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Dilepton production in microscopic transport theory with an in-medium ρ-meson spectral function
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We use the microscopic Giessen Boltzmann-Uehling-Uhlenbeck (GiBUU) transport model to calculate dilep-
ton (e+e−) production in heavy-ion collisions at SIS18 energies focusing on the effect of collisional broadening
of the ρ meson. The collisional width of the ρ meson at finite temperature and baryon density in nuclear matter is
calculated on the basis of the collision integral of the GiBUU model. A systematic comparison with HADES data
on dilepton production in heavy-ion collisions is performed. The collisional broadening of the ρ improves the
agreement between theory and experiment for the dilepton invariant-mass distributions near the ρ pole mass and
for the excess radiation in Au+Au at 1.23A GeV. We furthermore show that some remaining underprediction of
the experimental dilepton spectra in C+C at 1A GeV and Au+Au at 1.23A GeV at intermediate invariant masses
0.2–0.4 GeV can be accounted for by adjusting the pn bremsstrahlung cross section in a way to agree with the
inclusive dilepton spectrum from d p collisions at 1.25A GeV.
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I. INTRODUCTION

The study of in-medium properties of hadrons has been
an active field of research over the past 30 years. The EMC
experiment had already shown that the electromagnetic struc-
ture functions of nucleons change when these are bound in a
nucleus. Also the spectral functions of bound nucleons dif-
fer from those of free ones thus reflecting the complicated
in-medium interactions with other nucleons. On the basis
of QCD sum rules, Hatsuda and Lee [1] predicted that the
masses of vector mesons should drop significantly inside the
nuclear medium, a prediction that agreed with a similar one
by Brown and Rho [2]. In these predictions the mass drop
was due to the disappearance of the qq̄ scalar condensate
with increasing nucleon density. On the other hand, it has
been shown that the QCD sum rules could be fulfilled as
well by a significant broadening of the vector-meson spectral
function in the medium [3,4] without any significant mass
shift. This agrees with calculations based on the generalized
Nambu-Jona-Lasinio model which predicted that the masses
and coupling constants of the vector ρ and ω mesons stay
constant up to the critical density [5].

The measurements of the low-mass e+e− spectra in
Pb+Au collisions at 40A GeV [6] and 158A GeV [7] at
CERN/SPS did not allow to make a clear distinction between
the in-medium mass shift and a possible broadening of the
ρ meson. The later precision measurements of the low-mass
μ+μ− spectra in In+In collisions at 158A GeV by NA60
[8,9] yielded definite evidence for a ρ broadening without any
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noticeable mass shift which has been successfully described
within the thermal fireball model of dimuon radiation [10].

The in-medium spectral function of the ρ meson has been
calculated in quite different approaches. In Refs. [11–15]
purely hadronic resonance models were developed that do not
include chiral symmetry restoration in the nuclear medium
but could describe the observed broadening reasonably well.
On the other hand, in Refs. [16,17] a chirally gauged linear
sigma model with quarks was used to calculate chirally con-
sistent ρ and a1 spectral functions from analytically continued
Functional Renormalization Group (aFRG) flow equations at
finite temperature and density. These studies demonstrated the
degeneracy of the spectral functions of the chiral partners in
a way that further supports the ρ broadening essentially with-
out mass shift, as chiral symmetry gets gradually restored at
finite temperature and, in particular, in the vicinity of a chiral
critical end point at finite chemical potential. The outstanding
theoretical question then was if experiments could be used to
distinguish between explanations of the observed broadening
in terms of collisional broadening on one hand, and chiral
symmetry restoration, on the other.

Early on dileptons have been used as probes for these
in-medium changes of vector mesons because dilepton (e+e−
or μ+μ−) decays of hadrons are not distorted by hadronic
final-state interactions and thus open a window to study the
decays of short-lived hadronic resonances inside the nuclear
medium. These experiments are summarized and reviewed in
Refs. [18–20] and most recently in Ref. [21].

Measuring e+e− pairs from heavy-ion collisions is in the
focus of the experimental program of the HADES collabora-
tion [22–25]. To disentangle the various contributions to the
measured dilepton spectra remains a major challenge in the
extraction and interpretation of dilepton signals from nuclear
matter, however. The decays of long-lived particles, most
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importantly the π0 and η Dalitz decays (π0, η → γ e+e−),
which occur long after the breakup of the compressed nu-
clear configuration, are relatively well known experimentally.
More difficult is the evaluation of the bremsstrahlung, pn →
pne+e− and π±N → π±Ne+e−, where one has to rely mostly
on theory. The two most prominent dilepton signals from nu-
clear matter are the P33 �(1232) Dalitz decay, � → Ne+e−,
and the ρ meson direct decay, ρ → e+e−. The latter is of
special interest due to the possibility to probe through this
decay the ρ meson spectral function in the nuclear medium.

The HADES results seem to indicate a significant broad-
ening of the ρ meson in Ar+KCl at 1.756A GeV and Au+Au
at 1.23A GeV. On the basis of a so-called coarse-grained
transport model [26–29], in which local thermal equilibrium is
assumed, it was speculated that these new experimental results
could signal the onset of chiral symmetry restoration [30].

In the present paper we instead perform microscopic trans-
port simulations of the dilepton production in heavy-ion
collisions at SIS18 energies, without invoking thermal equi-
librium and thermal radiation which can be questionable at
these rather low energies [31]. Also, no quark-gluon degrees
of freedom or explicit chiral symmetry effects are contained
in the present calculations, so that a comparison with data
can give some insight into the question if dilepton production
data can indeed be interpreted in terms of a chiral sym-
metry restoration, as suggested, e.g., in Ref. [25], or “the
unleashing of quark-gluon degrees of freedom” [32]. The
calculations are based on the Giessen Boltzmann-Uehling-
Uhlenbeck (GiBUU) microscopic transport model [33]. The
focus of our present study is on the effect of collisional broad-
ening of the ρ meson. We calculate the collisional width of the
ρ meson in excited nuclear matter by using the collision term
of the transport equation. This width is then added to the free
ρ decay width and used to evaluate the ρ spectral function in
nuclear matter that is included in the transport simulations.

We analyze the detailed composition of the dilepton
spectra, and present the time evolution of the different com-
ponents. We discuss the interplay between the collisional
broadening of the ρ meson and its off-shell transport. We
provide a systematic comparison of the GiBUU calculations
with available HADES data for the invariant mass, rapidity,
and transverse momentum distributions of the dileptons, and
we also present an analysis of the dilepton excess radiation.

The structure of our paper is as follows: In Sec. II we
briefly describe the GiBUU transport model with particular
emphasis on the off-shell propagation of the ρ meson and
the dilepton production channels. Section III contains the
formalism used to describe the ρ spectral function. We first
demonstrate how the spectral function emerges in the splitting
of production and decay processes of the ρ meson. We then
discuss the collisional broadening of the ρ meson caused by
the resonance production on the nucleons of the Fermi sea,
ρN → R. We present our results from the GiBUU transport
simulations in Sec. IV, starting with the time evolution of
the density, the temperature, the invariant mass distribution
of the ρ meson, and the different components of the dilepton
invariant mass spectrum. We then compare our calculations
with HADES data for the dilepton observables in p + p col-
lisions at beam energies of 1.25, 2.2, and 3.5 GeV, d + p

at 1.25A GeV, C+C at 1A GeV and 2A GeV, Ar+KCl at
1.76A GeV, and Au+Au at 1.23A GeV. For the Au+Au sys-
tem, we also compare the calculated particle multiplicities
with experimental data. The predictions for the dilepton in-
variant mass spectrum from Ag+Ag at 1.58A GeV are given.
Finally, our summary and conclusions together with a brief
outlook are provided in Sec. V. Appendix A addresses the
calculated hadron multiplicities. Appendix B contains a dis-
cussion of the various uncertainties which may influence our
results.

II. THE MODEL

The GiBUU transport model [33] is built on the solution of
the coupled set of semi-classical quantum-kinetic equations
for the baryons (N, �, N∗, Y, . . .), respective antibaryons
(N̄, �̄, N̄∗, Ȳ , . . .) and mesons (π, η, ρ, ω, K, K∗, . . .). In
relativistic kinematics [34] the kinetic equation for the nucle-
ons with fixed isospin projection reads,

(p∗0)−1

[
p∗μ∂μ + (p∗

μFαμ + m∗∂αm∗)
∂

∂ p∗α

]
f ∗(x, p∗)

=
∫

gsd3 p∗
2

(2π )3
v12

∫
d


dσ12→34

d


× ( f ∗
3 f ∗

4 f̄ ∗
1 f̄ ∗

2 − f ∗
1 f ∗

2 f̄ ∗
3 f̄ ∗

4 ), (1)

where α = 1, 2, 3 and μ = 0, 1, 2, 3. The left side of the
kinetic equations describes particle propagation in a self-
consistent relativistic mean-field (RMF) potential that in-
cludes scalar (S) and vector (V ) nuclear potentials as well
as the Coulomb potential. The RMF is included only for
the baryons while the mesons feel only the Coulomb po-
tential. This difference is justified because the potential for
the baryons is necessary for the nuclear binding. Also, in
earlier work it has been shown that in-medium properties of
the � and the pion affect the dilepton yield only moderately
[35]. The collision integrals on the right side of the kinetic
equations describe two and three-body collisions as well as
resonance decays. Here, we have explicitly included only
the expression for the elastic two-body collision integral, for
simplicity, where f ∗(x, p∗) with x ≡ (t, r) is the distribution
function of the nucleons in the kinetic phase space (r, p∗). It is
defined such that f ∗(x, p∗) gsd3rd3 p∗/(2π )3 equals the num-
ber of particles in the phase-space element d3rd3 p∗; gs = 2 is
the nucleon spin degeneracy, p∗μ = pμ − V μ its kinetic four-
momentum satisfying the mass-shell condition p∗μ p∗

μ = m∗2,
where m∗ = mN + S is the Dirac mass of the nucleon with
mass mN = 0.938 GeV in the vacuum. Fμν ≡ ∂μV ν − ∂νV μ

is the field-strength tensor of the vector potential V .
In the collision integral, we have introduced short-hand

notations f ∗
n ≡ f ∗(x, p∗

n ), f̄ ∗
n ≡ 1 − f ∗

n (n = 1, 2, 3, 4), p∗
1 ≡

p∗. The relative velocity of the colliding particles is defined
as v12 = I12/p∗0

1 p∗0
2 , where I12 = √

(p∗
1 p∗

2)2 − (m∗
1m∗

2 )2 is the
Möller flux factor. The angular differential cross section is
defined by dσ12→34 for scattering in the solid angle element
d
 = sin 
 d
 dφ with polar, 
, and azimuthal, φ, scatter-
ing angles in the center-of-mass (c.m.) frame. The extension
of the collision integral to include inelastic channels and broad
particles is rather straightforward (see Sec. 3.3 of Ref. [33] for
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details), and all these features are also included in our present
GiBUU simulations.

The scalar, S, and vector, V μ, mean fields are obtained from
the Dirac equation for the nucleon,

[γ μ(i∂μ − Vμ) − (mN + S)]ψ (x) = 0, (2)

coupled to the scalar-isoscalar σ meson, the vector-isoscalar
ω meson, and the electromagnetic field Aμ, via

S = gσNσ, (3)

V μ = gωNωμ + e

2
(1 + τ 3)Aμ , μ = 0, . . . , 3, (4)

where τ 3 = +(−)1 for the proton (neutron); e = 1/
√

137 (in
natural units with h̄ = c = 1); and the coupling constants to
the meson fields are those of the nonlinear Walecka model in
the version NL2 of Ref. [36], i.e., gσN = 8.5, gωN = 7.54. The
mesonic mean fields are calculated by solving the Lagrange
equations of motion with source terms provided by the baryon
densities and currents (see Sec. 3.1.3 of Ref. [33] for details).

