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Excluded-volume model for quarkyonic matter. II. Three-flavor shell-like
distribution of baryons in phase space
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We extend the excluded-volume model of isospin symmetric two-flavor dense quarkyonic matter [Phys. Rev.
C 101, 035201 (2020)] including strange particles and address its implications for neutron stars. The effective
sizes of baryons are defined from the diverging hard-core potentials in the short interdistance regime. Around
the hard-core density, the repulsive core between baryons at short distances leads to a saturation in the number
density of baryons and generates perturbative quarks from the lower phase space, which leads to the shell-like
distribution of baryons by the Pauli exclusion principle. The strange-quark Fermi sea always appears at high
densities but the � hyperon shell only appears when the effective size of the � hyperon is smaller than the
effective size of nucleons. We find that the pressure of strange quarkyonic matter can be large enough to support
neutron stars with two times solar mass and can have a large sound speed, c2

s � 0.7. The fraction of the baryon
number carried by perturbative quarks is about 30% at the inner core of most massive neutron stars.

DOI: 10.1103/PhysRevC.102.065202

I. INTRODUCTION

Observation of GW170817 [1,2] provided important infor-
mation for understanding dense nuclear matter. The possible
range of tidal deformability is confined with 90% confidence
level [1,2] and the subsequent analyses constrained the corre-
sponding radius R1.4 � 13.5 km [3–10]. A recent GW190425
observation [11] constrained the possible range RM�1.4 �
15 km, including higher mass states. Meanwhile, an equation
of state (EoS) hard enough to support a twice solar mass (M�)
state is required, which normally leads to larger radius star
[12–14]. To reconcile these observations, the EoS should be
soft enough in the low density regime and hard enough in the
high density regime so that the strong pressure of the inner
core at higher densities can support a larger mass state and the
weaker pressure of the outer core at lower densities can satisfy
the R1.4 � 13.5 km constraint. Then, the expected soft-hard
evolution of the EoS should accompany the sound velocity
c2

s > 0.3 around a few times the normal nuclear density (ρ0)
[15–23]. Beyond the density regime of the inner core where a
hard EoS is supported, a softened EoS is expected under the
causality and conformal limit constraints [4,5,17–24].

However, it is hard to reconcile both constraints from fun-
damental principles. If one considers mean-field potentials
between baryons, certain universal repulsive contributions are
expected for the EoS [25,26] at high densities, as the newly
generated degrees of freedom lead to a soft EoS through
various decay channels into the low energy states [27–30].
Even if stiff evolution is obtained by some kind of model,
it is hard to explain the expected softening evolution at the
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high density limit by these same first principles. Some kind of
phase transition to quark matter can be introduced. A phase
transition to quark matter attenuates the hard nature of the
EoS. There is much literature that discussing the signals of
such a hypothetical phase transition [15–17,24,31–35]. As
an alternative candidate for a solution, it is worthwhile to
consider a quarkyonic-like model [36–41] which naturally
generates the hard-soft evolution of the EoS.

Quarkyonic matter is based on large-Nc quantum chro-
modynamics (QCD) [42,43]. In this model, the quasiquark
states on the surface of the large Fermi sea are confined into
baryon-like confined states, as the quark confinement mech-
anism of the baryon state in vacuum is not altered by the
hard scale of the quark chemical potential. Therefore, one can
expect a shell-like distribution of the baryons (kb

F � NckQ
F )

and the quasifree quarks occupying the lower phase sphere
by the Pauli exclusion principle. Once the lower phase space
is saturated by the quarks, a rapid enhancement of chemical
potential of the baryon-like state [kb

F ∼ O(�QCD) → NckQ
F ] is

expected, which leads to the required stiff evolution of the
EoS. This is not a first-order phase transition because the
pressure is not fixed but increases suddenly and smoothly by
the enhanced chemical potential, and there is no discontinuity
for the increment of energy density and the baryon number
density [36]. At the extremely high density limit, perturbative
QCD matter will appear as the Debye screening begins to
block the confinement process [rDebye ∼ O(Nc

0)].
This concept was introduced to describe the hard-soft

evolution of the EoS in previous literature [38–41]. Model
construction with an explicit shell-like distribution [38]
produced a plausible result satisfying the aforementioned con-
straints, and a two-flavor generalization was studied under
the β-equilibrium condition [40]. In the phenomenological
model construction, one can consider the hard-core repulsive
interaction whose scale can be regarded as the effective size
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of the baryon [44–63]. In the isospin symmetric excluded-
volume model [39], the repulsive core dynamically generates
the shell-like phase structure of baryons which reproduces
the stiff evolution of the EoS with c2

s � 0.7 as analyzed
in the literature [3–10,15,17–23,23]. In the previous work
[41], the excluded-volume model was extended to the three-
flavor mixture of baryon and quarks where the scale of the
repulsive core is adopted from first-principles studies [64–71].
We argued in favor of the dynamical role of the multiflavor
hard-core repulsion in Ref. [41], but, as the shell-like distri-
bution was omitted, the resulting EoS was not hard enough to
satisfy the physical constraints.

In this paper, we present the three-flavor excluded-volume
model with an explicit shell-like distribution of baryons ap-
pearing after the saturation momentum of the quark Fermi
sea. The paper is organized as follows. In Sec. II, we present
a brief introduction of the excluded-volume model and the
possible structure of the shell-like distribution. In Sec. III, we
explain the physical configurations, EoS, and corresponding
mass-radius relations obtained under the physical constraints
including the electromagnetic charge neutrality and the equi-
librium constraints from weak interactions. Finally, in Sec. IV
we summarize our results and discuss possible developments
for the future work.

II. CONFIGURATION OF THREE-FLAVOR
QUARKYONIC MATTER

In dense quarkyonic matter [36], the quark wave func-
tions distributed around the quark Fermi surface are clearly
confined in baryon-like states because Debye screening is
suppressed in the large-Nc limit [42,43]. The matter looks
like normal nuclear matter in the low density regime as
the momentum of a quark is distributed in the confinement
range. However, when the matter density reaches few times
ρ0, where kb

F ∼ O(�QCD) so that lowest momentum states
become distributed away from the clear confinement range,
the quark Fermi sea is formed from the low momentum
phase space. When the lower momentum space is saturated
by quasifree quarks, the confined quark momenta should be
larger than the Fermi momentum of the saturated quarks by
the Pauli exclusion principle, which leads to the shell-like
momentum distribution of baryons [36,38,39]. Around the
onset moment, the pressure of the system will be continuously
and stiffly increasing as the evolution of chemical potential
should show stiffness and continuity (kb

F � NckQ
F ), contrary to

the expected evolution in a first-order phase transition. The
phenomenological configuration strongly depends on how
one defines the lower boundary of the distribution because
the dynamical equilibrium constraints are related through the
shell-like distribution. In this section, we will briefly intro-
duce the excluded-volume model approach, and present the
explicit structure of the shell-like baryon distribution formed
by the dynamically saturated quark Fermi sea. We will use
the following abbreviations to denote the baryons and quarks:
B represents the total baryons including quarks, b represents
the baryon (hadron), and Q represents the saturated quarks; bi

represents the baryon flavors {n, p,�} and Qi represents the
quark flavors {u, d, s}.

