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Incoherent deeply virtual Compton scattering off 4He
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Very recently, for the first time, the two channels of nuclear deeply virtual Compton scattering, the coherent
and incoherent ones, have been separated by the CLAS collaboration at the Jefferson Laboratory, using a 4He
target. The incoherent channel, which can provide a tomographic view of the bound proton and shed light on its
elusive parton structure, is thoroughly analyzed here in the impulse approximation. A convolution formula for
the relevant nuclear cross sections in terms of those for the bound proton is derived. Novel scattering amplitudes
for a bound moving nucleon have been obtained and used. A state-of-the-art nuclear spectral function, based
on the Argonne-18 potential, exact in the two-body part, with the recoiling system in its ground state, and
modelled in the remaining contribution, with the recoiling system in an excited state, has been used. Different
parametrizations of the generalized parton distributions of the struck proton have been tested. A good overall
agreement with the data for the beam spin asymmetry is obtained. It is found that the conventional nuclear
effects predicted by the present approach are relevant in deeply virtual Compton scattering and in the competing
Bethe-Heitler mechanism, but they cancel each other to a large extent in their ratio, to which the measured
asymmetry is proportional. Besides, the calculated ratio of the beam spin asymmetry of the bound proton to
that of the free one does not describe that estimated by the experimental collaboration. This points to possible
interesting effects beyond the impulse approximation analysis presented here. It is therefore clearly demonstrated
that the comparison of the results of a conventional realistic approach, as the one presented here, with future
precise data, has the potential to expose quark and gluon effects in nuclei. Interesting perspectives for the next
measurements at high luminosity facilities, such as JLab at 12 GeV and the future Electron Ion Collider, are
addressed.
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I. INTRODUCTION

A quantitative understanding of the European Muon col-
laboration (EMC) effect in inclusive deep inelastic scattering
(DIS) off nuclear targets [1] is still missing after several
decades. Since then, it is clear that the parton structure of
bound nucleons is modified by the nuclear medium (see
Ref. [2] for a recent report), but so far it has not been
possible to distinguish among several different explanations,
proposed using different descriptions of the structure of the
bound nucleons. It is widely understood that measurements
beyond DIS, such as semi-inclusive DIS (SIDIS) and nuclear
deeply virtual Compton scattering (DVCS), the hard exclusive
leptoproduction of a real photon on a nuclear target, will play
a fundamental role in shedding light on this long-standing
problem of hadronic physics [3,4]. Crucial steps forward are
expected from a new generation of planned measurements at
high-energy and high-luminosity facilities over the next few
years, including the Jefferson laboratory (JLab) at 12 GeV
[5] and the future electron-ion collider (EIC) [6]. From a
theoretical point of view, this program implies the challenging
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description of complicated processes. One of them, incoherent
DVCS off 4He nuclei, for which the first data have been
collected and recently published [7], is the subject of this
work.

In DVCS, the parton structure is encoded in the so
called Compton form factors (CFFs), defined in terms of the
generalized parton distributions (GPDs) [8], nonperturbative
quantities providing a wealth of novel information (for ex-
haustive reports, see, e.g., Ref. [9–11]). In particular, nuclear
DVCS could unveil the presence of nonnucleonic degrees of
freedom in nuclei [12] or may allow us to better understand
the spatial distribution of nuclear forces [13,14] (to develope
this latter program, the use of positron beams, presently under
discussion at JLab [15], would be of great help). Besides,
the tomography of the target, i.e., the distribution of partons
with a given longitudinal momentum in the transverse plane,
is certainly one of the most exciting information accessible
in DVCS through the GPDs formalism [16]. In nuclei, DVCS
can occur through two different mechanisms, i.e., the coherent
one A(e, e′γ )A, where the target A recoils elastically and its
tomography can be ultimately studied, and the incoherent
one A(e, e′γ p)X , where the nucleus breaks up and the struck
proton is detected, so that its tomography could be obtained.
The comparison between this information and that obtained
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for the free proton could provide ultimately a pictorial view of
the realization of the EMC effect. From an experimental point
of view, the study of nuclear DVCS requires the very difficult
coincidence detection of fast photons and electrons together
with slow, intact recoiling protons or nuclei. For this reason,
in the first measurement of nuclear DVCS at HERMES [17],
a clear separation between the two different DVCS channels
was not achieved. Recently, for the first time, such a separation
has been performed by the EG6 experiment of the CLAS
collaboration [18], with the 6-GeV electron beam at Jefferson
Lab (JLab). The first data for coherent and incoherent DVCS
off 4He have been published in Refs. [7,19], respectively.
Among few-nucleon systems, for which a realistic evaluation
of conventional nuclear effects is possible in principle, 4He
is deeply bound and represents the prototype of a typical
finite nucleus. Realistic approaches allow us to distinguish
conventional nuclear effects from exotic ones, which could be
responsible for the observed EMC behavior. Without realistic
benchmark calculations, the interpretation of the data will be
hardly conclusive. Indeed, in Refs. [7,19], the importance of
new calculations has been addressed for a successful interpre-
tation of the collected data and of those planned at JLab in
the next years [20,21]. In fact, available estimates, proposed a
long time ago, correspond in some cases to different kinemat-
ical regions [22–24]. New refined calculations are certainly
important, above all, for the next generation of accurate mea-
surements. In this sense, the use of heavier targets, due to the
difficulty of the corresponding realistic many-body calcula-
tions, is less promising. Among few-body nuclear systems, 2H
is very interesting for the extraction of the neutron information
and for its rich spin structure [12,25–27]. Between 2H and
4He, 3He could allow us to study the A dependence of nuclear
effects and it could give an easy access to neutron polarization
properties, due to its specific spin structure. Besides, being
not isoscalar, flavor dependence of nuclear effects could be
studied, in particular if parallel measurements on 3H targets
were possible. A complete impulse approximation (IA) anal-
ysis, using the Argonne-18 (AV18) nucleon-nucleon potential
[28] and the Urbana-IX (UIX) three-nucleon force model of
Ref. [29], is available and nuclear effects on GPDs are found
to be sensitive to details of the used nucleon-nucleon inter-
action [30–34]. Measurements for 3He have been addressed,
planned in some cases but they have not been performed
yet. We have therefore analyzed successfully, in IA, coherent
DVCS off 4He [35], obtaining an overall good agreement with
the data [19]. In a recent Rapid Communication [36], we have
proposed an analogous analysis for the incoherent channel,
to see to what extent a conventional description can describe
the recent data [7], which have the tomography of the bound
proton as the ultimate goal. In that analysis, the incoherent
DVCS beam spin asymmetry has been evaluated in the IA
framework in terms of a diagonal spectral function [37] based
on the AV18+UIX nuclear interactions and the GPDs model
by Goloskokov and Kroll [38,39], obtaining an overall good
description of the available data.

We retake here the subject in detail. The expressions for all
the relevant scattering amplitudes for a bound, moving proton
are fully derived and explicitly given. In terms of them, the
relevant cross sections are calculated, showing the effects of
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FIG. 1. Incoherent DVCS process off 4He in the IA to the hand-
bag approximation.

the use of different descriptions of the nuclear structure and of
the nucleon GPDs. Results are shown for the differential cross
sections and the beam spin asymmetry, investigating carefully
the source of nuclear effects on both of these observables.

The paper is structured as follows. The framework and
the main formalism are presented in the next section, while
details are collected in two extended Appendices. In the third
section, the ingredients of the calculation are described, while
numerical results are presented and discussed in the following
one. Conclusions and perspectives are eventually given in the
last section.

II. FORMALISM

In this section, we present the relevant formalism for the IA
description of the handbag approximation to the incoherent
DVCS process 4He(e, e′γ p′)X , shown in Fig. 1. In such a
description of the process, the proton changes its momentum
from p to p′ after the interaction of the virtual photon with one
quark belonging to one nucleon, i.e., only nucleonic degrees
of freedom are included and coherent effects, such as shadow-
ing, are neglected. The other IA assumption is that any further
scattering between the proton and the remnant system X is
disregarded in the final state. The factorization property can
be applied to this process when the initial photon virtuality,
Q2 = −q2

1 = −(k − k′)2, is much larger than the momentum
transferred at hadronic level, t = �2 = (p − p′)2. We note
also that, in the present IA approach, �2 = (q1 − q2)2, that
is, the momentum transferred to the system, coincides with
that transferred to the struck proton. For high-enough values
of Q2, IA usually describes the bulk of nuclear effects in a
hard electron-scattering process (see, e.g., Ref. [40] for an
experimental study of the onset of the validity of IA). Similar
expectations hold in this study, although only the comparison
with data can establish the validity of the chosen framework.
In this way, the hard vertex of the diagram illustrated in Fig. 1
can be calculated using perturbative methods while the soft
part can be parametrized through the GPDs of the bound
proton. Such nonperturbative objects, namely the GPDs, are
functions of �2, of the so-called skewness ξ = −�+/P+, i.e.,
the difference in plus momentum fraction between the initial
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FIG. 2. The Bethe-Heitler process in IA.

and the final states, and of x, the average plus momentum
fraction of the struck parton with respect to the total momen-
tum [the notation a± = (a0 ± a3)/

√
2 is used; besides, the

average four-momentum for the photons is q = (q1 + q2)/2,
while we have defined P = p + p′]. Actually GPDs, as any
other parton dostribution, depend on the momentum scale
Q2 according to QCD evolution equations. Such an obvious
dependence is omitted in the rest of the paper to avoid a
too-heavy notation. We adopted the reference frame proposed
in Ref. [41], with the target at rest, the virtual photon with
energy ν moving opposite to the ẑ axis, and the leptonic and
hadronic planes of the reaction defining the angle φ. Using
energy-momentum conservation, one gets for the azimuthal
angle of the detected proton the relation φp′ = φ + φe and,
since in the chosen frame one has, for the electron azimuthal
angle, φe = 0, φp′ coincides with φ.

