomogeneities regardless of the sign of s′′(ε). If two points
(ε1, s1), (ε2, s2) lie on the homogeneous curve s(ε), and the
line between them is above s(ε) everywhere in ε1 < ε < ε2,
then a spatially separated system—a mixed phase—with part
of the system with energy density ε1 and part with ε2 will
have a higher entropy than the homogenous phase with the
same average energy density. Clearly, the optimal choice for
a mixed phase is one which none of the system is concave
upwards. Thus, the equilibrium curve is constructed as the
convex hull of all points on s(ε). This is the famous Maxwell
construction.

The illustrative curve shown in Fig. 1 contains two
phases—as we expect happens for large N QCD. Note that the
convex hull contains a line segment from tc(ε) that is tangent
to s(ε) at two points. These two points represent the properties
of the two regions in the mixed phase. Since the two points lie
on the same line, the tangent lines share a common slope, and
hence correspond to the same temperature, Tc, and a common
ε-intercept and hence correspond to the same pressure. For
a medium at Tc, any energy density between εl and εh is
achievable in equilibrium—albeit in a mixed phase.

In addition to the region εH < ε < εL where s′′(ε) > 0 and
thus the system is locally unstable, there are two regions in
Fig. 1 where the medium is homogeneous and locally sta-
ble with s′′(ε) < 0, but nevertheless globally unstable. These
metastable regions, defined by εl < ε < εH and εL < ε < εh,
and are, respectively, termed the superheated and supercooled
phases. The two endpoints of metastable phases, εH and εL,
are the inflection points of s(ε) curve. Metastable phases do
not decay until a sufficiently large thermal fluctuation appears,
and their decay time is exponentially long in the size of the
required fluctuation.

The superheated phase is smoothly connected to the phase
defined by T < Tc, but nevertheless has a temperature above
the critical temperature; correspondingly, the supercooled
phase is smoothly connected to the hot phase with T > Tc, but
nevertheless has a temperature below the critical temperature.
To summarize, there are five regions on the homogeneous s(ε)
curve:

(1) 0 < ε < εl : cold, stable
(2) εl < ε < εH : cold, metastable (superheated)
(3) εH < ε < εL: locally unstable
(4) εL < ε < εh: hot, metastable (supercooled)
(5) εh < ε < ∞: hot, stable

B. Large N scaling

Let us now move to the specific case of large-N QCD. The
cold and hot phases correspond, respectively, to the hadronic
phase and the quark-gluon plasma phase.1 The transition be-
tween them is assumed, on the basis of strong lattice evidence,
to be first-order [11–14]. We denote the line of homogeneous
medium for QCD with N colors as sN (ε), and will focus on
properties that persist in the limit of large N .

1In which gluons dominate, as there are N2 − 1 gluon species.
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The two phases possess different characteristic scalings of
energy and entropy density with N . In the hadronic phase,
both scale with N0 (meaning that they have a finite limit as
N → ∞), while in the plasma phase, both scale with N2, the
number of species of gluon:

sN (ε) = �3

{
N0 σ

(
ε

N0�4

)
for ε ∼ N0,

N2 �
(

ε
N2�4

)
for ε ∼ N2,

(3)

where � is an arbitrary but fixed scale (chosen for conve-
nience to be of order of the mass of a typical low-lying
hadron), and σ and � are dimensionless functions charac-
terizing the hadronic phase and plasma phase, respectively.
When plotted on the s-e plane, in the large-N limit, the plasma
phase scales out when focusing on the hadronic phase, and the
hadronic phase shrinks into the origin when focusing on the
plasma phase.

In the hadronic phase at low energy densities, the system
becomes a noninteracting gas of hadrons as the N → ∞ limit
is approached. Since the baryon mass grows linearly with
N [9], their contributions are exponentially suppressed at large
N for systems in thermal equilibrium, and can be ignored
entirely. In contrast, the masses of mesons and glueballs are
of order unity at large N [7,8]. The scattering amplitude
for meson-meson interactions is of order O(N−1) while the
meson-glueball and glueball-glueball scattering amplitudes
are of order O(N−2) [9]. Thus, at particle densities of order
unity (so as energy densities) the effects of interactions be-
come negligible as N → ∞. Along with interaction strengths,
hadronic widths also vanish: �meson ∼ O(N−1) and �glueball ∼
O(N−2). Finally, as shown by Witten [9] the number of dis-
tinct glueballs and mesons becomes infinite in the large N
limit. Thus, up to corrections of order 1/Nc the entropy density
as a function of the energy density when the energy density is
of order N0 is

s(ε) =
∞∑

k=1

(2Jk + 1) snbg(ε; mk ). (4)

Here snbg(ε; mk ) is the entropy density of a noninteracting gas
of bosons of a single species with mass mk and (2Jk + 1) is
the spin degeneracy factor; effects of any flavor degeneracies
are included by treating these states as separate hadrons in
the sum.

In the plasma phase at (asymptotically) high energy densi-
ties, the system is known to behave like a weakly interacting
plasma of quarks and gluons, with gluons dominating the the
large-N limit. The characteristic momentum scale for the glu-
ons is (ε/N2)1/4. The β function at large N is for the ‘t Hooft
coupling λ = Ng2, rather than g2 itself [7]; the renormaliza-
tion group evolution of λ is independent of N at large N .
Thus, the characteristic momentum scale at which the theory
becomes weakly coupled is independent of N , and there-
fore the corresponding characteristic energy density scales
with N2. Equivalently, the characteristic argument to � is of
order unity.