The numerical solution of Eq. (1) is based on the test-
particle representation of the distribution function

f ∗(x, p∗) = (2π )3

gsN

NphysN∑
n=1

δ[r − rn(t )]δ[p∗ − p∗
n(t )], (5)

where Nphys is the number of physical particles, while N is
the number of test particles per physical one. Turning off the
interaction terms, by setting the right side in Eq. (1) to zero
(the Vlasov limit), one obtains the equations of motion for the
centroids of the δ functions rn(t ), p∗

n(t ),

ṙn = p∗
n

p∗0
n

, (6)

ṗ∗α
n = p∗

nμ

p∗0
n

Fαμ
n + m∗

n

p∗0
n

∂m∗
n

∂rα

, (7)

where α = 1, 2, 3 and μ = 0, . . . 3. It can be shown that
Eqs. (6) and (7) are equivalent to the Hamiltonian equations

ṙn = ∂ε(rn, pn, t )

∂ pn
, (8)

ṗn = −∂ε(rn, pn, t )

∂rn
, (9)

with the single-particle energy defined as

ε = V 0 +
√

(p∗)2 + (m∗)2. (10)

Particles in the medium can be collision-broadened and/or
have already a decay width in vacuum. For the propagation
of such broad particles, one has to use the off-shell transport
implemented in GiBUU. This is based on using a generalized
distribution function that also includes the particle energy as
an independent variable [37–40],

F (x, p) = (2π )4

N

NphysN∑
n=1

δ[r − rn(t )]δ[p − pn(t )]δ[p0 − εn(t )].

(11)
The time evolution of the centroids rn(t ), pn(t ), εn(t ) is given
by the so-called off-shell potential (OSP) ansatz [33] which is

based on the following equations:

ṙn =
(

1 − ∂Hn

∂εn

)−1
∂Hn

∂ pn
, (12)

ṗn = −
(

1 − ∂Hn

∂εn

)−1
∂Hn

∂rn
, (13)

ε̇n =
(

1 − ∂Hn

∂εn

)−1
∂Hn

∂t
. (14)

Here Hn(εn, pn, t, rn) is a (generalized) single-particle Hamil-
ton function as defined below. Eqs. (12) and (13) are obtained
by expressing the partial derivatives of the single-particle en-
ergy εn ≡ ε(rn, pn, t ) in Eqs. (8) and (9) in terms of those of
Hn using the self-consistency condition,

εn = Hn(εn, pn, t, rn). (15)

Equation (14) then follows directly from this self-consistency
condition.

The single-particle Hamilton function Hn is defined such
that particle n can be arbitrarily far off shell, when its in-
medium width �n > 0, but becomes an on-shell particle for
�n = 0. The simplest form of Hn that satisfies these require-
ments is

Hn =
√

m2
phys + Re � + �m2

n + p2
n , �m2

n = −χnIm �,

(16)

where mphys is the vacuum mass of the physical on-shell
particle, �(εn, pn, t, rn) is a retarded self-energy, and χn is
a constant fixed from the initial conditions at the production
time of the test particle n. In the most general case the long-
range potential and short-range collisional interactions of the
particle in the nuclear medium modify, respectively, the real
and imaginary parts of the particle self-energy. In particular,
the imaginary part of self-energy is related to the width by a
usual bosonic formula:

Im� = −
√

p2
n �n, (17)

where p2
n = ε2

n − p2
n. Since the collisional width of the particle

is roughly proportional to the nucleon density, Eqs. (16) and
(17) imply that for the particle with small natural decay width
(e.g., a pion) the deviation of the particle-mass squared from
its on-shell value, i.e., �m2

n scales with the nucleon density.
On the other hand, for particles with a large natural decay
width (e.g., the ρ), the quantity �m2

n becomes constant when
the particle is emitted to the vacuum, since the decay width
depends only on the particle invariant mass [cf. Eq. (55)
below]. In-particular, this means that the OSP ansatz without
collisional widths is equivalent to the treatment of broad par-
ticles with off-shell masses chosen according to their vacuum
spectral functions.

With the Hamilton function of Eq. (16), the OSP ansatz is
equivalent to solving the test-particle equations of motion for
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relativistic off-shell bosons as derived from the retarded Green
function formalism [39].1

In the present work, the OSP ansatz is applied to describe
the dynamics of the ρ meson in the nuclear medium; we
set Re � = 0 for simplicity. After time stepping according to
Eqs. (12) and (13), the single-particle energy εn is obtained
at the new time step by solving Eq. (15) for fixed three-
momentum pn.

The collision term on the right of the transport equation (1)
is modeled geometrically: when the two test particles 1 and 2
are approaching their minimum distance b12 their collision is
simulated by Monte Carlo provided b12 <

√
σ12/π , where σ12

is the total interaction cross section. To approximate Lorentz
covariance, the minimum distance b12 is calculated in the
c.m. frame of the colliding particles assuming straight-line
trajectories:

b2
12 = (

xc.m.
12

)2 −
(
xc.m.

12 · βc.m.
12

)2

(
βc.m.

12

)2 , (18)

where

xc.m.
12 = xc.m.

1 − xc.m.
2 − βc.m.

1 t c.m.
1 + βc.m.

2 t c.m.
2 (19)

is the relative position vector at zero time; βc.m.
1 and βc.m.

2 are
the particle velocities. All quantities in Eqs. (18) and (19)
refer to the c.m. frame of particles 1 and 2. The four vectors
(t c.m.

i , xc.m.
i ), i = 1, 2 are obtained by Lorentz transformation

from their four-vectors (t, xi ) in the computational frame to
the c.m. frame of the pair.2 This exactly corresponds to the
covariant prescription given by Eq. (2b) of Ref. [42]. The
determination of the collision time instant is a more delicate
problem. One can not naively use the collision instant (i.e., the
time of closest approach) in the c.m. frame since this would
result in different collision instants for particles 1 and 2 in
the computational frame. It has been shown in Ref. [42] that
the causality in a collision sequence can be preserved by using
collision proper times. The proper time difference between the
collision instant and the current instant for particle 1 is

�τ1 = x̃12 · β̃2

(β̃2)2
− t̃1, (20)

where the relative position vector at the zero time is now

x̃12 = x̃1 − x̃2 + β̃2t̃2. (21)

All quantities with tilde refer to the rest frame of particle
1. The condition that particles 1 and 2 pass their closest-
approach distance during the time interval [t − �t/2; t +

1The off-shell dynamics of vector mesons has first been discussed
in Ref. [41] where an ad hoc form of the OSP ansatz with a scalar
off-shell potential was introduced to bring off-shell particles back
on-shell when they leave the nucleus.

2For heavy-ion collisions, the c.m. frame of colliding nuclei is
normally chosen as the computational frame. The choice of the time
t (it was set to zero in actual calculations) does not influence the
minimum distance, Eq. (18), since it leads only to the change of the
component of xc.m.

12 along the relative velocity βc.m.
2 − βc.m.

1 .

�t/2], where �t is the time step in the computational frame,
then can be written as

|�τ1γ1 + �τ2γ2| < �t, (22)

where γ1,2 are the Lorentz factors of particles 1, 2 in the
computational frame; and �τ2 is the proper time difference
for particle 2 defined in its rest frame by Eqs. (20) and (21)
with replacement 1 ↔ 2 (for more details see Ref. [43] and
Appendix B of Ref. [44]).

Baryon-baryon (baryon-meson) collisions at
√

s <

4 (2.2) GeV are simulated within the resonance model
which treats the interactions of nucleons, their resonances and
mesons explicitly. At higher invariant energies the PYTHIA
model [45] is applied. Pauli blocking is applied for collisions
with nucleons in the final state.

The model also accounts for meson-meson collisions, in
particular, ππ → ρ which are of importance for ρ production
at large invariant masses (see Fig. 9). Other meson-meson,
e.g., πρ, collisions are infrequent in the baryon-dominated
matter created at SIS18 energies.

The channels of dilepton production are as follows:

(i) Direct decays of vector mesons, V → e+e−, with
V = ρ, ω, φ: For vector mesons this partial width
is calculated based on the vector dominance model
(VDM) [46,47],

�V →e+e− (m) = CV
m4

V

m3

(
1 + 2m2

e/m2
)√

1 − 4m2
e/m2,

(23)

where mV and m are the on-shell and off-shell
mass of the decaying meson, respectively, and CV =
4πα2/3 f 2

V . The numerical values used in GiBUU are
Cρ = 9.078 × 10−6, Cω = 7.666 × 10−7, and Cφ =
1.234 × 10−6 [48]. These values have been fit to re-
produce the empirical partial widths V → e+e− for
the on-shell meson masses. For a collision-broadened
meson with a very small off-shell mass m, the appli-
cability of this expression with constant CV becomes
questionable, however. In particular, far below mass
shell, �V from Eq. (23) grows artificially strongly
with decreasing m until it reaches an unphysically
sharp peak very close to the e+e− threshold where it
vanishes.

(ii) Direct η → e+e− decay: For the partial decay width
�η→e+e− = �tot

η BRη→e+e− , where �tot
η = 1.3 keV is

the total width of the η, the phenomenological upper
limit of the branching ratio BRη→e+e− = 7 × 10−7 is
adopted [49].

(iii) Dalitz decays A → Be+e−: Using a factorization pre-
scription (cf. Ref. [50]) the following expression for
the partial width can be obtained:

d�A→Be+e−

dm2
= �A→Bγ ∗

α

3πm2

(
1 + 2m2

e/m2)
×

√
1 − 4m2

e/m2, (24)
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where m is the invariant mass of the dilepton pair, and
�A→Bγ ∗ is the decay width to the virtual photon in the
final state.

Meson Dalitz decays: In the case of the pseu-
doscalar meson P = π0, η, η′ decays P → γ e+e−
and the ω-meson decay ω → π0e+e− the decay width
to virtual photon is proportional to the decay width to
the real photon [51]:

�A→Bγ ∗ (m2) = ηsym�A→Bγ

[
qBγ ∗ (m2)

qBγ ∗ (0)

]3

|FAB(m2)|2,
(25)

where ηsym = 2 for pseudoscalar meson decays and
ηsym = 1 for ω-meson decay is the symmetry factor,

qBγ ∗ (m2) = m2
A − m2

B

2mA

[(
1 + m2

m2
A − m2

B

)2

− 4m2
Am2(

m2
A − m2

B

)2

]1/2

(26)

is the c.m. momentum of B and γ ∗, and FAB(m2)
is the A → B transition form factor. The term
[qBγ ∗ (m2)/qBγ ∗ (0)]3 reflects the p-wave coupling
arising in the effective Lagrangian description of
meson decays [52,53].3 For the partial decay
widths to the real photon the following values are
used: �π0→γ γ = 0.98823�tot

π0 with �tot
π0 = 7.836 eV,

�η→γ γ = 511 eV, �η′→γ γ = 4.3 keV, and �ω→π0γ =
703 keV.

For the form factor of the π0 → γ γ ∗ vertex it is
enough to use the linear approximation in m2:

Fπ0γ (m2) = 1 + bπm2 (27)

with bπ = 5.5 GeV−2 [51]. In the η → γ γ ∗ vertex,
the pole approximation is used:

Fηγ (m2) = (
1 − m2/�2

η

)−1
(28)

with �−2
η = 1.95 GeV−2 as determined in the NA60

measurements of the low-mass μ+μ− pairs in
158A GeV In+In collisions [54]. The η′ → γ γ ∗ ver-
tex form factor is neglected. The form factor of the
ω → π0γ ∗ vertex is adopted from Ref. [55]:

Fωπ0 (m2) = �2
ω[(

�2
ω − m2

)2 + �2
ω�2

ω

]1/2 , (29)

where �ω = 0.65 GeV and �ω = 75 MeV. Equation
(29) is also in good agreement with the NA60 data
[54].

� Dalitz decay: In the case of the Delta resonance
Dalitz decay, �(1232) → Ne+e−, we apply Eq. (24)

3An s-wave coupling is forbidden due to the presence of the
pseudoscalar meson either in the initial or in the final state of the
A → Bγ ∗ decay.

with the partial decay width of Ref. [50],

��→Nγ ∗ (m2)= α

16

(m�+mN )2

m3
�m2

N

[(m�+mN )2−m2]1/2

× [(m� − mN )2 − m2]3/2|F�N (m2)|2,
(30)

where the form factor is set to be constant, F�N (m2) ≡
F�N (0) = 3.029, obtained from the real photon decay
width ��→Nγ ∗ (0) = 0.66 MeV. Note that the � →
Nγ ∗ magnetic dipole transition form factor is still
under discussion [56].

(iv) Bremsstrahlung: The pn → pne+e− and pp →
ppe+e− bremsstrahlung is included in the form of
the boson exchange model of Ref. [57]. This model
takes into account the e+e− emission from the inter-
nal charged pion exchange line in the pn scattering.4

However, in contrast to Ref. [57] we add the contri-
bution of the NN → N� reaction followed by � →
Ne+e− incoherently. The N∗(1520) Dalitz decays are
effectively included in our calculations via the two-
step decay N∗ → ρN , ρ → e+e−.

