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Probing the structure of the initial state of heavy-ion collisions with pT -dependent flow fluctuations
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The connection between initial-state geometry and anisotropic flow can be quantified through a well-
established mapping between pT -integrated flow harmonics and cumulants of the initial transverse energy
distribution. In this paper we successfully extend this mapping to also include pT -differential flow. In doing so,
we find that subleading principal components of anisotropic flow can reveal previously unobserved details of the
hydrodynamic response, in both the linear and the nonlinear regimes. Most importantly, we show that they pro-
vide novel information on the small-scale structures present in the initial stage of relativistic heavy-ion collisions.
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I. INTRODUCTION

In high-energy heavy-ion collisions, the hydrodynamic ex-
pansion of the quark-gluon plasma (QGP) is driven by large
pressure gradients that convert the anisotropic initial-state ge-
ometry into final-state momentum anisotropies, or anisotropic
flow [1]. In fact, a quantitative, event-by-event mapping
between features of the initial geometry and the resulting
anisotropic flow can be established in hydrodynamic models
of heavy-ion collisions [2–7]. Within this framework, it is pos-
sible to estimate how—and to what extent—anisotropic flow
observables respond to initial-state fluctuations at different
scales [8–10]. The purpose of the present paper is to investi-
gate the connection between subleading modes of anisotropic
flow fluctuations [11–20] and the aspects of the initial state of
heavy-ion collisions, especially at smaller scales.

The azimuthal flow can be characterized by flow harmonics
Vn, which are defined as the Fourier coefficients of the az-
imuthal distribution of particles in a given event:

dN

dy pT d pT dϕ
= 1

2π
N (pT , y)

∞∑
n=−∞

Vn(pT , y) e−inϕ, (1)
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where we consider particles of transverse momentum pT ,
rapidity y, and energy E , corresponding to a particle density
N (pT , y) in momentum space. The azimuthal angle in mo-
mentum space is denoted by ϕ. Here, the harmonics Vn are
defined as complex numbers of modulus and phase corre-
sponding to the magnitude and orientation of the anisotropies,
respectively. Here, Vn is normalized by the particle density in
momentum space N (pT , y).

The response of elliptic and triangular flow, V2 and V3, to
the initial geometry is given, to a good approximation, by

Vn � κn εn, (2)

where the properties of the QGP are encoded in the single con-
stant κn, and εn is an eccentricity characterizing the initial ge-
ometry, the precise definition of which may vary [2–7,21–29].
For n = 2, for instance, we take

ε2 ≡ − {r2 e2i φ} − {r ei φ}2

{r2} − {r ei φ}{r e−i φ} , (3)

where φ is the azimuthal angle in position space, r = |�x|, and
we define the spatial average,

{(· · · )} ≡
∫

d2x ρ(�x) (· · · )∫
d2x ρ(�x)

, (4)

in which ρ(�x) ≡ T ττ (�x), where T μν is the energy-momentum
tensor, is the initial transverse energy density in the laboratory
frame, at the position �x in the transverse plane. While the re-
lation (2) is usually employed for integrated flow vectors, we
here extend it to the differential flow Vn(pT ), by considering
independent values of κn(pT ) in each momentum bin [30].
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FIG. 1. Scatter plot of the the elliptic flow harmonic, versus the
corresponding eccentricity ε2, in modulus, for 40%–50% centrality
Pb + Pb collisions at

√
sNN = 2.76 TeV. Solid blue squares corre-

spond to values of the “flow per particle” V2(pT ), as defined in
Eq. (1), while empty red circles include the effect of multiplicity fluc-
tuations by showing instead the combination N (pT )V2(pT )/〈N (pT )〉.
The dashed magenta line shows the elliptic flow predicted from
relation Eq. (2). As expected, the flow per particle is better correlated
to the geometry of the system, in comparison to the “total flow”
N (pT )V2(pT ).

An extension of Eq. (2) to rapidity-dependent hydrodynamic
response was considered in [31,32].

Despite the success of Eq. (2), anisotropic flow may also
respond to other features of the initial state. In Fig. 1, the solid
blue squares represent values of V2 and ε2 for a set of events
simulated in a state-of-the-art hydrodynamic model [33,34]
using TRENTo + MUSIC + UrQMD [35–42]. The remarkable
correlation between the two quantities visibly supports the ap-
proximation in Eq. (2) (dashed magenta line), indicating that
elliptic flow fluctuations are mostly driven by a linear response
to ε2. At the same time, the spread around linear correlation
points to small corrections to the approximate linear response,
which may originate from the finer details of the initial trans-
verse energy distribution [8–10], or from nonlinear response
[4,8,43–48]. Extensions of Eq. (2) to contemplate such cor-
rections were proposed and studied in Refs. [2–7,27,30,49].

In this paper, we set out to investigate how corrections to
Eq. (2), indicated by the spread of the blue squares in Fig. 1,
might be experimentally studied through a principal compo-
nent analysis (PCA) of anisotropic flow fluctuations [11–20].
In particular, we explore which features of the initial geom-
etry are most relevant for understanding this analysis. The
connection between subleading anisotropic flow and initial-
state anisotropies was previously investigated in Refs. [12,13],
where different methods were employed to interpret the orig-
inal observables of Ref. [11].

In Sec. II, we present the PCA of flow fluctuations to
be employed in our analysis [18]. In Sec. III, we discuss a
mapping of hydrodynamic response which extends Eq. (2)
to encompass nonlinear response and finer details of the ini-
tial geometry [3]. Then, we apply this mapping to simulated
hydrodynamic events and employ it to understand the PCA
of anisotropic flow. Results are presented and discussed in
Sec. IV and our main conclusions are summarized in Sec. V.
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FIG. 2. Scatter plot of the real part of the elliptic flow harmonic,
V2(pT ), as defined in Eq. (1), in two separate transverse-momentum
bins pa

T and pb
T (blue squares), for 40%–50% centrality Pb + Pb

collisions at
√

sNN = 2.76 TeV. It is noticeable that the flow in the
two bins is strongly correlated by fluctuations of the eccentricity
ε2, as made clear by the prediction from Eq. (2) (dashed magenta
line). Also shown are the first (“PC 1,” dot-dashed, orange line)
and second (“PC 2,” solid, dark red line) principal components of
elliptic flow fluctuations, projected onto the subspace described by
(V2(pa

T ),V2(pb
T )). The first component is associated with fluctuations

of ε2, while the second one is related to corrections to Eq. (2).

II. PRINCIPAL COMPONENT ANALYSIS OF FLOW
FLUCTUATIONS

We wish to find measurable consequences of corrections to
relation (2). However, only the left-hand side of this relation is
accessible in experiments. Thus, fluctuations of the initial ge-
ometry must be inferred from fluctuations of anisotropic flow.
One way this can be achieved is by exploring correlations
between flow harmonics at different momentum bins. For
concreteness, the blue squares in Fig. 2 display a scatter plot
of the elliptic flow coefficients V2(pa

T ) and V2(pb
T ), measured

from particles of two different bins a and b, with pa
T 
= pb

T ,
for a set of simulated events in a hybrid event-by-event hydro-
dynamic model [33,34]. In this figure, correlations predicted
by Eq. (2) are represented by the magenta dashed line, of
slope κ2(pb

T )/κ2(pa
T ). Once again, the spread of points around

the linear expectation implies that fluctuations of anisotropic
flow are not entirely determined by fluctuations of εn alone,
and in fact, elliptic flow coefficients at different transverse
momentum fluctuate slightly differently from one another.