The previous argument implies that when the energy den-
sity is high enough for the perturbative expansion to be
accurate—which happens in the domain of ε ∼ N2—sN scales
as in Eq. (3). However, the plasma phase may extend to

FIG. 2. N scaling of entropy-energy density curve form homoge-
nous matter.

sufficiently low ε that the system is no longer perturbative.
Nevertheless, the scaling in Eq. (3) should hold; anything
else would introduce an additional nonanalyticity in s(ε), in
contradiction to the assumption of a signle generic first-order
transition.

One important consequence of Eq. (3) is the behavior of
the specific heat cV :

cV = ∂ε

∂T
= − 1

T 2s′′(ε)
. (5)

The specific heat scales as N0 in the hadronic regime and N2 in
the plasma phase. Thus, the ratio r(T ) ≡ cV /ε is order unity in
either regime and remains finite as N → ∞ except at putative
points where cV diverges as at a second-order phase transition.
More generally cV is analytic except at phase transitions; thus
r(t ) will be analytic at large N except at phase transition
points. Thus, Assumption 2 implies that in the large N limit,
r(T ) is finite and analytic everywhere except at Tc.

The behavior of s(ε) for homogeneous matter at large but
finite N in a intermediate regime between ε ∼ N0 and ε ∼ N2

must interpolate between the two regimes. The precise way it
does so is not determined from general scaling considerations.
This regime is of comparatively little interest in any case,
since in this regime the system is locally unstable.

Figure 2 summarizes the scaling of thermodynamic quan-
tities in the two regimes and sketches the mixed phase, tc(ε).
The transition temperature and pressure are, respectively, de-
noted Tc and Pc. The scalings given in Eq. (3) imply that Tc

and Pc are independent of N for large N .
These scalings imply a remarkable cancelation in the

plasma phase. Generically the plasma phase has a pressure
of order N2. For example, at asymptotically large energy
densities, the pressure is given by P = ε/3 ∼ N2. However,
at the phase transition point which is denoted εh in Fig. 2 a
very large cancelation must take place:

Pc︸︷︷︸
∼N0

= Tc︸︷︷︸
∼N0

sN (εh)︸ ︷︷ ︸
∼N2

− εh︸︷︷︸
∼N2

. (6)
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For Pc to be of order N0, the two terms of Eq. (6) must
exactly cancel at leading order. The effects of this cancelation
are central to Sec. III, where we show the existence of a
strongly coupled plasma, and demonstrate that at large N the
supercooled plasma phase has negative absolute pressure.

Before we turn to Sec. III, it is important to note that this
cancelation depends on the first-order transition occurring at
a temperature for which the hadronic phase has an energy
density of N0. This is a consequence of Assumption 2, which
implies that in the large-N limit, r(T ) ≡ cV /ε is finite and
analytic throughout the hadronic phase. From the definition
of r(T ) it follows that the energy density at two different
temperatures Ta and Tb are related by

ε(Tb) = ε(Ta) exp

[∫ Tb

Ta

dT r(T )

]
. (7)

If the hadronic phase contained regimes with both ε ∼ N0

and ε ∼ N2, then taking Tb to be in the latter and Ta to be
in the former, we would find that r(T ) ∼ N2 in between,
in contradiction to Assumption 2. Therefore, if there were
a hadronic regime with energy density of order N2, at large
N , then it would need to be separated from the regime with
energy density of order unity by a phase transition; such a pu-
tative phase transition would need to be between two distinct
hadronic phases and would be in addition to the first-order
phase transition between a hadronic and plasma phase.

Assumption 3—that the mesons and glueballs satisfy a
Hagedorn spectrum—is fully consistent with this behavior.
Using the type of analysis discussed in Sec. IV A it is easy
to see that with a Hagedorn spectrum at large N , ε ∼ N0

whenever (T − TH ) ∼ N0 and that r(T ) is nonanalytic at T =
TH .2 The assumption of a single first-order transition with a
nonvanishing superheated phase implies that Tc < TH .

III. PLASMA PHASE

In this section we discuss the behavior of the low-
temperature end of the plasma phase of large N QCD,
including the supercooled regime.

A. Achieving negative absolute pressure

In this subsection, we show that if the assumption that a
generic first-order transition persists in the large N limit with
the latent heat growing with N2, a supercooled plasma with
negative absolute pressure—a pressure less than the vacuum
pressure—must exist.

Such a situation is quite unusual. Consider the following
Gedankenexperiment: Suppose one had a rigid cylinder with a
movable piston that was capable of containing large-N QCD
matter in the plasma phase. The piston starts locked so the
system has fixed volume and the system starts in the stable

2In particular, limT →TH
dnr(T )

dT n diverges whenever n � 9/2 − d ,
where d specifies the power law in the subexponential prefactor [as
given in Eq. (10)]. For 7/2 < d � 9/2, r itself diverges as T → TH .

plasma phase. The cylinder is then brought into thermal con-
tact with a heat bath whose temperature is slowly lowered so
that the plasma in the cylinder equilibrates in the metastable
phase. At this point, the cylinder is thermally insulated so
that it can no longer exchange energy with the outside and
the system is isolated from other matter and is sitting in the
vacuum. Next, the piston is allowed to move freely. Remark-
ably, instead of pushing outward into the vacuum, it sucks
inward. This behavior is counterintuitive from the viewpoint
of the kinetic theory of a gas, where particles in a box are
hitting the wall of a chamber and transferring momentum to it
when they bounce back; this necessarily results in a positive
pressure. The breakdown of such intuition would indicate that
the system is not describable, even qualitatively, as a plasma
or gas of weakly interacting particles or quasiparticles. Issues
regarding a possibly vanishing pressure in the plasma phase
have been discussed in a more phenomenological context
in [20–23].