A. Brief summary of the excluded-volume
model for quarkyonic-like matter

As introduced in the previous literature [39,41], one can
simplify the baryon-baryon central potential whose strong
repulsive core is expected at high density regime [65–71] by
supposing an infinite-well shaped potential whose hard-core
radius is around rc � 0.6 fm scale. Among the low-lying
baryon octet, nucleons and the � hyperon would be the
lightest particles which have a strong repulsive core at
short interdistance according to the lattice QCD calculation
[65–69]. Thus, in the dense regime, a three-flavor baryon (n,
p, and �) system can be suggested as a simplest multiflavor
extension where the effective size of particle is understood
from the hard-core repulsion around nB ∼ n0 [65–71]. If only
the quasibaryons are assumed, the number density in the ex-
cluded volume can be defined as follows [39,41]:

nex
bi

= nbi

1 − ñb/n0
= 2

(2π )3

∫ K
bi
F

0
d3k, (1)

ñb = nn + np + (1 + α)n�, (2)

where Kbi
F represents the enhanced Fermi momentum due to

the reduced available volume and α determines the strength
of the hard core repulsive interaction between the surround-
ing baryon and the � hyperon in the range of |α| < 0.2.1

However, as we focus on the high density regime where
the interdistance of particles becomes of the order of the
hard-core radius, n0 > 0.65 fm−3 � 4ρ0 will be considered,
which is a different order of magnitude from the size used
in Refs. [55–63]. One may adopt a well constructed model
[17,19,23,25,26,61] and use a Maxwell construction to ac-
commodate the low density properties of nuclear matter.
The variation range |α| < 0.2 for the hard-core size of �

is supposed by considering the possible error band of the
�N potential from lattice QCD [65–68], which is relatively
small in comparison with the variation range studied in
Refs. [58,60]. If the SU(3) flavor symmetry breaking term is
non-negligible or kaon condensation plays a significant role
[72–74], the effective size of � can be different from the
current range of variation.

The energy density of the corresponding system can be
described as the one of nonideal free fermions having effective
size [39,41]:

εb =
(

1 − ñb

n0

)
1

π2

{n,p,�}∑
i

∫ K
bi
F

0
dk k2(k2 + m2

bi

) 1
2

+ (3π2)
4
3

4π2
n

4
3
e , (3)

where the electron mass is assumed to be small compared to
the Fermi momentum scale. If one takes the nonrelativistic

1In the context of the presumed effective size of a particle, this
approach could be understood as the cold-dense limit of the van
der Waals (vdW) EoS in Fermi-Dirac statistics [49–63]. As a simple
example, Kb

F can be obtained from μ∗ = μid(nex
b , T → 0) without an

attraction term if one derives the intensive number from the vdW EoS
in Fermi-Dirac statistics [55].
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limit, the baryon chemical potential can be obtained as fol-
lows:

μi � mbi + (3π2)
5
3

10π2mi

5

3
nex

bi

2
3

+ ωi

{n,p,�}∑
j

(3π2)
5
3

10π2mj

2

3n0
nex

b j

5
3 + · · ·, (4)

where ωi = ∂ ñb/∂ni (ωn,p = 1, ω� = 1 + α). As one can find
from the third term, the chemical potential of a specific flavor
(4) can be enhanced without having large nex

bi
if the some part

of system volume is occupied by the other finite-size particles.
Thus, to accommodate a heavier baryon (denoted flavor h),
its effective size should be small so that the contribution
from the third term is suppressed (ωh � 1). Therefore, it is
unlikely to have the higher mass state such as 
(1232) if the
particle has an effective size of order similar to n0. Due to the
intrinsic divergence around nB ∼ n0, this system cannot ac-
commodate nB > n0 and contains an unphysical configuration
(v2

s � 1).
If new degrees of freedom are considered, as is done in

the Hagedorn model [75], the dynamically generated quark
degrees freedom lead to a physically plausible explanation
in accordance with the quarkyonic matter concept [39,41].
Once the quark Fermi sea is saturated, the baryons should
have the shell-like distribution in momentum space as a con-
sequence of the Pauli exclusion principle: the quarks confined
in the baryon should have momentum larger than the sat-
urated quark Fermi momentum. If one assumes the isospin
symmetric quark configuration as discussed in Ref. [39], the
lower boundary of the distribution is simply obtained as kb

F =
NckQ

F . Even if the asymmetric configuration is considered, the
scale can be estimated to be around kb

F ∼ Nc max [ku
F , kd

F , ks
F ]

as the quarks confined in a baryon should have a common
scale of momentum. A detailed argument for the definition
of kbi

F in the isospin asymmetric configuration will be given
in the next subsection. The baryon number in the excluded-
volume density within the explicit shell-like structure can be

written as

n̄ex
bi

= nbi

1 − ñb/n0
= 2

(2π )3

∫ [kF +
]bi

k
bi
F

d3k, (5)

where the upper boundary of the baryon distribution has been
defined by assuming the fully occupied phase space:

[kF + 
]bi
= (

3π2n̄ex
bi

+ kbi
F

3) 1
3 , (6)

where the 
 is the width of the baryon distribution [39].
In quarkyonic matter, the quark Fermi sea would be contin-

uously saturated without any signature of a first-order phase
transition according to large-Nc gauge dynamics [36,39,41].
Thus, smooth interpolation of a quark’s energy should be
possible in both directions around the Fermi surface. In
this excluded-volume model approach, the energy interpola-
tion is continuous by analytic definition, but an unphysical
divergence appears at the onset moment of saturation. A
huge energy enhancement due to the sudden formation of
the shell-like baryon distribution leads to the unphysical
energy dispersion relation corresponding to ∂nB/∂nQ̃ � 1,
∂nB/∂nb � 0 (nB = nb + nQ̃, where the tilde in the subscript
denotes the number density in baryon units). To attenuate the
unphysical divergence, an enhanced phase measure Mi(k2)
for the saturated quarks can be introduced. The modified mea-
sure Mi(k2) > k2 effectively enhances the free quark density
around the saturation moment of free quarks and converges to
the ideal gas limit [Mi(k2) → k2] in the high density regime
(kQi