This deviation from perfect correlation in Fig. 2 can be
quantified by a principal component analysis. In fact, this
analysis can be carried out considering correlations among
all the different transverse-momentum bins [11,50]. Principal
component analysis is a standard multivariate method that
allows one to isolate linear combinations of variables which
are linearly uncorrelated. By ordering the eigenvectors of the
covariance matrix according to the eigenvalues, one can sort
out which are the main directions of fluctuation—or principal
components—within a given space of correlated variables
[51]. Figure 2 shows the projections of the first (“PC 1”)
and second (“PC 2”) principal components of elliptic flow
onto the subspace spanned by (V2(pa

T ),V2(pb
T )). The first, or

leading, component of elliptic flow lies along the expectations
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from Eq. (2), indicating that this component is related to
fluctuations of ε2. On the other hand, this is not the case for
the subleading component, which should be linked to other
sources of fluctuation.

The PCA of anisotropic flow was first proposed in
Ref. [11]. This original proposal was further explored in sev-
eral papers [12–19] and experimentally measured by the CMS
Collaboration [20]. While an event-by-event determination of
the azimuthal distribution of particles, and thus of the flow
harmonics Vn(pT ), is severely hindered by the limited number
of particles, a covariance matrix reflecting correlations among
different bins can be safely extracted from two-particle corre-
lations. The principal components V (α)

n (pT ) can be found from
the spectral decomposition of this matrix:

〈
Vn

(
pa

T

)
V ∗

n

(
pb

T

)〉 =
M∑
α

λ(α) ψ (α)
n

(
pa

T

)
ψ (α)

n

(
pb

T

)

=
M∑
α

V (α)
n

(
pa

T

)
V (α)

n

(
pb

T

)
, (5)

where M is the number of transverse-momentum bins, and
λ(α) and ψ (α)

n (pT ) are the eigenvalues and eigenvectors, or-
dered in descending order λ(α) � λ(α+1), and

V (α)
n (pT ) ≡

√
λ(α) ψ (α)

n (pT ). (6)

Because the covariance matrix is Hermitian, positive semidef-
inite and, assuming symmetry under parity transformations,
also real, V (α)

n (pT ) can be defined as real functions of the
transverse momentum. While a precise measurement of the
covariance matrix in Eq. (5) might be a challenge, this matrix
was shown to be nearly equivalent to the alternative one in-
troduced in [18], which in turn should be straightforward to
measure.

In Fig. 2, one observes a clear hierarchy between the first
or leading principal component (α = 1)—corresponding to
the dominant source of fluctuations—and the much smaller
subleading principal component (α = 2)—related to subdom-
inant fluctuations [11]. By truncating Eq. (5) at αmax � M,
such that λ(αmax ) � λ(1), one can characterize the covariance
matrix, a two-variable function, by only a few functions
V (α�αmax )

n (pT ) of a single variable, representing the projection
of the principal components upon each momentum bin. In
general, even across the entire measured momentum range,
there is a strong hierarchy such that the matrix can be ac-
curately represented by two or three principal components.
Thus, the PCA allows for an optimal, compact visualization
of two-particle correlations from fluctuations of Vn(pT ) [11].

In Eq. (5), the obtained components depend on how the
spectral condition is defined. Here, we write the eigenvalue
equation as

M∑
b=1

Vn


(
pa

T , pb
T

)
V (α)

n

(
pb

T

)
W

(
pb

T

)

pb

T = λ(α) V (α)
n

(
pa

T

)
,

(7)

where Vn
(pa
T , pb

T ) ≡ 〈Vn(pa
T )V ∗

n (pb
T )〉 and the index b is

summed over all transverse-momentum bins, each with a
weight W (pb

T ) [18]. The weight function can be chosen so as

to emphasize different parts of the spectrum. Natural choices
of weight include W (pT ) = 1, for uniform emphasis across
pT , and W (pT ) = 〈N (pT )〉, focusing on more occupied mo-
mentum bins. In this work, we adopt the former choice and
take W = 1.

In the original proposal of Ref. [11], the covariance
matrix of the “total flow” was considered. That is, Vn ≡
N (pT , y)Vn(pT , y) at each momentum bin, and the flow
vectors were not normalized by multiplicity. However, a co-
variance matrix of the “flow per particle” Vn(pT , y) is better
suited to our needs [15,18]. In fact, in [18], an important
difference between subleading fluctuations of the “total” and
the “per-particle” anisotropic flow was found. This difference
is clearly visible in Fig. 1, where empty red circles represent
values of N V2/〈N〉 in different events. Fluctuations of V2

correlate better with the geometry of the events, while fluctu-
ations of N V2 are affected by fluctuations of particle number
[18]. It is noteworthy that the deviation is larger for higher
values of |ε2|, corresponding to more peripheral collisions,
where multiplicity fluctuations are more important.

The decorrelation among flow fluctuations at different
values of the momentum can also be explored using the factor-
ization breaking coefficient rn(pa

T , pb
T ) [8,9,52–60]. However,

this approach reveals the importance of subleading fluctu-
ations only in relative terms. In case the dominant flow
fluctuations stemming from eccentricity fluctuations become
too large, as is the case for peripheral collisions, sublead-
ing flow fluctuations will only weakly impact the value of
rn(pa

T , pb
T ).

III. MAPPING HYDRODYNAMIC RESPONSE

Having built some intuition on the PCA of anisotropic
flow, we now turn to a more quantitative study of its precise
physical content. More specifically, we aim at determining
which features of the fluctuating initial geometry are essential
to the second principal component. To that end, we employ an
approach based on Refs. [3,5], explained below.

Let us assume that the QGP evolves deterministically, start-
ing from early times, τ � τ0. The energy-momentum tensor
T μν (τ � τ0, �x) at later times is, thus, fully determined by its
components at τ = τ0. As a consequence, the final single-
particle distribution is a functional of T μν (τ0, �x):1

dN

dy pT d pT dϕ
= F[T μν (τ0, �x)]. (8)

Our purpose is to model the azimuthal dependence of
F[T μν (τ0, �x)] in a systematic manner. This can be achieved
by employing a cumulant expansion of the initial conditions
to define eccentricities εn,m. Thus, one can establish phe-
nomenological relations Vn ≈ Fn[{εn′,m′ }], where Fn can be
approximated by a power series in εn′,m′ . This series is re-
stricted to terms with the correct symmetries and ordered
according to a hierarchy of scales, in a Ginzburg-Landau

1We here assume boost-invariant initial conditions. A study of hy-
drodynamic response beyond 2+1-dimensional hydrodynamics can
be found in [31,32].
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fashion. As will become clear, the leading lowest-order term
in such a series, ∝ εn,n, is related to the usual eccentricity
scaling of Eq. (2), while corrections give rise to the subleading
principal components of anisotropic flow.