Since x cannot be experimentally accessed, GPDs cannot
be directly measured. Some help comes from the fact that the
leptoproduction of a real photon always occurs through two
different mechanisms leading to the same final state (e′γ p′):
the DVCS process, discussed above and related to the parton
content of the target, and the electromagnetic Bethe-Heitler
(BH) process, shown in Fig. 2. In fact, the complete squared
amplitude for the leptoproduction process has to be read as

A2 = T 2
DVCS + T 2

BH + I. (1)

In particular, in the kinematical region tested at JLab and of
interest here, the BH mechanism is dominating the DVCS
one. For this reason, a key handle to access the GPDs is
the interference between these two competing processes, i.e.,
I = 2Re(TDVCST ∗

BH). This term, containing TDVCS, is sensitive
to the parton content of the target through the GPDs. Such
information is encapsulated in the CFFs F related to the
generic GPDs F by:

F (ξ,�2) =
∫

dx
F (x, ξ ,�2)

x − ξ + iε
. (2)

Since in the CFFs the dependence on x is integrated out, they
can be measured. Also for the CFFs the obvious Q2 depen-
dence is omitted here and in the following. We note in passing
that the possibility that the final photon is emitted by the initial
nucleus, or by the final nuclear system X, has been neglected,
as the BH cross section is approximately proportional to the
inverse squared mass of the emitter, and, in a similar fashion,
the BH-DVCS interference term is proportional to the inverse

mass. Therefore, with respect to the emission from the elec-
trons, these contributions are assumed to be negligibly small,
although the interference part may deserve some attention
when precise data will be available. For the time being, we fol-
low the same point of view of the experimental collaboration
EG6, which has not considered this occurrence in its analysis.
From a theoretical point of view, if these contributions are
neglected, gauge invariance is not respected. Nonetheless,
we have to point out that in the present IA analysis gauge
invariance is in any case not fulfilled and it could be restored
only implementing many-body currents at the nuclear level.
These corrections have not been included in the calculation
yet and they could be more relevant than photon emission
from nuclear systems in the initial and final state.

The clearest way to experimentally access the relevant
interference term is the measurement of the beam-spin asym-
metry (BSA) for the process where the unpolarized target
(U ), 4He in this case, is hit by a longitudinally polarized
(L) electron beam with different helicities (λ = ±). So the
observable under scrutiny reads

ALU = dσ+ − dσ−

dσ+ + dσ− . (3)

Since the interference term is directly proportional to the
helicity of the beam, the difference of cross sections for dif-
ferent beam helicities in the numerator of Eq. (3), to a phase
space factor, gives a direct access to such term. We will show
in the following that the quantities dσ± in Eq. (3) are actually
4-times differential cross sections.

Our aim is thus the evaluation of the complete expression
for the leptoproduction cross section at LO in IA in order to
study the theoretical behavior of the BSA and compare it with
the data. The details of the calculation are described in the
following.

In our IA approach, we account only for the kinematical
off-shellness of the initial bound proton so that the energy of
the struck proton is obtained from energy conservation and
reads

p0 = MA −
√

M∗2
A−1 + �p2 � M − E − Trec, (4)

where we define the removal energy E = M∗
A−1 + M − MA =

ε∗
A−1 + |EA| − |EA−1| in terms of the binding energy (mass) of

4He and of the three-body system, EA (MA) and EA−1 (M∗
A−1),

respectively, and of the excitation energy of the recoiling
system, ε∗

A−1. Finally, Trec is the kinetic energy of the recoiling
three-body system and M is the proton mass. A straightfor-
ward but lengthy analysis, detailed in Appendix A, leads to a
complicated convolution formula for the cross section, which
can be cast in the following form:

dσ±
Inc =

∫
exp

dE d �p pk

p0 |�k|P
4He( �p, E ) dσ±

b ( �p, E , K ), (5)

where the main ingredients are the nuclear spectral function
P

4He( �p, E ) and the cross section for a DVCS process off a
bound proton, dσ±

b . As thoroughly described in Appendix A,
the integral on the removal energy refers to the full spectrum
of 4He, both discrete and continuous. In Eq. (5), K is the set of
kinematical variables {xB = Q2/(2Mν), Q2, t, φ}. The range
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of K accessed in the experiment fixes the proper energy and
momentum integration space, denoted as “exp” and described
in Appendix A. From Eq. (5) we get the measured differential
cross sections, appearing in Eq. (3),

dσ± ≡ dσ±
Inc

dxBdQ2d�2dφ

=
∫

exp
dE d �p P

4He( �p, E )|A±( �p, E , K )|2g( �p, E , K ),

(6)

where g( �p, E , K ) is a complicated function which arises, as
explicitly detailed in Appendix A, from the integration over
the phase space and includes also the flux factor pk/(p0 |�k|)
of Eq. (5). This latter term comes from the fact that one
has at disposal only nonrelativistic nuclear wave functions
to evaluate the spectral function. In the present approach this
implies that the number of particle sum rule is respected, but
the momentum sum rule is slightly violated. Such a problem
could be solved ultimately within a light-front approach, along
the lines proposed in Ref. [42] for a three-body system.

The BSA (3), written in terms of the above cross sections,
yields the schematic form

AIncoh
LU (K ) = I4He(K )

T 2 4He
BH (K )

, (7)

where

I4He(K ) =
∫

exp
dE d �p P

4He( �p, E ) g( �p, E , K ) I ( �p, E , K ),

T 2 4He
BH (K ) =

∫
exp

dE d �p P
4He( �p, E ) g( �p, E , K )

× T 2
BH( �p, E , K ), (8)

refer to a moving bound nucleon and generalize the Fourier
decomposition of the DVCS cross section off a proton at
rest, at leading twist, derived in Ref. [41]. Without going
into technical details, that are presented in Appendix B, we
summarize the structure of the different contributions.

For the BH part, we considered the full sum of azimuthal
harmonics, i.e.,

T 2
BH = cbound

0 + cbound
1 cos φ + cbound

2 cos(2φ), (9)

where the coefficients cbound
i contain the Dirac and Pauli form

factors (FFs). The azimuthal dependence of the amplitudes is
due to the expression of the BH propagator as reported in
Appendix B. We stress that in the present IA approach no
nuclear modifications occur for the FFs of the bound proton.
Concerning the interference part in the numerator of Eq. (3),
terms proportional to �2/Q2 have been considered as well
as corrections proportional to ε2 = 4M2x2

B/Q2, accounting
for target mass corrections. While in Ref. [43] a complete
treatment of power suppressed effects within the helicity for-
malism is presented in order to restore the process kinematics
exactly, here we propose a similar approach considering only
those terms that guarantee a coherent comparison when the
amplitudes of a free proton, known in literature [10], are
recovered. The latter terms are fundamental in order to obtain

a fully consistent comparison with the BSA for a proton at
rest, which will be shown in the next section. The main reason
is that in the amplitudes for a bound proton it is not always
possible to isolate such terms, since the obtained expressions
are function of the four-momentum of the bound, off-shell
proton. In our approach the parton content of the bound proton
plays a role only in the imaginary part of the CFF H. In the
kinematics of interest and in the present model, this quantity
can be expressed in terms of only one GPD of the bound
proton, H (x, ξ ,�2), selected in the slice x = ±ξ , i.e.,

ImH(ξ ′, t ) = H (ξ ′, ξ ′, t ) − H (−ξ ′, ξ ′, t ), (10)

where H (ξ ′, ξ ′, t ) is summed over the u, d, s flavors of the
quarks. We notice that the off-shellness of the bound nucleon
enters the proton parton structure through the dependence
of the GPDs on ξ ′ = −q2/(Pq) = ξ/z, with z the average
fraction of the light-cone momentum of the target carried by
the struck proton. In this way, the modification at partonic
level is due to this rescaling of the skewness that, for a pro-
ton at rest, reads ξ = xB(1 + �2/2Q2)/(2 − xB + xB�2/Q2),
keeping terms proportional to �2/Q2.

Let us close this section commenting on a relevant point,
i.e., the possibility to study through nuclear GPDs a scenario
dominated by very fast partons in very fast nucleons, accessed
in DIS at xB = Q2/(2Mν) > 1, when cross sections are ex-
tremely small and the interpretation of data hardly conclusive.
The same information is accessible, in principle, in DVCS
at lower values of xB. This was first observed in Ref. [12]
and would allow us to expose, e.g., the role of nonnucleonic
degrees of freedom in nuclear DIS phenomena. This argument
is not treated in the rest of the paper because here we want
to test our conventional approach against the present avail-
able data, taken at kinematics where there is unfortunately
no chance to unravel this information. To access the region
dominated by very fast partons, one should measure the very
high x tail of the GPD of the bound proton but unfortunately
this behavior is not observable directly, as already stressed.
While an indirect extraction is possible in principle and it will
be obtained when high statistics is experimentally reached, in
the next JLab measurements and at the EIC, the present data
do not contain the desired information. Indeed, the GPD of the
detected nucleon, written HN/A(x′, ξ ′, t ) throughout the paper,
can be cast in the form HN/A(x/z, ξ/z, t ).