For the charged pion bremsstrahlung, π±N →
π±Ne+e−, the soft-photon approximation (SPA)
[58,59] is applied,

E
dσe+e−

d3 pdm
= α2

6π3

σ el(s)

mE2

R2(s2)

R2(s)
, (31)

with

σ el(s) =
∫ 0

−|t |max

dt
−t

m2
π

dσel(s, t )

dt
≈ 2q2

c.m.(s)

m2
π

σel(s),

(32)

where dσel(s, t )/dt is the differential elastic scat-
tering cross section, and qc.m.(s) = [(s + m2

π −
m2

N )2/4s − m2
π ]1/2 is the c.m. momentum of pion

and nucleon. (E , p) is the four-momentum of the
e+e− pair in the c.m. system of the colliding pion
and nucleon. The reduction of the two-body phase
space available for the outgoing pion and nucleon
is included in Eq. (31) via the ratio of phase-space
volumes at the invariant energy squared with (s2) and
without (s) emission of the e+e− pair, where

s2 = s + m2 − 2
√

sE , (33)

and

R2(s) = 2qc.m.(s)/
√

s. (34)

In the last step of Eq. (32) an isotropic cross section
is assumed for simplicity. Pion-nucleon scattering in
heavy-ion collision processes at 1–2A GeV is mostly
mediated by the �(1232) resonance, i.e., πN →

4We apply the version with the pion electromagnetic form factor
taking into account the direct coupling of the photon to the quark
content of the pion, apart from the photon coupling to the ρ0 meson
(the FF2 parametrization of Ref. [57]).
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� → πN . In this case the angular distribution is
forward-backward peaked due to the dominant p
wave. Thus, the approximation of Eq. (32) is quite
rough. However, given a large overall uncertainty of
the SPA at e+e− invariant masses above 100–200
MeV [58] the approximation of Eq. (32) seems still
reasonable.

Since the cross section for e+e− production in
pp collisions at the beam energy of 1–3 GeV is
quite small, on the μb level, the direct calculation
of dilepton production in heavy-ion collisions would
be extremely time consuming. Therefore, a so-called
shining method [60] is applied. In a given time step
dt , the probability of the dilepton decay of a reso-
nance is P = �e+e−dt/γ where �e+e− is the partial
decay width R → Xe+e− in the resonance rest frame
and γ is the Lorentz factor of the resonance. In the
shining method, the dilepton decay of every relevant
resonance at every time step is simulated and the
produced e+e− pair carries the weight P which is then
used to fill various statistical distributions. Note that
the actual state of the resonance is not changed after
the dilepton emission, i.e., the resonance is further
propagated according to the test particle equations of
motion, Eqs. (12) and (13), and participates in col-
lision and decay processes. If the resonance survives
until the end of time evolution, the decay dilepton will
have the weight P = �e+e−/� where � is the total
in-medium width of the resonance.

The e+e− bremsstrahlung in pn, pp, and π±N
collisions is simulated in the following way: If the
collision takes place, then the probability of the e+e−
emission P = σe+e−/σ is calculated where σ is the to-
tal interaction cross section of colliding particles and
σe+e− is the partial cross section of dilepton emission.
The produced e+e− pair has the weight P while the
actual two-body collision is simulated neglecting the
dilepton emission.

In the case of the pseudoscalar meson Dalitz decays,
the polar angle distribution of the outgoing e− in the
rest frame of γ ∗ is sampled according to the distribution
dP/d cos 
 ∝ 1 + cos2 
 where the z axis is chosen along
the three-momentum of γ ∗ [61]. For all other dilepton de-
cays an isotropic angular distribution is used, just as for
bremsstrahlung in the c.m. system of the colliding pair.

III. SPECTRAL FUNCTION OF THE ρ MESON
IN THE NUCLEAR MEDIUM

The retarded ρ-meson propagator has the following spec-
tral representation [17]:

GR
μν (q) =

∫ ∞

0
ds

A(s)

s

q2gμν − qμqν

(q0 + i0)2 − �q2 − s
, (35)

where q is the four-momentum of the ρ meson, so that the
spin-averaged spectral function of the ρ meson is given by

sgn(q0)A(q2) = − 1

π
Im GR(q), (36)

where

GR(q) = 1

3

(
gμν − qμqν

q2

)
GR

μν (q) (37)

is the corresponding spin-averaged propagator.5 The tensor
structure in Eq. (35) represents an off-shell extension of the
sum over the polarization states of an on-shell ρ meson with
pole mass mρ , ∑

λ=0,±1

ε(λ)
μ ε∗(λ)

ν = −gμν + qμqν

m2
ρ

. (38)

Neglecting a possible q2 dependence in the real part of the
ρ-meson self-energy �(q2) (the more general case, including
polarization dependence of the self-energy is discussed, e.g.,
in Refs. [11–13]), and writing Im �(q2) = −

√
q2 �(

√
q2), on

the other hand, we can make the following ansatz for the spin-
averaged Feynman propagator of the ρ meson in the nuclear
medium:

GF (q) = 1

q2 − m2
ρ + i

√
q2 �(

√
q2)

. (39)

Here �(
√

q2) defines the off-shell decay width of the ρ meson
(see below) which vanishes below the e+e− threshold, for
q2 < 4m2

e . Including the sign function in the corresponding
retarded self-energy, Im �R(q2) = −sgn(q0)

√
q2 �(

√
q2) in

(36), this amounts to using the following form for the spectral
function:

A(q2) =
√

q2 �(
√

q2)/π(
q2 − m2

ρ

)2 + q2�2(
√

q2)
, (40)

with the normalization condition,∫ ∞

4m2
e

dq2 A(q2) = 1. (41)

For later convenience, we also note that for q2 > 4m2
e we may

write,

|GF (q)|2 = π A(q2)√
q2 �(

√
q2)

. (42)

In order to illustrate the use of the spectral function for our
purposes consider, for example, the process a + b → ρ → X .
The invariant matrix element of this process is

MX ;ab = −
∑

λ=0,±1

MX ;ρ (λ) Mρ (λ);ab

q2 − m2
ρ + i

√
q2�

, (43)

where we used the decomposition over polarizations, Eq. (38).
Neglecting the interference terms with different ρ polariza-
tions in the direct and conjugated amplitudes and performing
the independent summations over λ in the ρ-production and

5This definition is equivalent to setting A(q) = 1
3 [2AT (q) +

AL (q)], where AT (q) and AL (q) are, respectively, the transverse and
longitudinal spectral functions defined in Ref. [12].
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decay amplitudes squared, we obtain

|MX ;ab|2 = |MX ;ρ (λ) |2 |Mρ (λ);ab|2∣∣q2 − m2
ρ + i

√
q2�

∣∣2 , (44)

where an overline means the sum over polarizations of final
states and the averaging over polarizations of initial states.
The differential cross section of the process a + b → ρ → X
is given by the following expression:

dσa+b→X = (2π )4|MX ;ab|2d�X

4Iab
, (45)

where

Iab =
√

(pa pb)2 − p2
a p2

b (46)

is the Möller flux factor and

d�X = δ(4)

(
pa + pb −

nX∑
i=1

pi

) nX∏
i=1

d3 pi

(2π )32Ei
(47)

is the invariant phase-space volume element of the final state.
Using the formula for the partial decay width ρ → X in the
rest frame of the ρ meson,

d�ρ→X = (2π )4|MX ;ρ (λ) |2d�X

2
√

q2
, (48)

we can now rewrite Eq. (45) in a factorized form:

dσa+b→X = d�ρ→X

�
σab→ρ, (49)

so that with Eq. (42) we obtain from Eq. (43),

σab→ρ = 2π A[(pa + pb)2]
|Mρ (λ);ab|2

4Iab
. (50)

Here we have thus defined a quantity which has the meaning
of a cross section for the production of an off-shell ρ meson
in the collision of particles a and b. Indeed, Eq. (50) can be
obtained from the standard formula for an ab → ρ process
where ρ is treated as a fictitious “on-shell” particle with a
mass of

√
s,

σ on-shell
ab→ρ = 2πδ[s − (pa + pb)2]

|Mρ (λ);ab|2
4Iab

, (51)

which is then multiplied with a weight given by A(s), and
integrated over s. Thus, the square of the invariant mass of the
intermediate ρ meson is distributed according to the spectral
function A(s). Similar relations can be readily derived for any
other process mediated by an off-shell ρ meson. Moreover,
using detailed balance,

|Mab;ρ (λ) |2 = (2Sa + 1)(2Sb + 1)

2Sρ + 1
|Mρ (λ);ab|2, (52)

Eq. (50) can be transformed into a relativistic Breit-Wigner
formula,

σab→ρ = 2Sρ + 1

(2Sa + 1)(2Sb + 1)

4π

q2
ab

q2��ρ→ab(
q2 − m2

ρ

)2 + q2�2
, (53)

where Sa,b,ρ are the spins of the involved particles, qab =
Iab/

√
q2 is the c.m. momentum of the colliding particles a

and b, and �ρ→ab = |Mab;ρ (λ) |2 qab/8πq2 denotes the ρ → ab
decay width.

The total width of ρ meson in its rest frame is the sum
of the vacuum decay width and the collisional width in the
nuclear medium:

� = �dec + �coll. (54)

The off-shell decay width �dec(m) = �ρ→ππ (m) +
�ρ→e+e− (m), where m ≡

√
q2 is the off-shell ρ-meson

mass parameter, is dominated by the ρ → ππ channel, for
which

�ρ→ππ (m) = �0
ρ→ππ

[
qc.m.(m)

qc.m.(mρ )

]3 mρ

m

1 + [qc.m.(mρ )R]2

1 + [qc.m.(m)R]2
,

(55)

where qc.m.(m) = √
m2/4 − m2

π is the c.m. momentum of
the decay pions. In the present calculations the follow-
ing values of the constants are used: mρ = 775.5 MeV and
�0

ρ→ππ = 149.1 MeV. The value of the parameter R = 1 fm
(see Ref. [63]) is universally set for all resonance decay widths
[see Eq. (58) below].

The collisional width of the ρ meson in the nuclear medium
is calculated in the semiclassical approximation, i.e., by us-
ing the loss term of the collision integral. For simplicity,
isospin-symmetric nuclear matter is assumed. This leads to
the following expression for the width in the ρ meson’s rest
frame:

�coll = γLor〈vρNσρN 〉ρN , (56)

where ρN = ρn + ρp is the total nucleon density, σρN =
(σρn + σρp)/2 is the isospin-averaged total ρ-meson nucleon
cross section, vρN = IρN/q0 p0

N is the relative velocity of the ρ

meson and the nucleon, and γLor = q0/m is the Lorentz factor
of the ρ meson. 〈. . .〉 denotes the averaging over nucleon
Fermi motion. The collisional width just defined is given in
the so-called low-density approximation which is reflected in
the linear dependence on density.

At
√

s � 2 GeV, the total ρN cross section is saturated by
the resonance production channels.6 Similarly to Eq. (53), the
corresponding partial resonance cross sections ρN → R are
also given by the relativistic Breit-Wigner formula:

σρN→R = 2SR + 1

6

4π

q2
ρN

s�R�R→ρN(
s − m2

R
)2 + s�2

R
, (57)

where SR, mR, and �R are, respectively, the spin, pole mass,
and the total width of the resonance R; s = (q + pN )2 is the
squared c.m. energy of ρ and N ; qρN = [(s + q2 − m2

N )2/4s −

6See Table A.3 in Ref. [33] for the full list of nonstrange resonances
included in GiBUU. The N∗ (I = 1/2) resonances having rating of
only one “*” were excluded from the calculations. There are also
the nonresonant contributions of strangeness production ρN → Y K
included according to Ref. [62]. They are, however, of minor impor-
tance for the present study.
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FIG. 1. Collisional width of the ρ meson in nuclear matter at saturation density and zero temperature as a function of the meson mass
at momentum q = 0 [panels (a) and (c)] and q = 0.6 GeV/c [panels (b) and (d)]. In panels (a) and (b) the default resonance parameters of
GiBUU (cf. Ref. [63]) are used. Panels (c) and (d) show the results with the updated resonance parameters of Ref. [68]. The width is calculated
by summing partial resonance contributions. The full result is shown as the thick (black) solid line. Other lines show the partial contributions
of the specific baryonic resonances as indicated. The Lorentz factor of the ρ meson is divided out, i.e., the plotted width is given in the rest
frame of nuclear matter.

q2]1/2 is the c.m. momentum of ρ and N ; �R→ρN is the
partial R → ρN decay width for the off-shell ρ mass

√
q2

(“in-width”) for which the parametrization of Ref. [63] is
used:

�R→ρN (
√

s) =
∑

l

�0
l

qρN B2
l (qρN R)√

sρl (mR)
, (58)

where �0
l is the partial decay width evaluated at

√
s = mR for

the relative orbital angular momentum l of ρ and N ; Bl (x) is
a Blatt-Weisskopf barrier-penetration factor [64]; and

ρl (
√

s) =
∫

dq2A(q2)
qρN√

s
B2

l (qρN R). (59)

Here A(q2) is the ρ spectral function, Eq. (40), calculated
without collisional broadening. Note that for simplicity we
also neglect the in-medium effects on the baryon resonance
R in Eq. (57) by using the total width �R in vacuum.