A. Characterizing the initial geometry

For simplicity, we assume a “static” transverse energy
distribution at τ = τ0 and neglect components of T μν (�x, τ0)
other than the energy density ρ(�x) ≡ T ττ (τ0, �x).2 It proves
useful to take its Fourier transform,

ρ(�k) =
∫

d2x ρ(�x) ei�k·�x, (9)

so that different values of |�k| probe ρ(�x) at different scales. In
fact, ρ(�k) can be interpreted as a moment generating function,
from which eccentricities might be extracted [2]. Because of
their transformation properties under rotation, it is convenient
to define z ≡ x + i y and kz ≡ kx + i ky. Moments of z and z∗
are given by

{
z j z∗�

} = (−2 i) j+�

ρ0

∂ j+�ρ(�k)

∂k∗
z

j∂k�
z

∣∣∣∣
k=0

, (10)

where ρ0 ≡ ρ(�k = �0) and we use the definition in Eq. (4).
The moments {zi z∗ j} are not invariant under translations

and depend on the choice of coordinate system [5]. This is
related to the fact that |kx|−1 and |ky|−1 are actually scales
of distance to an arbitrary origin, not of separation between
points. This issue can be solved by using, instead, the func-
tion,

W (�k) ≡ log
(
ρ(�k)/ρ̄

)
, (11)

where ρ̄ sets an arbitrary scale with the same units as ρ(�k).
Notice that under a translation,

�x → �x + �d : W (�k) → W (�k) + i �k · �d, (12)

so that all but the first derivatives of W (�k) are invariant under
translations. Cumulants can be computed from

{z j z∗�}cml ≡ (−2 i) j+� ∂ j+�W (�k)

∂k∗
z

j∂k�
z

∣∣∣∣
k=0

. (13)

To study transformation properties under rotations, it is
convenient to employ polar coordinates, where z ≡ r eiφ . We
thus define

ρ j−�, j+� ≡ {z j z∗�} = {r j+� ei( j−�)φ}, (14)

Wj−�, j+� ≡ {z j z∗�}cml = {r j+� ei( j−�)φ}cml, (15)

which transform as the harmonics Vn under rotations,

φ → φ + δ : ρn,m → ρn,m ein δ , Wn,m → Wn,m ein δ. (16)

Because of Eqs. (14) and (15), ρn,m and Wn,m are defined only
for even, non-negative values of m − |n|. They are taken to
vanish otherwise.

2A similar treatment including other components of T μν can be
found in Ref. [61].

The set of all ρn,m, or all Wn,m, is sufficient to fully recover
the shape of the initial condition ρ(�x). In fact, expanding ρ(�k)
and W (�k) in powers of kz and k∗

z , and using Eqs. (10) and (13),
one finds that these moments and cumulants can be interpreted
as series coefficients [2]:

ρ(�k) = ρ0

∞∑
m=0

m∑
n=−m

(i/2)m ρn,m(
m+n

2

)
!
(

m−n
2

)
!
km e−inφk , (17)

W (�k) =
∞∑

m=0

m∑
n=−m

(i/2)m Wn,m(
m+n

2

)
!
(

m−n
2

)
!
km e−inφk , (18)

where it becomes clear that larger values of m become impor-
tant at higher values of k and, thus, at smaller spatial scales.
Also, if cumulants with m � 3 are neglected, one obtains a
simple Gaussian distribution. Notice as well that only coeffi-
cients with positive n are required, because ρ−n,m = ρ∗

n,m and
W−n,m = W ∗

n,m.
More details, including explicit, general expressions for the

cumulants Wn,m in terms of the moments ρn,m can be found in
Appendix A. As an example, we write down the expressions
for m = 2:

W0,2 = {r2} − {r e−i φx } {r ei φx }, (19)

W2,2 = {r2 e2i φx } − {r ei φx }2, (20)

and m = 3:

W1,3 = {r3 eiφx } − {r2 e2iφx } {r e−iφx }
−2 {r2} {r eiφx } + 2 {r eiφx }2 {r e−iφx }, (21)

W3,3 = {r3 e3iφx } − 3 {r2 e2iφx } {r eiφx }
+2 {r eiφx }3. (22)

B. Hydrodynamic response to initial geometry

The cumulant expansion above allows one to characterize
the initial geometry of the system with a set of complex
numbers Wn,m. The index n specifies a harmonic of the az-
imuthal distribution of energy, while m indirectly determines
the length scales contributing to each cumulant, as well as the
scaling with the typical transverse size L:

Wn,m = {rm einφ}cml ∝ Lm. (23)

Because of the oscillating exponential einφ , realistic initial
conditions are expected to have Wn 
=0,m � Lm. Thus, we can
characterize the initial-state anisotropies with typically small,
dimensionless, system-size independent eccentricities [3,5]:

εn,m ≡ −Wn,m

Rm
, (24)

where we use R = √
W0,2 as a measure of system size. In

addition to having well-defined rotational symmetries, all ec-
centricities except ε±1,1 are invariant under translation, as can
be seen from Eq. (12).

From Eq. (8), Vn(pT ) is a function of the eccentricities
in Eq. (24), which we can expand as a power series. This
power series is restricted to terms which transform as Vn under
rotations, which considerably simplifies its form. Up to linear

064909-4



PROBING THE STRUCTURE OF THE INITIAL STATE OF … PHYSICAL REVIEW C 102, 064909 (2020)

response, we have

Vn(pT ) ≈
mmax∑

m = n
m 
= 1

κ (n)
m (pT ) εn,m + O(εn,mmax ) + O(ε2), (25)

where, assuming that larger scales contribute the most, we ne-
glect eccentricities with m > mmax. By enforcing translational
invariance, we have excluded m = 1 from the series expan-
sion. Including higher powers of εn,m, up to pmax, we find

Vn(pT ) ≈
pmax∑
p=1

∑
n′

i=n∑
{n′,m′}

κ
(n)
{n′,m′}(pT )

p∏
i=1

εn′
i,m

′
i

+ O(εn,mmax ) + O(ε pmax+1), (26)

where the sum includes negative values of n′ and is
restricted to terms with the correct rotational and translational
symmetries.

The coefficients κ (pT ) in Eqs. (25) and (26) are responsible
for encoding all the information on the relevant QGP proper-
ties, e.g., equation of state and transport coefficients. They can
be obtained by minimizing the squared norm of the residuals
[3,5],

δn = V (hydro)
n [ρ0(�x)] − V (est)

n ({ε, κ}), (27)

in each transverse-momentum bin, where V (hydro)
n and V (est)

n
are the flow harmonics from full hydrodynamic simulations
and estimates obtained from the power series in Eq. (26),
respectively. By taking the derivative of 〈|δn|2〉 with respect
to κ , we arrive at the system of equations,∑

n′
i=n∑

{n′,m′}
Re 〈ε∗

{n,m}ε{n′,m′}〉κ (n)
{n′,m′} = Re 〈V ∗

n ε{n,m}〉, (28)

where ε{n,m} ≡ ∏
εni,mi . Solving Eq. (28) yields optimal val-

ues of κ , which can be employed to predict the flow harmonic
Vn(pT ). Any dependence of the final flow harmonics on W0,m

must be incorporated in the coefficients κ , which for this
reason are mildly centrality dependent.

We emphasize that this prescription treats each momentum
bin independently. As such, a description of correlated fluc-
tuations between different momentum bins, as measured with
PCA, is a nontrivial test of the framework.