At JLab kinematics, the interference between the DVCS
and BH processes is dominated by the imaginary part of the
CFF, shown here above. This means that, in the present data,
x/z � ±ξ/z and that, therefore, x � ±ξ � ±xB/(2 − xB) in
a given scattering process. In the experiment under investiga-
tion, one has 0.15 < xB < 0.4 and we are therefore very far
from the region x > 1. A different story would be told by the
measurement of the real part of the CFF which would be dom-
inant, for example, in the so-called charge beam asymmetry,
built from cross sections for the same process but using also
positron beams [15]. We would like to stress that our semireal-
istic approach contains the hard-core dynamics and is able to
predict the contribution to GPDs at x > 1. Nevertheless, this
issue is far from the aim of the paper, which is to describe the
valence region tested at JLab. Here we have the effect of all
the NN correlations described by the realistic potential but the
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contribution of the hard core is not relevant, being the average
momentum of the tested nucleons rather moderate.

III. INGREDIENTS OF THE CALCULATION

In order to actually evaluate Eq. (7), we need an input
for the proton GPD and for the proton spectral function in
4He. Concerning the nuclear part, only old attempts exist of
obtaining a complete spectral function of 4He [44,45]. The
unpolarized spectral function, whose emergence in this pro-
cess is thoroughly described in Appendix A, can be cast in the
form

P
4He( �p, E ) =

∑
fA−1

〈4He| fA−1; N �p 〉〈 fA−1; N �p |4He〉

× δ(E − Emin − ε∗
A−1). (11)

It is therefore clear that its realistic evaluation would require
the knowledge, at the same time, of exact solutions of the
Schrödinger equation with realistic nucleon-nucleon poten-
tials and three-body forces for the 4He nucleus and for the
three-body recoiling system fA−1. This system can be either
in its ground state, when E = Emin = |E4He| − |E3H|, or un-
bound with an excitation energy ε∗

A−1. The description of this
latter part represents a challenging few-body problem, whose
solution is presently unknown. A full realistic calculation of
the 4He spectral function is planned and has started but, in this
work, for P

4He( �p, E ) use is made of the model presented in
Ref. [37,46]. In that approach, when the recoiling system is in
its ground state and E = Emin, an exact description is used in
terms of variational wave functions for the four-body [47] and
three-body [48] systems, obtained through the hyperspheri-
cal harmonics method [49], within the Av18 NN interaction
[28], including UIX three-body forces [29]. The cumbersome
part of the spectral function, with the recoiling system ex-
cited, is based on the Av18+UIX interaction, proposed in
Refs. [37,46], an update of the two-nucleon correlation model
of Ref. [50]. We note that realistic calculations of GPDs for
3He, for which an exact spectral function is available, have
established the importance of properly considering the E de-

-0.4

-0.2

 0

 0.2

 0.4

 0  50  100  150  200  250  300  350

A L
U (

φ)

φ[deg]

t =-0.28 GeV2, xB =0.25 , Q2 =1.95 GeV2

no Δ2/Q2

Δ2/Q2

PRL 100, 162002 (2008)

FIG. 3. Beam spin asymmetry for a proton at rest considering
(full curve) and ignoring (dot-dashed curve) term of order �2/Q2 in
the interference part. In this kinematics, �2/Q2 � 0.144. Data from
Ref. [51].
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FIG. 4. The cross section for the BH process on the free proton
(dashed line) and on a proton bound in 4He (full line), according to
the present treatment, in the kinematics reported on the top of the
frame, corresponding to data presented in Ref. [55], as a function
of the azimuthal angle φ. The precise position of the data and their
errors are taken from Ref. [58].

pendence of the spectral function [31]. To have an idea of
the importance of a proper treatment of the E dependence in
this process, and, in general, of the drawback of the use of
a less refined nuclear description, in the next section we will
show also results obtained using the “closure” approximation.
It consists in evaluating the spectral function considering, in
the argument of the δ function in Eq. (11), an average value of
the removal energy, so that the closure of the fA−1 states can
be used, yielding

P
4He
closure(p, E ) = ngr (p)δ(E − Emin)

+ nex(p)δ(E − Ē ), (12)

where the momentum distribution for the proton with the
recoiling system in its ground or excited state, ngr (k) and
nex(k), respectively, have been introduced, with Ē the average
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FIG. 5. The cross section for the BH process (full line) and the
one obtained including the interference between the BH and DVCS
processes (dot-dashed line), for a proton bound in 4He, according to
the present treatment, in the kinematics reported on the top of the
frame, corresponding to data presented in Ref. [55], as a function of
the azimuthal angle φ. The precise position of the experimental data
and their errors are taken from Ref. [58].
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excitation energy of the recoiling system. A similar approach
has been used to model the nondiagonal 4He spectral function
in the description of coherent DVCS off 4He, in Ref. [35].
We note that, when this approximation is used, also the off-
shellness of the struck proton, governed by Eq. (12), has to be
changed accordingly, i.e.,

p0 = MA −
√

M∗2
A−1 + �p2 −→ M − Ē − Trec. (13)

As we will see in the following, this produces important
effects in the cross section, due to the fact that the components
of the four-momentum of the proton enter scalar products
present in the relevant scattering amplitudes.

For the nucleonic GPD, two models have been used. One
is the model of Goloskokov and Kroll (GK) [38], already
successfully exploited in the coherent case [35]. It is worth
noting that the model is valid in principle at Q2 values larger
than those of interest here, in particular at Q2 � 4 GeV2.
Nonetheless, we have checked that the GK model can reason-
ably describe free proton data collected in similar kinematical
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FIG. 7. The BSA AIncoh
LU , Eq. (7), as a function of the azimuthal

ange φ, compared to data corresponding to the analysis leading to
Ref. [7].

TABLE I. The BSA, obtained using the GK [38] or MMS [52]
models, using the nuclear spectral function, for the average values of
Q2 and t in xB bins.

xB 〈Q2〉 (GeV2) 〈t〉 (GeV2) AGK
LU AMMS

LU

0.162 1.43 −0.397 0.208 0.102
0.227 1.92 −0.418 0.204 0.134
0.287 2.35 −0.492 0.185 0.141
0.390 2.98 −0.714 0.163 0.143

ranges, for example, the ones in Ref. [51], as discussed in the
next section (see Fig. 3).

The other model is taken from Ref. [52]. It is based on an
original compact version of the double distribution prescrip-
tion. It is developed at leading twist and at leading order in
αs (of course, NLO corrections may be sizable also in the
valence region, at moderate energy, see, e.g., the discussion
in Ref. [53]). With respect to the GK model, only the valence
region is modified and the momentum scale evolution is the
same. The model is expected to work in the region −t/Q2 �
0.1, where factorization is supposed to work. To obtain the
relevant numbers for that model, use has been made of the
virtual access infrastructure “3DPARTONS” [54].

IV. NUMERICAL RESULTS

We can now evaluate the BSA, Eq. (7), and compare it with
the recently published data [7].

First, let us check if the GK model we used, for values
of Q2 smaller than those for which it is supposed to work,
Q2 � 4 GeV2, is still describing the available data reasonably
well. To this aim, we show in Fig. 3 that, in one of the kine-
matics presented in Ref. [51] for DVCS off the free proton,
not far from the ones of interest here, a reasonable description
of the BSA data is obtained calculating this quantity for the
free proton with the GK model. We notice that the azimuthal
angle φ, used by the experimental collaboration and exploited
here, is related to the one previously defined and used in this
paper by the relation φ = π − φ. The relevance of terms of
order t/Q2, discussed in the previous section, is also shown.
In general, the BSA is rather sensitive to changes of the
kinematics, to t especially. Data for the free proton are not
available for the kinematics of the experiment under scrutiny
so that we have to compare with results of other experiments.

Then, let us show the results of our model for the differ-
ential cross sections (6) which are used later to calculate the

TABLE II. The BSA, obtained using the GK [38] or MMS [52]
models, using the nuclear spectral function, for the average values of
xB and t in Q2 bins.

Q2 (GeV2) 〈xB〉 〈t〉 (GeV2) AGK
LU AMMS

LU

1.40 0.166 −0.407 0.248 0.124
1.89 0.233 −0.499 0.224 0.148
2.34 0.290 −0.521 0.192 0.147
3.10 0.379 −0.650 0.146 0.128
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TABLE III. The BSA, obtained using the GK [38] or MMS [52]
models, using the nuclear spectral function, for the average values of
xB and Q2 in t bins.

t (GeV2) 〈xB〉 〈Q2〉 (GeV2) AGK
LU AMMS

LU

−0.145 0.213 1.82 0.145 0.094
−0.282 0.255 2.13 0.164 0.118
−0.490 0.284 2.31 0.190 0.144
−1.11 0.308 2.41 0.173 0.140

BSA. All the cross sections shown here below are obtained
considering a positive electron helicity, as an example.

To have a first glimpse at the nuclear effects on the relevant
processes, the cross section for the BH process on the free
proton (dashed) and on a proton bound in 4He (full), according
to the present treatment, is shown in Fig. 4 as a function of
the azimuthal angle φ, in one of the kinematical ranges of
the data presented in Ref. [55]. The data, corresponding to
the full DVCS process off the free proton, are presented here
for illustration only. Relevant nuclear effects are clearly seen.
To our knowledge, this figure and the next two are the first
ones in the literature where the comparison of cross sections
for free and bound nucleons, with a difference arising from a
microscopic calculation, is presented.

In Fig. 5, the cross section for the BH process is compared
with that obtained including also the only relevant term, as
discussed in Appendix B, of the the interference between the
BH and DVCS processes, for a proton bound in 4He according
to the present treatment, again in the kinematics of Ref. [55],
as a function of the azimuthal angle φ (see Appendix B for
the discussion of the relevant term included). It is clearly seen
as a relevant φ asymmetry is generated including the DVCS
mechanism. The data for the free proton are again reported for
illustration. It is seen that a reasonable description is obtained.

In Fig. 6, in the same kinematics of the previous two, the
full cross section is shown, for a bound and for a free proton,
to expose the role of the nuclear effects on the proton DVCS
cross section, found to be overall sizable.