At
√

s ≈ 2 GeV, the sum of resonance cross sections starts
to underestimate the total phenomenological high-energy
cross section (see, e.g., Refs. [65–67]). A smooth transition

to the high-energy regime described by PYTHIA is reached
by including the ρN → πN background cross section which
absorbs the missing part of the total phenomenological ρN
cross section.

In order to explore the dependence of the collisional width
on the density and the excitation energy of the average 〈. . .〉
in Eq. (56), the nucleon momentum p has been sampled by
Monte Carlo according to a probability distribution dP ∝
npd3 p, where np is the Fermi distribution at some finite tem-
perature:

np = 1

exp[(Ep − μ)/T ] + 1
, (60)

with Ep =
√

p2 + m2
N . The chemical potential μ for the given

values of the nucleon density ρN and temperature T has been
determined from

ρN =
∫

4d3 p

(2π )3
np. (61)

We note that the “equivalent temperature” here is introduced
only as a parameter to characterize the excitation energy.
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FIG. 2. Collisional width of the ρ meson as a function of invariant mass in nuclear matter at different densities and temperatures, solid
(black): ρN = 0.16 fm−3, T = 0; long-dashed (blue): ρN = 0.32 fm−3, T = 0; and short-dashed (red): ρN = 0.32 fm−3, T = 70 MeV, as a
function of the meson mass at momentum q = 0 (a) and q = 0.6 GeV/c (b). Thick and thin lines correspond to resonance + high energy and
pure resonance model calculations, respectively. The Lorentz factor of the ρ meson is divided out.

Figures 1(a) and 1(b) show the collisional width of the
ρ meson calculated in ground-state nuclear matter within
the baryon resonance model using the resonance parameters
of Ref. [63], i.e., those used in default GiBUU calcula-
tions. The set of resonance parameters [63] was obtained
within the multichannel unitarity analysis of πN scatter-
ing data. At q = 0, the dominant contributions are given
by the resonances with large s-wave couplings to the ρN
state: D13 N∗(1520) (�L=0

ρN /�tot = 21%) and S31 �∗(1620)
(�L=0

ρN /�tot = 25%). As expected, at finite momentum of
the ρ meson, the resonances with nonzero angular mo-
mentum coupling to the ρN state grow in importance. At
q = 0.6 GeV/c, the contribution of N∗(1520) remains dom-
inant, however, also the resonances with p-wave coupling
to the ρN state, i.e., F35 �∗(1750) (�L=1

ρN /�tot = 22%) and
F35 �∗(1905) (�L=1

ρN /�tot = 87%) contribute significantly. We
also observe strongly increased contributions of S11 N∗(1650)
(�L=2

ρN /�tot = 3%) and G17 N∗(2190) (�L=2
ρN /�tot = 29%) at

finite momentum of ρ.
In the recent Ref. [68], the nucleon resonance parameters

have been updated including both πN and γ N scattering
data. In order to assess the influence of these updates, we
have also used the new parameters of the resonances coupled
to the ρN channel according to Ref. [68]. The collisional
width of the ρ meson with the updated resonance param-
eters is shown in Figs. 1(c) and 1(d). As compared to the
default parameters, the most pronounced changes occur with
the new ones for D13(1520), S11(1535), and S31(1620). The
branching ratio of the (ρN )S channel decreases from 21%
to 14% for D13(1520), while it increases from 2% to 14%
for S11(1535). The mass of S31(1620) decreases from 1672
to 1589 MeV, while the total width decreases from 154 to
107 MeV. As a result, the collisional width of ρ meson
is slightly larger at small masses with the new resonance
parameters.

Figure 2 shows the invariant-mass dependence of the col-
lisional width of the ρ meson. At T = 0 we observe an
approximate scaling �coll ∝ ρN . Increasing the temperature
leads to a smearing of the mass dependence. This is because
at finite T the range of

√
s of the colliding ρN pair becomes

broader for a fixed four-momentum of the ρ. This leads to
less pronounced baryon resonance structures. Overall, the
collisional width is comparable to or even larger then the
vacuum ρ width (≈149 MeV). Thus, significant modifications
of the ρ spectral function due to collisional broadening can be
expected.

The resulting in-medium modifications to the spectral
function of the ρ meson are shown in Fig. 3. For a ρ meson
at rest, the effects of the nuclear medium are only marginal.
The spike seen near the e+e− threshold is a consequence of
the oversimplified description of the ρ width below the 2π

threshold, as discussed earlier in connection with Eq. (23).
Moreover, the behavior of the free ρ width in this low mass
region is missing additional contributions, not included here,
from ρ → μ+μ− and, in particular, the ρ → π0γ decay
channel that has an order of magnitude larger branching ratio
as compared to ρ → e+e− [49].

In contrast, at finite momentum of the ρ, there is a dramatic
enhancement of the spectral strength at small invariant masses
due to the additional collisional width. The effect of temper-
ature is quite small and more visible for the meson at rest, in
form of a moderate broadening of the spectral strength.

For comparison with Fig. 8 of Ref. [12], we present in
Fig. 4 the spectral function calculated at three different values
of the ρ-meson three-momentum. We observe a tendency of
a broadening toward lower invariant masses with increasing
q. However, our results show a somewhat smaller collisional
broadening as compared to the self-energy calculations of
Refs. [12,14]. In particular, the double-humped structure in
the transverse spectral function obtained there due to the
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FIG. 3. Spectral function of the ρ meson in nuclear matter, Eq. (40), at different densities and temperatures as a function of the meson
mass at momentum q = 0 (a) and q = 0.6 GeV/c (b). Solid (black) line: ρN = 0.16 fm−3, T = 0; long-dashed (blue) line: ρN = 0.32 fm−3,
T = 0; short-dashed (red) line: ρN = 0.32 fm−3, T = 70 MeV; dot-dashed (magenta) line: ρN = 0. The collisional width is calculated in the
resonance + high energy model.

coupling to the N∗(1520) resonance is missing here. Given
the simplicity of our resonance model for the in-medium ρ

spectral function, on the other hand, the overall agreement
with the more sophisticated resonance models of Refs. [12,14]
is quite compelling.

IV. RESULTS

Before comparing our calculations with experimental data
in Sec. IV A below, we first consider the time evolution of
some selected observables. Figure 5 shows baryon density and
temperature in the position of the c.m. for central collisions

FIG. 4. Spectral function of the ρ meson in ground-state nu-
clear matter for different values of the three-momentum |q|: 0 [solid
(black) line], 0.4 GeV/c [long-dashed (blue) line], and 0.8 GeV/c
[short-dashed (red) line]. The vacuum spectral function is shown by
the dot-dashed (magenta) line.

of C+C at 1A GeV and 2A GeV, Ar+KCl at 1.756A GeV,
Ag+Ag at 1.58A GeV, and Au+Au at 1.23A GeV. The tem-
perature has been extracted locally in position space by fitting
〈p2〉 of the baryons in the local rest frame of nuclear matter
using the Fermi distribution, Eq. (60). Note that this is only an
effective equivalent temperature, the colliding systems are not
necessarily fully equilibrated at any time. It is also obvious
that there is no thermal equilibrium at the initial interpenetra-
tion stage when the two counterstreaming flows of nucleons
only start to decelerate each other by elastic and inelastic
NN collisions. Thus, the extremely high temperatures at the
beginning of the collision must not be considered as real
physical ones, but demonstrate that T is just a parameter to fit
the nonequilibrium momentum distribution of the baryons by
a Fermi distribution having the same 〈p2〉. Earlier studies have
in fact indicated that, at the relatively low bombarding ener-
gies considered here, full thermal equilibrium is not achieved
during the high-density phase of the collision [31,36].

The density evolution looks quite simple and intuitive: It
consists of a compression stage followed by a plateau behav-
ior and finally the expansion of the system. Central baryon
densities of up to 2–3ρ0 are reached; where ρ0 = 0.16 fm−3

is the nuclear saturation density. For the Au+Au system, the
temperature evolution pattern shows up a bump at t ≈ 18
fm/c correlated with the end of the density plateau. At these
times, the calculated temperature is about T ≈ 80 MeV. We
have checked that the sum of the pion and � multiplicities,
as an estimate of the total inelastic production, saturates at
approximately the same time. This implies that during the
density plateau stage the temperature drops mainly due to
inelastic production. In contrast, at the expansion stage the
temperature drops mostly because fast nucleons leave the cen-
tral zone faster, a feature of kinetic free streaming. A similar
behavior is observed for other colliding systems.

Figure 6 displays the time evolution of the ρ-meson in-
variant mass distribution. At the initial stage of a collision,
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FIG. 5. The central baryon density (a) and temperature (b) vs. time for Au+Au at 1.23A GeV (black solid line), C+C at 1A GeV (blue
dashed line), C+C at 2A GeV (brown dotted line), Ar+KCl at 1.756A GeV (red dash-dotted line), and Ag+Ag at 1.58A GeV (magenta dash-
double-dotted line) The impact parameter is set to zero for all systems.

FIG. 6. Invariant mass per-event spectra of ρ mesons produced
at different moments in time for central Au+Au (b = 0 fm) at
1.23A GeV: (black solid line) vacuum width, (blue dashed line)
vacuum and collisional width, and (brown dotted line) vacuum and
collisional width with OSP ansatz.

hard first-chance NN collisions and multistep processes allow
to produce baryonic resonances in a broad mass range [in
particular, the N∗(1520) that dominates the ρ production].
Thus, there is not much phase-space limitation for the ρ

production here, and a large part of the ρ spectral strength,
including the on-shell peak region, is populated in N∗ → ρN
decays. With increasing time, baryon resonance production
becomes governed by soft πN collisions which ultimately
leads to smaller invariant masses of the produced ρ’s. Another
effect, which shifts the ρ strength to smaller invariant masses
with increasing time is the ρ → ππ decay, since the �ρ→ππ

width grows with the invariant mass of the ρ, see Eq. (55).
Altogether, this leads to a softening of the ρ-invariant-mass
spectrum at t � 20 fm/c, even in calculations with vacuum ρ

spectral function.
Including the collisional width in the ρ spectral function

leads to a softer ρ invariant-mass spectrum at the early stage,
t � 15 fm/c, due to the spreading of the ρ spectral strength
toward lower invariant masses, see Fig. 3(b). The collisional
width of the ρ meson has been determined by using the local
values of baryon density and temperature calculated on the
spatial grid with step size ≈0.3–1.1 fm in each direction (the
exact values depend on the colliding system and are chosen
suitable to resolve the density gradients). In the calculation
that treats off-shell ρ’s as free particles with fixed masses
(blue dashed lines in Fig. 6) the excess of the low-mass ρ’s
(m � 0.3 GeV) survives until the later times. However, in the
calculation using the OSP ansatz (brown dotted lines in Fig. 6)
the low-mass ρ’s gradually migrate closer to the on-shell peak.
Therefore, at late times the off-shell transport, through the
OSP ansatz of Eqs. (12)–(17), produces ρ mass distributions
close to those with vacuum ρ width. These observations are
in-line with HSD model calculations [69].

Figure 7 shows the time evolution of the dilepton spec-
trum in central Au+Au collisions at 1.23A GeV. At early
times (t ≈ 5 fm/c) the spectrum is practically saturated by
the pn bremsstrahlung. Then we observe a dramatic increase
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FIG. 7. Invariant mass per-event spectrum of e+e− pairs produced in Au+Au at 1.23A GeV, b = 0 fm at different time moments (a)–(e),
and at the end of time evolution t = 60 fm/c after adding up electromagnetic decays of long-lived particles (f). Solid black lines show the
total spectrum. Other lines show the partial contributions of the different production channels as indicated. Calculations include the collisional
width of the ρ meson within the OSP ansatz. Full acceptance is assumed.

of the ρ → e+e− component that quickly becomes dominant
at Me+e− = 0.5 − 1 GeV. The � Dalitz contribution also de-
velops quite early and dominates at Me+e− � 0.3 GeV. The
πN bremsstrahlung contribution is quite close to that of the
� Dalitz one.