Both Eqs. (25) and (26) are generalizations of Eq. (2).
Similar expressions have been presented in Refs. [2–5]. Un-
like previous approaches, however, we here undertake the
description of the differential flow harmonics Vn(pT ), by also
promoting the coefficients κ to functions of pT . We stress
that the eccentricities εn,m do not depend on the transverse
momentum of the particles in any way, being determined
solely by the initial transverse energy-density profile T ττ (�x)
at τ = τ0. Thus, the transverse-momentum dependence of the
flow harmonics Vn(pT ) is fully encoded in the response coef-
ficients. Response coefficients for the leading and subleading
terms in two-term predictors of triangular and elliptic flow can
be found in Appendix B.

Because the flow harmonics can be measured in experi-
ments, while the eccentricities are available in models for the

initial conditions, the relation in Eq. (2) was used to extract
information on the response coefficients of the QGP, κn. This
can be achieved by comparing measurements of the flow har-
monics Vn to model calculations of the initial eccentricities εn

[62]. However, in Eqs. (25) and (26), the presence of multiple
terms renders the direct extraction of information from exper-
imental data less straightforward. Even for a small number
of terms, such an extraction would most likely require extra
information on the event-by-event probability distribution for
the flow harmonics, as extracted, for instance, from the PCA
itself or from the unfolding approach [63,64].

IV. RESULTS

We apply the mapping of Sec. III to Pb + Pb collisions
at center-of-mass energy

√
sNN = 2.76 TeV simulated in an

event-by-event hybrid model—the same simulated events
shown in Figs. 1 and 2 [33,34]. Our boost-invariant initial
conditions are generated with the parametric model TRENTo
[35] and fed into relativistic viscous hydrodynamics as im-
plemented in MUSIC [36–38]. Model parameters for TRENTo
(except for the normalization factor) and for the parametriza-
tion of the hydro viscosities are taken from the Bayesian
analysis of [42], where they were optimized to describe LHC
data. More details and results from this model can be found
in Refs. [18,33,34]. Hadrons are sampled from the freeze-
out hypersurface using iSpectraSampler (iSS) [39] and
their interactions in the hadron gas phase are described with
UrQMD [40,41]. A direct event-by-event determination of
Vn(pT ), which would be otherwise impractical, is enabled by
applying an oversampling procedure, in which the freeze-out
hypersurface of each hydrodynamic event is converted into
particles multiple times, until a threshold number of particles
is achieved. This artificial increase of the number of parti-
cles also has the advantage of dissolving correlations from
hadronic interactions and resonance decays.

Our aim is to understand which terms and eccentricities in
Eq. (26) provide the most important corrections to Eq. (2).
In particular, we are interested in understanding the impor-
tance of linear response to higher-order eccentricities such
as ε2,4. We start by writing seven-term predictors for V2 and
V3, with three subdominant linear terms and three nonlinear
terms:

V2 � κ
(2)
2 ε2,2 + κ

(2)
4 ε2,4 + κ

(2)
6 ε2,6 + κ

(2)
8 ε2,8 + O(m = 10)

+κ
(2)
(2,2)3 |ε2,2|2ε2,2 + κ

(2)
(2, 2)
(4, 4)

ε4,4ε
∗
2,2 + κ

(2)
(1,3)2 ε2

1,3

+ . . . + O(ε3), (29)

V3 � κ
(3)
3 ε3,3 + κ

(3)
5 ε3,5 + κ

(3)
7 ε3,7 + κ

(3)
9 ε3,9 + O(m = 11)

+κ
(3)
(2, 2)
(1, 3)

ε2,2ε1,3 + κ
(3)
(2, 2)2

(1, 3)

ε2
2,2ε

∗
1,3

+κ
(3)
(4, 4)
(1, 3)

ε4,4ε
∗
1,3 + . . . + O(ε3), (30)

where the only cubic terms are those involving ε2,2, ex-
pected to be the largest eccentricity [49]. To understand the
role of each term in Eqs. (29) and (30), we calculate, for
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FIG. 3. Pearson correlation coefficient between the flow harmonics V2(pT ) (upper panel) and V3(pT ) (lower panel) and predictions of their
event-by-event fluctuations from eccentricities of the initial transverse geometry. Different curves correspond to different predictors, with the
blue dashed curve corresponding to the full expressions in Eqs. (29) and (30). Events are simulated for Pb + Pb collisions at

√
sNN = 2.76 TeV,

within a hybrid event-by-event hydrodynamic model (TRENTo + MUSIC + UrQMD).

different combinations of terms, predictions for the event-
by-event V2(pT ) and V3(pT ), which we then compare to full
hydrodynamic simulations. The coefficients κ (pT ) are fixed
at their optimal values for each set of terms. A more compre-
hensive study, including results for V4(pT ) and V5(pT ), can be
found in Appendix C.

A. Quality of the predictors

The quality of the estimators in Eq. (25) and (26) can be
assessed by measuring how they correlate with Vn(pT ), at the
optimum values of κ . To measure the degree of correlation we
employ the Pearson correlation coefficient [3,5],

Qn(pT ) ≡ Re
〈
V ∗

n
(hydro)(pT )V (est)

n (pT )
〉

√
〈|Vn

(hydro)(pT )|2〉 〈|V (est)
n (pT )|2〉

, (31)

which is always between −1, corresponding to perfect anti-
correlation, and 1, corresponding to perfect correlation.

Results for the correlation coefficients Q2 and Q3 are dis-
played in Fig. 3, for predictors constructed from different sets
of terms. We first note that, as long as the leading eccentric-
ity εn,n is included, all combinations of terms provide good
predictors of Vn, with Qn consistently close to 1. However, it
is also visible that including new eccentricities and terms can
improve the correlation even further, especially for noncentral
events and higher pT . In particular, we highlight that the full
predictors in Eqs. (29) and (30) (dashed blue curve), contain-
ing seven terms, are consistently closer to the full simulation
results, hinting at the convergence of the double expansion
in Eq. (26). Our predictors have their worst performance for
central collisions and low transverse momentum, where ec-
centricities are expected to be smaller.

Different terms in the mapping of hydrodynamic response
become more important depending on centrality and trans-
verse momentum. It is to be expected that, in more peripheral
collisions, increasing eccentricities render nonlinear terms
more important. Furthermore, if larger values of pT are asso-
ciated with stronger pressure gradients, it should come as no
surprise that nonlinear hydrodynamic response becomes more
important as pT increases. In fact, for V2, the subleading linear
term ε2,4 is especially important in more central collisions,
while the nonlinear term ε2

1,3 becomes more important at
higher centralities. The cubic term |ε2,2|2ε2,2—often assumed
to be the most important subdominant term in peripheral
events [49]—is typically less important than ε2

1,3. It becomes
relevant for noncentral collisions and at low pT , where most
of the particles are, but also where its effect is barely visi-
ble. For V3, the nonlinear term proportional to ε2,2ε1,3 also
becomes more important in more peripheral events, but the
pT dependence is even stronger. The linear term proportional
to ε3,5 becomes less relevant at higher pT , being eclipsed by
ε2,2ε1,3 even in central collisions. The response coefficients
for the leading and subleading terms in Fig. 3 can be found in
Appendix B.