Let us now present results for the BSA AIncoh
LU , Eq. (7).

This quantity, evaluated using the GK model for the GPD

entering the DVCS part, is shown in Fig. 7, as a function
of the azimuthal ange φ, compared to data corresponding to
the analysis leading to Ref. [7]. A convincing agreement is
found, in particular at φ = φ = 90◦, the fixed value at which
the BSA has been extracted and at which it will be shown in
the following.

The BSA is a function of the azimuthal angle φ and of the
kinematical variables Q2, xB, and t . Due to limited statistics,
in the experimental analysis these latter variables have been
studied separately with a two-dimensional data binning. The
same procedure has been used in our calculation. For example,
each point at a given xB has been obtained using for t and
Q2 the corresponding average experimental values, which are
reported for definiteness in Tables I–III, together with the
numerical values of the calculated theoretical asymmetries
discussed in the following.

In Fig. 8 it is seen that, overall, the calculation reproduces
the data rather well in all of these bins. For this observable,
in most of the cases the present accuracy of the data does not
allow us to distinguish between the full calculation and that
performed using the closure approximation, Eq. (12). In any
case, whenever the disagreement with the data is sizable, the
proper treatment of the excitation energy within the spectral
function helps in describing the data. Besides, we note that
the agreement is not satisfactory only when the GK model is
used in the region of low Q2. Indeed, this is evident only in
the experimental points corresponding to the lowest values of
Q2, xB, and t . One should notice that the average value of Q2

grows with increasing xB and t (cf. Tables I–III), so that an
unsatisfactory description at low Q2 affects also the first xB

and t bins. Actually, the GK model is designed to describe
the available data for Q2 � 4 GeV2, e.g., at values higher than
the typical ones accessed by the CLAS collaboration in the
experiment under scrutiny. The problems found using the GK
parametrization are therefore somehow expected. We have
therefore repeated the calculation using as a nucleonic par-
tonic input the model MMS, introduced in Ref. [52], briefly
described in the previous section. The comparison of the two
results is presented in Fig. 9, where it is seen that the data
favor the MMS model with respect to the GK one. The success
of the MMS model, with parameters chosen precisely to be
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FIG. 8. Azimuthal beam-spin asymmetry for the proton in 4He, AIncoh
LU (K ), for φ = 90◦: Results of this approach (red dots are obtained

using the diagonal spectral function as described along the text and blue stars using the momentum distribution in the “closure approximation”)
compared with data (black squares) [7]. From left to right, the quantity is shown in the experimental Q2, xB, and t bins, respectively. Shaded
areas represent systematic errors.
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FIG. 9. Azimuthal beam-spin asymmetry for the proton in 4He, AIncoh
LU (K ), for φ = 90◦: Results of this approach (red dots are obtained

using the GK GPD model [38] and blue triangles using the MMS model [52]) compared with data (black squares) [7]. From left to right, the
quantity is shown in the experimental Q2, xB, and t bins, respectively. Shaded areas represent systematic errors.

realistic in the Q2 range typical at JLab, is remarkable and
points to a solid predictivity of the IA, emphasizing, at the
same time, the dependence of the results on the choice of the
nucleonic model. In any case, the residual disagreement, or
the problems found using the GK model, could be also due
to some final-state interaction (FSI) effects that in the present
IA are not considered. For this reason, a careful analysis of
the interplay between the t and Q2 dependence of the data
is required to establish whether FSI play a relevant role. The
present accuracy of the data does not allow such an analysis,
but the data expected from the planned future measurements
certainly will. In the light of this discussion, we can conclude
that a careful use of basic conventional ingredients is able
to reproduce the available data. In order to better understand
our results, addressing nuclear modifications of the parton
strucure, possibly related therefore to the EMC effect, as an
illustration we perform a specific analysis, detailed in what
follows.

Let us define, in each experimental bin, specific ratios to
expose the nature of nuclear effects, namely, the ratio between
the BH-DVCS interference cross section for the proton bound
in 4He and the free one at rest, RI (K ), the corresponding
quantity for the pure BH process, RBH(K ), and the ratio of the
two, RALU(k), providing the ratio of the bound proton to the
free proton BSA in our calculation scheme. These quantities

read, respectively

RI (K ) = 1

N
I

4He(K )

I p(K )
, (14)

RBH(K ) = 1

N
T 2 4He

BH (K )

T 2 p
BH (K )

, (15)

RALU(K ) = RI (K )

RBH(K )
= AIncoh

LU (K )

Ap
LU (K )

. (16)

In the equations above the factor N = ∫
exp dE d �pP

4He( �p, E )
accounts for the fact that only a part of the spectral function
is selected in a given experimental bin. The meaning of the
integration space “exp” is clarified in Appendix A. The ratios
(14)–(16) at φ = 90◦, using the GK model for the nucleon
GPD, are shown in Fig. 10. It is clearly seen that the nuclear
effects obtained within the present IA scheme in the ratios (14)
and (15) are rather sizable, while the effects are dramatically
reduced in the “super-ratio” (16). This fact points to relevant
conventional nuclear effects in the pure BH and pure DVCS
processes, which are anyhow of a similar origin, so that they
cancel out to a large extent in the ratio.

Something similar happens when the closure approxima-
tion is applied to estimate the nuclear effects. In Figs. 11
and 12 it is seen that, in some cases, the difference between
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FIG. 10. The ratios (14) (red dots), (15) (blue triangles), (16) (black squares), at φ = 90◦ and using the GK model for the nucleon GPD.
From left to right, the quantity is shown in the experimental Q2, xB and t bins, respectively.
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FIG. 11. The ratio (14) (blue triangles), obtained using either the spectral function (red dots) or the closure approximation (black stars),
at φ = 90◦ and using the GK model for the nucleon GPD. From left to right, the quantity is shown in the experimental Q2, xB, and t bins,
respectively.

the results of the full calculation, performed considering the
distribution of the removal energy within the spectral function,
and of the one obtained with the closure approximation, is
rather sizable in the ratio (14) and (16). In Fig. 13 is seen
instead that the effect is dramatically reduced in the ratio of
these two quantities, the super-ratio (16), showing that the
effects in the numerator and in the denominator basically
compensate each other.

The dots shown in this latter figure are related to another
intriguing observation, obtained following a procedure used
by the experimental collaboration to expose nuclear effects
[7]. Our BSA for the proton bound in 4He has been divided
by the corresponding quantity for a free proton at rest, using
the GK model, and plotted as a function of xB. It is seen that
the results underestimate those obtained in the analysis of the
experimental collaboration. This points to interesting effects
not included in the present IA scheme, either at the parton
level (medium modifications of the parton structure due exotic
effects, such as dynamical off-shellness) or of conventional
origin, such as FSI, not yet included in the calculation. In
Fig. 14 we show the results obtained with the spectral function
and with either the GK or the MMS model, almost indis-
tinguishable between themselves. Clearly, while in the result
for ALU the difference between the different models was in
some cases sizable, in this specific quantity, which can be built
in principle from data taken for protons in 4He and for the
free proton at the same kinematics, this ratio seems to be be

essentially independent on the model used for the nucleon. In
general nuclear effects are found to be rather small in IA for
this quantity, which seems therefore very promising to expose
exotic nuclear effects.

To dig further into this interesting result and to realize to
what extent a medium modification of the parton structure is
predicted by our calculation, we observe that the ratio (16) can
be sketched as follows:

AIncoh
LU

Ap
LU

= I4He

I p

T 2 p
BH

T 2 4He
BH

∝ (nucl.eff.)I
(nucl.eff.)BH

, (17)

i.e., it is proportional to the ratio of the nuclear effects on the
BH-DVCS interference to the nuclear effects on the pure BH
cross section. If the nuclear dynamics modifies I and the T 2

BH
in a different way, the effect can be big even if the parton
structure of the bound proton does not change appreciably.
We analyze this occurrence in Fig. 15, where, together with
the ratio (16), we show two others quantities, as functions of
xB. One of them, labeled “pointlike,” is obtained considering
in the ratio pointlike protons. It is seen that, at low xB, where
sizable effects are found within our IA approach, the big effect
is still there. Besides, in the same figure we show an “EMC-
like” quantity, i.e., a ratio of a nuclear parton observable, the
imaginary part of the CFF, to the same observable for the free
proton:

REMC-like = 1

N

∫
exp dE d �p P

4He( �p, E ) Im H(ξ ′,�2)

Im H(ξ,�2)
. (18)
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FIG. 12. The ratio (15), evaluated using the spectral function (blue triangles) and the closure approximation (black stars) for φ = 90◦ and
using the GK model for the proton GPD. From left to right, the quantity is shown in the experimental Q2, xB, and t bins, respectively.
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FIG. 13. The ratio (16), evaluated using the spectral function (blue triangles) and the closure approximation (black stars) for φ = 90◦ and
using the GK model for the proton GPD. From left to right, the quantity is shown in the experimental Q2, xB, and t bins, respectively. The
results is compared with the same ratio estimated by the EG6 collaboration (black squares) [56].

One should notice that this ratio would be one if nuclear
effects in the parton structure were negligible. As seen in
Fig. 15, this ratio is close to 1 and it resembles the EMC
ratio, for 4He, at low xB (cf. the data in Ref. [57]). Since in
our analysis the inner structure of the bound proton is entirely
contained in the CFF and this produces a mild modification,
the sizable effect found for the ratio (17) for the first xB bin,
shown in Fig. 15, has little to do with the modifications of the
parton content driven by the IA and analyzed here. Rather, the
effect is due to a different dependence on the four-momentum
components, affected by nuclear effects, of the interference
and BH terms for the bound proton.