F � �QCD). Then the quark number density can be written
in baryon number units as follows:

nQ̃i
≡ 1

π2

∫ k
Qi
F

0
dk Mi(k

2). (7)

The relatively rapid growth of quark density at the onset
moment (nb � n0) makes an effective barrier for δnQ̃ in
the variation of the baryon number density (nb < n0 − δnQ̃),
which prevents the unphysical divergence and leads to the
gradual formation of the shell-like distribution. The energy
density with explicit shell-like baryon distribution can be writ-
ten as follows:

εqy. = 2

(
1 − ñb

n0

) {n,p,�}∑
i

∫ [kF +
]bi

k
bi
F

d3k

(2π )3

(
k2 + m2

bi

) 1
2 + Nc

π2

{u,d,s}∑
j

∫ k
Q j
F

0
dk M j (k

2)
(
k2 + m2

Qj

) 1
2 + (3π2)

4
3

4π2
n

4
3
e . (8)

The corresponding baryon (n, p, and �) chemical potential can be obtained as

μbi = ∂εqy.

∂nbi

=
(

1 − ñb

n0

){
[kF + 
]2

bi

π2

(
[kF + 
]2

bi
+ m2

bi

) 1
2
∂[kF + 
]bi

∂nbi

+
{n,p,�}∑

j 
=i

[kF + 
]2
b j

π2

(
[kF + 
]2

b j
+ m2

b j

) 1
2
∂[kF + 
]b j

∂nbi

}
− ωi

n0

{n,p,�}∑
k

1

π2

∫ [kF +
]bk

k
bk
F

dk k2
(
k2 + m2

bk

) 1
2 ,

=
(

n0 − (ñb − ωinbi )

n0 − ñb

)(
[kF + 
]2

bi
+ m2

bi

) 1
2

+ ωi

n0

{{n,p,�}∑
j 
=i

n̄ex
b j

(
[kF + 
]2

b j
+ m2

b j

) 1
2 −

{n,p,�}∑
k

1

π2

∫ [kF +
]bk

k
bk
F

dkk2(k2 + m2
bk

) 1
2

}
, (9)

065202-3



DUARTE, HERNANDEZ-ORTIZ, AND JEONG PHYSICAL REVIEW C 102, 065202 (2020)

where the partial derivatives are calculated as

∂[kF + 
]bi

∂nbi

= π2

[kF + 
]2
bi

(
1

1 − ñb/n0

)2(
1 − ñb − ωinbi

n0

)
,

(10)

∂[kF + 
]b j

∂nbi

= π2

[kF + 
]2
b j

(
1

1 − ñb/n0

)2(ωinb j

n0

)
, (11)

with ωn,p = 1, ω� = 1 + α. Again, the characteristic feature
of the excluded-volume model can be found from the ωi

dependent terms of the chemical potential (9). Even if there
exist only a few specific flavors of baryon, the corresponding
chemical potential can be enhanced if the space is taken by the
other baryons. By the same reasoning, we only consider three
flavors for the baryon side as n, p, and � are expected to have
similar orders of n0.2 The quark chemical potential in baryon
units can be obtained in a similar way:

μQ̃i
= ∂εqy.

∂nQ̃i

=
(

1 − ñb

n0

) {u,d,s}∑
k

{
[kF + 
]2

bk

π2

(
[kF + 
]2

bk
+ m2

bk

) 1
2
∂[kF + 
]bk

∂nQ̃i

− kbk
F

2

π2

(
kbk

F
2 + m2

bk

) 1
2
∂kbk

F

∂nQ̃i

}
+ Nc

(
m2

Qi
+ (

kQi
F

)2) 1
2

=
(

1 − ñb

n0

) {u,d,s}∑
k

∂kbk
F

∂kQi
F

kbk
F

2

Mi
(
kQi

F
2){(

[kF + 
]2
bk

+ m2
bk

) 1
2 − (

kbk
F

2 + m2
bk

) 1
2
} + Nc

((
kQi

F

)2 + m2
Qi

) 1
2 , (12)

where the partial derivatives are calculated as

∂[kF + 
]bk

∂nQ̃i

= π2

[kF + 
]2
bk

kbk
F

2

Mi
(
kQi

F
2) ∂kbk

F

∂kQi
F

, (13)

∂kQi
F

∂nQ̃i

= π2

Mi
(
kQi

F
2) . (14)

As a consequence of the Pauli exclusion principle, the chemical potential of a saturated quark gets contributions from the baryon
distribution as well because kbk

F emerges as a consequence of the saturated quark Fermi sea. Also, one can anticipate another
singularity, possibly arising in the isospin asymmetric configuration. Suppose the shell-like distribution (kbk

F > 0) formed earlier
by saturation of the d quark Fermi sea (kd

F > 0) and the u quark Fermi sea which is about to appear (ku
F � 0). Then, the

derivatives (13) and (14) may diverge if Mu(ku
F

2) → 0 in ku
F → 0 limit. To avoid the singularity problem, an infrared regulator

can be simply introduced as Mi(k2) = k2 + �2
Qi

which leads to the following configurations:

nQ̃i
= 1

π2

∫ k
Qi
F

0
dk

(
k2 + �2

Qi

) = kQi
F

3

3π2

(
1 + 3

(
�Qi/kQi

F

)2)
, (15)

εqy. = 2

(
1 − ñb

n0

) {n,p,�}∑
i

∫ [kF +
]bi

k
bi
F

d3k

(2π )3

(
k2 + m2

bi

) 1
2 + Nc

π2

{u,d,s}∑
j

∫ k
Q j
F

0
dk

(
k2 + �2

Qj

)(
k2 + m2

Qj

) 1
2 + (3π2)

4
3

4π2
n

4
3
e , (16)

where the criteria for Mi(k2) are satisfied in both limits. The
regulator �Qi could be understood as an a priori nonpertur-
bative contribution remaining on the saturated quark Fermi
surface.