As a caveat, we stress that the higher cumulants Wn,m are,
in general, nonlinear on the moments ρm,n, and the terms that
we consider to be linear here might be viewed as nonlinear
elsewhere—if eccentricities are defined from ρm,n. This is
especially important for understanding the higher harmonic
results presented in Appendix C.

B. PCA from hydrodynamic response

In Sec. II, we have argued that corrections to the usual
eccentricity scaling in Eq. (2) are revealed by subleading
principal components of the flow harmonics. By employing
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FIG. 4. Second principal component of elliptic (upper panel) and triangular (lower panel) flow, both from full hydrodynamic simulations
and event-by-event predictions from eccentricities of the initial geometry. Different curves correspond to different predictors, with the black
solid curve corresponding to the full hydrodynamic results and the blue dashed curve corresponding to the full expressions in Eqs. (29) and
(30). Events are simulated for Pb + Pb collisions at

√
sNN = 2.76 TeV, within a hybrid event-by-event hydrodynamic model (TRENTo +

MUSIC + UrQMD).

the results of Sec. III, we can now make our argument quanti-
tative and investigate how different terms and eccentricities
in Eq. (26) affect the PCA of anisotropic flow. In addition
to verifying our claim, we are also able to reveal the in-
formation contained in subleading principal components at
different centralities and transverse momenta for both elliptic
and triangular flow.

It can be shown that the leading principal component is
nearly unaffected by subleading terms, at least for n = 2, 3
[65]. Because the third principal component of anisotropic
flow can be quite small, we thus focus on the second prin-
cipal component V (2)

n (pT ). Results are shown in Fig. 4, where
we compare the subleading principal components extracted
from full hydrodynamic simulations in our model (solid black
curve) and from the predictors in Eqs. (29) and (30) (dashed
blue curve). The vertical axis shows the projection V (2)

n (pT )
of the second principal component on a given momentum bin,
while the horizontal axis corresponds to increasing values of
pT . A good agreement is found, especially for more central
collisions.

We stress that a nonvanishing subleading principal compo-
nent can only be predicted if more than one term is included in
the predictor for Vn. In Fig. 4, this is illustrated by the flat pale-
blue solid lines, corresponding to predictions from a single
eccentricity εn,n, in which case Vn at each pT must fluctuate
identically. Thus, subleading PCA modes uniquely isolate
higher corrections in the cumulant series. Predictions for
V (2)

n (pT ) including one subleading term for each harmonic are
also presented. Once again, we find that nonlinear terms are
more important for more peripheral collisions, where eccen-
tricities become larger. For V (2)

2 (pT ), the linear subleading
term ∝ ε2,4 provides the dominant contribution in central

collisions, indicating a sensitivity to smaller scale structure
of the initial state. In more peripheral centralities, both cubic
and quadratic terms are equally important. For V (2)

3 (pT ), we
find nonlinear terms to be more important in general. Already
at 0%–10% centrality, a competition between linear and non-
linear terms is found, with the linear ∝ ε3,5 term dominating
at low pT , while the nonlinear ∝ ε1,3ε2,2 term dominates at
higher pT . For more peripheral collisions, the prediction from
the linear subdominant term ∝ ε3,5 looks qualitatively differ-
ent from the full simulation results—it crosses the horizontal
axis two times, more than required by orthogonality with V (1)

3 .
We have also checked that the predictors in Eqs. (29) and

(30) provide a reasonable description of the third principal
components of both elliptic and triangular flow. This confirms
that the good description of subleading principal components
is not fortuitous, and indicates that these predictors provide a
surprisingly detailed description of flow fluctuations. Results
can be found in Appendix C.

C. Granularity of the initial state

From Fig. 4, we find the subleading component of elliptic
flow V (2)

2 (pT ) to be especially sensitive to ε2,4, being dom-
inated by its contributions in central collisions. Unlike the
more familiar ε2,2, this eccentricity characterizes the initial
state at smaller length scales, making V (2)

2 (pT ) a promising
probe of the granularity of the initial transverse energy distri-
bution [8–10].

An important question is then, exactly how sensitive is the
subleading PCA mode to the small-scale structure of the initial
state, and what specific length scales can be probed?
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To address these questions, we first employ a simple in-
dependent source model (ISM).3 In this model, N identical
sources are randomly (and independently) distributed in the
transverse plane according to some probability distribution
p(�x). Each event then has a density

ρ(�x) =
N∑

i=1

ρS (�x − �xi ), (32)

where ρS (�x − �xi ) is the density distribution of a single source.4

Because Wn,m are cumulants, the effect of the random source
positions separates from the effect of the shape of each source
ρS . That is, we can write the single event density as a convo-
lution,

ρ(�x) =
∫

d2x′ ρD(�x′) ρS (�x − �x′), (33)

with

ρD(�x) ≡
N∑

i=1

δ(2)(�x − �xi ). (34)

Because Eq. (33) is a convolution and the generating
function W (�k) is the logarithm of a Fourier transform, con-
tributions from ρD and ρS combine additively and so do all
cumulants:

W (�k) = ln

(
ρD(�k)

ρD(�0)

)
+ ln

(
ρS (�k)

ρS (�0)

)
(35)

≡ W D(�k) + W S (�k), (36)

⇒ Wn,m = W D
n,m + W S

n,m, (37)

where, from now on, the superscripts D and S denote the
distribution of sources and the average source shape, respec-
tively. Assuming isotropic sources, Wn,m = W D

n,m for all n 
= 0,
but the system size is still affected by the r.m.s. source radius

RS ≡
√

W S
0,2 [66], which sets the scale for the granularity of

the system:

W0,2 = R2
D + R2

S ≡ R2. (38)

Thus, from Eq. (3), and assuming RS � RD:

εn,m = Rm
D εD

n,m

Rm
(39)

= (R2 − R2
S )m/2 εD

n,m

Rm
(40)

≈
(

1 − m

2

R2
S

R2

)
εD

n,m, (41)

for all n 
= 0.
So we can expect that m = 4 eccentricities, such as ε2,4,

are approximately twice as sensitive to the size of the source

3See, for instance, Ref. [66].
4The source distribution ρS can also fluctuate, with results un-

changed, as long as the distribution is statistically independent of
the position.

as m = 2 eccentricities, such as the traditional ε2 = ε2,2 that
determines the leading elliptic flow. Further, with this formula
we can quantify what length scales can be probed. For exam-
ple, if the granular structure were different by a fraction of
the system size RS/R = X � 1, the fractional change in ε2,4

would be roughly 2X 2. For Pb + Pb collisions at 0%–10%
centrality, for instance, where the subleading v2 mode is dom-
inated by ε2,4 our TRENTo initial conditions yield RD ≈ 4 fm.
So if we want to probe the system at scales smaller than, e.g.,
1 fm, Eq. (41) suggests we need to measure the subleading v2

PCA mode to no better than ≈10% precision. An even larger
effect is to be expected for smaller collision systems and for
higher harmonics, where higher values of m become relevant.

To verify these expectations from the simple independent
source model, we simulate realistic TRENTo events, but vary-
ing the Gaussian width w of the nucleon, which sets the
granularity scale in the model [35,68]. For each initial condi-
tion, we calculated the root-mean-square radius R =

√
{r2} =√

W0,2 and the eccentricities ε2,2 and ε2,4 for w = 0.4–0.8 fm
and w = 0.956 fm—the latter corresponding to the optimum
value found in Ref. [42]. For each value of w, these initial
conditions were ordered according to their total entropy con-
tent and binned into 10 quantiles, playing the role of centrality
bins.