It will be very interesting to study the ratio (16) when
consistently collected data will be available for the proton and
for 4He, to look for effects to be ascribed to exotic modifica-
tions of the parton content or to a complicated conventional
behavior, beyond IA.

V. CONCLUSIONS

An impulse approximation analysis, based on state-of-
the-art models for the proton and nuclear structure, using
a conventional description in terms of nucleon degrees of
freedom, has been thoroughly described. Recent data on in-
coherent DVCS off 4He are overall well reproduced.

The results can be summarized as follows:
(i) the main experimental observable, the only one mea-

sured so far, the BSA, turns out to be sensitive to the nucleonic
model used, in particular at low values of Q2; parametrizations
for generalized parton distributions based on high Q2 data
seem to have limited predictive power in the low Q2 sector;

(ii) given the present accuracy of the data, the beam spin
asymmetry is mildly sensitive to the details of the nuclear
model used in the calculation, as it can be argued using
a spectral function or its closure approximation. Results
obtained within the spectral function are anyway closer to a
good description of the data;

(iii) the behavior at low Q2 could point also to possible
FSI effects, to be investigated, or to other quark and gluon
effects. The present accuracy of the data does not allow a
further analysis toward this direction;

(iv) a careful study of nuclear effects in the different pro-
cesses contributing to the BSA, the BH in the denominator
and the DVCS-BH-Interference in the numerator, has exposed
sizable effects; besides, a clear difference is found, in some
kinematical points, if the spectral function or the closure ap-
proximation are used. The separated measurements of these
contributions, which correspond to those of the differential
cross sections and not only to their ratio, would be very inter-
esting and deserve to be attempted in the future experiments;
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FIG. 14. The ratio (16) of the azimuthal beam-spin asymmetry for the proton in 4He, AIncoh
LU (K ), to the corresponding quantity for the free

proton at rest, for φ = 90◦, using for the proton GPD the GK model [38] (red dots), and the MMS model [52] (blue triangles) compared with
the ratio estimated by the EG6 collaboration (black squares) [56]. From left to right, the quantity is shown in the experimental Q2, xB, and t
bins, respectively.
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LU /Ap

LU , Eq. (17) (red dots), compared to
the result obtained with pointlike protons (black diamonds) and to
the EMC-like ratio Eq. (18) (blue crosses).

(v) all these effects actually basically disappear in the
ratio of the interference to the BH contributions. In our IA
approach, the latter ratio represents that between the BSA
for incoherent DVCS off 4He and coherent DVCS off the
free proton. Its stability against different nuclear and nucleon
models, found in this study, demonstrates that it can be used
to expose interesting exotic effects beyond the ones included
in IA. We can preliminarily assert that our calculation of this
quantity overestimates the estimate of the experimental col-
laboration. Other possible effects in the reaction mechanism,
such as the role of the emission of photons from nuclear legs
in the BH-DVCS interference term, should be checked in the
future when precise data are available.

We would conclude that, given the present accuracy of the
data, there is no point in going beyond the exhaustive analysis
presented here. New tagged measurements with detection of
residual nuclear final states, planned at JLab [21] and under
study for the future EIC, will shed more light to this respect.
The presence of specific nuclear final states in these processes
will also make possible a precise evaluation of FSI in terms of
few-body realistic wave functions, allowing for a conclusive
comparison with data.

While a benchmark calculation in the kinematics of the
next generation of precise measurements will require an im-
proved treatment both the nucleonic and the nuclear parts
of the calculation, such as a realistic evaluation of the diag-
onal spectral function of 4He, the straightforward approach
proposed here can be used as a workable framework for the
planning of future measurements. Possible exotic quark and
gluon effects in nuclei, not clearly seen within the present
experimental accuracy, will be exposed by comparing forth-
coming data with our conventional results. To this aim, a novel
Montecarlo event generator [59], tested so far with our model
of the coherent process, will be used to simulate incoherent
DVCS off 4He, described within the approach presented here,

to plan the next generation of experiments at JLab and at the
future EIC.
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APPENDIX A: THE CONVOLUTION FORMULA

Let us start considering the cross section dσ± appearing
in Eq. (3). It can be written in a generic frame, for the
incoherent channel of the DVCS process under scrutiny,
namely e(k)A(PA) → e(k′)N (pN )γ (q2)X (pX ) off a nuclear
target A, in the following way:

(dσ±)Inc = (2π )4 1

4PAk

∑
σ

∑
N

∑
X

|A±|2δ

× (PA + k − k′ − pX − pN − q2)d p̃X dk̃′dq̃2d p̃N ,

(A1)

where the dynamical information is encoded in the squared
amplitude. The latter is given by three different contri-
butions, namely |A|2 = |ADVCS|2 + |ABH|2 + IBH-DVCS. A
generic phase-space integration volume reads

dk̃ ≡ d3k

(2π )32k0
. (A2)

In Eq. (A1), the sums are extended to the inner nucleons of
type N in the target, to the polarization σ of the final detected
proton and to the undetected nuclear system X . The status f
of the latter is identified by a set {α f } of discrete quantum
numbers and by the excitation energy E f , for which discrete
and continuous values are possible. One has therefore, in
Eq. (A1), ∑

X

d p̃X →
∑

f

∑
{α} f

∑∫
E f

ρ(E f ) d p̃ f , (A3)

where ρ(E f ) is the density of final states. The amplitudes ABH

and ADVCS appearing in Eq. (A1) are given by the contraction
of a leptonic tensor (Lν

DVCS/Q2 and Lμν
BH/�2 for DVCS and

BH, respectively) with the appropriate hadronic tensor. For a
generic DVCS process of a target A with initial(final) polar-
ization S(S′) reads

T DVCS
μν (PA,�, q, S, S′) =

∫
dreiqr〈P′

AS′|T {Ĵμ(r)Ĵν (0)}|PAS〉.

(A4)
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Since a convolution formula with the same structure can
be obtained for any of the DVCS, BH, and interference
terms exploiting the same steps, to fix the ideas in what
follows we specify our treatment to the DVCS part. Let us
consider therefore the scattering amplitude of the incoher-
ent DVCS process off an 4He target, i.e., e(k) 4He(PA) →
e(k′)N (pN )γ (q2)X (pX ),

AA,N, f
DVCS = −ie

∑
λ′

ū(k′, λ′)γμu(k, λ)
1

Q2
T μν

A,N, f ε
∗
ν (q2)

= ε∗
ν (q2)

Q2
LDVCS

μ (λ)T μν

A,N, f , (A5)

where it appears the hadronic tensor T A,N
μν , defined in terms of

T A,N
μν =

∫
d4re−iqrHA,N

μν , (A6)

being HA,N
μν the matrix element of ÔN = T {ĴN

μ (x)ĴN
ν (0)} prop-

erly evaluated between the states describing the initial and the
final nucleon N in the nucleus A, respectively. Here and in the
following, we are assuming that the interaction goes through
the nucleons in the nucleus, which are the only degrees of
freedom in the present IA. Disregarding for the moment the
integration on x, let us focus on the matrix element HA,N, f

μν .
We will use in the following the standard covariant normal-

ization of the states:

〈pσ |p′σ ′〉 = (2π )32p0δ( �p′ − �p)δσ,σ ′ (A7)

and the notation
∑

p = ∫
d p̃ is used. The matrix element in

Eq. (A6) is therefore

HA,N, f
μν = 〈pNσ, p f {α f }E f |ÔN |PA〉, (A8)

where the final state contains the detected nucleon with mo-
mentum pN and polarization σ and the A − 1-body system
described by a set of quantum numbers {α f }, whose con-
stituents are moving with momenta p f .

Let us insert into the left- and the right-hand sides of the
hadronic operator two complete sets of states; the first set
corresponds to the nucleon N , supposed free, interacting with
the virtual photon, whose completeness reads∑

p′
N σ ′

|p′
Nσ ′〉〈p′

Nσ ′| = 1, (A9)

while the completeness of the second set of states, describing
the hadronic undetected system, is given by:∑

{α f }

∑∫
E f

ρ(E f )
∑

p f

|p f {α f }E f 〉〈p f {α f }E f | = 1. (A10)

Now let us use the IA. This means that the interaction goes
only through the nucleons, as already said, and that the final
state can be written as a tensor product

|pNσ, p f {α f }E f 〉 = |pNσ 〉 ⊗ |p f {α f }E f 〉, (A11)

i.e., the interactions between the particles in the FSI have been
neglected. At the light of these facts, we arrive at the following
formula:

HA,N, f
μν =

∑
{α′

f }

∑∫
E ′

f

ρ(E ′
f )

∑
p′

f

∑
p′

N σ ′
〈pN σ |〈p f {α f }E f |ÔN |p′

f {α′
f }E ′

f 〉|p′
Nσ ′〉〈p′

Nσ ′|〈p′
f {α′

f }E ′
f |PA〉. (A12)

Now, assuming in IA that the one-body operator ÔN acts only on the nucleonic states, we can consider the normalization (A7)
to perform trivially some integrals, obtaining the following form:

HA,N
μν =

∑
p′

N σ ′
〈pNσ |ÔN |p′

Nσ ′〉〈p f {α f }E f |〈p′
Nσ ′|PA〉. (A13)

A relevant issue has to be discussed at this point. Since relativistic nuclear wave functions for three- and four-body systems
are not at hand, in the following we will be forced to use nonrelativistic wave functions in the overlaps of the above equation.
Therefore, we will use for the states in the overlap a nonrelativistic normalization

〈 �ps| �p′s′〉 = δ( �p − �p′)δss′ . (A14)

For the same reason, in the overlap we can disentangle the global motion from the intrinsic one,

|p f {α f }E f 〉 = ∣∣�{α f }
E f

(p f ′ , σ f ′ ); pxsx
〉
, (A15)

where �
{α f }
E f

represents the intrinsic motion of the final system, described by A − 1 fully interacting particles, with A − 2
independent momenta p f ′ and intrinsic quantum numbers σ f ′ , while px and sx specify the state of the center of mass of the

A − 1-body system (for an easy notation, in the following, we will denote the intrinsic wave function simply with the ket |�{α f }
E f

〉
instead of |�{α f }

E f
(p f ′ , σ f ′ )〉).