Individual views of the time evolution of the most
important partial components of the dilepton mass spec-
trum are provided in Fig. 8. We observe that the pn
and πN bremsstrahlung components practically saturate
at 15 fm/c when the primary stopping is over and the
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FIG. 8. Time evolution of the most important partial components of the e+e− invariant mass spectrum from Au+Au at 1.23A GeV, b = 0
fm: pn bremsstrahlung (a), πN bremsstrahlung (b), �(1232) Dalitz decay (c), ρ → e+e− decay (d), η Dalitz decay (e), and π 0 Dalitz decay
(f). Final spectra (solid lines) are obtained at t = 60 fm/c after adding up electromagnetic decays of long-lived particles. Calculations include
the collisional width of the ρ meson within the OSP ansatz. Full acceptance is assumed.

system reaches the highest compression state (see Fig. 5).
The � → Ne+e− component at larger dilepton invariant
masses, Me+e− � 0.4 GeV, also shows a quite early sat-
uration. However, the � Dalitz decays still continue to

populate the softer part of dilepton mass spectrum until late
times.

The time evolution of the ρ → e+e− decay component is
much slower which reflects the multistep processes of the ρ
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FIG. 9. Dilepton invariant mass spectrum produced in ρ → e+e−

decays from Au+Au at 1.23A GeV b = 0 fm. Solid line: Total
spectrum. Dashed and dotted lines: Partial contributions from ρ’s
produced in decays of N∗(1520) resonance and higher resonances,
respectively. Dot-dashed line: Partial contribution from ππ → ρ

process. Calculations are done including the collisional width of ρ

meson within the OSP ansatz. Full acceptance is assumed.

production, mostly mediated by the N∗(1520). The spectrum
around the pole mass of the ρ is practically saturated at
30 fm/c since the life-time of the ρ meson at the pole mass is
only 1.3 fm/c. Thus, large-mass ρ’s decay very quickly after
decoupling from the fireball. However, the ρ’s with masses
only slightly above the 2π threshold are long-lived in vacuum.
Thus, their dilepton decays continue until quite late times, on
the order of ≈60 fm/c. Note that the OSP ansatz leads to
almost vanishing ρ mass spectrum below 2mπ at late times,
except for a peak at extremely small invariant masses due
to the growing partial width �ρ→e+e− toward small invariant
masses (see Fig. 6). This explains the behavior of the ρ →
e+e− component in the dilepton mass spectrum below 2mπ .

The Dalitz decays of the π0 and η mesons have large
branching fractions. Thus, their contributions are almost en-
tirely dominated by time scales much larger than the GiBUU
evolution time. While this is equivalent to the summation of
the decays of all produced π0’s and η’s at the end of the
GiBUU time evolution, for consistency we also show in Fig. 8
the small contributions of π0 and η decays that occur during
the GiBUU time evolution.

The final ρ → e+e− component of the dilepton invariant
mass spectrum is shown together with its subcomponents in
Fig. 9. Indeed, the decays of the D13 N∗(1520) resonance
are the main source of ρ’s providing the largest contribution
both in the total integrated spectrum and in the intermediate
invariant mass region 0.2–0.4 GeV. However, the decays of
all higher resonances coupled to the ρN final state (cf. Fig. 1)
and the ππ collisions provide the dominant contribution at
higher invariant masses �0.6 GeV. It is interesting that the
ππ subcomponent does not vanish below 2mπ . This is related
to the off-shell dynamics of the ρ meson that changes its
invariant mass. As discussed after Eq. (17), the OSP ansatz

has the effect that a ρ meson moving toward higher density
regions tends to shift away from the mass shell (and vice
versa).

A. Comparison with HADES data

The HADES collaboration has measured inclusive dilepton
spectra at SIS18 energies for the following systems: p + p col-
lisions at beam energies of 1.25 GeV [70], 2.2 GeV [71], and
3.5 GeV [72], d + p collisions at beam energy of 1.25A GeV
[70], C+C at 1A GeV [23] and 2A GeV [22], Ar+KCl at
1.76A GeV [24], and Au+Au at 1.23A GeV [25]. Recently
the measurements have also been performed for Ag+Ag at
1.58A GeV although the data have not being published yet.

Below, if not specially mentioned, the calculated spectra
are smeared according to the HADES detector resolution and
filtered through the HADES acceptance filter. After that, the
proper angular and momentum cuts are taken into account.
For the Au+Au system at 1.23A GeV the dedicated accep-
tance filter does not exist yet. Thus, we have applied for that
system the filter for d + p at 1.25A GeV where the magnetic
field setting is similar [73]. After filtering the opening angle
cut 
e+e− > 9◦ and restrictions on the e− and e+ momenta
0.1 GeV < pe± < 1.1 GeV have been applied for Au+Au.

In heavy-ion collision simulations, the GiBUU evo-
lution time was set to 30 fm/c. This is long enough
such that practically only mean-field potential interactions,
elastic rescattering of produced particles and resonance de-
cays may occur later. These, however, do practically not
influence hadron multiplicities and the spectra of pro-
duced dileptons. Note that particle multiplicities and spectra
are calculated taking into account the decays of reso-
nances which survived until the end of the GiBUU time
evolution.

The HADES data for heavy-ion collisions are given rela-
tive to the “total π0 multiplicity” (we will refer to this as the
pseudoneutral-pion multiplicity in Appendix A), Nπ0 , experi-
mentally defined as

Nπ0 ≡ (Nπ+ + Nπ− )/2, (62)

with the charged pion multiplicities Nπ± obtained by extrap-
olation to the full solid angle. In the following comparisons
we do not use this normalization but instead compare with
the dilepton data themselves since these are measured only in
a limited acceptance window. A more detailed discussion of
pion numbers is given in Appendix A.

1. pp and d p collisions

Figure 10 shows the invariant mass e+e− spectra from
p + p collisions at 1.25, 2.2, and 3.5 GeV, as well as d + p
collisions at 1.25A GeV. The experimental spectra from p + p
collisions are very well described by our GiBUU transport
model simulations.

In the case of d + p collisions, following Ref. [70] only
n + p collisions were taken into account in our calculations.
The neutron momentum spread in the deuteron has been taken
into account by using the wave function of the full Bonn
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FIG. 10. Invariant-mass differential cross section of dilepton production in p + p collisions at the beam energies 1.25, 2.2, and 3.5 GeV,
and in d + p collisions at beam energy 1.25A GeV. Thick solid (black) lines show the total calculated cross sections. Other lines show the
partial contributions of the different production channels as indicated. For the d + p reaction, the cross section of the pn bremsstrahlung
component [see Eq. (63)] was thereby corrected in order for the total (thick black line) cross section to agree with experiment. The total cross
without this correction is shown as the thin solid (black) line for comparison. Experimental data are from Refs. [70–72]. In the d + p reaction,
the n + p collisions were exclusively selected by detecting the fast forward spectator proton.

model [74]. Since η production is below threshold in NN
collisions at 1.25 GeV, the η Dalitz component for d + p col-
lisions at 1.25A GeV is predominantly due to neutron Fermi
motion. While the introduction of a coupling of the virtual
photon to an exchanged charged pion led to a significant
increase of the mass spectrum around Me+e− ≈ 500 MeV [57]
this is still not sufficient to describe the experimental dilepton
yield in this region.

There are at least two possible reasons for this remaining
discrepancy. First, it might be due to the very simple OBE
model used to describe elementary NN scattering in Ref. [57].
Second, at the invariant masses near the quasifree thresh-
old Mmax

e+e− = √
sNN − 2mN = 0.545 GeV the high-momentum

part of the deuteron wave function which is subject to light-
cone corrections [75,76] might become relevant, which is
not taken into account here. In the present work, we de-
cided to tune the elementary p + n cross section to the

experimental d + p data at 1.25A GeV by multiplying the pn
bremsstrahlung component of the dilepton production cross
section by the factor,

f (M ) = C
1 + wM2/b2

{exp[(a − M )/d] + 1}{exp[(M − b)/d] + 1} + 1,

(63)

with dilepton invariant mass M in GeV, C = 1.5, d = 0.01,
a = 0.10, b = 0.55, and w = 3.0. Note that the particular
form of Eq. (63) is chosen for reasons of numerical conve-
nience only. For a further discussion of this tuning factor see
Appendix B.

In Fig. 10 we show the resulting total dilepton mass
spectrum, after multiplication of the pn bremsstrahlung com-
ponent (shown as dotted magenta line in the figure) by the
factor f (M ) of Eq. (63). For comparison, the corresponding
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FIG. 11. Transverse momentum differential cross section of dilepton production in p + p collisions at the beam energy 2.2 GeV in the
invariant mass intervals Me+e− < 0.15 GeV (a), 0.15 GeV < Me+e− < 0.45 GeV (b), and Me+e− > 0.45 GeV (c). The thick solid (black)
line shows the total calculated cross section. The other lines show the partial contributions of different production channels as indicated.
Experimental data are from Ref. [71].

total spectrum without this rescaling is also shown as thin
black line. Once fixed phenomenologically from the elemen-
tary reaction, we then use the same factor f (M ) with the
same parameters also for all other cross sections, such as
momentum distributions, for heavy-ion collisions at beam
energies around 1A GeV. Figure 11 displays the transverse
momentum differential cross section of e+e− production in
pp collisions at 2.2 GeV in different invariant mass windows
where the dominant contributions are π0 → γ e+e− (a), η →
γ e+e− (b), and ρ → e+e− (c). The ρ → e+e− decay and pp
bremsstrahlung also provide the two main contributions at
large pt ’s in the intermediate mass window (b). There is a
good overall agreement of the calculated dilepton pt spectra
with experiment except for the ρ-dominated invariant-mass
window where the pt -spectrum is slightly underestimated.
This might indicate a larger coupling of the baryon resonances
to the ρN channel as compared to the one of Ref. [63] used
in our default calculations (see also Ref. [71] for further
discussion).

2. C + C collisions

Figure 12 shows the dilepton invariant mass spectrum
from C+C collisions at 1A GeV. At small invariant masses
the spectrum is saturated by the π0 Dalitz decay compo-
nent.7 At Me+e− � 0.4 GeV the spectrum is dominated by
the ρ → e+e− decay. At intermediate invariant masses in
the range Me+e− ≈ 0.2–0.4 GeV there are four comparable
contributions of the components: � → Ne+e−, η → γ e+e−,
pn bremsstrahlung, and ρ → e+e−. Thus, the intermediate
region is quite complex and the disagreement with experi-
ment might be caused by any one of these four components,
or an accumulated effect from inaccuracies in several of
these four. However, we observe that just using the tuned
pn bremsstrahlung component of Eq. (63) solves the problem

7The π 0 → e+e−γ component extends slightly above mπ due to
the smearing by the detector resolution.
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FIG. 12. Invariant mass spectrum of dileptons produced in C+C
collisions at 1A GeV calculated with vacuum (a) and in-medium (b) ρ

spectral function. Thin and thick solid lines show the total calcu-
lated spectrum before and after correction of the pn bremsstrahlung
component [see Eq. (63)], respectively. Other lines show the partial
contributions of the different production channels to the total spec-
trum as indicated. Experimental data are from Ref. [23].

of missing yield in the intermediate region of invariant mass
(thick solid line).

The physical effect of collisional broadening of the ρ me-
son on the other hand is still rather weak for this light C+C
system. However, including the collisional width of the ρ

meson allows to reduce statistical fluctuations in the ρ →
e+e− component of the spectra at Me+e− < 2mπ , producing
a smoother behavior of this component. Nevertheless, signif-
icant statistical fluctuations of the ρ → e+e− component still
persist in the transverse momentum and rapidity distributions
of dileptons at small Me+e− , as seen in Figs. 13(a), 14(a), 16(a),
and 17(a).