Figure 5 shows the leading and subleading elliptical ec-
centricities of the generated initial conditions as functions
of w. Because principal component analysis isolates linearly
uncorrelated fluctuations, we define

ε̂2,4 ≡ ε2,4 − 〈ε∗
2,2 ε2,4〉

〈|ε2,2|2〉 ε2,2, (42)

and show

ε2,2{2} ≡
√

〈|ε2,2|2〉 , and ε̂2,4{2} ≡
√

〈|ε̂2,4|2〉 (43)

for three different centralities, between 0% and 50%. Under a
decrease of w from 0.956 fm to 0.4 fm,

√〈|ε̂2,4|2〉 was found
to increase by roughly 35%–80%, depending on centrality,
with

√〈|ε2,2|2〉 changing by about 14%–22%. Even in central
collisions, where sensitivity to the nucleon-width w was found
to be smaller,

√〈|ε̂2,4|2〉 is more than twice as sensitive to w

as
√〈|ε2,2|2〉, surpassing expectations from Eq. (41).
To compare TRENTo results to expectations from the

isotropic ISM, we assume RS =
√

{x2 + y2}S ≈ √
2 w in

Eq. (40). Because the root-mean-square radius R is found to
be mildly dependent on w, we assume the source-distribution

r.m.s. radius, RD =
√

R2 − R2
S , to be held constant, so that

εn,m(w′)
εn,m(w)

ISM≈
(

R2(w)

R2(w) + 2 (w′2 − w2)

)m/2

εD
n,m. (44)

In Fig. 5, Eq. (44) is represented, for 40%–50% centrality,
by the faint magenta lines. A reasonable agreement is found
between the isotropic ISM and TRENTo for small departures
from w = 0.956, but significant deviations are seen for w
below 0.6 fm. This might be explained by anisotropies at
the granular scale, which should be expected from the gen-
eralized average involved in the TRENTo reduced thickness
function—a combination of projectile and target thicknesses
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FIG. 5. Scaling of fluctuations of (a) ε2,2, with m = 2, and (b) the linearly uncorrelated eccentricity ε̂2,4, with m = 4, as functions the
nucleon-width parameter w. Results were generated by running TRENTo initial conditions [35] with different values of w, a proxy for
the granularity of the initial state. Thick curves correspond to results from different centrality classes. Faint magenta curves correspond to
the estimate in Eq. (44), from an independent source model (ISM) with isotropic sources, for 40%–50% centrality.

which is nonlinear for parameter p 
= 1 [35]. Nonetheless, we
note that a much better agreement with the isotropic ISM can
be found by employing ε2,4—with no subtraction of correla-
tions with ε2,2—instead of ε̂2,4. We also stress that even the
results for Eq. (44) exceed the twofold increase in sensitivity
from m = 2 to m = 4 expected from Eq. (41) because of
departures from linear behavior.

Above, we have presented analytical and numerical evi-
dence for the higher sensitivity of the higher-order eccentricity
ε2,4 to the granularity of initial-state fluctuations. Even under
the very conservative assumption of isotropic fluctuations at
small scales, this eccentricity is found to be at least two times
more sensitive to the granular scale w than the usual eccen-
tricity ε2,2. We thus conclude that the subleading principal
component of elliptic flow V (2)

2 (pT ), being strongly sensitive
to

√〈|ε̂2,4|2〉, provides a unique probe of the initial conditions
at sub-Fermi scales.

V. CONCLUSIONS

In this paper, we show that the PCA of anisotropic flow
is a promising tool for studying the hydrodynamic response
of the QGP to fluctuations of the initial state. Once unde-
sired contributions from radial flow fluctuations are properly
removed, as proposed in [18], this analysis uncovers details
of the hydrodynamic response to anisotropies of the initial
energy distribution of the system. More specifically, it reveals
corrections to the familiar scaling relation between flow har-
monics and spatial eccentricities Vn = κn εn [2–7,23–27].

A more complete mapping between initial geometry and
flow harmonics can be generalized by means of a cu-
mulant expansion of the initial transverse energy density
profile [2–7]. In this work, by extending this mapping to
account for transverse-momentum dependence, we were able
to successfully predict anisotropic flow harmonics on a dif-
ferential basis. This allowed us to systematically gauge, for
the first time, the relative importance of linear and non-
linear hydrodynamic response at different centralities and
transverse-momentum ranges. Higher-order cumulants of the
initial transverse profile of the system proved to be more
important at lower transverse momentum and in more central
collisions, while nonlinear hydrodynamic response was found

to provide the most important corrections at higher transverse
momentum and in more peripheral collisions. We also found
that two nonlinear terms, proportional to |ε2,2|2ε2,2 and ε2

1,3,
provide relevant corrections to V2(pT ). Surprisingly, the latter
was found to surpass the former in importance on a wide
transverse-momentum range.

By predicting Vn(pT ) exclusively from features of the ini-
tial transverse geometry, we were also able to reproduce,
to a reasonable accuracy, the principal components of el-
liptic and triangular flow calculated in full event-by-event
hydrodynamic simulations. By employing different eccentric-
ities of the initial geometry, we found subleading principal
components to be sensitive both to higher-order cumulants
of the initial transverse geometry and to nonlinear hydro-
dynamic response. In the case of triangular flow, the most
important contribution to the subleading component comes
from a nonlinear term proportional to ε2,2ε1,3. The leading
linear correction, proportional to ε3,5, on the other hand, was
found to provide distinct contributions to the first subleading
component—qualitatively different from the full simulation
results.

In the case of elliptic flow fluctuations, the leading linear
correction to V2(pT ), proportional to ε2,4, was found to pro-
vide an excellent prediction of the first subleading principal
component in central collisions. In more peripheral collisions,
this term was found to compete with the nonlinear terms
∝ |ε2,2|2ε2,2 and ∝ ε2

1,3 in importance. By employing both
analytical arguments and numerical results, we showed this
eccentricity to be sensitive to the initial granularity of the sys-
tem. This provides compelling evidence that the measurement
of the PCA observables proposed in Ref. [18] will shed light
on the details and granular structure of the initial stages of
high-energy nucleus-nucleus collisions.

In short, measurements of the principal components of dif-
ferent flow harmonics at different centralities can be employed
to study different aspects of the hydrodynamic response of
the QGP. In addition to fluctuations of the energy density
at smaller scales, principal component analysis can prove a
useful tool to uncover fluctuations originating from initial
flow [61]. This makes PCA an especially interesting tool for
investigating the physics of smaller collision systems [67]—
although a study of this possibility is left to future work.
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APPENDIX A: MOMENTS AND CUMULANTS
OF THE INITIAL DENSITY PROFILE

In this Appendix, we provide a complementary, more de-
tailed description of the cumulants and moments of the initial
transverse energy-density profile, used to define the eccentric-
ities in Eq. (24).