B. Explicit structure of a shell-like distribution of baryons

The isospin asymmetry appears naturally under consider-
ation of electroweak interactions and subsequent equilibrium
conditions. This asymmetric configuration can arise in either
the baryons and quarks. The details will be strongly dependent
on kb

F as the physical constraints between the baryons and

2A detailed argument for the possible emergence of 
(1232) is
given in the Appendix.

quarks are related through the shell-like baryon distribution.
kb

F can be imagined differently depending on the assump-
tion of the confined quark state distributed closely to the
saturated quark Fermi surface. As illustrated in Fig. 1(a), kb

F
should show weak dependence on the flavor asymmetry if the
confined quark momenta around the saturated quark Fermi
surface are strongly correlated, while it can depend strongly
on the asymmetry if the confined quark momenta are weakly
correlated [Fig. 1(b)]. We propose two phenomenological
approaches by assuming the quark momentum correlation
strength rs/w

q1q2
and the weight function ωs/w(x), where s and

w denote the strong and weak correlations respectively. As
an example, one may imagine an isospin asymmetric con-
figuration where q1 quarks are saturated first as total baryon
density increases and q2 quarks follow after (q1 = d, q2 = u
in Fig. 1). Then, the momentum of q2 quark confined in
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FIG. 1. Illustration of quark momentum correlation in the confined state (kd
F > ku

F ). The blue (red) dot-dashed (dashed) line represents the
d (u) quark distribution. The states whose momentum is distributed in the not fully occupied phase [nQ(k) < 1] are understood as confined
quark waves in the baryon-like state. The quark distributions depicted in (a) and (b) represent the configurations under the strong and weak
correlation assumptions, respectively. In the strongly correlated configuration (a), the confined quarks have almost the same size of momenta
so that the distribution of u quarks is concentrated around kd

F . However, in the weakly correlated configuration (b), ku
conf. is broadly distributed

as the confined quark momenta can be deviated from each other.

the lower boundary of the baryon shell can be supposed as
follows:

kq2

conf. = kq1
F + rs/w

q1q2
ws/w

(
kq2

F − kq1
F

)
. (17)

rs/w
q1q2

determines the correlation strength, and the correla-
tion weight function ws/w(x) satisfies the boundary condition
[ws/w(x � �QCD) = 0, ws/w(x � �QCD) → 1]. The lower
boundary of the shell-like distribution can be written as

kn
F = ku

conf. + 2kd
conf.

= �
(
kd

F − ku
F

)(
3kd

F + rs/w
qq ws/w

(
kd

F − ku
F

))
+�

(
ku

F − kd
F

)(
3ku

F + 2rs/w
qq ws/w

(
ku

F − kd
F

))
, (18)

kp
F = 2ku

conf. + kd
conf.

= �
(
kd

F − ku
F

)(
3kd

F + 2rs/w
qq ws/w

(
kd

F − ku
F

))
+�

(
ku

F − kd
F

)(
3ku

F + rs/w
qq ws/w

(
ku

F − kd
F

))
, (19)

k�
F = ku

conf. + kd
conf. + ks

conf.

= �
(
kd

F − ks
F

)(
3kd

F + rs/w
qq ws/w

(
kd

F − ku
F

)
+ rs/w

qs ws/w
(
kd

F − ks
F

))
+�

(
ks

F − kd
F

)(
3ks

F + rs/w
qs ws/w

(
ks

F − kd
F

)
+ rs/w

qs ws/w
(
ks

F − ku
F

))
, (20)

where rs/w
qq and rs/w

qs determines the momenta correlation
strength between the up-down quarks and light-strange quarks
respectively. For both the strongly and weakly correlated as-
sumptions, we assume the momenta of light quarks are even
more strongly correlated than in the light-strange quarks case
(|rs/w

qq | < |rs/w
qs |) by following the phenomenological under-

standing of the EMC effect [76,77]. In Eq. (20), kd
F � ku

F ,
ks

F � ku
F conditions are understood from the electromagnetic

charge and the weak decay channel of the quarks. Detailed
descriptions for the two assumptions follow.

1. Assumption I: Strongly correlated momentum
of confined quarks

In the large-Nc limit, one may assume a strong correlation
between the momenta of confined quarks because the con-
finement mechanism should be very similar to the one of the
hadron state in vacuum. This clear confinement should occur
even for the quarks whose momentum is distributed closely
around the saturated Fermi surface, where the occupation
number is almost 1. In a simplest guess for the constituent
quarks of a baryon, one can imagine the confined quarks
sharing a same typical momentum kQ

conf. = kb/3 balanced by
the internal interaction. If all the quark momenta are strongly
correlated as in this simple guess, the difference between the
momenta of two confined quarks should be minimal, even
though the flavor asymmetry of saturated quarks becomes
large (|kqi

conf. − k
qj

conf.| � �QCD, kqi

conf. > kqi
F , and |kqi

F − k
qj

F | >

�QCD, where i, j denote the quark flavors). To depict this
nature, one can suppose a slowly varying weight function:

ws(x) = 1 − exp (−|x|2/δ2), (21)

where δ = 0.15 GeV determines the nontrivial range where
ws(x < �QCD) < 1. One can find the required flavor asymme-
try insensitivity at x = |kqi

F − k
qj

F | < �QCD in the derivative of
Eq. (21):

dws(x)

dx
= 2x

δ2
exp (−|x|2/δ2), (22)

where the factor 2x/δ2 suppresses the derivative at small
x. If one assigns a small negative rs

q1q2
, the minimal differ-

ence |kq2

conf. − kq1

conf.| � �QCD will be guaranteed even at |kqi
F −

k
qj

F | > �QCD. As illustrated in Fig. 2(a), ku
conf. → kd

F + rs
qq in

the |kd
F − ku

F | > �QCD limit and ku
conf. varies slowly even with
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FIG. 2. Illustration of ku
conf. with kd

F > ku
F condition. Left (a): ku

conf. under the strong correlation assumption is plotted with the black solid
(red dashed) line and rs

qq = −30 MeV (rs
qq = −60 MeV). The confined quark momenta are closely located around kd

F and are weakly dependent
on |kd

F − ku
F |. Right (b): ku

conf. under the weak correlation assumption is plotted with the black solid (red dashed) line and rw
qq = −100 MeV

(rw
qq = −140 MeV). The confined quark momenta rapidly deviate away from kd

F as |kd
F − ku

F | becomes large.

a relatively large |rs
qq|, which implies kn,p

F � Nc max [ku
F , kd

F ].
Under this assumption, one can anticipate the minimal flavor
asymmetry in the quark Fermi sea: populating a specific flavor
of quark leads to the large shift of the shell-like distribution
kb

F � Nc max [kQi
F ].