Moreover, a negative absolute pressure runs counter to
intuition gleaned from stable phases. One does not come
across stable phases with negative absolute pressure for stable
phases for systems with zero chemical potentials. Indeed, it
is easy to see that a negative absolute pressure is impossible
for such systems provided that they also satisfy the condition
that only positive temperatures are possible. This follows from
the requirement of global stability, which implies that s′(ε1) �
s′(ε2) where ε1 < ε2. The temperature is thus everywhere a
nondecreasing function of ε (provided T is nonnegative). This
in turn implies that for ε > 0,

s(ε) =
∫ ε

0
dε̃ s′(ε̃) > s′(ε)ε, (8)

and therefore the pressure P = s/s′ − ε is positive.
This argument holds only for the curve s(ε) describing

globally stable matter. It does not apply to a metastable su-
percooled phase. The supercooled phase does not lie on the
purely concave downward curve for the stable phase. Rather,
as seen in Fig. 2 it lies along the curve for homogenous phases
which includes regions that are concave upward as well as
regions that concave downward. Thus, systems need not have
positive pressure relative to the vacuum in the supercooled
phases.

The scaling relations of Eq. (3) along with the cancela-
tion seen in Eq. (6) imply that not only is negative pressure
possible for the supercooled phase of large N QCD, it is
necessary provided that Assumption 2 holds. We assume the
existence of a supercooled plasma phase over a nonzero range
of temperature in the large-N limit in the following discussion.
At the transition temperature Tc, cancelations ensure that the
pressure is order unity, so that Tcsh = εh + O(N0) (εh, sh are
as defined in Fig. 1). Recall that for zero chemical potential
the Helmholz free energy is minus the pressure. Thus, ∂P

∂T = s
with s ∼ N2 in the supercooled phase. Given these conditions,
consider what happens as we lower the temperature from Tc to
some temperature Tsc in the supercooled phase, an order-unity
distance below Tc. The pressure decreases by an amount of
order sT ∼ N2. However, the pressure was only of order unity
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at Tc, and therefore must be negative at Tsc. Algebraically,

P(Tsc) = P(Tc) −
∫ Tc

Tsc

dT
dP

dT
< P(Tc)︸ ︷︷ ︸

∼N0

− (Tc − Tsc)︸ ︷︷ ︸
∼N0

s(Tsc)︸ ︷︷ ︸
∼N2

,

(9)

where the inequality follows from the fact that sN (ε) is pos-
itive and monotonically increasing with T . This argument is
quite simple and the conclusion is striking: given the assump-
tions outlined in the Introduction, at large N , the supercooled
region has negative absolute pressure. An analogous discus-
sion of negative absolute pressure to the one above was given
in [24] in the context of their analysis of “plasma-balls”.

A key part of Assumption 2 is that a supercooled
metastable phase persists in the large-N limit over a nonzero
range of temperatures. It is plausible that this is not the case—
that in the large-N limit, the supercooled phase vanishes.
Based on the analysis of supercooled metastable phase above,
one of the following must be true if a first order: As N gets
large, either the medium achieves absolute negative pressure
in a supercooled regime or no supercooled regime exists in the
large-N limit.

B. A strongly interacting plasma

Next we consider the implications of N scaling for the
existence of strongly coupled plasma at large N . In QCD with
N = 3 and physical quark masses, the hadronic regime goes
over to the quark-gluon regime via a continuous crossover as
the temperature increases; there is no true phase transition.
In the vicinity of the crossover, there is strong empirical
evidence that the system is strongly coupled. For example,
the ratio of viscosity to entropy density, η/s, extracted from
hydrodynamic simulations of heavy-ion collisions is small,
η/s ∼ 1/4π [17]—which is an indication that the system,
whatever it is, must be strongly coupled. Conventionally, this
medium has come to be called a strongly interacting quark-
gluon plasma (sQGP).

While the evidence that the system is strongly coupled is
compelling, its description as a quark-gluon plasma might
be regarded as less so. The principal logic behind such a
description is that the energy density is too high for the system
to be described as a gas of clearly discernible hadrons. While
this is true, it is also true the system is not in a regime where it
can be described as behaving as a plasma of clearly discernible
quarks and gluons (as one has in a weakly coupled plasma).
Thus, the description as an sQGP as opposed to a strongly
interacting hadronic gas could be thought of as merely a
convention.

This raises an interesting issue of principle: does there exist
a gauge theory that shares with N = 3 QCD an unambigu-
ously hadronic regime and an unambiguous plasma, but also
has the feature there exists a regime that is both unambigu-
ously strongly coupled and unambiguously a plasma? If the
answer to this question is in the affirmative, then it gives
at least some justification for the conventional description
of an sQGP in QCD for N = 3 where the situation is more
ambiguous.