1. Definition

The two-dimensional density (here, energy-density) profile
of the initial state ρ(�x) can be characterized by its moments
and cumulants. The corresponding generating functions are,
respectively,

ρ(�k) =
∫

d2x ρ(�x) ei�k·�x, (A1)

and

W (�k) = log
(
ρ(�k)/ρ̄

)
, (A2)

where ρ̄ is an arbitrary scale and �x = r (cos φx, sin φx ) and
�k = k (cos φk, sin φk ) are vectors on the transverse plane. The
moments and cumulants can be defined by taking the Taylor
expansion of both ρ(�k) and W (�k) around k ≡ |�k| = 0, fol-
lowed by a Fourier expansion in φk:

ρ(�k) =
∞∑

m=0

m∑
n=−m

�n,m km e−inφk , (A3)

W (�k) =
∞∑

m=0

m∑
n=−m

Wn,m km e−inφk , (A4)

where, from Eqs. (17) and (18), we can identify

�n,m ≡ (i/2)m ρ0 ρn,m(
m+n

2

)
!
(

m−n
2

)
!
, Wn,m ≡ (i/2)m Wn,m(

m+n
2

)
!
(

m−n
2

)
!
. (A5)

Note that

�n,m = 1

m!

∫ π

−π

dφk

2π

dm

dkm
ρ(�k)einφk

∣∣∣∣�k=0

= im

m!

∫
d2x ρ(�x) rm

∫ π

−π

dφk

2π
[cos(φk − φx )]m einφk .

(A6)

Using the result,

I (φx ) ≡
∫

dφk

2π
[cos(φk − φx )]m einφk

= 1

2m
einφx

∫ π

−π

dφ

2π
(eiφ + e−iφ )m einφ

= 1

2m
einφx

m∑
l=0

m!

l!(m − l )!

∫ π

−π

dφ

2π
e−i(2l−m)φ einφ

= m!

2m ( m+n
2 )!( m−n

2 )!
einφx ,

(A7)

we get

ρn,m = 1

ρ0

∫
d2x ρ(�x) rm einφx

= {rm einφx }, (A8)

provided m − |n| is a positive multiple of 2. For negative or
odd values of m − |n|, the integral in Eq. (A7) vanishes.

2. Relation between cumulants and moments

The cumulants can be written in terms of the moments by
separating the zero mode and using the Taylor expansion of
log h around h = 1:

W (�k) − W (�0) =
∞∑

l=1

(−1)�−1

�

( ∞∑
m=1

m∑
n=−m

�n,m

ρ0
km e−inφk

)�

=
∞∑

l=1

(−1)�−1

� (ρ0)�
∑

∑
pn,m=�

�!×

×
∞∏

m=0

m∏
n=−m

1

pn,m!

(
�m,nkm e−inφk

)pn,m

=
∞∑

�=1

(−1)�−1(� − 1)!

(ρ0)�

×
∑

{pn,m}∑
pn,m = �

k
∑

m pn,m e i
∑

n pn,m φk

×
∞∏

m=0

m∏
n=−m

1

pn,m!
(�m,n)pn,m ,

(A9)

where the multinomial theorem was employed to rewrite the
�th power of a sum as a sum over the powers pn,m of each
term, under the condition that

∑
m,n pn,m = �.

064909-10



PROBING THE STRUCTURE OF THE INITIAL STATE OF … PHYSICAL REVIEW C 102, 064909 (2020)

0.5 1.0 1.5 2.0 2.5
pT (GeV/c)

0.00

0.25

0.50

0.75

κ
fo

r
V

3

Centrality: 0–10%

0.5 1.0 1.5 2.0 2.5
pT (GeV/c)

Centrality: 20–30%

0.5 1.0 1.5 2.0 2.5
pT (GeV/c)

Centrality: 40–50%
κ ε3,3

κ ε3,3 + κ′ ε3,5

κ ε3,3 + κ′ ε3,7

κ ε3,3 + κ′ ε3,9

κ ε3,3 + κ′ ε2,2 ε1,3

κ ε3,3 + κ′ ε22,2 ε∗1,3

κ ε3,3 + κ′ ε4,4 ε∗1,3

0.00

0.25

0.50

0.75

κ
fo

r
V

2

Centrality 0–10% Centrality 20–30% Centrality 40–50% κ ε2,2

κ ε2,2 + κ′ ε2,4

κ ε2,2 + κ′ ε2,6

κ ε2,2 + κ′ ε2,8

κ ε2,2 + κ′ |ε2,2|2 ε2,2

κ ε2,2 + κ′ ε4,4 ε∗2,2

κ ε2,2 + κ′ ε21,3

FIG. 6. Response coefficient κ (pT ) for the leading terms κ ε2,2 and κ ε3,3, corresponding to elliptic and triangular flow, respectively.
Different curves correspond to different predictors, but the leading eccentricity is kept as εn,n. Events are simulated for Pb + Pb collisions
at

√
sNN = 2.76 TeV, within a hybrid event-by-event hydrodynamic model (TRENTo + MUSIC + UrQMD).

Equating the powers of k and eiφk in Eqs. (A4) and (A9)
allows us to identify the cumulants,

Wn̄,m̄ =
∑
{pn,m}∑

m pn,m = m̄∑
n pn,m = n̄

(−1)(
∑

n,m pn,m−1)

×
( ∞∑

m=0

m∑
n=−m

pn,m−1

)
!

∞∏
m=0

m∏
n=−m

1

pn,m!

(
�m,n

ρ0

)pn,m

,

(A10)

for m̄ 
= 0, while, for m̄ = 0, we find simply

W0,0 = log(ρ0/ρ̄ ). (A11)

Equation (A10) gives us the cumulants Wn̄,m̄ in terms of
the moments �m,n. The sum is over all possible partitions of
rm̄ ein̄φx , with weights given by

�̃m̄n̄
m,n = (−1)(

∑
n,m pn,m−1)

(∑
m,n

pn,m − 1

)
!

∏
n,m

(pn,m!)−1.

(A12)
Using Eqs. (A5) and (A8), we can finally find Wn̄,m̄ in terms
of ρm,n:

Wn̄,m̄ 
=0 = (
m̄+n̄

2

)
!
(

m̄−n̄
2

)
!

∑
{pn,m}∑

m pn,m = m̄∑
n pn,m = n̄

(−1)(
∑

n,m pn,m−1)
( ∞∑

m=0

m∑
n=−m

pn,m − 1

)
!

∞∏
m=0

m∏
n=−m

{rm einφx }pn,m

pn,m![( m+n
2 )!( m−n

2 )!]pn,m
, (A13)

where only even values of m − |n| are considered. Once
again, the sum is over all possible partitions, with

∑
m pn,m =

m̄ and
∑

n pn,m = n̄. The weight of each term is of the
form,

�m̄n̄
m,n = �̃m̄n̄

m,n ×
(

m̄+n̄
2

)
!
(

m̄−n̄
2

)
!

[( m+n
2 )!( m−n

2 )!]pn,m
. (A14)

From Eq. (A13)—or, equivalently, from Eqs. (A12) and (A14)
and all the relevant partitions—one can recover Eqs. (19),
(20), (21), and (22).

APPENDIX B: RESPONSE COEFFICIENTS

In Sec. III B, we have described how the response coef-
ficients κ

(n)
{m′,n′} were extracted for different estimators of the

flow harmonics. Predictions of the flow harmonics and their
principal components from these estimators were shown in
Sec. IV, but, for simplicity, the response coefficients them-
selves were not shown as functions of pT . Here, we show
the centrality and transverse-momentum dependence of the
coefficients of the leading and subleading terms, for different
predictors of elliptic and triangular flow.