2. Assumption II: Weakly correlated momentum
of confined quarks

On the other hand, one can imagine the weakly correlated
momenta of the confined quarks in the confinement range
|kqi

conf. − k
qj

conf.| � �QCD. If one considers the nonzero chiral
condensate in the confined baryon phase and the symmetry
restoration at high density regime [78–84], the confinement
mechanism of the quarks distributed closely around the satu-
rated Fermi surface would be quite different from the one of
the vacuum case where the symmetry is broken. The confined
state would look like the correlated state of three nonperturba-
tive quarks whose ground energy scale is mb � 1 GeV, rather
than the clearly distinguishable baryon state. In this weakly
correlated assumption, if the confined quark momentum of a
specific flavor becomes enhanced by saturation (kq

conf. > kq
F )

so that the flavor asymmetry becomes large, the other con-
fined quarks can take some lower unoccupied phase space
(kq

F > kqi

conf. > kq
F − �QCD) to minimize the ground state en-

ergy [Fig. 1(b)]. For this weakly correlated assumption, the
following weight function can be supposed:

ww(x) = erf(−|x|/δ), (23)

where erf(x) denotes the error function and δ = 0.15 GeV
has the same role given in Eq. (21). As one can find in the
following derivative, this weight function converges rapidly
to 1:

dww(x)

dx
= 2√

πδ
exp (−|x|2/δ2). (24)

Because it does not have the factor x in comparison with
Eq. (22), the weight function (23) is much more sensitive
to x = |kqi

F − k
qj

F | even in the small x regime. With a large
negative rw

q1q2
, the non-negligible difference |kq2

conf. − kq2

conf.| <

�QCD can be obtained. As can be found in Fig. 2(b), the error
function enables relatively fast reduction of ku

conf. even at small
|kd

F − ku
F |. Compared to the case of the strong correlation

assumption, relatively larger flavor asymmetry is anticipated
among the saturated quarks: if kq2

conf. is distributed away from
kq1

F , kb
F can have kb

F < Nc max [kQi
F ] for large |kq1

F − kq2
F |.

III. EQUATION OF STATE AND APPLICATION
TO NEUTRON STARS

Equilibrium constraints and parameter set. In the three-
flavor system with electron clouds, the physical configuration
should be constrained by the baryon number conservation,
charge neutrality, and possible weak interactions. As sum-
marized in Ref. [41], the weak interactions lead to following
constraints:

μn = μp + μe, (25)

μd̃ = μũ + Ncμe, (26)

μn = μ� (when n� 
= 0; n� = 0 if μ� < m�), (27)

μd̃ = μs̃ (when ns̃ 
= 0; ns̃ = 0 if μs̃ < Ncms), (28)

where μQ̃i
= NcμQi denotes the quark chemical potential in

units of baryon number. The saturated quarks on the Fermi
surface are allowed to decay onto the other Fermi surface
of different flavor. Under baryon number conservation and
charge neutrality, these constraints leads to the dynamical
equilibrium condition:

if n� = 0, ns = 0, μn = Ncμd − μe = μp + μe, (29)

if n� 
= 0, ns 
= 0,

μn = Ncμd − μe = μ� = μp + μe = Ncμs − μe, (30)

065202-6



EXCLUDED-VOLUME MODEL FOR QUARKYONIC MATTER. … PHYSICAL REVIEW C 102, 065202 (2020)

FIG. 3. Density profiles of fermions for n0 = 6ρ0, and �Q = 0.18 GeV. The profiles in the upper (a,b) and lower (c,d) sides are obtained
under the strong and weak correlation assumptions, respectively. The profiles in the left (a,c) and right (b,d) sides are obtained under α = 0.2
and α = −0.2 conditions, respectively. The shaded band denotes the possible deviation depending on the saturation moment of the d quark
Fermi sea, which may rely on the proper EoS which covers the low density regime.

if n� = 0, ns 
= 0,

μn = Ncμd − μe = μ� = μp + μe, (31)

if n� 
= 0, ns = 0,

μn = Ncμd − μe = μp + μe = Ncμs − μe, (32)

where μn = Ncμd − μe is the generalization of the dynamical
equilibrium constraint μN = Ncμq in the isospin symmetric
configuration [39]. Hereafter, we will calculate all the phys-
ical quantities under the constraints. The following numbers
will be used as the representative parameter set: Nc = 3 for
the number of colors, {mn,p = 1 GeV, m� = 1.2 GeV, mq =
0.333 GeV, and ms = 0.533 GeV} for the fermion masses,3

3The mass number set is chosen to follow the previous work
[41]. The difference from the calculation with the physical mass

{rs
qq = −30 MeV and rs

qs = −60 MeV} for the strong corre-
lation assumption, {rw

qq = −100 MeV and rw
qs = −140 MeV}

for the weak correlation assumption, n0 = 6ρ0 for the hard-
core density (rc � 0.6 fm), and corresponding regulator �Q =
180 MeV which attenuates the unphysical noise.

A. Density profile of particles in the excluded-volume model
with shell-like baryon distribution

We present the density profile of particles to understand
the complicated dynamical properties from the shell-like dis-
tribution. The density profiles of particles are plotted in Fig. 3
under n0 = 6ρ0 and �Q = 180 MeV conditions. As one can

set {mn,p = 0.938 GeV, m� = 1.115 GeV, mq = 0.313 GeV, and
ms = 0.490 GeV} is negligible.
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find in the profiles (a) and (c) of Fig. 3, the stronger repulsive
core (α = 0.2) for the � hyperon suppresses the emergence of
the � degree of freedom even in the high density regime while
the weaker repulsive core (α = −0.2) allows n� > 0 in the
same regime as shown in the profiles (b) and (d). One can find
the reason from the ω� dependent terms of the baryon chem-
ical potential (9): it becomes hard to satisfy the equilibrium
constraint (27) with the other constraints in a simultaneous
way because μ� is enhanced by ω� > 1.

Meanwhile, when the � degree of freedom is suppressed,
the s quark takes relatively larger portion than in the cases
where n� > 0 with α = −0.2 [(b) and (d) of Fig. 3]. As
can be found in Eq. (12), the quark chemical potential has a
contribution from the shell-like distribution if the quark Fermi
momentum is related to the confined quark momentum via
the Pauli exclusion principle. Because there is no � shell-like
distribution in the μs̃ for α = 0.2 case, relatively large ns̃

can be accommodated, satisfying the constraint (28) where
μd̃ has the contribution from the n, p shell. By the same
reason, one can understand the difference between the profiles
from the strong and weak correlation assumptions. Under the
strong correlation of the confined quark momenta, the large
isospin asymmetry in the quark Fermi sea enhances the lower
boundary of nucleon momentum as kn,p

F � 3kd
F , by which

the nucleons in the shell obtain huge energy enhancement.
Thus, it is dynamically favored for the isospin symmetric
configuration of the light quark Fermi sea by the constraint
(31) [Fig. 3(a)]. If the � shell (n� > 0) exists, all the quark
Fermi sea becomes almost symmetric and the asymmetric
configuration only appears in the shell-like distribution of
the baryon side by the constraint (30) in the high density
regime [Fig. 3(b)]. However, if the confined quark momenta
are weakly correlated, a large favor asymmetry is allowed
for the quark Fermi sea in the same density regime [see the
profiles (c) and (d) in Fig. 3] as kn,p

F � 3kd
F and k�

F � 3ks
F .