In this section we will see that the large-N limit of QCD
is precisely such a theory. The first-order transition cleanly
separates two phases with two different N-scalings, and thus
defines unambiguous hadronic and plasma regimes. In what
follows, we will show that as the energy density approaches
εh from above, the system becomes arbitrarily strongly cou-
pled. It may not be obvious how to measure the strength of
the interaction for this system. With present numerical and
theoretical methods, there is no practical way to determine η/s
for a large-N QCD system. One could imagine a computation
of η/s from first-principles lattice QCD simulations; however,
such numerical evaluation of the shear viscosity has technical
issues stemming both from the largeness of N [25] and the
real-time nature of the observable [26,27].

So what are the other useful observables to distinguish
strongly coupled from weakly coupled systems? For massless
constituents such as gluons, a useful measure of the strength
of the interaction between constituents in a medium is the
ratio ε/3P. For a noninteracting system of massless particles,
this ratio is 1; it deviates from unity for a system of massive
particles or for a strongly interacting medium. Thus, the con-
dition ε/3P � 1, in a plasma might be taken as a signal for
a strongly coupled plasma. One might worry that the quarks
in a quark-gluon plasma are not massless. However, in the
plasma phase, their contributions are suppressed by relative
order 1/N .

It is not clear a priori how large ε/3P should be for the
system to be identified as strongly coupled. However, at large
N , the ratio can be made arbitrarily large, even as the system
remains in the plasma phase. This occurs in the double limit
N → ∞, ε → ε

(+)
h , where the superscript (+) indicates that

the limit is taken from above to ensure the system is in the
plasma phase. The unbounded growth happens in this limit
since in the plasma phase, the energy density is of order N2

throughout and this extends down to εh. However, the pressure
is of order N0 at εh. Thus, ratio ε/3P diverges in the large-N
limit, and so the plasma can be made arbitrarily strongly
coupled. It is worth noting that if the plasma supercools at
large-N , as discussed above, the ratio ε/3P wraps around
infinity to become negative, remaining strongly coupled.

In summary we have demonstrated that at large N , there
exists a regime in which the system is unambiguously in the
plasma phase and strongly coupled. In light of the issue of
principle set out at the beginning of this subsection, it is
worth noting that while a strongly coupled plasma regime
exists at large N , a strongly coupled hadronic regime does
not. This gives at some modest support to the notion that the
strongly interacting medium seen empirically in QCD with
N = 3 might be identified as being an sQGP as opposed to
strongly interacting hadronic gas.

IV. SUPERHEATED HADRONIC PHASE AND BEYOND

Now we move to considering the hadronic phase. In the
large-N limit this phase consists of a noninteracting gas of
hadrons. The analysis in this section is based on Assumption
3 from the Introduction: We assume an exponential Hagedorn
spectrum with d > 7/2 for a subexponential prefactor m−d .
The motivation for this assumption is discussed below.
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In Sec. IV A key thermodynamic quantities such as s and ε

are discussed in terms of the Hagedorn spectrum. A key aspect
of this analysis is the assumption d > 7/2. It implies that at
large N , as the temperature approaches the Hagedorn temper-
ature TH , the energy density remains finite and independent of
N . We will denote the limiting energy density as T → TH by
εH . Section IV B considers the extension of s(ε) curve into the
locally unstable regime with ε > εH in the N → ∞ limit.

All of the analysis in this section is aimed at the hadronic
regime. The properties of this regime are independent of N in
the large N limit. Accordingly, in all of the analysis, we take
the large N limit at the outset, unless otherwise specified. En-
ergy densities play a central role in the analysis; in this section
we will assume that the energy densities under consideration
do not grow with N as N gets large—they scale as N0.

A. Hagedorn spectrum

In the N → ∞ limit, the maximum temperature of the
locally stable hadronic phase is the Hagedorn temperature, TH .
It is necessary that Tc � TH , but whether the inequality is strict
is unknown from first principles. If the inequality is strict, then
there exists a metastable superheated hadronic phase; if not,
then this metastable phase (if it exists at all) must disappear in
the large-N limit. In the analysis here, Assumption 2 requires
a generic first-order phase transition that allows superheating
and so we take the inequality to be strict.

It has long been believed that large-N QCD has a Hagedorn
spectrum [28]. This belief is partly motivated by the fact that
that highly excited states at large N appear to act like excita-
tions of long flux tubes, which may be regarded as string-like;
string theories have Hagedorn spectra [29]. However, there
is a compelling argument that large-N QCD has a Hagedorn
spectrum that does not explicitly assume stringy dynamics;
rather it is based on commonly accepted properties of QCD
correlation functions and the fact that the number of local
operators of fixed mass dimension grows exponentially with
the mass dimension [30]. Supported by arguments above, it
is believed that the spectrum of mesons and glueballs at large
N is a Hagedorn spectrum [18], with the number of hadrons
Nhad(m) of mass less than m governed at asymptotically large
masses by

Nhad(m) = Cm−d T d
H exp(m/TH ) + �(m) with

�(m)

Nhad(m)