In this way the overlap becomes{〈
�

{α f }
E f

px sx

∣∣}〈 �pN
′σ ′| �PA〉 = [(2π )3/2]4

√
2MA

√
2p′0

N

√
2p0

x

√
2p0

f

〈
�p′

Nσ ′,�{α f }
E f

∣∣�A
〉
δ( �PA − �px − �p′

N )δσ ′, −σ f −sx , (A16)

where the momentum δ function accounts for the center-of-mass free motion and �A is the intrinsic wave function of the target
nucleus. The other δ function yields a formal condition to be fulfilled between the discrete quantum numbers appearing in the
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overlap. The terms at the beginning of the right-hand side account for the chosen nonrelativistic normalization of the states
Eq. (A14). In this way, from Eq. (A13) we get

HA,N, f
μν =

∑
σ ′

∑
p′

N

[(2π )3/2]4
√

2MA

√
2p′0

N

√
2p0

x

√
2p0

f 〈pN σ |ÔN |p′
Nσ ′〉〈 �p′

Nσ ′,�{α f }
E f

∣∣�A
〉
δ( �PA − �px − �p′

N )δσ ′, −σ f −sx ,

so that the complete expression for the hadronic tensor in the incoherent DVCS channel becomes

T A,N
μν =

∑
σ ′

∑
p′

N

∫
dreiqr[(2π )3/2]4

√
2MA

√
2p′0

N

√
2p0

x

√
2p0

f 〈pN σ |ÔN |p′
Nσ ′〉〈 �p′

Nσ ′,�{α f }
E f

∣∣�A
〉
δ( �PA − �px − �p′

N )δσ ′, −σ f −sx ,

which can be inserted in the DVCS amplitude Eq. (A5), obtaining

AA,N, f ,λ
DVCS = −ie

∑
λ′

ū(k′, λ′)γμu(k, λ)

Q2

∑
σ ′

∫
dreiqr

∑
p′

N

〈pN σ |T (
Ĵμ

N (r)Ĵν
N (0)

)|p′
Nσ ′〉

×[(2π )3/2]4
√

2MA

√
2p′0

N

√
2p0

x

√
2p0

f 〈pN σ |ÔN |p′
Nσ ′〉〈 �p′

Nσ ′,�{α f }
E f

∣∣�A
〉
δ( �PA − �px − �p′

N )δσ ′, −σ f −sx ε
∗
ν . (A17)

Now let us consider the squared amplitude appearing in the expression of the cross section, Eq. (A1),∣∣AA,N, f ,λ
DVCS

∣∣2 = (2π )122MA

∑
σ ′′

∑
σ ′

∑
p′

N

∑
p′′

N

2p0
x2p0

f

√
2p′0

N

√
2p′′0

N

∣∣AN,λ
DVCS(pN , p′

N , σ, σ ′)
∣∣2〈 �p′

Nσ ′,�{α f }
E f

∣∣ �A
〉

×〈
�A

∣∣ �p′′
Nσ ′′,�{α f }

E f

〉
δ( �PA − �px − �p′

N )δ( �PA − �px − �p′′
N )δσ ′, (−σ f −sx )δσ ′′, (−σ f −sx ), (A18)

where the squared DVCS amplitude off a nucleon is given by∣∣AN λ
DVCS(pN , p′

N , σ ′)
∣∣2 =

∑
σ

∣∣AN λ
DVCS(pN , p′

N , σ, σ ′)
∣∣2

= −gμν

Q4

∑
σ

∫
dr′e−iqr′

∫
dreiqrLρ

DVCS(λ)LDVCS(λ)σ†〈pNσ |ÔN
μν |p′

Nσ ′〉〈p′
Nσ ′|ÔN†

ρσ |pNσ 〉. (A19)

In this way, substituting the obtained expression in the cross section (A1), taking into account that, due to the separation of the
global motion from the intrinsic one in the A − 1 system, the sum (A3) reads:∑

X

d pX →
∑

x

∑
f ′

∑
{α} f

∑∫
E f

ρ(E f )d p̃xd p̃ f ′ , (A20)

and using the δ functions we arrive at

(dσ A)Inc = (2π )4 1

4PAk

∑
N

∑
σ ′

∑
x

∑
f ′

d �pxd �p f ′
∑
{α f }

∑∫
E f

ρ(E f )
∣∣AN,λ

DVCS(pN , pN
′, σ ′)

∣∣2 MA

p′0
N

×〈
�p′

Nσ ′,�{α f }
E f

∣∣�A
〉〈
�A

∣∣ �p′
Nσ ′,�{α f }

E f

〉
δ(PA + k − k′ − pX − pN − q2)dk̃′dq̃2d p̃N , (A21)

where one has to read σ ′ ≡ −(σ f + sx ). Finally, defining the diagonal spectral function as

P
4He
N ( �p′

N , E ) =
∑
{α f }

∫
d �p f ′ρ(E )

〈
�p′

Nσ ′,�{α f }
E

∣∣�A
〉〈
�A

∣∣ �p′
Nσ ′,�{α f }

E

〉
, (A22)

where the standard removal energy definition E ≡ E f = |EA| − |EA−1| + E∗
f has been adopted, the cross section (A21) can be

rewritten in the following compact way:

dσλ
Inc = 1

4PAk

∑
σ ′

∑
N

∑∫
E

∫
d �pP

4He
N ( �p, E )

MA

p0

∣∣AN,λ
DVCS(p, pN , σ ′)

∣∣2
(2π )4δ(PA + q − pN − q2 − pX )dk̃′d p̃N dq̃2

= 1

4PAk

∑
σ ′

∑
N

∑∫
E

∫
d �pP

4He
N ( �p, E )

MA

p0

∣∣AN,λ
DVCS(p, pN , σ ′)

∣∣2
(2π )4δ(p + q − pN − q2)dk̃′d p̃N dq̃2, (A23)

where we used that �pX = �p f + �px and that �p f = ∑
f ′ �p f ′ = 0. Besides, we also made use of the condition given by (A16), i.e.,

�p′
N = �PA − �px; in addition to this, in the spirit of the IA, we have energy conservation at the nuclear vertex, so that p′0

N = P0
A − p0

x.
In the last step we changed the name of the integration variables defining a four-momentum of an off-shell nucleon, p = (p0, �p).
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Now, keeping in mind that for a coherent DVCS process off a single nucleon the analogous cross section reads

dσλ,N
Coh = 1

4pk

∣∣AN,λ
DVCS(p, pN , σ ′)

∣∣2
(2π )4δ(p + q − pN − q2)dk̃′d p̃N dq̃2, (A24)

we can rewrite Eq. (A23) as a clear convolution formula between the spectral function P
4He
N of the inner nucleons and the cross

section for a DVCS process off an off-shell nucleon, namely

dσλ
Inc =

∑
σ

∑
N

∑∫
E

∫
d �p pk

PAk

MA

p0
P

4He
N ( �p, E ) dσλ,N

Coh . (A25)

If the above equation is evaluated in the target rest frame, then it becomes

dσλ
Inc =

∑
σ

∑
N

∑∫
E

∫
d �p pk

p0Ek
P

4He
N ( �p, E ) dσλ,N

Coh . (A26)

We have now to obtain a workable expression for the differential cross section to be used in the actual calculation and to be
related to experimental data for the beam spin asymmetry. To this aim, let us rewrite the invariant phase space (LIPS) for the
coherent cross section for a moving nucleon, Eq. (A24), that reads explicitly

LIPS = dk̃′d p̃N dq̃2 = d3k′

2E ′(2π )3

d3 pN

2E2(2π )3

d3q2

2ν ′(2π )3
. (A27)

Let us choose, as everywhere in this paper, the target rest frame where the spacelike virtual photon propagates along the negative
z axis,i.e q1 = (k − k′) = (ν, 0, 0,−qz

1) with Q2 = −q2
1. In this frame, the kinematical variables are (it is assumed that �k lies in

the xz plane):

k = (Ek, Ek sin θe, 0, Ek cos θe), (A28)

k′ = (E ′, �k′), (A29)

PA = (MA, �0), (A30)

pN = (E2, | �pN | sin θN cos φN , | �pN | sin θN sin φN , | �pN | cos θN ), (A31)

q2 = (ν ′, �q2). (A32)

We have to specify the components of the four-momentum of the bound nucleon. In this framework, the energy conservation in
the electromagnetic nuclear vertex yields

p0 = MA − p0
x = MA −

√
M∗2

A−1 + �p2
A−1 ≈ M − E − KR. (A33)

The interacting nucleon has three-momentum �p(ϑ is the polar angle of �p, so that the angle between �p and �q is π − ϑ) and KR

is the kinetic energy of the recoiling A − 1-body system. The experimental cross section is 4 times differential in the variables
xB = Q2/(2Mν), �2 = (q − q2)2, φN ≡ φ, Q2. In addition to these variables, in the following we will make use of the quantity:
ε = 2MxB/Q. The LIPS, in terms of these variables, read

LIPS = J (pN → �2)d�2d cos θN dφN
Q2

2(2π )3 2M 2Ekx2
B

dQ2dxBdφk′
d3q2

2ν ′(2π )3
, (A34)

where the term J (pN → �2) is proportional to the Jacobean of the transformation and reads, since the process takes place on a
moving nucleon,