Therefore, the constraints (30) and (31) can be satisfied in that
asymmetric configuration.

In all the cases, the quark Fermi sea is saturated in order of
d , u, and s quark flavors. After the saturation, (nB � 5ρ0), each
baryon density profile appears to converge to the asymptotic
number and the quark Fermi sea takes all the increment of
the baryon number density (dnB � dnQ̃). By definition, this
model does not contain the essential attractive and repulsive
potentials required to reproduce the low density properties of
nuclear matter. The saturation moment of the d quark Fermi
sea can differ, by the proper modifications, to acquire the low
density properties. The expected possible configurations in the
low density regime are denoted as the shaded area in Fig. 3.
The qualitative behavior of the density profile does not change
when a different hard-core density n0 = 5ρ0 is assigned.

B. Equation of state and speed of sound

In the zero-temperature limit, the pressure and correspond-
ing sound velocity can be found as

pqy. = −εqy. + μBnB, (33)

c2
s = ∂ pqy.

∂εqy.
= nB

μB
∂nB
∂μB

. (34)

As can be found in the Figs. 4(a) and 4(b), the EoS increases
stiffly around the saturation moment of the quark Fermi
sea. The evolution becomes more stiff when the stronger
repulsive core (n0 = 5ρ0) is considered. Because each quark
flavor can be saturated separately in this system, there are
several stiffly increasing segments in the evolution curve of
the EoS. This tendency does not appear when all the quark
flavors simultaneously saturate [39,40]. This evolution looks
similar to the results presented in Refs. [33,34] where the
first-order phase transition is implied via the hybrid quark-
meson-nucleon model [31–34]. However, as one can find in
the sound velocity plots [Figs. 4(b) and 4(d)], c2

s > 0 in the
stiffly increasing segment, which means that our model does
not present the first-order phase transition around the onset of
quark sea saturation. In the high density regime, the stiffness
becomes moderated and appears to converge to the relativistic
ideal limit (c2

s = 1/3) as one can anticipate from the definition
of the model (16). Although the stiffness converges to the
ideal limit, the weaker repulsive core (n0 = 6ρ0) leads to a
harder EoS in the high density regime because the system can
accommodate more baryons under the weaker repulsion.

The details of the stiff increments of EoS can be under-
stood from the corresponding sound velocity plots and the
density profiles. Under the strong correlation assumption for
the confined quark momenta, one can read the overall stiff-
ness of EoS from the the peak value of sound velocity as
max[c2

s ] � 0.6, while its peak becomes max[c2
s ] � 0.7 under

the weak correlation assumption. The multiple peaks and
the scale of sound velocity are compatible with the results
from Refs. [33,34,61]. As discussed in Sec. III A, the flavor
asymmetry of the quark Fermi sea evidently appears under
the weak correlation assumption, which can make relatively
large energy enhancement to the baryon shell side. In com-
parison of the peaks in the sound velocity, the scale of the
final bump after the s quark saturation is determined by the
existence of the � shell-like distribution. After the saturation
of all the quark Fermi sea, the shell-like distributions of the
baryons expand rapidly as the saturated quarks take almost all
of the total baryon number density increment ∂nB/∂nQ̃ � 1,
so that kb

F � NckQ
F . If n� > 0 (α = −0.2), the expanding �

shell makes the bump slightly larger than the case of no �

shell (α = 0.2). The locations of early appearing peaks can
be altered by the phenomenological modification of the EoS
for the low density regime as the saturation moment of the d
quark Fermi sea may depend on the modification.

C. Mass-radius relation of quarkyonic neutron star

Now we can explore the possible quarkyonic configu-
ration in the compact stellar state by solving the Tolman-
Oppenheimer-Volkof (TOV) equations [85,86]:

d p(r)

dr
= G[ε(r) + p(r)][M(r) + 4πr3 p(r)]

r[r − 2GM(r)]
, (35)

dM(r)

dr
= 4πr2ε(r), (36)
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FIG. 4. Evolution of EoS (left) and corresponding sound velocity (right). The plots in the upper (a,b) and lower (c,d) parts are obtained
under the strong and weak correlation assumptions, respectively. The stiffly increasing segments in (a,c) correspond to the onset moments of
the new degrees of freedom and subsequently expanding shell-like phase structure of the baryons. The peaks in (b,d) correspond to the stiff
behavior of the EoS in (a,c).

where G is the gravitational constant and the boundary con-
ditions p(Rstar ) = 0 and M(Rstar ) = Mstar are assumed. To
estimate physically reasonable mass-radius relation, the low
density part of our model needs correction as it does not
contain the essential attractive and repulsive contributions re-
quired to describe the low density nuclear matter properties.
The EoS of our model will be kept from the intermediate
regime to the high density limit because we assume that the
hard-core repulsive interaction will dominate the other contri-
butions in the intermediate density regime, and we focus on
the role of the dynamically generated shell-like distribution of
baryons in the high density regime. Below a critical density
(say nB � ρM), some proper EoS can be adopted instead of
introducing additional mean-field potentials. In the extremely
low density regime (0 � nB � 0.5ρ0), the EoS of the outer
crust [87,88] will be used. Since the low density configuration
of our model can be simply regarded as pure neutron matter
(see the profiles in Fig. 3), the nuclear EoS developed for

neutron rich matter [26] can be quoted for the intermediate
density regime (0.5ρ0 � nB � ρM) as

E/A = (
pn

F
2 + m2

n

) 1
2 − mn + ã

(
nn

ρ0

)
+ b̃

(
nn

ρ0

)2

, (37)

where pn
F = (3π2nn)1/3 denotes the neutron Fermi momen-

tum in the ideal gas limit. The attractive (ã) and repulsive
(b̃) coefficients have been determined by the possible three-
body nucleon forces. The parameter sets {Urbana IX force:
ã = −28.3 MeV, b̃ = 10.7 MeV} and {V PW

2π + V R
μ=150: ã =

−29.8 MeV, b̃ = 13.6 MeV} are used in the stiffer and
softer nuclear EoS, respectively. The stiffer (softer) nuclear
EoS is interpolated with our high density EoS with n0 = 5ρ0