The transverse momentum and rapidity distributions of
dileptons produced in C+C collisions at 1A GeV are shown
in Figs. 13 and 14, respectively.8 In the lowest invariant mass

8Here we show the cases with the in-medium ρ only. Calculations
with vacuum ρ produce practically indistinguishable spectra, except

FIG. 13. Transverse momentum distributions of dileptons pro-
duced in C+C collisions at 1A GeV in the invariant mass intervals
Me+e− < 0.15 GeV (a) and 0.15 GeV < Me+e− < 0.50 GeV (b). Cal-
culations were done with in-medium ρ spectral functions. Thin and
thick solid lines show the total spectrum before and after correction
of the pn bremsstrahlung component [see Eq. (63)], respectively.
Other lines show partial contributions of the different production
channels as indicated. Experimental data are from Ref. [77].

range (Me+e− < 0.15 GeV), the spectra are saturated by the π0

Dalitz decay, with the other contributions suppressed by more
than one order of magnitude. In the higher invariant mass
window (0.15 GeV < Me+e− < 0.50 GeV), the composition
of the dilepton spectra is more complex. The small-pt part is
governed by the � Dalitz decays while at large pt ’s there are
comparable contributions of η Dalitz decay, ρ → e+e− decay,
and pn bremsstrahlung. We see again that using the tuned pn
bremsstrahlung improves the description of the experimental
data. This illustrates that the pn bremsstrahlung is an essential
component in the spectra and has to be quantitatively brought
under control.

for the somewhat stronger statistical fluctuations in the ρ → e+e−

components at small invariant masses.
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FIG. 14. Rapidity distributions of dileptons produced in C+C
collisions at 1A GeV in the invariant mass intervals Me+e− <

0.15 GeV (a), 0.15 GeV < Me+e− < 0.50 GeV (b). Calculations were
done with in-medium ρ spectral functions. The total spectrum be-
fore and after correction of the pn bremsstrahlung component [see
Eq. (63)] is shown by thin and thick solid lines, respectively. Other
lines show partial contributions of the different production channels
as indicated. Experimental data are from Ref. [77].

The dilepton invariant mass spectrum in C+C collisions
at 2A GeV is shown in Fig. 15. Similar to the case of C+C
at 1A GeV, at small and large Me+e− the spectrum is domi-
nated by the π0 Dalitz and ρ → e+e− decays, respectively.
However, in contrast to the same system at lower energy,
now the intermediate mass region is almost saturated by the
η Dalitz decays. There are also rather strong contributions of
the ω → e+e− and φ → e+e− decays in the invariant mass
regions near their pole masses. We observe an overall quite
perfect agreement between our GiBUU results and the ex-
perimental data. Figure 16 shows the transverse momentum
distributions of dileptons from C+C collisions at 2A GeV in
the three invariant mass windows with dominant π0 Dalitz,
η Dalitz, and ρ → e+e− decays, respectively, in the order of
increasing Me+e− . It is interesting to compare these spectra to
those from p + p collisions at 2.2 GeV in Fig. 11. The leading
components in each mass window experience sharp cutoffs in

FIG. 15. Invariant mass spectra of dileptons produced in C+C
collisions at 2A GeV calculated with vacuum (a) and in-medium (b) ρ

spectral function. The thick solid (black) line shows the total calcu-
lated spectrum. Other lines show partial contributions of the different
production channels to the total spectrum as indicated. Experimental
data are from Ref. [22].

the p + p case while they are falling exponentially with pt

in the C+C case. This difference is largely caused by Fermi
motion inside the carbon nuclei.9 The experimental data in all
three invariant mass windows are described very well.

The rapidity distributions of the dileptons from C+C colli-
sions at 2A GeV are shown in Fig. 17. They are not symmetric
around midrapidity (Y = 0.9) due to the experimental accep-
tance. The experimental data are well described, except for the
intermediate invariant mass region dominated by the η Dalitz
decay where our calculations underestimate the dilepton yield
at forward rapidities. A possible reason is the oversimplified
description of η production in decays of N∗(1535) which are
modeled isotropically in the resonance rest frame.

9The transverse collective flow effect is expected to be small in
C+C system.
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FIG. 16. Transverse momentum distributions of dileptons produced in C+C collisions at 2A GeV in the invariant-mass intervals Me+e− <

0.15 GeV (a), 0.15 GeV < Me+e− < 0.55 GeV (b), and Me+e− > 0.55 GeV (c). Calculations were done with in-medium ρ spectral functions.
Thick solid (black) lines show the total calculated cross sections, other lines the partial contributions of different production channels as
indicated. The fluctuations of the ρ → e+e− component in the lowest invariant mass interval (a) are purely statistical. Experimental data are
from Ref. [78].

3. Ar + KCl collisions

The dilepton invariant mass spectrum from Ar+KCl col-
lisions at 1.756A GeV is shown in Fig. 18. For this colliding
system,10 similar to C+C at 2A GeV, the spectrum at Me+e− ≈
0.2–0.4 GeV is dominated by the η Dalitz decays. There are
also clearly visible peaks due to the ω → e+e− and φ →
e+e− decays. In calculations with vacuum ρ, we further-
more see a pronounced shoulder at the ρ pole mass which is
smoothed by the collisional broadening of the ρ. However, a
sizable overestimation of the data at the ρ pole mass remains

10In the calculations we have replaced KCl by 37Ar.

in this case. Figure 19 displays the transverse mass distribu-
tions of the dileptons from Ar+KCl collisions at 1.756A GeV.
The calculated mt spectra agree with experimental data in all
invariant mass windows, except for the highest one (Mee >

0.65 GeV) where our calculations produce softer mt spectra
and overestimate the yields, in line with the excess observed
in Fig. 18.

Similar results (with vacuum ρ) are obtained in the
Simulating Many Accelerated Strongly-interacting Hadrons
(SMASH) model [29]. The HSD model [79] produces a some-
what better description of the dilepton invariant mass yield
from Ar+KCl near the ρ/ω pole masses with a similar qual-
itative effect of the collisional broadening of the ρ meson.
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FIG. 17. Rapidity distributions of dileptons produced in C+C collisions at 2A GeV in the invariant-mass intervals Me+e− < 0.15 GeV
(a), 0.15 GeV < Me+e− < 0.55 GeV (b), and Me+e− > 0.55 GeV (c). Calculations are done with in-medium ρ spectral function. Thick solid
(black) lines show the total calculated cross sections, other lines show the partial contributions of different production channels as indicated.
The fluctuations of the ρ → e+e− component in the lowest invariant mass interval (a) are purely statistical. Experimental data are from
Ref. [78].

In Refs. [27–30,80], the coarse graining approach has been
applied for the description of heavy-ion collisions at SIS18
energies. This is a hybrid approach based on the assumption of
local thermal equilibrium with parameters T, μ extracted from
the microscopic transport calculations. The microscopic trans-
port contribution of the vector-meson decays is then (partly)
substituted by the dilepton emission from the thermal system
with in-medium spectral functions. Coarse-grained transport
simulations describe the entire dilepton invariant mass spec-
trum for Ar+KCl very well. Note however that establishing
local thermal equilibrium at SIS18 energies can be a delicate
issue [31], especially for light colliding systems, which needs
verification on a case by case basis. While in our present
calculations we also resort to an equivalent local temperature
in evaluating the ρ spectral function for simplicity, to avoid

numerically expensive calculations of ρ collision rates from
the actual dynamics, in contrast to Refs. [27–30,80] on the
other hand, we entirely rely on our microscopic transport
simulations in the computation of dilepton emission from the
nonequilibrium system.

4. Au + Au collisions

The Au+Au system at 1.23A GeV is currently in the focus
of studies by the HADES collaboration (cf. Refs. [25,81] and
references therein). This is the heaviest system measured so
far. Therefore, one expects the deviations due to the various
in-medium effects from the superposition of quasifree NN
collisions as reference to be stronger than in the other col-
liding systems. As we have already seen, inclusive dilepton
production is influenced by many reaction processes. Since
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FIG. 18. Invariant mass spectra of dileptons produced in
Ar+KCl collisions at 1.756A GeV calculated with vacuum (a) and
in-medium (b) ρ spectral function. Thick solid (black) line shows
the total calculated spectrum. Other lines show the partial contribu-
tions of the different production channels to the total spectrum as
indicated. Experimental data are from Ref. [24].

the production of mesons π0, η, ρ, ω decaying into dileptons
is mediated by baryon resonances, it is especially impor-
tant to have baryon resonance production, absorption and
decay in the nuclear medium well under control. For this
purpose the GiBUU model has been extensively applied to
various reactions with nuclear targets, such as heavy-ion-,
(anti-)proton-, pion-, photon-, electron-, and neutrino-induced
(semi-)inclusive production processes [33].

For comparison, the dilepton invariant-mass spectrum in
Au+Au at 1.23A GeV with vacuum ρ spectral function is
shown in Fig. 20(a) with the relativistic and 20(c) with the
Skyrme-like mean fields (see Appendix B for detail). The
resonance structure in the ρ → e+e− component is clearly
visible in either case. Compared to that, in Figs. 20(b) and
20(d), we see that the collisional broadening of the ρ meson
is strong enough in this system, to remove the shoulder in
the spectrum near the ρ pole mass and hence, to yield better
agreement with data. As before in this energy range, however,
without applying the correction factor of Eq. (63) to the pn

FIG. 19. Transverse mass spectra of dileptons produced in
Ar+KCl collisions at 1.756A GeV in different invariant mass
windows as indicated (in MeV). Calculations with vacuum and
in-medium ρ are shown by solid and dotted lines, respectively.
Experimental data are from Ref. [24]. Scaling factors are given in
parentheses.

bremsstrahlung component we would again underpredict the
data in the intermediate invariant-mass region. This lends
further support to the hypothesis that there is indeed some
strength missing in the pn bremsstrahlung component at these
low energies.

As already mentioned in Sec. III, the set of resonances
of Ref. [63] is used in GiBUU by default. The nucleon res-
onance parameters have been recently updated in Ref. [68].
The influence of these new resonance parameters on the colli-
sional width of the ρ meson has been demonstrated in Fig. 1
above. As shown there, the collisional width of the ρ meson
is slightly larger at small masses with the new resonance
parameters. Comparing the resulting dilepton invariant-mass
spectrum in Fig. 20(d) with that obtained from the analo-
gous calculation with the default resonance parameters in
Fig. 20(b), we observe that the overall effect of the updated
resonance parameters is rather small, with an only moderate
increase in the ρ → e+e− component slightly further improv-
ing the agreement with experiment at low invariant masses.

Overall, the agreement of the calculations with the ex-
perimental data is very good. In particular, also the π0

Dalitz-decay component at small masses is in excellent agree-
ment with the data. This indicates that the number of produced
neutral pions is correctly described. It is, therefore, surprising
to see that the calculated total number of pions produced is
significantly larger than the number of experimentally mea-
sured pions, as shown in Appendix A. The latter discrepancy
seems to be fairly model-independent since other generators
give roughly the same overestimate (see Fig. 7 in Ref. [81]).
We will discuss this problem further in Appendix A.

5. Ag + Ag collisions

In the recent Ref. [82], the SMASH (+ coarse graining)
model predictions for the dilepton invariant mass spectra from
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FIG. 20. Invariant-mass spectra of dileptons produced in Au+Au collisions at 1.23A GeV calculated with vacuum [(a) and (c)] and in-
medium [(b) and (d)] ρ spectral function. The calculation with the Skyrme-like potential is shown in panel (c). Panel (d) shows the results
obtained with updated resonance parameters. Thick solid black lines show the total spectra obtained from GiBUU output with multiplying the
pn bremsstrahlung component by the factor given in Eq. (63). Thin solid black lines show the same spectra without this correction. The other
lines show the partial contributions of different production channels to the total spectra as indicated. Experimental data are from Ref. [25].

Ag+Ag at the beam energy 1.58A GeV were given, indicating
practically full coincidence of the Ag+Ag and Au+Au spec-
tra. Figure 21 displays our predictions for the total dilepton
invariant mass spectrum and its partial ρ → e+e− compo-
nent for Ag+Ag at 1.58A GeV. The corresponding spectra
for Au+Au at 1.23A GeV are also shown for comparison. In
the π0 Dalitz region, the spectra for Ag+Ag and Au+Au are
almost identical since the (true) π0 multiplicities per event are
quite close: 9.7 for Ag+Ag vs. 11.7 for Au+Au. However, at
larger invariant masses the spectra from Ag+Ag and Au+Au
differ significantly. In the intermediate mass range, Me+e− ≈
0.2–0.6 GeV, the yield for Ag+Ag is smaller while in the
ρ-dominated region, Me+e− � 0.6 GeV, it is larger than the
yield for Au+Au. The first effect is due to the bremsstrahlung
correction that is here included for Au+Au only. As we have
seen above, such a correction is necessary at the lower energy
in Au+Au. Whether and to what extend it is also needed
for Ag+Ag at 1.58A GeV remains uncertain. The second ef-
fect, i.e., the enhancement by ≈30% for Ag+Ag relative to

Au+Au in the ρ mass region, is more robust. We have checked
that a similar enhancement presents also in calculation with
a vacuum ρ spectral function. A small, although statistically
significant, difference between predictions of GiBUU and
SMASH models is most probably due to different resonance
parameters.