J (pN → �2) = 1

4(2π )3

∣∣∣∣ | �pN |2
| �p| cos θ ˆppN E2 − p0| �pN |

∣∣∣∣, (A35)

where
cos θp̂pN = cos θN cos ϑ + sin θN sin ϑ cos(φN − ϕ). (A36)

Substituting Eq. (A34) in Eq. (A23), using the δ function on the three-momenta to obtain �q2 = �p + �q − �pN , and using this
result in the δ function on the energy variables to integrate on cos θN , one finally obtains the cross section in the nuclear rest
frame

dσλ
Inc

dxBdQ2d�2dφN
= Q2

32E2
k M(2π )2x2

B

∑
σ

∑
N

∑∫
E

∫
exp

d �pP
4He
N ( �p, E )

∣∣AN,λ
DVCS(p, pN , σ )

∣∣2G(p, | �pN |, K ). (A37)
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In the equation above, we have defined the set of kinematical variables K = {xB = Q2/(2Mν), Q2, t, φ} and

G(p, | �pN |, K ) = 1

p0

∫
(2π )4δ4(p − pN − q2 + q)J (pN → �2)

d3q2

2(2π )3ν ′ d cos θN

= π

∣∣∣∣ 1

| �pN |{| �p|[sin ϑ cot θ̄N cos(φN − ϕ) − cos ϑ] − 2qz
1

} ∣∣∣∣J (cos θ̄N ), (A38)

where J (cos θ̄N ) is the expression J (pN → �2) evaluated for cos θ̄N , which is obtained from the energy conservation condition√
| �p|2 + | �pN |2 + |qz

1|2 − 2| �p|| �pN | cos θppN − 2| �pN |qz cos θN + 2| �p|qz
1 cos ϑ − p0 + E2 − ν = 0, (A39)

where Eq. (A36) is exploited. We note that the quantity | �pN | can be obtained from the relation

�2 = (pN − p)2 = M2 + p2
0 − | �p|2 − 2p0

√
M2 + | �pN |2 + 2| �pN || �p| cos θ ˆppN , (A40)

where the expression for the angle between �p and �pN is given by Eq. (A36). The values of cos θ̄N and | �pN | to be considered in
the following are obtained through the numerical solution of the system of Eqs. (A39) and (A40).

In order to have a clear comparison between our cross section and that for a DVCS process off a proton at rest, i.e.,

dσλ
rest

dxBdQ2d�2dφN
= α3xBy2

8πQ4
√

1 + ε2

∣∣∣∣ADVCS

e3

∣∣∣∣
2

, (A41)

let us rewrite Eq. (A37) in the following way, corresponding to Eq. (6):

dσλ
Inc

dxBdQ2d�2dφN
=

∑
N

∑∫
E

∫
exp

d �p P
4He
N ( �p, E )

∣∣AN,λ
DVCS(p, pN , K )

∣∣2
g(E , �p, K ), (A42)

where

g(E , �p, K ) = α3Q2π

2E2
k Mx2

Be6
G(p, | �pN |, K ) (A43)

and the sum over the proton polarization in Eq. (A37) has been absorbed by the squared amplitude. The label “exp” in the above
equation describes the fact that the integration region is restricted to the components of �p and to the values of E fulfilling the
conditions (A39) and (A40).

APPENDIX B: SCATTERING AMPLITUDES
FOR THE PROTON BOUND IN 4He

In this Appendix we report the expression to be used for the
amplitudes relevant to photon-electroproduction off a bound
off-shell proton in 4He. This will be achieved generalizing the
result obtained for a free proton at rest. Let us recall first the
main formalism for that case.

1. Formalism for the proton in the rest frame.

Let us study coherent DVCS (e + p → e′ + γ + p′) off a
proton at rest, with four-momentum p1 = (M, �0). Using the
notation and the reference frame discussed in the text and in
the previous Appendix, the general cross section,

dσ = 1

4p1 · k
|T |2 d3k′

2E ′(2π )3

d3 pN

2E2(2π )2

d3q2

2ν ′(2π3)

× δ4(p1 + k − k′ − pN − q2), (B1)

with |T |2 = T 2
BH + T 2

DVCS + IBH-DVCS. Here and in the fol-
lowing, if not differently stated, we take into account terms
of order �2

Q2 , ε2 with ε = 2MxB
Q , so that the virtual photon and

the final photon have four-momentum components:

q1 =
(

Q

ε
, 0, 0,−

√
1 + ε2

Q

ε

)
,

q2 =
(

Q

ε
+ �2

2M

)
(1,− sin(θγ ) cos(φN ),

− sin(θγ ) sin(φN ), cos(θγ )), (B2)

respectively, and the struck proton has final momen-
tum (A31) with | �pN | =

√
−�2(1 − �2

4M2 ), cos θN =
− ε2Q2(1−�2/Q2 )−2xB�2

4xBM| �pN |√1+ε2 . We note that the electron-scattering

angle is given by cos θe = − 1+yε2/2√
1+ε2 , and we note that

P = p1 + pN , q = q1+q2

2 .
In the following, we will review the computation of the BH

and interference amplitudes for the proton at rest, and their
decomposition in Fourier harmonics depending on φN , which
turns out to be equal to φ in our framework. In the following
section of the Appendix, we will generalize these expressions
to describe a moving, bound proton. We do not treat the pure
DVCS process because it is expected to be very small in the
JLab kinematics of interest here and it has been neglected in
our analysis.
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a. Bethe-Heitler term

The amplitude corresponding to the diagrams in Fig. 2 can be computed exactly starting from

TBH = e3

�2
ε∗μ(q2)ū(k′, s′)

(
γμ

1
/k − /�

γν + γν

1
/k′ + /�

γμ

)
u(k, s)J ν . (B3)

The φ dependence of the amplitude comes from the lepton propagators (cf. Fig. 2) which read:

P1(φ) = (k′ + �)2

Q2
= 1 + 2k�

Q2
= − 1

y(1 + ε2)
[J + 2K̃ cos(φ)], (B4)

P2(φ) = (k − �)2/Q2 = �2 − 2k�

Q2
= 1 + �2

Q2
+ 1

y(1 + ε2)
[J + 2K̃ cos(φ)], (B5)

where we have rewritten the scalar product k� in terms of the following quantities:

J =
(

1 − y − yε2

2

)(
1 + �2

Q2

)
− (1 − x)(2 − y)

�2

Q2
, (B6)

K̃2 = −�2

Q2
(1 − x)

(
1 − y − y2ε2

4

)[
1 − Q2

�2

2(1 − xB)(1 − √
1 + ε2) + ε2

4xB(1 − xB) + ε2

]
, (B7)

{√
1 + ε2 + 4xB(1 − xB) + ε3

4(1 − xB)

[
�2

Q2
− 2(1 − xB)(1 − √

1 + ε2) + ε2

4xB(1 − xB) + ε2

]}
. (B8)

Ignoring the electron mass, Eq. (B3) yields:

|TBH|2 = e6

�4

∑
s′,S′

(−gμμ′
)L†

μνLμ′ν ′J νJ †ν ′ = e6

�4
J BH

ν ′ν Lνν ′
BH, (B9)

where, in the last step, the hadronic and the leptonic tensors obtained summing over the final proton and electron polarizations,
S′ and s′, respectively, read

J μν
BH = 1

2

{
F1(�2)2 + [F1(�2) + F2(�2)]2 − �2

4M2
F2(�2)

}(
pν

1 pμ
N + pμ

1 pν
N

) + �2

2
[F1(�2) + F2(�2)]2gμν

+ 1

2

{
F1(�2)2 − [F1(�2) + F2(�2)]2 − �2

4M2
F2(�2)

}(
pμ

1 pν
1 + pμ

N pν
N

)
, (B10)

where F1 and F2 are the nucleonic Dirac and Pauli form factors, and

Lμν
BH = 8

Q4P1(φ)P2(φ)

{[
2k� + Q2

(
1 − �2

Q2

)]
(k′νq2

μ + k′μq2
ν ) − Q2

(
1 − �2

Q2

)
(kνk′μ + kμk′ν )

− 2gμν[(k′q2)2 + (kq2)2] − �2Q2gμν − 4k′μk′ν (kq2) + 4kμkν (k′q2) + 2(k�)(kνq2
μ + kμq2

ν )

}
. (B11)

Contracting the above two tensors, one gets

T 2
BH = e6

(1 + ε2)2x2
By2�2P1(φ)P2(φ)

{c0(K̄ ) + c1(K̄ ) cos(φ) + c2(K̄ ) cos(2φ)}. (B12)

where K̄ = {xB,�2, Q2, M} accounts for the dependence of the coefficients ci on the kinematical invariants of the process,
explicitly given, e.g., in Ref. [41].

b. Interference term

Since it is linear in the CFFs and allows the experimental extraction of these functions, the interference term

IBH-DVCS = 2Re[TDVCST ∗
BH] (B13)

is the most interesting quantity for GPDs phenomenology.
The interference amplitude, in terms of leptonic and hadronic tensors, reads

IBH-DVCS = e6

�2q2
1

(−gμμ′ )
∑
S′s′

(
LDVCS

ν LBH
μ′ρT μνJ ρ† + c.c.