(n0 = 6ρ0), requiring a minimal Maxwell construction inter-
val [Pnucl.(μM ) = Pqy.(μM ) where μM = μB(ρM )]. Comparing
the Maxwell construction plotted in Figs. 5(a) and 5(b) to the
EoSs plotted in Fig 4, one can find that the procedures are
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FIG. 5. Maxwell constructions of EoS (left) and mass-radius relations from the solution of TOV equations (right). Abbreviations (s) and
(w) represent the strong and weak correlation assumptions for the confined quark momenta, respectively. The crust EoS [87,88] is used for the
lower density regime of 0 � ρB � 0.5ρ0. In the density range of 0.5ρ0 � ρB � ρM , two different parameter sets [26] are used for the nuclear
EoS: {Urbana IX force: ã = −28.3 MeV, b̃ = 10.7 MeV} for the plots in (a,b) and {V PW

2π + V R
μ=150: ã = −29.8 MeV, b̃ = 13.6 MeV} for the

plots in (c,d). The EoS of the excluded-volume model is used for the higher density regime beyond ρM . Stiffer evolution with n0 = 5ρ0 (a,b):
Mmax. = 2.03M� and R1.4 = 12.5 km. Softer evolution with n0 = 6ρ0 (c,d): Mmax. = 1.8M� and R1.4 = 11.5 km. The gray shaded inner (outer)
band represents the 68.3% (95.4%) credence range of Mmax. estimated from Ref. [14].

done around 3ρ0 � ρM � 3.5ρ0. Since the � hyperons and s
quarks are generated beyond ρM , the interpolated EoS con-
serves the particle density profiles of the original quarkyonic
system. For the interpolated EoS obtained under the n0 = 5ρ0

condition [Figs. 5(a) and 5(b)], the moment of interpolation
differs due to the assumptions regarding the high density EoS.
Among the interpolated curves plotted in Fig. 5(a), the α =
0.2 cases appear to be interpolated smoothly and the interval
which looks like a first-order transition appears minimally,
while the α = −0.2 cases show a non-negligible interval.
Although the saturation moments of the light quark Fermi sea
are included in the non-negligible interval with the α = −0.2
cases, one can still regard the interpolated EoS as the effective
quarkyonic-like model because the saturated quark number
density is quite small indeed in the interval. These Maxwell

construction intervals are the artifacts of the low density EoS
estimation procedure.4

Corresponding mass radius relations are presented in
Fig. 5(b). The low mass stage is governed by the nuclear
EoS from the Urbana IX model and the high mass tails are
determined by the quarkyonic-like excluded-volume model.
The highest mass state appears as {Mmax. = 2.03M�, RMmax. =
11.4 km} where the weaker repulsive core of � (α = −0.2)
and the weakly correlated confined quark momenta are as-
sumed. The other curves are barely located in the possible
range estimated from the recent observation [14] (Mmax. =

4Two possible methods for improvement are briefly suggested in
the following section.
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2.14+0.20
−0.18M�). The constraint from the GW observations,

R1.4 = 12.5 km < 13.5 km [1,2], is satisfied by the adopted
nuclaer EoS and R1.8 = 12.2 km < 15 km [11] is satisfied by
the excluded-volume model.

If the n0 = 6ρ0 condition is considered [Figs. 5(c) and
5(d)], the interpolation interval appears minimally in all the
cases and the Maxwell construction is done before the satura-
tion of the d quark Fermi sea. The low mass stage is governed
by the nuclear EoS with the V PW

2π + V R
μ=150 potential. While

the interpolated EoS can be regarded as the quarkyonic-like
model, Mmax. = 2.14+0.20

−0.18M� cannot be reproduced from the
EoS. The highest mass state appears as {Mmax. = 1.8M�,
RMmax. = 10.4 km} in both cases of the weaker repulsive core
of � (α = −0.2). The other curves present the maximal mass
around Mmax. � 1.75M� and the corresponding radius in the
range of 10 km � RMmax. � 10.5 km.

In comparison with the previously reported work [41], one
can find that the formation of the shell-like distribution of the
baryon state by the Pauli exclusion principle can make the EoS
hard enough to support the large mass state of a neutron star.
Although it is necessary to adopt the nuclear EoS for the lower
density regime, the higher mass state evolution is determined
by the EoS of the quarkyonic-like excluded-volume model.
In the curves plotted in Fig. 5(b), the deviation point of the
higher mass tail appears at {Mstar = 1.8M�, RM1.8 = 12 km}
and, from that moment, the saturated quarks begin to take
most of the total baryon density increment (∂nB/∂nQ̃ � 1).
The portion of the saturated quarks at the neutron star core can
be estimated from the evolution of the EoS and corresponding
density profiles. For the Mmax. = 2.03M� state [on the curve
of α = −0.2(w) in Fig. 5(b)], the portions at the neutron
star core can be found as nQ̃ � 0.26nB and εQ̃ � 0.27εqy..
For the Mmax. = 2.01M� state [on the curve of α = 0.2(w)
in Fig. 5(b)], they can be found as nQ̃ � 0.33nB and εQ̃ �
0.35εqy.. The scale of sound velocity appears as max[c2

s ] �
0.65 in the both cases. The resulting stellar mass number
and evolution tendency are comparable with the results of
Refs. [24,33,34,61], although the fundamental physical prin-
ciple is different from the quarkyonic matter concept.

IV. SUMMARY AND DISCUSSION

In this work, the single-flavor excluded-volume model [39]
is extended to the three-flavor model, including the effect
of the Pauli exclusion principle. The quasifree quark states
saturate dynamically the low phase space by the hard-core
repulsive nature of the baryon system, which leads to multifla-
vor shell-like distributions of the baryons. For the application
to the multiflavor system, the quark phase measure is mod-
ified from the one used in Ref. [39]. Also, we assumed
strong and weak correlation strengths among the confined
quark momenta distributed around the lower boundary of the
baryon shell. The pressure increases stiffly by two or three
steps with emergence of the shell-like distributions, which is
a different feature from the result of other works where all
the quark degrees of freedom appear simultaneously [38–40].
The sound velocity shows its peak value as max[c2

s ] � 0.6
(max[c2

s ] � 0.7) for the strong (weak) correlation assumption
for the confined quark momenta. This stiff evolution ensures

a hard enough EoS to support the 2M� states regardless of the
strangeness configuration. The maximum mass state appears
as {Mmax. = 2.03M�, RMmax. = 11.4 km} under the condition
of n0 = 5ρ0, α = −0.2, and the weak correlation of the con-
fined quark momenta.