= O(1); (10)

the constant C is a dimensionless numerical factor, and �(m)
is a correction term that, at large m is asymptotically smaller
than Nhad(m). Note that Nhad(m) increases by discrete steps
of unity as m increases. While the leading term is smooth,
the discrete behavior is encoded in �(m). Given the current
state of the art, the power law prefactor specified m−d in the
spectrum Eq. (10) cannot be determined from first principles
theoretically nor can it be determined reliably from fits to
the currently available spectrum [31,32]. Although Hagedorn
originally proposed d = 5/2 [18], there are very good reasons
to believe that d = 4. A simple bosonic string theory that has
d = 4 [29]; such a string theory is natural at large N if flux
tube dynamics dominate [33]. Here we assume that d > 7/2

so that energy density and entropy density are finite up to TH

as is discussed below.
The value of d plays a nontrivial role in the large-N QCD

thermodynamics [28,34]. The Hagedorn spectrum creates di-
vergences in various thermodynamic quantities due to the
exponential growth in the number of hadrons with mass, but
the nature of these divergences depends strongly on d . We be-
gin by establishing that the entropy density and energy density
diverge as T approaches TH from below, only when d � 7/2.
As the divergences are related to the large-mass asymptotics
of the Hagedorn spectrum, we are justified in working in the
limit of m � T . For an ideal gas of one species in this limit,
the energy and entropy density are given by

ε = 1

(2π )3/2
e−m/T m5/2T 3/2[1 + O(T/m)], (11)

s = 1

(2π )3/2
e−m/T m5/2T 1/2[1 + O(T/m)]. (12)

To understand the behavior of ε (and equivalently, s) for T
near TH —which we refer to as the Hagedorn point—it helps
to divide the energy density into contributions from low and
high mass hadrons, split arbitrarily at some large mass m0:

ε(T ) = εlow(T ; m0) + εhigh(T ; m0). (13)

The mass m0 is chosen to be much larger than TH —large
enough that the asymptotic form of the Hagedorn spectrum
is accurate.

After fixing m0, εlow(T ; m0) is an analytic function of T ,
as it is the sum of the contributions from a finite number
of species. The form of the Hagedorn spectrum does not
determine εlow, but neither is εlow relevant to understanding
divergences at the Hagedorn point.

From Eqs. (10) and (11), the contribution from the large-
mass portion of the Hagedorn spectrum is given by

εhigh(T ; m0) =
∫ ∞

m0

dm

(
dNhad(m)

dm

)
ε(m, T )

≈ C

(2π )3/2
T 3/2T d−1

H

∫ ∞

m0

dm m5/2−d e−m( 1
T − 1

TH
).

(14)

Two approximations have been made, both becoming arbitrar-
ily accurate as m0 is increased. First, we have assumed the
large-mass limit in Eq. (11). Second, in neglecting subleading
terms in m−1, we are permitted to replace the discrete sum
over masses by an integral and treat the Hagedorn spectrum
as if it were continuous.

The integral in Eq. (14) converges for any T < TH and
diverges for any T > TH . Because εhigh contains the entire
nonanalytic part of ε, we see that for any fixed m0, ε(T, m0)
is a nonanalytic function of T at T = TH . It is important,
however, to recall that the behavior is only required to be
nonanalytic in the large N limit.

It has long been known that the precise nature of the
nonanyticity at T = TH depends on the value of d [28,34].
We see from Eq. (14) that when d � 7/2 the integral di-
verges and thus ε goes to infinity as TH is approached from
below. However, for d > 7/2, as is assumed here, the integral
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converges even at T = TH : a finite energy density is attained
in the limit T → TH . We denote this this value εH .

Although the integral in Eq. (14) converges when d > 7/2,
the nonanalyticity is manifested in the divergent derivatives of
ε with respect to T as T → TH :

dnε(T )

dT n
∼ 1

(T − TH )n+d−7/2
for n + d − 7/2 > 0. (15)

The situation for the entropy density is essentially identi-
cal. Decomposing s(t ) = slow(T ; m0) + shigh(T ; m0), a quick
calculation reveals that

shigh(T ) ≈ εhigh(T )

T
. (16)

Clearly, s(T ) is also nonanalytic at TH and also has a finite
limit as T → TH from below when d > 7/2.

For the remainder of this section we will employ As-
sumption 3 and take d > 7/2. With this assumption, both the
energy density and entropy density are finite at large N in the
entire locally stable hadronic phase, but are ill-defined at any
T > TH .

We note that if d = 4 (as expected from string theory)—or
more generally for any d satisfying 9/2 � d > 7/2—while
the energy density remains finite at large N as T → TH , the
specific heat cV diverges at the Hagedorn point and the speed

of sound, cs =
√

∂P
∂ε

=
√

s
cV

goes to zero.
An interesting question arises when the energy density of

a system composed of hadrons exceeds εH . We describe such
a system as having an energy density beyond the Hagedorn
point.

B. Beyond the Hagedorn point

At large N , the maximum temperature in the hadronic
phase is TH . Moreover, if d > 7/2 as we are assuming here,
then the energy density remains finite, limiting to εH , as
T → TH from below.

This creates a somewhat paradoxical situation. Consider
a very large box in the metastable superheated phase at a
temperature just below TH , so that the energy density is just
below εH . Now suppose that a number of hadrons with a total
energy density of order unity and sufficient to raise the energy
density above εH are carefully injected into the system. Given
that TH is the maximum temperature, the temperature cannot
increase while the system remains in the hadronic phase. The
paradox is that at large N , hadrons are very weakly interacting,
so that there is nothing to keep us from continuing to introduce
hadrons into a large box until their energy density exceeds εH ,
with the system still being composed of clearly identifiable
hadrons. It is difficult to reconcile this fact with TH being the
upper bound for temperature. This is at least suggestive of a
breakdown of the canonical ensemble (as noted in [35]), so we
will proceed with an analysis in the microcanonical ensemble.