Figure 6 shows the response coefficient κ (pT ) for the
leading term, κ (pT ) εn,n, in these predictors. This response
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FIG. 7. Response coefficient κ ′(pT ) for the subleading term in the predictors for elliptic and triangular flow. Different curves correspond
to different predictors. Events are simulated for Pb + Pb collisions at

√
sNN = 2.76 TeV, within a hybrid event-by-event hydrodynamic model

(TRENTo + MUSIC + UrQMD).

coefficient is responsible for the shape of the leading principal
component V (1)

n (pT ) of the flow harmonics. In general, the
leading and subleading terms in the predictors can be corre-
lated, so that different choices of subleading term can slightly
affect κ (pT ).

Figure 7 shows the response coefficient κ ′ for different
choices of subleading term. Different terms correlate better
with different transverse-momentum regions, yielding the dif-
ferent shapes in κ ′(pT ). The shape of this response coefficient

is especially important for the shape of the subleading princi-
pal component V (2)

n (pT ) of the flow harmonics.

APPENDIX C: OTHER HARMONICS AND CORRECTIONS

For the sake of clarity and simplicity, we have opted to
omit a few results from the main text of this article. This had
the advantage of making the text paper clearer and the plots
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FIG. 8. Pearson correlation coefficient between the flow harmonics V2(pT ) (upper panel) and V3(pT ) (lower panel) and predictions of their
event-by-event fluctuations from eccentricities of the initial transverse geometry. Different curves correspond to different predictors, with the
blue dashed curve corresponding to the full expressions in Eqs. (29) and (30). Events are simulated for Pb + Pb collisions at

√
sNN = 2.76 TeV,

within a hybrid event-by-event hydrodynamic model (TRENTo + MUSIC + UrQMD).
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FIG. 9. Pearson correlation coefficient between the flow harmonics V4(pT ) (upper panel) and V5(pT ) (lower panel) and predictions of their
event-by-event fluctuations from eccentricities of the initial transverse geometry. Different curves correspond to different predictors, with the
blue dashed curve corresponding to the full expressions in Eqs. (29) and (30). Events are simulated for Pb + Pb collisions at

√
sNN = 2.76 TeV,

within a hybrid event-by-event hydrodynamic model (TRENTo + MUSIC + UrQMD).

less polluted. For completeness, we present a few extra results
in this Appendix.

Here, we show more comprehensive results for the map-
ping of the anisotropic flow from eccentricities of the initial
geometry. In all these results, the dashed blue curve with
hollow circles represents predictions from the most complete
estimates available. For n = 2, 3, these estimates can be found

on Eqs. (29) and (30). For n = 4, 5, they are given by

V4 � κ
(4)
4 ε4,4 + κ

(4)
6 ε4,6 + κ

(4)
8 ε4,8 + O(m = 10)

+κ
(4)
(2,2)2 ε2

2,2 + κ
(4)
(1, 3)
(3, 3)

ε1,3 ε3,3

+ . . . + O(ε3), (C1)
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FIG. 10. Second principal component of elliptic (upper panel) and triangular (lower panel) flow, both from full hydrodynamic simulations
and event-by-event predictions from eccentricities of the initial geometry. Different curves correspond to different predictors, with the black
solid curve corresponding to the full hydrodynamic results and the blue dashed curve corresponding to the full expressions in Eqs. (29) and
(30). Events are simulated for Pb + Pb collisions at

√
sNN = 2.76 TeV, within a hybrid event-by-event hydrodynamic model (TRENTo +

MUSIC + UrQMD).
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FIG. 11. Second principal component of V4(pT ) (upper panel) and V5(pT ) (lower panel), both from full hydrodynamic simulations
and event-by-event predictions from eccentricities of the initial geometry. Different curves correspond to different predictors, with the
black solid curve corresponding to the full hydrodynamic results and the blue dashed curve corresponding to the full expressions in
Eqs. (C1) and (C2). Events are simulated for Pb + Pb collisions at

√
sNN = 2.76 TeV, within a hybrid event-by-event hydrodynamic model

(TRENTO+MUSIC+UrQMD).

V5 � κ
(5)
5 ε5,5 + κ

(5)
7 ε5,7 + κ

(5)
9 ε5,9 + O(m = 11)

+κ
(5)
(2, 2)
(3, 3)

ε2,2 ε3,3 + κ
(5)
(1, 3)
(4, 4)

ε1,3 ε4,4

+ . . . + O(ε3). (C2)

Wherever present, the solid black curve with hollow squares
represents the results from full hydrodynamic simulations.
Dot-dashed curves represent results from predictors combin-
ing the leading eccentricity εn,n and a single linear correction
∝ εn,m>n. Dotted curves, on the other hand, exhibit results
from predictors combining the leading eccentricity εn,n and
a single nonlinear subleading term.
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FIG. 12. Third principal component of elliptic (upper panel) and triangular (lower panel) flow, both from full hydrodynamic simulations
and event-by-event predictions from eccentricities of the initial geometry. The black solid curve corresponds to the full hydrodynamic results,
while the blue dashed curve corresponds to the full expressions in Eqs. (29) and (30). Events are simulated for Pb + Pb collisions at

√
sNN =

2.76 TeV, within a hybrid event-by-event hydrodynamic model (TRENTo + MUSIC + UrQMD).
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In Sec. IV A we have shown results for the quality
of different predictors of the elliptic and triangular flow
harmonics. Figure 3, in particular, displays the Pearson cor-
relation coefficient between the actual flow harmonics from
hydrodynamic simulation events and predictors of these har-
monics from the initial-state eccentricities. In Fig. 8, we repeat
the same results, but, for completeness include other predic-
tors of V2(pT ) and V3(pT ), each of them built from a pair of
terms containing the leading term ∝ εn,n. Figure 9 exhibits the
same kind of analysis for V4(pT ) and V5(pT ). It is noteworthy
that our predictions for higher harmonics are not quite as good
as the ones for elliptic and triangular flow. Note also that the
linear estimator is better here than in some previous analyses
because of our choice to define eccentricities via cumulants
rather than moments.

In Sec. IV B and, more specifically, in Fig. 4, we have
presented results for the second principal component of ellip-
tic and triangular flow harmonics. There, we plotted results

from full event-by-event hydrodynamic simulations, from
the predictors in Eqs. (29) and (30), and from a few pre-
dictors containing a pair of terms each. In Fig. 10, we,
once again, plot the first subleading principal component
of elliptic and triangular flow. However, in this figure, we
include other predictors as well. In Fig. 11, we show the
first subleading principal component of V4(pT ) and V5(pT ).
For these higher harmonics, results are less impressive as
higher harmonics likely require a larger number of terms to
describe.

Finally, we have also calculated principal components be-
yond the first subleading one. Figure 12 shows the third
principal components of triangular and elliptic flow fluc-
tuations. Results are shown only for full hydrodynamic
simulations and for the full predictors on Eqs. (29) and (30).
The agreement between the two curves is quite striking, con-
sidering the level of detail captured by the third principal
component.
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