The details of the multiflavor configuration are closely
related to the correlation strength of the confined quark mo-
menta distributed around the lower boundary of the shell-like
distribution as the presence of the baryon shell increases the
quasifree quark chemical potential. By following the large-
Nc quarkyonic matter hypothesis, one can suppose a strong
correlation among the confined quark momenta where all the
confined quark momenta are distributed closely to each other.
In this assumption, the flavor asymmetry of the saturated
quark is unfavorable because it leads to a large enhance-
ment of quark chemical potential: the lower boundary of the
baryon shell gets a large enhancement by the Pauli exclusion
principle (kb

F � Nc max [kQi
F ]). Meanwhile, if one supposes

a chiral symmetry restored phase in the lower boundary of
the shell-like distribution, the confined state may look like
the color-singlet correlated state of nonperturbative quarks.
In this configuration, one can assume a weak correlation
among the confined quark momenta which allows a rela-
tively broad distribution of the confined quark momenta on
the lower boundary of the baryon shell. Under this weak
correlation assumption, the flavor asymmetry of the saturated
quark is allowed as the quark chemical potential does not get
a large enhancement by the Pauli exclusion principle (kb

F �
Nc max [kQi

F ]). The strangeness configuration can be under-
stood by the same argument. If the repulsive core size of the
� hyperon is larger than the size of nucleons (α > 0), the �

degree of freedom is suppressed for all densities. Instead, the
s quarks can take a larger portion than the light quarks at high
densities, because there is no shell-like � distribution whose
presence increases the chemical potential of the s quark. In
the opposite case where α < 0, the shell-like � distribution is
generated and the saturated s quark density does not exceed
the d quark density because the d and s quark Fermi momen-
tum have to support the shell-like � distribution as well as the
shell-like nucleon distribution.

In comparison with the previous study [41] where the
stiff evolution was not evident enough, this excluded-volume
model approach reproduces the required stiff evolution of
EoS even for the three-flavor circumstance. The existence
of the � degree of freedom would be required to support
2M� state at high densities. At least, we demonstrated that
the repulsive hard core of baryons and the dynamically gen-
erated quarkyonic-like configuration can be an alternative
approach for understanding dense nuclear matter via funda-
mental principles. However, more improvements are needed
as the current model cannot cover all the possible range
of massive neutron stars [14] and accommodate the mat-
ter properties at low densities. If one keeps the physical
scale of the hard-core radius [64–69], various types of po-
tential [25,26] can be referred to for the low density regime
and the model can be refined to satisfy the low density
matter constraints. Meanwhile, one can improve the current
model in the vdW EoS framework [44–63]. For example, the
baryon part of the current model can be improved as well by
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following the treatment of the Carnahan-Starling modification
[46,59,62,63], where the additional repulsive contribution is
reflected in the larger repulsive core size than the estimated
scale in Refs. [64–69]. In either approach, the required soft
nature for the low densities and stiffer nature for the high den-
sities can be achieved by additional attractive and repulsive
contributions to the EoS.

In microscopic aspects, there may be debates about the
baryon-like state located on the lower boundary of the shell-
like distribution. In this model, the baryon-like state is clearly
distinguished from the saturated quark states, and the non-
perturbative regulator �Q is introduced for the quark phase
measure. However, depending on the nature of chiral symme-
try restoration [78–84] and the quark confinement mechanism
around the quark Fermi surface [89–92], the baryon-like state
can be differently understood. One may question whether it
would be still the baryon state with restored chiral symme-
try or the correlated state of quarks under nonperturbative

dynamics. The similarities and discrepancies between the
quarkyonic matter concept and the other approaches which
involve the quark degrees of freedom would be understood via
further studies about the possible baryon-like states, since the
phase transition nature should also be related with the strong
correlation patterns of quarks on the surface.
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APPENDIX: POSSIBLE EMERGENCE OF �(1232) ISOBAR

The 
(1232) isobar may emerge via energetic collisions or in dense neutron rich matter. In this work, the low density
configuration (nB � 3ρ0) appears as the neutron rich matter (see the profiles plotted in Fig. 3). If one assumes similar size of the
repulsive core for the baryons (ωn,p = ω
 = 1, n0 = 5ρ0), the chemical potentials of baryons (9) can be written as follows:

μn =
(

n0

n0 − nn

)(
Kn

F
2 + m2

n

) 1
2 − 1

π2n0

∫ Kn
F
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dk k2

(
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) 1
2

}
, (A3)

where mn = 1 GeV, m
 = 1.3 GeV, and the neutron rich circumstance (nB � nn, np, n
 � 0) is understood. First, μ
 > μn in
all of the relevant density regime (nB � 3ρ0). If one considers the possible emergence via the scattering nn → p
−, the energy
relation is satisfied in the relevant densities (nB � 2.5ρ0). However, this scattering barely happens as the momentum conservation
is not always matched. Another possibility can be imagined in our model as n + d → 
− + u after the saturation of the d quark
Fermi sea. In this scenario, the liberated u quark falls down to the lower phases space but the emerging 
− should fill the phase
space from the lower shell boundary (k


F � 3kd
F ). Under the simplified configuration where nB � nn + nd̃ , the baryon (12) and

quark (9) chemical potentials can be written as follows:

μn =
(

n0

n0 − nn

)(
[kF + 
]n

2 + m2
n

) 1
2 − 1

π2n0

∫ [kF +
]n

kn
F

dk k2(k2 + m2
n

) 1
2 , (A4)

μ
 = (
k


F
2 + m2




) 1
2 + 1

n0

{
n̄ex

n

(
[kF + 
]2

n + m2
n

) 1
2 − 1

π2

∫ [kF +
]n

kn
F

dk k2(k2 + m2
n

) 1
2

}
, (A5)

μd = 2

(
1 − nn

n0

)
kn

F
2

kd
F

2 + �2
d

{(
[kF + 
]2

n + m2
n

) 1
2 − (

kn
F

2 + m2
n

) 1
2
} + ((

kd
F

)2 + m2
d

) 1
2 , (A6)

μu =
(

1 − nn

n0

)
kn

F
2

�2
u

{(
[kF + 
]2

n + m2
n

) 1
2 − (

kn
F

2 + m2
n

) 1
2
} + mu, (A7)

where kn
F = k


F = 3kd
F is assumed in the small kd

F limit. In this case, μn + μd < μ−

 + μu around the expected saturation

moments of the quark Fermi sea (3ρ0 � nB � 5ρ0) but the energy relation can be satisfied when the isospin asymmetry of
the saturated quarks is large. However, it is unlikely to accommodate 
 isobar degrees of freedom in the quarkyonic-like system
as that large flavor asymmetry of saturated quarks does not appear under the physical constraints.
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