B. Excess radiation

In-medium effects, such as multiple scattering, secondary
particle interactions and, possibly, modifications of the vac-
uum spectral properties of the ρ are also being discussed
in terms of the excess radiation, that is the dilepton spec-
trum without η and ω decay contributions, and with the NN
reference spectrum subtracted. The latter describes dilepton
radiation in the picture of first-chance NN collisions and is
defined as follows (see Refs. [24,25]):

dNref

dMe+e−
=

(
cpp

σ tot
pp

dσ
pp

e+e−

dMe+e−
+ cnp

σ tot
np

dσ
np
e+e−

dMe+e−

)
Apart. (64)
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FIG. 21. Dilepton invariant-mass spectra for Ag+Ag at
1.58A GeV (black lines) and Au+Au at 1.23A GeV (blue lines).
Solid and dashed line show the total spectra and their partial
ρ → e+e− components, respectively. Calculations were done with
the in-medium ρ spectral function. The centrality selection is 0–40%
for both systems, and modeled in the sharp cutoff approximation for
the impact parameter, with b < 7.7 fm for Ag+Ag, and b < 9.3 fm
for Au+Au. The total spectrum for Au+Au is shown with the
bremsstrahlung correction of Eq. (63). All spectra are given in full
acceptance.

Here cpp and cnp are the fractions of pp + nn and np colli-
sions, respectively, calculable as follows:

cpp = (Ppp + Pnn)σ tot
pp

(Ppp + Pnn)σ tot
pp + Pnpσ tot

np

, (65)

cnp = Pnpσ
tot
np

(Ppp + Pnn)σ tot
pp + Pnpσ tot

np

, (66)

where Ppp = (Z/A)2, Pnn = (N/A)2, and Pnp = 2ZN/A2 are
the probabilities that a randomly chosen NN pair will be,
respectively, pp, nn, or np one for symmetric (A, Z ) + (A, Z )
nuclear collisions. The total pp and np cross sections calcu-
lated using GiBUU at Elab = 1.25 GeV are σ tot

pp = 48 mb and
σ tot

np = 39 mb, in a good agreement with empirical data [49].
The effective participant number can be determined as the
ratio of the π0 multiplicities in the studied AA and in the NN
collision, i.e.,

Apart = NAA
π0

NNN
π0

, (67)

where

NNN
π0 = cpp

σ tot
pp

σ
pp
π0 + cnp

σ tot
np

σ
np
π0 . (68)

Note that it is assumed in Eqs. (64)–(68) that the total cross
sections, the dilepton and the π0 production cross sections
in pp and nn collisions are the same. For dileptons this as-
sumption is obviously quite rough. It is needed here, however,
because Eq. (64) is used in the experimental analysis as well
[24,25]. For internal consistency, we apply Eq. (64) with all

quantities calculated from GiBUU. To avoid some possible
misunderstanding, in this subsection the π0 multiplicity refers
properly to the charge neutral pions, and not to the average
charged pion multiplicity of Eq. (62).

Figure 22 shows the excess dilepton radiation spectrum

dNexcess

dMe+e−
= dNAA

dMe+e−
− dNref

dMe+e−
(69)

calculated in full acceptance. Here dNAA/dMe+e− is the in-
variant mass spectrum in AA collisions with the η and ω

decay components removed. In contrast to the smoothly drop-
ping experimental spectrum with dilepton invariant mass,
the calculation with vacuum ρ shows up a bump at the ρ

pole mass and a valley in the intermediate mass region.
The collisional broadening of the ρ meson improves the
agreement with experiment, although the deviation still re-
mains. The correction of the pn bremsstrahlung by Eq. (63)
further improves the agreement in the intermediate mass
region.

The system mass dependence of the excess radiation can
be studied by using the yield ratio [24,25]

RAA = dNAA

dMe+e−

(
dNref

dMe+e−

)−1

. (70)

The η contribution is subtracted in both, the AA
and the reference, spectra. At low e+e− invariant masses,
where the dilepton spectrum is saturated by the π0 Dalitz
decays, one obtains RAA = 1 in full acceptance. Taking
into account the HADES acceptance in the calculation of
dilepton spectra while keeping the full π0 multiplicities
in the definition of the participant number, Eq. (67),
results in deviations from unity of RAA in the π0 Dalitz
region.

Figure 23 shows the yield ratio for the different colliding
systems. For C+C at 1 and 2A GeV, following Ref. [24],
the calculations have been performed within Ar+KCl accep-
tance, both for the spectrum from heavy-ion collision and for
the reference spectrum. For the Au+Au system, the d + p
acceptance filter at 1.25A GeV has been applied, while the
pp and np components of the reference spectrum have been
calculated with pp and d p acceptance filters at 1.25A GeV,
respectively. Our calculations correctly reproduce the main
trend present in the HADES data, i.e., the enhanced dilepton
yields at intermediate invariant masses with respect to the
yield at small invariant masses for the heavy colliding sys-
tems, Ar+KCl and Au+Au. Again, the correction of the pn
bremsstrahlung improves the agreement with the C+C data at
1A GeV and the Au+Au data at 1.23A GeV. The figure also
shows that in the mass-region between about 0.2 and 0.4 GeV
not only in-medium effects contribute, but that there is also
a strong sensitivity to the pn-bremsstrahlung. We reiterate,
however, that the Ar+KCl acceptance filter was used for C+C
and its reference spectrum, while the d + p acceptance filter
was used for Au+Au. These differences blur the discussion of
physical effects.
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V. SUMMARY AND CONCLUSIONS

We have performed microscopic transport calculations of
dilepton (e+e−) production in heavy-ion collisions at Ebeam =
1–2A GeV. The calculations were based on the GiBUU model
which has been already successfully applied to describe dilep-
ton production in pA reactions [48]. The main model inputs
such as resonance parameters, elementary cross sections, and
dilepton production channels are the same as in Ref. [48]. As
compared to Ref. [48], the present calculations include the
pp and np bremsstrahlung described in the framework of the
boson-exchange model [57] that provides a somewhat better
description of the d + p data (cf. our Fig. 10 and Fig. 3 of
Ref. [48] where the np bremsstrahlung is calculated in the
soft-photon approximation).

The most important novel feature of the present work is the
self-consistent description of the ρ-meson spectral function
in the nuclear medium. Self-consistency here implies that
the collisional width of the ρ meson that enters the spectral
function is calculated from the collision term of the transport
equation, i.e., it includes the contribution of the ρN colli-
sions.11 The nonequilibrium momentum distribution of the
baryons at every space-time point of the colliding system is
thereby approximated by an equivalent equilibrium distribu-
tion which is then used to calculate the collisional width of the
ρ meson. The applied procedure is based on using the density
and 〈p2〉 of the baryons in the local rest frame of the baryonic
matter. Such a procedure is expected to be accurate enough
for the highly-compressed state of the baryonic matter formed
in the central zone of a heavy-ion collision.

In order to describe the propagation of the off-shell ρ me-
son in the presence of collisional broadening, we have applied
the relativistic off-shell potential ansatz where the deviation of
the actual off-shell particle mass squared from the pole mass
squared is proportional to the total width of the particle, with
the constant of proportionality defined at the production time
of the particle. This allows to recover the vacuum spectral
function of the particle when it is emitted to the vacuum
outside the baryonic matter.

We compared the results of GiBUU calculations with
HADES data on the dilepton invariant mass spectra for p + p
at Ebeam = 1.25, 2.2, and 3.5 GeV, d + p at 1.25A GeV, C+C
at 1 and 2A GeV, Ar+KCl at 1.756A GeV, and Au+Au at
1.23A GeV, and also provided our predictions for Ag+Ag at
1.58A GeV. The model calculations agree with all HADES
data at Ebeam ≈ 2A GeV and above. The data for p + p at
1.25A GeV are also described quite well. However, for d + p
at 1.25A GeV, C+C at 1A GeV, and Au+Au at 1.23A GeV
there is a systematic underprediction of the dilepton yield in
the intermediate invariant-mass range, Me+e− ≈ 0.2–0.5 GeV,
which deserves further study in the future.

Including the collisional broadening of the ρ meson smears
out the peak in the dilepton invariant-mass spectrum near the
ρ pole mass and increases the dilepton yield in the intermedi-

11In the previous microscopic transport studies of dilepton produc-
tion [48,69,79] the collisional broadening of the ρ meson has been
included in the linear density approximation.

FIG. 22. The invariant mass spectrum of excess dileptons pro-
duced in Au+Au collisions at 1.23A GeV calculated according to
Eq. (69). The dashed (blue) versus the thick and thin solid (black)
lines depict calculations with vacuum ρ width versus in-medium
ρ width with and without correction of the pn bremsstrahlung
according to Eq. (63), respectively. Calculations were done with-
out filtering, i.e., in full acceptance. Experimental data are from
Ref. [25].

ate invariant-mass range. The effect is most clearly visible in
the heaviest system Au+Au, while it does practically not in-
fluence the dilepton spectra for C+C and only weakly changes
that for Ar+KCl. The overall strength of the ρ collisional
broadening alone, however, is not sufficient to completely
account for the missing strength in the intermediate invariant
mass region in Au+Au at 1.23A GeV.

This motivated us to adjust the n + p bremsstrahlung cross
section at Ebeam = 1.25 GeV by a dilepton invariant-mass
dependent factor so as to describe the inclusive dilep-
ton data for d + p at 1.25A GeV. Multiplying the n + p
bremsstrahlung component in C+C at 1A GeV and Au+Au
at 1.23A GeV by the same factor, without further adjustments,
then leads to good agreement with the data on the inclusive
dilepton invariant-mass spectra in these heavier systems as
well. Further circumstantial evidence for the increased n + p
bremsstrahlung cross section in vicinity of 1A GeV beam en-
ergy is also provided by an improved agreement of the excess
dilepton yield (see Fig. 22) and yield ratios [see Figs. 23(a)
and 23(d)] with the experimental data.

While the suggested enhancement of the n + p
bremsstrahlung is thus effective in improving the intermediate
mass dilepton yields of all systems in the range of 1–1.5A GeV
beam energy, this does not exclude other possibilities.
In particular, a related alternative problem at these low
beam energies might be the η production near threshold
which is extremely difficult to constrain from experimental
data in p + p and p + n collisions with high precision.
This thus introduces an additional uncertainty in the input
cross sections. Therefore, the missing dilepton yield in
d + p collisions at 1.25A GeV might be also at least
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FIG. 23. The yield ratio of Eq. (70) normalized at the experimental value for Me+e− ≈ 0.07 GeV as a function of the dilepton invariant
mass. Panels (a), (b), (c), and (d) correspond to C+C at 1A GeV, C+C at 2A GeV, Ar+KCl at 1.756A GeV, and Au+Au at 1.23A GeV. The
calculations include collisional broadening of the ρ meson. For C+C at 1A GeV and Au+Au at 1.23A GeV the thick and thin solid lines show,
respectively, the result with and without the pn bremsstrahlung correction factor in Eq. (63). Experimental data are from Refs. [24,25].

partly attributed to missing strength in the η Dalitz decay
component. The detailed theoretical analysis of the exclusive
d p → e+e−nppfast cross sections [83], which is beyond
the scope of our present work, would be needed to further
test the suggested enhancement of the n + p bremsstrahlung
component. The availability of precisely determined exclusive
d p → γ e+e−nppfast cross sections would also be useful for
better constraining the different partial components of the
dilepton invariant-mass spectra.

Last, the processes involving the deuteron, which would
be subthreshold for the corresponding p + p or n + p col-
lisions on a free target proton at the same beam energy
per nucleon, depend on the deuteron wave function at
high momenta. The latter is subject to significant relativis-
tic corrections, as follows from the light-cone description
of the deuteron [75,76]. This possibility was not consid-
ered in the present work and remains to be studied in
future.

In summary, the present calculations, based on nonequilib-
rium transport theory, give a good description of a wealth of
data on dilepton production in heavy-ion collisions, obtained
in the HADES experiment. While there are many detailed
theoretical uncertainties to be investigated, which we have
specified both in the main text and in Appendix B, they are
not large enough to affect the overall agreement of the GiBUU
calculations with experiment significantly. The main message
then is that no additional postulates of thermal equilibrium and
of chiral symmetry restoration are necessary to understand
these data.
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TABLE I. Pseudoneutral π 0 multiplicities Nπ0 as defined by
Eq. (62) from GiBUU for various colliding systems. The results
for Au+Au and Ag+Ag are geometrically weighted in the impact
parameter ranges that corresponds to 0–40% centrality which are
b < 9.3 fm and b < 7.7 fm, respectively. For the other systems the
impact parameter distributions reproducing the HADES trigger were
used.