A natural way to try to reconcile these is to focus on
the behavior of the curve s(ε) for homogenous matter, into
the region with ε > εH ; this is the regime that is locally un-
stable for a generic first-order transition. We will show that in
the limit N → ∞, the curve s(ε) extends past ε = εH linearly,

FIG. 3. The behavior of s(ε) at large N , including the
region ε > εH .

with the temperature (given by the inverse slope) constantly
equal to TH . This is illustrated in Fig. 3.

One consequence of this behavior is that there is a discon-
tinuity in the third derivative ∂3s

∂ε3 at the Hagedorn point. Such
behavior is typically seen at a second-order phase transition.
Beyond εH , as ε increases the temperature remains fixed,
as typically happens for a mixed phase after a first-order
transition.3 The behavior containing features of both first-
and second-order transitions is quite unusual. It may be a
hint that at large N , the systems does not in fact behave
like a generic first-order transition, invalidating Assumption
2. In the remainder of this section, however, we will assume
that Assumption 2 remains correct and that higher-order 1/N
effects in the region beyond εH reconcile this behavior with a
generic first-order transition.

Let us see how this behavior comes about. To do so we
must calculate s(ε), in the N → ∞ limit, in the region ε > εH .
While our interest is in s(ε), a quantity which arises naturally
in a microcanonical description, we will exploit the equiva-
lence in the thermodynamic limit of large volumes between
predictions using canonical and microcanonical ensembles.
As will be seen below this equivalence breaks down when
ε > εH , but the way it breaks down will allow us to determine
the behavior for ε > εH .

Up to the Hagedorn point, where ε = εH , one may work
with the canonical ensemble to calculate both s and ε as
a function of T ; the microcanonical curve s(ε) is obtained
parametrically by varying T . This method works up to the
Hagedorn point. However, if one tries to go beyond εH by
increasing the temperature, then the canonical expressions
diverge.

To proceed beyond the Hagedorn point, we will first im-
pose a constraint on the class of microstates we consider.

3Such behavior seen for d = 4 is expected if large-N QCD becomes
a string theory, and more generally holds if 9/2 � d > 7/2. Note that
if d > 9/2, there is also a discontinuity of the second derivative.
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This is a legitimate procedure in microcanonical physics. If
one computes sconst (ε)—the logarithm of the number of mi-
crostates subject to the constraint, then one knows that by
construction, the unconstrained entropy density s(ε), which
is calculated with a superset of those constrained states, must
satisfy s(ε) > sconst (ε). The constraint we impose is that only
configurations in which all of the hadrons in the system have
masses that are less than some large value, mmax, are con-
sidered. This constraint might be envisioned either as arising
in some possible physical realization (at least in principle4)
or simply as a mathematical device to facilitate counting. In
practice, it is easy to see how this works: the constraint cuts
off at mmax the contributions of the high mass hadrons—those
responsible for the divergences—and thereby renders finite
and analytic ε and s. Ultimately we consider the behavior of
the system when we remove the constraint by letting mmax

become arbitrarily large.
When the constraint is imposed, the problem becomes one

of a relativistic ideal Bose gas containing a finite—albeit very
large—number of species. The fact the number of (nonin-
teracting) species is finite ensures the microcanonical and
canonical descriptions agree. This holds whether or not ε >

εH . Note moreover that with a finite number of species of
free particles, there is no possibility of a phase transition so
that subject to the constraint, s(ε) is an analytic function;
nonanalyticities can arise only when the mmax → ∞ limit
is taken. Our goal is to determine the mmax → ∞ limit of
s(ε; mmax), the entropy density as a function of energy density
subject to the constraint that all hadrons have masses below
mmax in the region ε > εH . To do so we will first determine
the limit as mmax → ∞ of s′′(ε)2, and then integrate twice to
find s(ε; mmax).

The most straightforward way to proceed is to compute
s′′(ε) for the hadronic regime with ε > εH and asymptotically
high values of mmax. The calculation is somewhat long but is
essentially straightforward. One obtains

s′′(ε) = 1

(εH − ε)mmax

×
{

1 + 1(
d − 7

2

)
log mmax

TH

+ O
[

1(
log2 mmax

TH

)
]}

.

(17)

Clearly as one takes mmax to infinity, s′′(ε) goes to zero, and
s′(ε) = 1/T is a constant. The value of that constant, is its
value at the low end of the regime,5 1/TH , and the form seen
in Fig. 3 emerges.

4One could envision a thought experiment in which some active
device identifies and removes all hadrons with masses above mmax

that are created by those rare interactions that equilibrate the system
and replaces them by two or more lighter hadrons carrying same
energy.

5There is a potential subtlety here. While s(ε) is an analytic func-
tion for an finite value of mmax, it need not be in the mmax → ∞ limit.
In fact, the regime of mmax for which Eq. (17) holds, depends on the
value of ε − εH ; the regime is pushed off to infinity as ε − εH ap-
proaches zero. The underlying reason for this is easy to understand:

Equation (17) depended on a somewhat involved calcula-
tion. However, one can intuitively understand the form of the
s(ε) beyond the Hagedorn point by a very simple, if indirect
argument. Recall that if we fix mmax to be very large but finite,
then there is no possibility of a phase transition. Therefore,
T (ε; mmax) must be a monotonically increasing function of ε.
In particular, we obtain the lower bound T (ε; mmax) > TH for
ε > εH . The limit as we lift the cutoff, therefore, is similarly
bounded below, T (ε) � TH , with equality now permitted.