) = e6

�2q2
1

(−gμμ′ )
∑

S′
(Lνμ′ρT μνJ ρ† + c.c.). (B14)
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The amplitude of the pure DVCS process, TDVCS, depicted in Fig. 1, is related to the DVCS hadronic tensor Tμν given by the
time-ordered product of the electromagnetic currents jμ(z) = e

∑
q εqψ̄q(z/2)γ μψq(−z/2) of quarks with a fractional charge

(εq) sandwiched between hadronic states with different momenta (see, for details, Ref. [41]). The most general expressionfor the
hadronic tensor Tμν , which can be decomposed in a complete basis of CCFs F that, up to twist three, reads

F (ξ,�2, Q2) = {H, E, H̃, Ẽ,H+, E+, H̃+, Ẽ+}, (B15)

has been worked out in Ref. [41] and, at leading twist, for an unpolarized target, at JLab kinematics, can be approximated as

Tμν � −Pμσ gστPτν

qV1

Pq
, (B16)

with the projector operator

Pμν = gμν − q1μq2ν

q1q2
, (B17)

which ensures current conservation, since qμPμν = 0, and

V1ρ = Pρ

qh

qP
H(ξ,�2) + Pρ

qe

qP
E (ξ,�2). (B18)

The above expression is given in terms of CFFs and Dirac bilinears, defined as follows [41]:

hρ = ū(pN , S′)γρu(p1, S), (B19)

eρ = ū(pN , S′)iσρν

�ν

2M
u(p1, S). (B20)

Using (B16)–(B18), a term appearing in Eq. (B14), after summation over the final proton polarizations, can be effectively cast
in the following way:

∑
S′

qV

Pq
J ρ† + c.c. = Pρ

[
C int

unp(F )
] + 2qρ

�2

Q2
C int,vec

unp (F ), (B21)

where we introduced the following combination of CFFs:

Cint
unp(F ) = F1H(ξ,�2) − �2

4M2
F2E (ξ,�2), (B22)

C int,vec
unp (F ) = ξ (F1 + F2)[H(ξ,�2) + E (ξ,�2)]. (B23)

As everywhere in this paper, the dependence of the CFFs on the scale Q2 is omitted. After contracting the leptonic and the
hadronic tensors, the interference term can be decomposed in harmonics, i.e.,

IBH-DVCS = e6

y3xB�2P1(φ)P2(φ)

[
cI0 +

3∑
n=1

cIn cos(φ) + sIn sin(nφ)

]
. (B24)

As it can be read in the expressions explicitly given in Ref. [41], the only terms not suppressed at JLab kinematics are cI1 and sI1 ,
with the latter clearly dominating the former. Besides, in the BSA, only sI1 , linear in λ, appears. We therefore consider it as the
only relevant contribution to the interference. In particular, it turns out that sI1 depends only on the combination of CFFs given
in (B22), with the term proportinal to H clearly dominating at JLab kinematics. Therefore in the following we consider H as the
only relevant CFF. For later convenience, we notice that the only part of the leptonic tensor in Eq. (B14) which is ontributing to
the sI1 term is

L̄μνρ = −2iλQ2
[
2P1(φ)gμνερkk′q2 − 2P2(φ)gνρεμkk′q2 − 2P1(φ)kρεμνk′q2 + 2P1(φ)qρ

2 εμνkk′ − 2P1(φ)k′μενρkq2

− 2P1(φ)k′νεμρkq2 − 2P1(φ)(kq2)εμνρk′ + 2P1(φ)k′ρεμνkk′ − 2P1(φ)k′μενρkk′ − 2P1(φ)k′νερμkk′

− 2P2(φ)k′νεμρkq2 − 2P2(φ)k′ρεμνkq2 − 2P2(φ)kμενρk′q2 + 2P2(φ)qμ
2 ενρkk′ − 2P2(φ)(kq2)εμνρk′

− 4P2(φ)kμενρkk′ − P1(φ)Q2εμνρk′]
. (B25)

Explicitly, one gets sI1 = 8λK̃y(2 − y)Im(F1(�2)H(ξ,�2)) and therefore

IBH-DVCS = 8λe6K̃ (2 − y) sin φ

y2xBP1(φ)P2(φ)�2
Im(F1(�2)H(ξ,�2)). (B26)
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If one considers corrections of order ε2 and �2/Q2, both coming from the leptonic part, it reads

IBH-DVCS = 8λe6K̃ sin φ

P1(φ)P2(φ)�2xBy2(1 + ε2)
3
2

(2J + 4K̃ cos φ + y(1 + ε2))Im(F1(�2)H(ξ,�2)). (B27)

We used this formula for the interference part in the present calculation in order to have a coherent comparison between results
for the bound proton and for the free one.

2. Generalization to deeply virtual Compton scattering off a moving off-shell proton

First, let us define the components of the bound off-shell proton,

p = (p0, | �p| sin ϑ cos ϕ, | �p| sin ϑ sin ϕ, | �p| cos ϑ ), (B28)

where p0 �=
√

M2 + | �p|2 [see Eq. (4)].

a. Bethe-Heitler term

Our goal is to obtain a formula for the BH contribution which generalizes the harmonic decomposition obtained for a proton at
rest, well known in the literature. So, first, let us consider the general expression for Bethe-Heitler amplitude given by Eq. (B3).
In the square of the above mentioned amplitude, after summation over the final proton polarizations, the hadronic part reads

∑
S′

J μJ †ν = 1

2

{
F1(�2)2 + [F1(�2) + F2(�2)]2 − �2

4M2
F2(�2)

}(
pν pμ

N + pμ pν
N

) + �2

2
[F1(�2) + F2(�2)]2gμν

+ 1

2

{
F1(�2)2 − [F1(�2) + F2(�2)]2 − �2

4M2
F2(�2)

}(
pμ pν + pμ

N pν
N

) + (−�2 + 2M2 − 2ppN )

×
{

gμν

2
∗

[
F 2

1 (�2) − F2(�2)2

2
+ F2(�2)

ppN

2M2

]
− F2(�2)2

8M2

[(
pμ

N pν + pν
N pμ

) − (
3pμ

N pν
N + pμ pν

)]}
. (B29)

This expression accounts for the motion of the initial proton and reduces to the one obtained for a proton at rest given by
Eq. (B10) when p0 → M, �p → �0.

As for the lepton propagators, we have the same structure of Eqs. (B4), i.e.,

P1(φ) = 1 + 2[J (Kb) − K(Kb) cos φ]

Q2
, P2(φ) = �2 − 2[J (Kb) − K(Kb) cos φ]

Q2
, (B30)

but J and K become functions of the invariant kinematical variables and of the four-momentum components of the initially
moving bound proton, i.e., Kb = {M, xB,�2, Q2, �p, p0}:

J (Kb) = Ek[E2 − p0 − cos θe(| �pN | cos θN − | �p| cos ϑ ) + | �p| sin θe sin ϑ cos ϕ], (B31)

K(Kb) = Ek sin θe| �pN | sin θN . (B32)

With these ingredients at hand, one can compute the full contraction between the leptonic contribution (B11) and the hadronic
one for the BH process. In this way, a long and complicated analytical expression is obtained [60]. It is not reported here but the
interested readers can obtain either a Mathematica notebook or a Fortran code from the authors on request. The scalar products
there appearing have to be evaluated considering the motion of the initial nucleon and its off-shellness. If one evaluates instead
the scalar products for a proton at rest, then the obtained expression reduces to the one of the previous section for a proton at
rest, as expected.

b. Interference term

The BH-DVCS interference term for a moving proton will be given, as always, by the contraction of a lepton and a hadronic
tensor. The leptonic part is the same already obtained for a proton at rest and written in Eq. (B25), but now the lepton propagators
have to evaluated according to Eq. (B30).

Concerning the hadronic tensor, we obtain the following result for the contribution Eq. (B21) when the off-shell proton is
moving

∑
S2

qV

Pq
Jρ† + c.c. = Pρ C int

unp(F ) + 2qρ

�2

Q2
C int,vec

unp (F ), (B33)
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where the the combination of CFFs has to be read:

C int
unp(F ) = F1(�2)H(ξ,�2) − F2(�2)E (ξ,�2)

�2

4M2

[
1 + ξ

(
�2 − 4M2 + 2ppN

�2

)]
,

C int,vec
unp (F ) = ξ

{
F1(�2)H(ξ,�2)

(
1 + M2 − | �p|2

�2

)
+ F1(�2)E (ξ,�2) + F2(�2)H(ξ,�2)

+ F2(�2)E (ξ,�2)

[
3

2
+ ppN

2M2
− M2

�2
+ 2

ppN

�2
− ppN

M2

(
1 + ppN

�2

)]}
, (B34)

where use has been made of �q ≈ −ξ (Pq) and, for the relevant scalar product, one has ppN = p0E2 − | �p| | �pN | cos(θ ˆppN ). In
order to get the explicit expression for the only term appearing in the interference, the contraction between the leptonic part, given
by Eq. (B25), and the hadronic tensor, Eq. (B33), has to be performed. Also here, in the actual calculation we are considering
the dominance of H(ξ,�2). The final result reads:

IBH-DVCS = 4λ sin(φ)

Q4�2P1(φ)P2(φ)yε2
{3[P2(φ) − P1(φ)] + P2(φ)2 + P1(φ)2}

× {2| �pN |Q2 sin θN [p0 sin θe

√
1 + ε2 + | �p| sin θe cos ϑ − | �p|(cos θe +

√
1 + ε2) cos ϕ sin ϑ] }Im[F1(�2)H(ξ ′,�2)],

(B35)

where the propagators P1,2(φ) are again given by Eqs. (B4) with the proper definition of the quantities appearing in there and
given by Eqs. (B30). Nuclear effects on the parton content of the bound proton appears only in the CFF, which has to be evaluated
properly using the skewness ξ ′ = [Q2(1 + �2

2Q2 )]/(2Pq), accounting for the motion of the bound proton in the nuclear medium.
Therefore, using the above interference term and the one discussed in the previous subsection for the squared of the BH

amplitude, we can evaluate the cross sections (6), for a given kinematic and electron helicity and, in turn, the beam spin
asymmetries and all the results shown in this paper.
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