System Nπ0 Expt. Ref.

Au+Au, 1.23A GeV 13.1 8.65 ± 0.52 [25]
C+C, 1A GeV 0.53 0.52 ± 0.08 [23]
C+C, 2A GeV 1.01 1.16 ± 0.16 [84]
Ar+KCl, 1.76A GeV 4.2 3.50 ± 0.25 [24]
Ag+Ag, 1.58A GeV 10.1

with experimental data. The support by the Frankfurt Cen-
ter for Scientific Computing is gratefully acknowledged.
This work was financially supported by the German Fed-
eral Ministry of Education and Research (BMBF), Grant No.
05P18RGFCA.

APPENDIX A: HADRON NUMBERS

1. Pion numbers

At the end of Sec. IV A 4 we have briefly mentioned a
problem connected with the measured vs. calculated pion
numbers. We, therefore, now list in Table I the calculated
pseudoneutral-pion multiplicities, Eq. (62), together with the
corresponding HADES data.

While the calculated pseudoneutral-pion multiplicities for
C+C at 1A GeV and 2A GeV agree with the experimental
numbers very well, and those for Ar+KCl still reasonably
well, the theoretical values for the Au+Au system lie about
50% above the experimentally determined values. Also the
charged pion multiplicities listed in Table II below overesti-
mate HADES measurements by about 50%, i.e., just by the
same factor as for the pseudoneutral pions for Au+Au at
0–40% centrality.12

In our calculations, the numbers of true neutral pions, 17.6
at 0–10% and 11.7 at 0–40% centrality, are only about 12%
lower than the numbers of pseudoneutral pions, i.e., 20 at 0–
10% and 13.1 at 0–40% centrality. We can thus exclude this
difference as the main source of the discrepancy between the
dilepton yield in the π0 Dalitz region and the pseudoneutral-
pion multiplicity.

The fact that the virtual photons from π0 Dalitz decays are
in agreement with the experimentally measured dileptons in
the corresponding invariant-mass range, while the total pion
yields are not, thus remains a puzzle.

Any simple mechanism to reduce the pion yields would
inevitably also reduce the π0 Dalitz contribution to the dilep-
ton invariant-mass spectra, which, however, agrees very well

12The charged pion multiplicities for GiBUU reported in Ref. [81]
are slightly different because of the default mode of GiBUU using
Skyrme-like baryonic mean fields.

FIG. 24. Particle multiplicities per event in Au+Au collisions
at 1.23A GeV (

√
sNN = 2.4 GeV). Multiplicities calculated by using

GiBUU are shown by black solid boxes. The blue solid circle shows
the calculated proton multiplicity corrected with a help of Eq. (A1).
Experimental data (see Table II) are displayed by red solid circles.

with the data, see Fig. 20. Our calculations using a medium-
dependent suppression of NN ↔ N� cross sections from
Ref. [85] have indeed shown that effect. Such a medium-
dependent suppression therefore then requires an additional
explanation of missing dilepton yield in the π0 Dalitz region.
One possibility could be a shortcoming of the acceptance filter
used in our calculations. While for C+C, where good agree-
ment for the pion numbers is obtained, a filter specific for that
system exists, this is not the case for Au+Au. A designated
HADES acceptance filter for Au+Au would certainly help to
close in on such a possibility in the future.

2. Hadron multiplicities

As a further benchmark test, Fig. 24 shows particle mul-
tiplicities in central collisions of Au+Au at 1.23A GeV. The
calculated multiplicities are weighted with the impact param-
eter in the range b = 0–4.7 (6.6) fm for the 0–10 (20)% most

TABLE II. Particle multiplicities per event for Au+Au at
Ebeam = 1.23 A GeV. For protons the corrected multiplicity,
Eq. (A1), is given in parentheses.

Particle NGiBUU N exp Centrality ref.

p 168 (118) 77.6 ± 2.4 0–10% [87]
π− 25 17.1 ± 1.2 0–10% [81]
π+ 15 9.3 ± 0.6 0–10% [81]
η 0.22 0.192 ± 0.056 0–20% [89]
� 0.16 (8.22 ± 0.74) × 10−2 0–10% [90]
K+ 0.12 (5.98 ± 0.679) × 10−2 0–10% [91]
K0

S 0.07 (2.84 ± 0.26) × 10−2 0–10% [90]
K− 1.4 × 10−3 (3.36 ± 0.39) × 10−4 0–20% [91]
φ 1.6 × 10−4 (1.55 ± 0.34) × 10−4 0–20% [91]
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central events [86] and include all particles present in the
system after the decays of unstable resonances.

The experimental multiplicities of protons and �’s are
overestimated since some of these particles are bound in
nuclear clusters. In particular, for protons the corrected multi-
plicity due to clustering can be estimated by subtracting the
total number of protons in clusters using the experimental
cluster multiplicities from the multiplicity of protons calcu-
lated within GiBUU:

Ncorr.
p = NGiBUU

p − Nexp
d − Nexp

t − 2Nexp
3He − 2Nest

4He = 118,

(A1)

where NGiBUU
p = 168 is the calculated proton multiplicity;

Nexp
d = 28.7 ± 0.8, Nexp

t = 8.7 ± 1.1, and Nexp
3He = 4.6 ± 0.3

are the multiplicities of deuterons, tritons and 3He measured
experimentally [87]. The estimated multiplicity of α particles,
Nest

4He ≈ 0.4Nexp
3He, according to EOS data for central Au+Au

collisions at 1A GeV (see Ref. [88] and references therein).
Table II summarizes calculated and measured particle multi-
plicities. The corrected proton multiplicity still overestimates
the experimental value by ≈50%. This can be partly explained
by missing heavier cluster contributions in Eq. (A1). The
detailed analysis of cluster production is obviously a difficult
problem that is not in the focus of this work.

The calculated η multiplicity agrees very well with the
experimental value. This implies that the η → e+e−γ decay
component of the dilepton invariant spectra is described cor-
rectly.

APPENDIX B: RESIDUAL UNCERTAINTIES

1. Mean-field potentials

One important aspect of the GiBUU transport model is
the self-consistent baryonic mean-field potential that can be
provided either by a Skyrme-like energy density functional
or by the RMF Lagrangian of the nonlinear Walecka model.
In order to estimate the uncertainty caused by the specific
choice of mean-field model, we have also performed calcula-
tions using the soft momentum-dependent (SM) Skyrme-like
potential [92] with an incompressibility or bulk modulus of
nuclear matter at normal density, K = 215 MeV. This is quite
close to the value K = 210 MeV for the NL2 version [31] of
the RMF model used in the majority of calculations presented
in this work.

While the equation of state is therefore almost the same
for SM and RMF NL2, the energy dependence of the optical
potential is quite different (see Figs. 2 and 3 of Ref. [33]),
however. This is a well-known effect of the original RMF
model that leads to too repulsive Schroedinger-equivalent po-
tentials at high momenta [34]. Note, however, that around
a beam energy of 1 GeV both potentials are close to the
phenomenological one. Thus, we think that the influence of
different momentum dependencies in SM and RMF NL2 on
heavy-ion collisions at ≈1A GeV beam energy is rather weak,
although a dedicated study is definitely needed to clarify this
issue.

As a matter of fact, due to the different computing pre-
scriptions (see Appendix D.4.2 of Ref. [33] for detail), the

“free” invariant energy,
√

sfree, used in the calculations of the
baryon-baryon cross sections also differ between the Skyrme-
like and RMF modes of calculation. In particular, we see from
Fig. D69 of Ref. [33] that the NN cross sections are dialed
at larger invariant energies in the RMF mode than in the
SM mode (we have also checked this by direct comparison
of the

√
sfree distributions in the baryon-baryon collisions

for Au+Au at 1.23A GeV). One therefore also expects dif-
ferences in the � resonance production between the two
modes of calculation. Dilepton invariant-mass spectra calcu-
lated with the RMF versus the SM mean fields are compared
in Figs. 20(a) and 20(c). Indeed, the � → Ne+e− components
differ somewhat between the two modes: in the RMF mode
[Fig. 20(a)] there is a bump near Me+e− = 0.2 GeV, while in
the Skyrme-like mode [Fig. 20(c)] the � Dalitz component
monotonically drops with Me+e− . This agrees with our ex-
pectation of effectively more energetic NN → N� collisions
in the RMF mode. Overall, however, the difference between
results obtained with the RMF and the Skyrme potential is not
relevant.

Also note that the � potential in the GiBUU default
Skyrme-like mode is scaled by a factor of 2/3 relative to the
nucleon potential, corresponding to results from the �-hole
model [93]. In contrast, the RMF calculation was run with
the scalar and vector potentials acting on the � assumed
to be the same as the nucleonic ones. We have checked,
however, that changing the scaling factor of the � potential
from 2/3 → 1 in the Skyrme-like mode does not lead to any
visible changes in the � Dalitz component of the dilepton
spectrum.

2. In-medium cross sections and widths

GiBUU, like any other microscopic transport model, re-
lies on various elementary cross sections which are typically
taken from or adjusted to experimental data. Consistent cal-
culations of possible in-medium change of all these cross
sections are not available. However, in some cases there are
available models which can be relatively easily included in
transport simulations. One example is the in-medium suppres-
sion of the NN ↔ N� cross sections mentioned in the end of
Appendix A 1.

Another example is the collisional broadening of the �

resonance in the nuclear medium. This effect can be included
by means of the potential model of � spreading of Ref. [94]
that is optionally implemented in GiBUU (see Appendix B
of Ref. [33] for details). In GiBUU, the cross sections of the
� quasielastic scattering �N → �N , two-body absorption
�N → NN , and three-body absorption �NN → NNN are
modified such that the corresponding collision rates reproduce
those of Ref. [94] in cold nuclear matter of a given density. In
order to ensure the relation to Ref. [94], the kinematics of the
incoming pion is determined from the πN → � process on
the nucleon from the Fermi sea for the � of a given invariant
mass. In contrast to these processes the � production NN →
N� is kept unmodified and the production NNN → NN� is
not included. As a result, the pion absorption gets effectively
increased, but the pion production does not. Accidentally,
the pseudoneutral-pion multiplicity calculated with the �
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spreading potential in Au+Au at 1.23A GeV, Nπ0 = 7.8, be-
comes close to the experiment (see Table I). However, for
the light system C+C at 1A GeV we have now Nπ0 = 0.37
that underestimates the data by 30%. This leads to the un-
derestimation of the dilepton yields in the π0 Dalitz region.13

Another effect of the in-medium � width is the washing
out of the bump at Me+e− ≈ 0.2 GeV in the � Dalitz decay
component that is present in calculations employing RMF.
The ρ direct component at Me+e− � 0.4 GeV gets also some-
what reduced in calculation with � spreading potential. This,
however, does not much influences the total invariant-mass
spectrum of dileptons that remains practically unchanged,
except reduction of the π0 Dalitz peak mentioned above.

There is also a possibility that the collisional width of ρ

influences various ρ-mediated dilepton production processes
according to VDM. In particular, this in-medium effect may
modify the pn bremsstrahlung cross section. In Sec. IV A 1
we have introduced a tuning factor, Eq. (63), to bring the

13As discussed in Appendix A 1, any in-medium change of reso-
nance production cross sections would also affect the π0 Dalitz decay
contribution in the dilepton spectrum.

elementary pn bremsstrahlung cross section into agreement
with experiment. We expect that including the in-medium
broadening of the ρ meson into the exchange current contri-
bution of the pn cross section (Fig. 1(c) of Ref. [57]) would
somewhat shift the strength toward lower masses. The detailed
evaluation of this effect is, however, clearly beyond the scope
of the present investigation.

3. Centrality selection

Finally, there also remains an uncertainty related to the
centrality selection. For the dilepton spectra calculations in the
Au+Au system at 1.23A GeV we have applied a sharp cutoff
approximation, i.e., the spectra are geometrically weighted in
the impact parameter range b < 9.3 fm which corresponds
to 0–40% centrality [86]. The Glauber Monte-Carlo model
on the other hand produces an impact-parameter distribution
smeared by ≈1 fm at the upper bound instead of the sharp
cutoff (see, e.g., the upper Fig. 8 in Ref. [86]). We have
therefore varied the upper limit of the impact parameter by ±1
fm to estimate that such variations can at most lead to overall
changes of about ∓15% in the dilepton yields for Au+Au at
1.23A GeV.
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