Since the temperature in the canonical description, at
mmax → ∞, cannot be permitted to exceed TH , this suggests
that T (ε) = TH for all ε above εH (recalling that in this section
we only consider energy densities that scales as N0). Thus,
s(ε) is linear in that regime, with a slope determined by the
Hagedorn temperature.

In fact, we can be more rigorous in determining the up-
per bound on T (ε), without invoking Eq. (17). Fixing a
temperature T ′ > TH , observe that ε(T ′; mmax) can be made
arbitrarily large by increasing mmax, due to the Hagedorn
divergence. This implies that, for any desired ε′, and any
T ′ > TH (no matter how close to the Hagedorn temperature),
we can find some finite mmax for which ε(T ′; mmax) > ε′, and
therefore T (ε′; mmax) < T ′. As the limit mmax → ∞ is taken,
T (ε; mmax) is thus sandwiched between a lower bound of TH

and an upper bound which asymptotically approaches TH from
above, and we are forced to conclude that T (ε) = TH for all
ε > εH (in the order-one regime).

This resolves our puzzle: one can introduce energy into a
hadronic system so that ε > εH without pushing the temper-
ature beyond TH ; T hits TH and stays there. But this creates
a new paradox. Clearly, the microcanonical and canonical
ensembles differ in this regime, since knowledge that T = TH

is not sufficient to determine the energy density. However, for
any given species of hadron, the canonical description should
be valid and thus determine the energy density associated with
that species. If one sums these together, then one necessarily
gets ε = εH . The paradox is that there is more energy in the
system than this.

The resolution to this paradox is that the standard thermo-
dynamic behavior of energy density becoming an intensive
quantity in the limit of large volumes breaks down. Since
it is only in the thermodynamic limit that the canonical and
microcanonical descriptions agree, there is no incompatibility.

To see why the standard thermodynamic limit breaks down,
let us again introduce the constraint that only hadrons with
a mass less than mmax contribute. With this cutoff, we can
determine which hadrons dominate ε − εH when the system
is beyond the Hagedorn point. By taking the cutoff mmax to be
arbitrarily large, we can take the temperature T at the desired
energy density to be arbitrarily close to TH . The difference in

s(ε) is nonanalytic at ε = εH when mmax is infinite but is analytic
for any finite value of mmax. Thus, the limiting behavior when mmax

gets large and ε − εH get small depends on the order in which limits
are taken. However, our goal is to study the mmax → ∞ limit of
the system, and in that limit s′′(ε) = 0 in the entire ε > εH regime
extending all the way down to εH . Ultimately, it is straightforward to
show that limε→ε+

H
(limmmax→∞ s′(ε)) = 1/TH .
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energy densities is then determined by the specific heat. The
specific heat diverges as T → TH from below in the absence
of the constraint, but it remains finite when the constraint is
imposed. Thus, the divergent behavior in the specific heat is
dominated by contributions from large-mass hadrons. There-
fore, it is highly plausible that with a cutoff imposed, the
excess energy density would be dominated by hadrons at the
scale of the cutoff. When the constraint is released, and mmax

is taken to infinity, these contributions are pushed to arbitrarily
high masses. In effect, all of the light hadrons equilibrate
normally as an ideal gas at TH , and all of the extra energy
is pushed to arbitrarily high masses.

This intuitive argument can be made precise. In the hadron
regime at large N , the energy density of the system is con-
structed from the contributions of the various species of
noninteracting hadrons. If we define ε j (ε, mmax) as the contri-
bution of the jth species of hadron to the energy density, then
the total energy density is ε and a constraint of including only
hadrons with a mass below mmax is imposed. When ε > εH ,
one can now define 〈m〉 to be the energy-weighted average
mass of the hadrons contributing to the difference between ε

and εH as

〈m〉 =
∑

j m j[ε j (ε, mmax) − ε j (εH , mmax)]∑
k[εk (ε, mmax) − εk (εH , mmax)]

; (18)

mj is the mass of the the jth hadron. A straightforward but
somewhat involved calculation gives the asymptotic form at
large mmax of 〈m〉:

〈m〉asympt = mmax

[
1 − 1(

d − 7
2

)
log

(mmax
TH

)
]
. (19)

As expected, when mmax gets large, so does mass of a typical
hadron contributing to the energy density above εH . It is
striking that the typical mass is not merely at the scale of mmax,
it is parametrically close to mmax itself.

Now consider what happens if one drops the constraint of
mmax and has a large volume V , into which energy E in the
form hadrons is injected such that E

V > εH . Note that even
without mmax, the finiteness of the system imposes an upper
bound of E on the possible masses. Thus, one could impose
mmax = E without changing the physics. If one assumes a
standard thermodynamic limit with an intensive energy holds,
then one sees from that all of the additional energy between
E and εHV is contained in hadrons with typical masses very
close to E itself. One has virtually all of the excess energy in
a single hadron. But this is true regardless of the volume of
the system, which is incompatible with the assumption of a
standard thermodynamic limit; the assumption of a standard
thermodynamic limit implies its own contradiction.

While the lack of a well-defined thermodynamic limit is
a reasonable mathematical explanation, it is important to un-
derstand what is happening physically. The physical picture
is actually quite simple; after additional energy is injected
into the system raising the average energy density above εH ,
interaction effects (that are subleading in 1/N) would con-
tinuously rearrange the energy so the lighter hadrons would
move toward distributions compatible with the temperature of

TH , and the additional energy would flow to higher and higher
masses; for a system with infinite volume this process would
never stop and the system would never fully equilibrate. This
thermodynamic system would appear to exemplify the maxim
that “there is always room at the top.” For a finite volume
system, this process would have to stop—eventually, the mass
of the hadrons absorbing the excess energy would become
comparable to the excess energy itself and the system can
equilibrate. However, for large volumes the equilibration time
becomes long.

Of course, the behavior of infinite system with energy
flowing to ever higher masses cannot be realized in practice.
For one thing, real all systems have finite volume. Another
obvious reason is that N is finite for any conceivable phys-
ical system—and rather small in QCD itself. There are two
principal effects associated with finite N . The first effect is
associated with the masses of the hadrons. As the masses of
the hadrons are pushed ever upwards, in this scenario, they
will eventually reaches a point at which they can no longer be
regraded as being of order unity in a 1/N expansion. However,
the notion of well-defined narrow mesons and glueballs with
well-defined masses, which is the basis of this analysis, is only
valid for hadrons with masses of order unity. Second, we have
used ideal gas expressions since hadron-hadron interactions
are subleading in the 1/N approximation. Presumably, these
subleading effects restore a well-defined thermodynamic limit
as volumes increase—but when N gets large it is approached
very slowly.

These 1/N corrections are essential if Assumption 2 of
the Introduction is to hold. It assumes a single generic first-
order phase transition. This implies that in the region where
ε > εH , s′′(ε) > 0. However, at large N , s′′(ε) = 0; instead
of corresponding to a locally unstable system as expected in a
generic first-order transition, it is neutral, with neither positive
or negative feedback from small amplitude fluctuations of
large size. However, higher-order 1/N corrections can ensure
that it s′′(ε) > 0, even if it is small. In that case one can have
a generic first-order transition between a hadron regime with
ε and s are both of order N0 and a plasma regime where they
are both of order N2.

V. DISCUSSION

To summarize the principal results of this paper: Given the
three apparently innocuous assumptions of the Introduction,
QCD (and pure gauge theory) in the large N limit:

(1) The system has negative absolute pressure—a pres-
sure below the theory’s vacuum—in the supercooled
metastable plasma phase.

(2) There exists a regime in which the theory is both un-
ambiguously in the plasma phase and unambiguously
strongly coupled.

(3) A well-defined thermodynamic limit does not exist in
the hadronic regime, when the energy density exceeds
εH .

Of course, one possibility is that these assumptions are not
innocuous. For example, one might imagine that Assumption
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2 is not correct in a subtle way such that for every large
value of N a first-order transition exists with finite temperature
domain of supercooling for the plasma phase, but the size
of this domain drops to zero as N approaches infinity. Were
that to occur, the conclusion that a negative absolute pressure
well occur in the supercooled phase can be evaded. However,
such a situation would be very interesting in its own right,
since unlike in a typical first-order transition, there would be
large fluctuations as one approached the transition point from
above; these would be driven by the nonanalyticity at the end-
point of the supercooled phase which at large N would have
to coincide with the first-order point. One might also consider
scenarios where something similar happens in the superheated
hadronic phase. Lattice evidence on where Tc approaches TH

in the large-N limit is inconclusive [36]. The two temperatures
are the same in N = 4 super Yang-Mills, as well as in some
models of the large-N limit of SU (N ) Yang-Mills [37]. Any
scenario of this sort is worth exploring.

One very interesting possibility concerns the hadronic re-
gion with energy density beyond εH . It may turn out that in
certain circumstances, this region is long-lived at large N , in
a parametric sense, despite being locally unstable. The basic
issue is that at large N the system is not unstable, it is neutral.
Thus, the instability must come about due to 1/N effects,
which implies that the life-time of the matter before the in-
stability substantially effects things must be long. There is a
subtlety; however, there is also a natural timescale for which
such a system can thermally equilibrate. This is also long at
large N , since the interactions needed to equilibrate it are also
1/N suppressed. Thus, there remains an interesting open ques-

tion: at large N does the system equilibrate more rapidly in a
parametric sense than the natural timescale for the instability?
If it does, then the possibility that a homogeneous medium
could form and equilibrate and, if N were sufficiently large,
live for a parametrically long time before the instability de-
stroyed it—one would have a locally unstable but nevertheless
long-lived system. At this stage it is unclear if this happens.
It is worth noting that it is possible that this may depend on
whether one is studying large-N QCD or pure gauge theory
since the 1/N corrections for glueballs and mesons differ.

Last, it is worth noting that much of the analysis done in the
paper applies to large-N Yang-Mills, and thus QCD in 2 + 1
dimensions. In 2 + 1 dimensions, lattice studies show that
Yang-Mills with N = 2 and N = 3 have second-order phase
transitions, while the transition is of a weak first order for
N = 4 [38,39]. Lattice simulations suggest that the first-order
transition persists at larger N [38,40]. With Assumption 2,
the analysis in Sec. III holds for large-N theories in 2 + 1
dimensions. The analysis in Sec. IV also holds as the large-N
QCD has the Hagedorn spectrum in 2 + 1 dimensions [41].
Such rich phenomena of metastable and unstable phases of
large-N Yang-Mills theories in 2 + 1 dimensions can be stud-
ied numerically on a lattice.
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